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Outline
• Introduction
• Strong-motion instrumentation of the Port Access Bridge: 

Phase I & Phase II
• Implementation of Phase I and Phase II
• Results from Phase I

– Seismic and ambient data collection
– Study of bridge structural dynamic properties
– Variation of structural dynamic properties vs. environmental variables
– Analytical modeling of seasonal frost effects on bridge dynamic and 

seismic behavior
– Conclusions on seasonal frost effects on bridge structures

• Status of seismic instrumentation and study of bridge 
infrastructures: A brief comparison between AK and CA

• Major issues for future study



Motivation
High seismicity in south-central Alaska 
Essential facility connecting POA with Alaska highway 
system, serving 90% of Alaskans
No recorded bridge data available in Alaska



Project Phases: I and II
• Phase I

– May 2003 – Dec. 2004
– Sponsors: AK EPSCoR, AK DOT, and UAA
– System: 12-sensor system, three frames instrumented
– Implementation: Completed in Nov. 2004 and operational since then
– Data: 21 earthquakes (3.5-5.5) recorded and over 400 train-induced 

vibrations

• Phase II
– August 2005 – Sept. 2007
– Sponsors: USGS’s ANSS Program and UAA
– System: 27-sensors, entire bridge covered
– Implementation: Started in Oct. 2006 and anticipated to complete by 

the end of this year or early next year.
– Data: N/A
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Implementation of Phase I:
Data Acquisition System



Instruments - Sensors

Uniaxial, bi-axial, and triaxial sensor units
Custom-designed sensor enclosures with insulation layer



Instruments - Data Recorder

K2 Data recorder – Portable PC with DAQ
128 Mb flash memory to store events locally 
Operated on batteries, which are re-charged



Installation - 1

Installed according to DOT requirements
Major cost on installation



Installation - 2



Results from Phase I
Data Collection

21 earthquakes (3.5 < ML < 5.5) and more than 400 train-induced 
vibrations recorded from Nov. 1, 2004 – Dec. 31, 2005
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Recorded Earthquake – 10/17/04 (ML=4.3)
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Structural Dynamic Properties - Modal Frequencies 
and Damping
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Mode Shapes

1st Mode

2nd Mode

3rd Mode
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Bridge Mode Animation – 1st
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Bridge Mode Animation – 2nd
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Bridge Mode Animation – 3rd
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Variation of Modal Frequencies vs. Environ. Variables

20

Air Temperature
Frozen depth D 
estimated by Stefan 
eqn. and verified by 
GPR testing:
D = DF - DT 

DF (ft) = L
FIk f48

DT (ft) =
L

TIku48

Systematic change   
(12 %) of structural  
dynamic properties 
clearly observed 
within one year



Seasonal Frost Effects on Bridge Dynamic Properties

Primary reason for the 
change: the 
seasonally frozen 
ground.
Implication to 
engineering design

Design load
Failure mode of 
foundation system 
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Verification of Seasonal Frost Effects - Method

Seasonally Frozen 
Ground

Unfrozen Ground Pile-Group 
Foundation

Sketch of a bridge pier/foundation system Finite Element mesh
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Verify the effects of seasonal frost on the bridge dynamic properties
Develop simple numerical models for practicing engineers to apply 
in design. 



Verification of Seasonal Frost Effects - Results

23

Good agreement found between observation and FEM; Both show 12% of 
change when frost depth varies from 0 to 2 m
System sensitive to freezing of soils at 0-1.5 m, not sensitive to freezing of 
soils deeper than 2.0 m



Analytical Modeling of Seasonal Frost Effects on Bridge 
Seismic Behavior

Footing 
link

Ground 
motion

Nonlinear joint

Column 
hinge

Cap hinge

Column hinge

Non-linear soil 
springs

Two subsystems: the Pile-Soil subsystem & Bridge Bent-
Foundation subsystem, to facilitate modeling of structure detail
Computer modeling: static and push-over analysis
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Analytical Model for the Pile-Soil Subsystem

Model focusing on foundation and soils
Cyclic analysis to study foundation behavior
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Frost Effects on the Pile-Soil Subsystem - Results
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Depth of frozen soil (m)
Soil Spring
Coefficient

Un-
frozen 0.5 Change

(times) 1.0 Change
(times) 1.5 Change

(times) 2.0 Change
(times)

Khor.(×108 N/m) 4.84 24.5 5.1 39.4 8.1 46.6 9.6 49.6 10.3

Kver.(×108 N/m) 11.5 11.7 1.0 13.4 1.2 15.2 1.3 17.3 1.5

Krock.
(×108 N.m/rad) 48.0 78.1 1.6 130.0 2.7 196.0 4.1 237.0 4.9

Quite different behavior for unfrozen and frozen conditions
Horizontal stiffness increasing by 10 times 26



Frost Effects on Bridge Bent – Foundation Subsystem

Model focusing on superstructure detail (hollow column and 
concrete fill, H/L)
Modal analysis and push-over analysis
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Frost Effects on Dynamic Properties of Bridge 
Bent - Foundation Subsystem

Unfrozen Frozen Fixed

Frequency
(Hz)

Frequency
(Hz)

Change 
from 

unfrozen

Frequency
(Hz)

Change 
from 

frozen
#4A 3.33 0.83 0.85 3.3% 0.87 2.4%
#3A 2.34 1.20 1.26 5.0% 1.29 2.4%
#7 1.37 0.99 1.09 10.1% 1.13 3.7%

#2A 1.17 2.13 2.32 8.9% 2.41 3.9%
#13 0.55 1.60 1.90 18.8% 2.04 7.4%
#17 0.48 2.18 2.73 25.2% 3.01 10.3%

Bent H/L

28

Six typical bents selected for analysis
Influence to individual bents is different
Influence increases with increasing overall stiffness
Fundamental frequency changed by 25%, or 50-60% change in stiffness



Frost Effects on Shear Demand and Lateral 
Displacement Capacity
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Lateral displacement capacity decreasing by 20%
Shear demand at yielding increases by  50% 29



Conclusions from Phase I Study
• Significant variability in modal frequencies is 

observed. The variations in f1 is about 12%
• Main environmental variables: seasonally frozen 

ground and air temperature, with seasonally frozen 
ground being the dominating factor.

• FEM results agree well with the observations. The 
dynamic properties are sensitive to the freezing of 
soils at 0-1.5 m deep but not sensitive to soils deeper 
than 2.0 m. 

• Significant impact in the stiffness of the soil-pile 
system due to the soil freezing observed. The stiffness 
in the horizontal direction could increase by about 10 
times compared with unfrozen condition



Conclusions from Phase I Study – Cont’d
• The frozen soil has quite different impact on the 

dynamic properties of different bents. The 
maximum increase in frequency is 25%.

• The shear demand increases by 50% under frozen 
soil condition for Bent #17.

• The ultimate lateral displacement capacity 
decreases by 20% for Bent #17 under frozen soil 
condition. 

• Future research will focus on more in-depth 
analysis and proposing design code improvement 
accounting for the seismic effects of seasonal frost 
on civil structures
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Seismic Instrumentation and Study of Bridges:

A Status Review for California and Alaska

33



Status of Seismic Instrumentation of California 

• 65 Bridges State-wide 
Instrumented by California 
Division of Mines and Geology 
(CDMG) and Cal-Trans

• Cost for strong motion sensor 
installation usually less than 1% 
of the seismic retrofit cost 

• Tremendous amount of data 
collected from Loma Prieta
Earthquake (1989) and North 
Ridge Earthquake (1994) 

• Extremely useful for design, 
structural health monitoring, and 
other purposes (e.g. Seismic 
gates) 34



Status of Seismic Instrumentation of Alaska 

• So far, only one (1) bridge (the Port Access Viaduct) 
instrumented in Alaska

• Many other bridges are lifeline structures for local 
community 

• Instrumentation and monitoring are important to their safe 
operation and data collection during strong earthquake is 
critical for improved design
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Geological Settings of Alaska and California

36

• Both are very seismically active areas
• Subduction zone earthquakes causing major 

threats to the infrastructure in Alaska
• Deep frost penetration in Alaska
• Unique opportunities to collect data for 

improved bridge design



Unique Opportunities in Alaska - 1
the Kodiak-Near Island Bridge in Kodiak, AK

• 4-span, continuous steel plate girder bridge with a concrete 
deck, connecting downtown Kodiak with the Near Island

• Seismically upgraded using Friction PendulumTM seismic 
isolation bearings

• Enabling the existing bridge piers and foundations to elastically 
resist 0.45g earthquake spectra

• Unique opportunity to collect seismic response data from a 
retrofitted bridge under subduction zone earthquakes
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Unique Opportunities in Alaska - 2
the John O’Connell Bridge in Sitka, AK

• Cable-stayed steel girder truss  bridge, 450-ft long span
• Connecting downtown Sitka to Japonski Island where the airport 

is located
• Offering opportunity for collecting seismic response data from 

long-span suspension bridge under strike-slip earthquakes

38



Major Issues for Future Study 
and A Wish List

• Continuing research into seasonal frost impact on seismic 
design of bridges

• Recommending bridge design code provisions to account 
for frost effects

• Funding from State of Alaska and other sources to 
instrument more bridges 

• Funding to support study on the seismic performance of 
bridges in cold regions
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