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ABSTRACT
Potential tsunami hazard for the Alaska Peninsula communities of Chignik and Chignik Lagoon is evaluated by numeri-
cally modeling the extent of inundation from tsunami waves generated by hypothetical earthquake sources. Worst-case 
hypothetical scenarios are defined by analyzing results of a sensitivity study of the tsunami dynamics related to various 
slip distributions along the Alaska–Aleutian megathrust. The worst-case scenarios for Chignik area communities are 
thought to be thrust earthquakes along the Alaska Peninsula with their greatest slip at 5–35 km (3.1–22 mi) depth. We 
also consider Tohoku-type ruptures and an outer-rise rupture along the Alaska Peninsula. Results presented here are 
intended to provide guidance to local emergency management agencies in tsunami inundation assessment, evacuation 
planning, and public education to mitigate future tsunami hazards.

INTRODUCTION
Subduction of the Pacific plate under the North American 

plate has resulted in numerous great earthquakes and has the 
highest potential to generate tsunamis in Alaska (Dunbar and 
Weaver, 2008). Nearly the entire Aleutian megathrust has rup-
tured in the 20th century, including great (M > 8) earthquakes 
in 1938, 1946, 1957, 1964, and 1965 (Carver and Plafker, 
2008, and references therein) (fig. 1). Additionally, several  
M 7.9 events have ruptured the western end of the subduction 
zone, including events in 1986, 1996, and 2014 (Boyd and 
Nabelek, 1988; U.S. Geological Survey National Earthquake 
Information Center, 2015). The most recent earthquakes 
that triggered great tsunamis in Chignik Bay occurred on  
April 1, 1946, and March 28, 1964. The tsunami waves result-
ing from these events were as high as 1.5 m (5 ft) and 3.0 m 
(10 ft), respectively (Lander, 1996). Locations of the 1946 
and 1964 events relative to the Chignik area communities 
are shown in figure 1. 

The following account of the tsunami waves at Chignik 
and Chignik Lagoon is taken from Lander (1996) unless oth-
erwise noted. Subsequent to the 1946 earthquake a tsunami 
made its way to Chignik as a series of waves that resembled 
1.5-m-high (5-ft-high) tides appearing every hour; there are 
no historical records of the 1946 tsunami in the village of 
Chignik Lagoon. During the 1964 event, the first wave arrived 
at Chignik about 2 hours after the main shock and the tsunami 
wave train had 12 distinct 3 m (10 ft) waves. In Chignik La-
goon the first wave arrived 3 hours after the earthquake and 
consecutive waves were only 0.9 m (3 ft) high. Nevertheless, 
about 6–7 hours after the earthquake, a 3-m-high (10-ft-high) 
wave entered Chignik Lagoon during low tide and reached 
0.3–0.6 m (1–2 ft) above the high water level near the village 
(Cloud and Scott, 1969). Despite the relatively small size of 
these historical tsunamis, the potential future occurrence of 
earthquakes and tsunamis necessitates the development of 
inundation and tsunami evacuation maps for use in tsunami 
risk mitigation. In this report, we provide an analysis of the 
tsunami hazard and develop tsunami inundation maps for the 
city of Chignik and village of Chignik Lagoon.

The methodologies used to develop tsunami inundation 
maps are described in detail in multiple publications and are 
not reviewed in this report. Refer to Suleimani and others 
(2010, 2013, 2015) and Nicolsky and others (2011a, 2013, 
2014, 2015) for a full description of the procedure.

PROJECT BACKGROUND: REGIONAL 
AND HISTORICAL CONTEXT

SETTING
The Chignik area is located on the Alaska Peninsula at 

about 56°18′ N, 158°24′ W, approximately 750 km (465 mi) 
west of Anchorage and 2,600 km (1,615 mi) northwest of 
Seattle (fig. 1). A map of Chignik communities is shown in 
figure 2. The Kaniagmuit Eskimo village of Kalwak was 
originally located in Anchorage Bay, but during the Russian 
Period the village was destroyed (Department of Commerce, 
Community, and Economic Development [DCCED]/Division 
of Community and Regional Affairs [DCRA], 2015; Gulf 
of Alaska Coastal Communities Coalition, 2003). In the 
late 1880s, a new fishing village named Chignik—meaning 
‘big wind’ in Koniag (Sugpiaq) Aleut—was established. Two 
canneries were soon constructed and provided ample job 
opportunities. A post office was established in 1901 and some 
coal mining occurred between 1899 and 1915. In 2008, one 
of the canneries was consumed by fire, having a devastat-
ing effect on the city. Currently, a community center, clinic, 
school, and lodge and more than 60 other buildings exist in 
the city of Chignik. 

The village of Chignik Lagoon is 8 km (5 mi) from the 
city of Chignik. With no roads connecting the two communi-
ties, boats are the primary means of local transportation. As 
in Chignik, commercial salmon canning operations arrived 
at the village in the late 1880s, establishing economic ties 
between the two communities that persist today. The 2010 
U.S. Census recorded the population of Chignik as 91 and 
the population of Chignik Lagoon as 78. During the summer 
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months populations grow considerably with the arrival of the 
seasonal work force. 

Chignik and Chignik Lagoon communities are accessible 
by air, with regular flights from King Salmon, which land 
on two state-owned 2,600 ft and 1,810 ft gravel runways, 
respectively. The Alaska Marine Highway System provides 
regular ferry service to Chignik from Kodiak and Sand Point 
between May and October. However, there is no ferry service 
to Chignik Lagoon. A 110-slip small boat harbor and public 
docks are available in Chignik, while Chignik Lagoon has 
only a small boat harbor for a few boats and lacks any dock 
facilities. As in many other coastal communities, much of the 
economic activity and infrastructure is on or near the coast—
a potential tsunami inundation area. Refer to Community 
Development Plans (DCCED/DCRA, 2009; Chignik Lagoon 
Village Council, 2004) for a thorough review of the history, 
economy, and infrastructure of Chignik and Chignik Lagoon.

SEISMIC AND TSUNAMI HISTORY

Numerous earthquakes and tsunamis have likely affected 
the Chignik area communities (Nicolsky and others, in press, 
figs. 4 and 6). A description of these events, as well as the 
seismic and tsunami history for the nearby community of 
Sand Point, is provided in Nicolsky and others (in press); 
however, no reports or eyewitness accounts of these events 
in the Chignik area prior to 1946 are available. Given the 
close proximity of the Chignik area communities to the city 
of Sand Point, it is likely that all of these communities were 
affected similarly by earthquakes and tsunamis in the area.

LANDSLIDE-GENERATED  
TSUNAMI HAZARDS

The destructive effects of tsunamis generated by sub-
aerial and underwater slope failures have been documented 
in south-central and southeastern Alaska, and destructive 
historical landslide tsunamis in Alaska and other parts of the 
world have occurred due to massive failures along continental 
slopes. The Storegga Slide (Bryn and others, 2005) and the 
Grand Banks Slide (Fine and others, 2005) generated cata-
strophic tsunamis along the coastlines of Norway and Canada, 
respectively. Similarly, Grilli and others (2013) propose that 
the 2011 Tohoku-Oki tsunami was generated by a combi-
nation of tectonic processes and submarine mass failures. 
Several authors have suggested a landslide component in the 
tsunami generation mechanism of the 1946 earthquake that 
impacted the Chignik area, for which the size of the tsunami 
was much larger than that estimated from the surface wave 
magnitude (Sykes, 1971; Johnson and Satake, 1997; Miller 
and others, 2014). Refer to Suleimani and others (2010; 2015) 
and Nicolsky and others (2013) for an overview of primary 
causes and triggers of tsunamigenic landslides in Alaska.

As in the tsunami modeling studies for Sand Point, Un-
alaska, and Akutan (Nikolski and others, 2015; in press), we 
do not model tsunamis generated by any mass failures due 
to insufficient data on the locations and volumes of these 
potential hazards.1

1 Guidelines and best practices for tsunami inundation modeling for 
evacuation planning state that the modeling should add value to mapping 
products (National Tsunami Hazard Mapping Program [NTHMP], 2010).

METHODOLOGY AND DATA

GRID DEVELOPMENT AND  
DATA SOURCES

We employ a series of nested computational grids to 
generate a detailed map of the potential tsunami inundation 
in the Chignik area. The coarsest grid, with 2-arc-minute 
(approximately 2 km [~1.2 mi]) resolution, spans the central 
and northern Pacific Ocean. We use three intermediate grids 
between the coarsest- and highest-resolution grids (table 1). 
Note that the 2-arc-minute, 8- and 24-arc-second-resolution 
grids (Levels 0, 1, and 2) are the same as those used to model 
the potential tsunami inundation for Sand Point (Nicolsky 
and others, in press). The highest-resolution grid (Level 4) 
for the communities covers Anchorage Bay, Mud Bay, a 
part of Chignik Lagoon, and Chignik Bay. The lateral extent 
of the high-resolution grid is shown by a red rectangle in 
figure 2. The spatial resolution of the high-resolution grid 
cells, with about 15 × 16 m (50 × 54 ft) dimensions, satisfies 
National Oceanic and Atmospheric Administration (NOAA) 
minimum recommended requirements for computation of 
tsunami inundation (National Tsunami Hazard Mapping 
Program [NTHMP], 2010). 

To develop high-resolution and 8/3-arc-second-reso-
lution grids (Levels 3 and 4), shoreline, bathymetric, and 
topographic digital datasets were obtained from various 
agencies. Lateral extents and nesting of the Level 3 and Level 
4 grids are displayed in figure 3. The bathymetric datasets in-
clude National Ocean Service (NOS) hydrographic surveys, 
NOAA Electronic Navigational Chart (ENC) soundings, a 
U.S. Army Corps of Engineers (USACE) harbor survey, 
multi-beam swath sonar surveys, and the National Centers 
for Environmental Information/National Oceanic and At-
mospheric Administration (NCEI/NOAA) ETOPO1 Global 
Relief Model. The topographic dataset was obtained from 
NASA Space Shuttle Radar Topography Mission (SRTM) 
and Alaska Division of Community and Regional Affairs 
(DCRA). All data were shifted to World Geodetic System 
1984 (WGS 84) horizontal and Mean Higher High Water 
(MHHW) vertical datums. The data sources and methodol-
ogy used to develop high-resolution and 8/3-arc-second 
digital elevation models (DEMs) are described in detail by 
Caldwell and others (2011) and Carignan and others (2014).

Accuracy of the high-resolution DEM around each of the 
communities was determined by the DCRA elevation datas-
ets (DCCED/DCRA, 2002). The DCRA topography in both 
communities is based on the real-time kinematic (RTK) GPS 
surveys, which are referenced to the NOS Station 945 8917 I 
TIDAL in Chignik (DCRA, Community Map Chignik, Sheet 
1, 2002; DCRA, Community Map Chignik Lagoon, Sheet 1, 
2002). We note that the topography in the village of Chignik 
Lagoon had been adjusted to this NOS Station using some 
aerial photogrammetric methods (DCRA, Community Map 
Chignik Lagoon, 2002, Sheet 1) and hence might have some 
uncertainties. As in previous studies (Nicolsky and others, 
2011a, 2014, 2015), we augmented the DCRA datasets 
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Table 1. Nested grids used to compute propagation of tsunami waves generated in the Pacific Ocean to the city of Chignik and village of 
Chignik Lagoon. The high-resolution grid is used to compute the inundation. Note that the grid resolution in meters is not uniform: the first 
dimension is the longitudinal grid resolution and the second is the latitudinal resolution. Measurements also vary across each grid and are 
given for a reference location near Chignik Bay to illustrate relative grid fineness. Grids for Levels 0, 1, and 2 are the same as those used 
to model potential tsunami inundation in Sand Point in Nicolsky and others (in press).

Service Layer Credits: Esri, DeLorme,
GEBCO, NOAA NGDC, and other contributors
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Chignik area communities. The nesting of Levels 0 and 1 grids is shown in figure 7 of Nicolsky and others (in press). The location of each 
embedded grid is marked by a red rectangle. The green semi-transparent rectangle marks the area of the grid refinement.

Grid name 
Resolution East–West 

boundaries 
North–South 
boundaries arc-

seconds 
meters (near 
Chignik Bay) 

Level 0, Northern Pacific 120 × 120 ≈ 1,850 × 3,700 120°00' E – 100°00' W 10°00' N – 65°00' N 

Level 1, Eastern Aleutians 24 × 24 ≈ 430 × 740 171°58' W – 157°02' W 52°00' N – 57°28' N 

Level 2, Coarse-resolution Shumagin 
Islands 8 × 8 ≈ 140 × 250 161°30' W – 157°30' W 54°36' N – 56°36' N 

Level 3, Fine resolution Alaska Peninsula 8/3 × 8/3 ≈ 46 × 82 159°34' W – 157°59' W 55°31' N – 56°26' N 

Level 4, High resolution Chignik 8/9 × 8/15 ≈ 15 × 16 158°34' W – 158°20' W 56°17' N – 56°21' N 
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with an additional RTK GPS survey along near-shore areas 
in Chignik and Chignik Lagoon. The survey in Chignik was 
conducted May 21–22, 2013; the survey in Chignik Lagoon 
was completed May 22–24, 2013. Locations of GPS measure-
ments in the communities are shown in figures 4A and 4B. 
GPS measurements were collected in the WGS84 horizontal 
datum. Following the methods of Nicolsky and others (2015; 
in press) we converted the collected GPS elevations to the 
MHHW datum by using the water-level dynamics measured 
during the survey at the NOAA tide gauge in Chignik. Tide 
measurements were provided by M.S. Christopher Popham, 
an oceanographer at the NTWC/NOAA (written commun., 
2013). Comparisons of the GPS-estimated and NOAA-
observed tide dynamics for Chignik and Chignik Lagoon are 
shown in figures 5A and 5B, respectively. The converted GPS 
survey was provided to the NCEI, where the high-resolution 
DEM was developed.

Unfortunately, because we could not locate a NOAA 
tidal benchmark in either Chignik or Chignik Lagoon, we 
cannot check the accuracy of the survey conversion to the 
MHHW datum by estimating an elevation of the benchmark 
as described in Nicolsky and others (2015; in press). Previous 
studies (Nicolsky and others, 2015; in press) demonstrate 
that the conversion of the RTK GPS survey to the MHHW 
datum, using the observed tide dynamics, can yield sub-meter 
vertical accuracy for the converted elevations in the MHHW 
datum. The horizontal accuracy was determined by an initial 
positioning of the GPS base station, is thought to be about 
3–5 m (10–16 ft) (Leica Geosystems AG, 2002).

NUMERICAL MODEL OF TSUNAMI  
PROPAGATION AND RUNUP

To estimate tsumani propagation and runup in the Chignik 
area, we use the same numerical model employed in other 
Alaska tsunami inundation studies (for example Suleimani 
and others, 2010, 2013, 2015, and Nicolsky and others, 
2011a, 2013, 2014, 2015). All hypothetical tsunami simula-
tions are conducted using the bathymetric/ topographic data 
corresponding to the MHHW tide level in Chignik. 

TSUNAMI SOURCES
It is generally thought that all of the great historic earth-

quakes along the Alaska–Aleutian subduction zone occurred 
on the megathrust—the contact surface between the subduct-
ing Pacific plate and the North American plate. Because of 
friction the two converging plates generally cohere to each 
other and thus shear stress builds up between these plates 
along the megathrust. The shear stress is typically released 
instantaneously during an earthquake and the seismic energy 
propagates through the ground, causing strong shaking. It 
is theorized that the shear stress is primarily acquired in 
the locked or coupled regions of the megathrust, where the 
friction is the greatest. Nicolsky and others (in press) pro-
vide a brief review of the regional seismotectonics of the 
Alaska Peninsula with an emphasis on tsunami generation 
potential. Refer to Ryan and others (2012) and Kirby and 
others (2013) and references therein for a detailed discus-

sion of the hypothetical tsunami sources along the eastern  
Alaska–Aleutian megathrust.

The locations of the locked and creeping zones along 
the Alaska–Aleutian megathrust between Kodiak Island 
and the Shumagin Islands has been modeled by Cross and 
Freymueller (2008) and Freymueller and others (2008). 
These studies employed geodetic observations of active 
deformation along the Alaska Peninsula to assess strain 
accumulation related to the earthquake cycle. In particular, 
Cross and Freymueller (2008) modeled GPS velocities 
from the Alaska Peninsula to find the extent of locking on 
the subduction interface. The interface between the Pacific 
and North America plates along the Alaska Peninsula and 
Shumagin Islands was divided into several rectangular pla-
nar segments (Cross and Freymueller, 2008, fig. 4). They 
estimated the amount of slip occurring on each segment; 
the results are reported in terms of a coupling coefficient 
for each plane. A coupling coefficient of zero results when 
the plate interface is constantly slipping at the long-term 
relative plate velocity and indicates that no strain is build-
ing up to contribute to future great earthquakes. A coupling 
coefficient of 100 indicates no slip—that the plate interface 
is completely locked over that segment. Regions with high 
coupling coefficients are termed ‘locked zones.’ A coupling 
coefficient between these values may mean that only a por-
tion of the plate interface is locked, or it could mean that 
the entire interface creeps at a rate somewhat slower than 
the rate of plate motion. The coupling coefficient for each 
plane is marked by values shown in Cross and Freymueller 
(2008, fig. 4) and reproduced on figure 1. 

The modeling results by Cross and Freymueller (2008) 
reveal that the plate interface across the Chignik area is 
dominated by locking (coupling coefficient 70), and indicate 
that shear stress is accumulating on the interface between 
5 km (3.1 mi) and 35 km (22 mi) depths. The estimated 
downdip extent of seismic coupling inferred from these 
earthquakes generally agrees with the analysis of seismicity 
by Tichelaar and Ruff (1993), who predicted the downdip 
limit of the locked region to be between 37 and 41 km 
(23–25 mi) depth. 

Locating the updip limit of the locked zone is hindered 
by the lack of geodetic data close to the Aleutian trench, and 
is essentially unconstrained by the land-based geodetic data. 
Seafloor GPS/acoustic measurements would be required to 
determine the existence or non-existence of high coupling 
at shallow depth. Recent studies comparing the Alaska and 
Tohoku margins (Kirby and others, 2013) propose that a 
hypothetical rupture might propagate to shallow depths, 
similar to the Mw 9.0 Tohoku earthquake, based on several 
similarities between the two margins.

Similar to the tsunami analyses on Unalaska and Aku-
tan Islands (Nicolsky and others, 2015), we conducted a 
sensitivity study specific to the city of Chignik and inves-
tigated waves arriving from a variety of idealized ruptures 
from different downdip locations in the locked region. The 
results of the sensitivity study are then applied to construct 
the maximum credible scenarios.
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Figure 5. Observed water-level dynamics and fitted GPS measurements at (A) Chignik and (B) Chignik 
Lagoon. Water level is in the MHHW datum.

SENSITIVITY STUDY
To test the sensitivity of wave heights from ruptures 

originating at different downdip locations, we develop four 
hypothetical cases of the slip distribution (cases A–D) for Mw 

7.1–7.2 earthquakes that could occur in the partially locked 
segment of the megathrust across from the Chignik area (fig. 
6). The relative slip distribution for all four cases is identi-
cal: uniform in the along-strike direction with tapering at the 
ends of the rupture, a symmetrical bell-type slip curve in the 
downdip direction. The maximum slip for each hypotheti-
cal rupture is assumed to be 5 m (16 ft). Between any two 
consecutive cases, the hypothetical rupture is offset by about 
10 km (6.2 mi) in the downdip direction: Case A corresponds 
to a rupture at 40 km (25 mi) depth, Case B corresponds to a 
rupture at 30 km (18.6 mi) depth, and so on to Case D with 
at 10 km (6.2 mi) depth. The vertical deformation associated 
with each case is shown in figure 7. Blue shading indicates 

ground subsidence; red shading marks areas of uplift. 
There are no known geologic or paleoseismologic re-

cords of land-level change in this area and thus there are no 
constraints to calibrate the modeled ground subsidence and 
uplift in the Chignik area. In this report, we assume that all 
cases considered are geologically plausible and realistically 
simulate the water dynamics near the waterfront in Chignik. 
The simulated water levels at the head of Anchorage Bay, 
offshore of Chignik, are shown in figure 8. The first maximum 
wave crests (marked by black arrows) arrive at Chignik in 
cases A, B, and C in the time window between 1 hour and 
1 hour 40 minutes. Therefore, if adjacent downdip sections 
(corresponding to cases A and B, or to cases B and C) rupture 
simultaneously, the waves generated separately by each sec-
tion may constructively interfere to produce a larger wave. 
The numerical experiments also reveal that a little more 
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Table 2. All hypothetical scenarios used to model tsunami runup in the Chignik area. Scenarios marked by an asterisk (*) indicate scenarios 
described in the Dutch Harbor/Unalaska modeling study by Nicolsky and others (2015). The number of the scenario in Nicolsky and others 
(2015) is stated in the parentheses after the asterisk.

than 2 hours after the occurrence of the earthquake, other 
wave crests (marked by red arrows) associated with cases 
B, C, and D arrive in a short time interval. Therefore, the 
simultaneous rupture of the segments associated with cases 
B, C, and D might also produce waves that constructively 
interfere with each other. 

On the basis of the results of this downdip sensitivity 
study, we find two rupture depth ranges that would likely 
have the most effect on tsunami height in Chignik. The first 
rupture depth range coincides with the slip patterns associ-
ated with cases A–C, while the second rupture depth range is 
related to cases B–D. Note that the considered cases represent 
hypothetical Mw 7.1–7.2 earthquakes, and that much larger 
earthquakes are possible along the Alaska Peninsula (Wesson 
and others, 2008). As in Nicolsky and others (in press) we 
develop maximum credible scenarios for the Chignik area 
communities as follows: we assume a slip up to 35 m (115 ft) 
in the deep and intermediate sections of the megathrust and 
up to 55 m (180 ft) in the shallow sections of the megathrust, 
such as close to the trench, and we attribute the maximum 
value of the slip to areas around the patches which, when they 
rupture, result in the highest waves; the resulting waves could 
then constructively interfere with each other (Nicolsky and 
others, 2015). We emphasize that the assumed slip distribu-
tion is consistent with other modeling studies (for example, 
Butler, 2014) for the Alaska–Aleutian megathrust.

EARTHQUAKE SCENARIOS
Various downdip locations for the maximum slip are 

next considered to parameterize geologically credible  
Mw 8.9–9.0 tsunamigenic earthquakes between Kodiak 
Island and the Shumagin Islands archipelago. Scenarios 

1–3 model Mw 8.9 earthquakes with the rupture zone at the 
overlap of cases A–C such that the updip and downdip bound-
aries of the hypothetical ruptures are assumed to be at 10 km 
(6.2 mi) and 50 km (31 mi), respectively. In the downdip 
direction, the slip is parameterized using the specifications 
of Freund and Barnett (1976). The maximum slip is assumed 
to be located at a different depth for each scenario. Similarly, 
scenarios 4–6 simulate Mw 9.0 earthquakes with the rupture 
zone at the overlap of cases B–D such that the updip and 
downdip boundaries of rupture boundaries are assumed to 
be at 5 km (3.1 mi) and 35 km (21.7 mi), respectively. For 
these scenarios, we also apply a parameterization of slip by 
Freund and Barnett (1976), with maximum slip located at 
different depths. Finally, previously examined earthquakes 
(Nicolsky and others, 2015) are considered in scenarios 7–10. 
All examined scenarios are summarized in table 2.

Scenario 1: Mw 8.9 earthquake along the Alaska Penin-
sula, 30 km (18.6 mi) depth

This event is a hypothetical Mw 8.9 earthquake rupturing 
the Aleutian megathrust at the 1938 aftershock area. The 
slip is uniformly distributed in the along-strike direction 
of the plate interface from Kodiak Island to the Shumagin 
Islands archipelago and is tapered on both ends of the 
rupture. A symmetrical bell-type slip curve, related to 
Freund and Barnett’s (1765) slip skewness parameter, q = 
0.5, is assumed in the downdip direction. The maximum 
slip of 35 m (115 ft) is located at a depth of 30 km (18.6 
mi), which corresponds to sensitivity case B. The proposed 
slip distribution is shown in figure 9A; vertical coseismic 
deformations for this scenario are shown in figure 10A.

Tectonic Scenarios Depth range 
(km) 

Maximum slip, 
depth range (km) 

Maximum 
slip (m) 

Maximum 
subsidence 

(m) 

Maximum 
uplift (m) 

Vertical 
displacement 

(m) 

1 Mw
 8.9 earthquake along the Alaska Peninsula, 30 km depth 10–50 28–32 35 4.7 9.5 -1.4 

2 Mw
 8.9 earthquake along the Alaska Peninsula, 25 km depth 10–50 23–27 35 4.5 10.3 -1.0 

3 Mw
 8.9 earthquake along the Alaska Peninsula, 35 km depth 10–50 33–37 35 5.0 9.8 -2.0 

4 Mw
 9.0 earthquake along the Alaska Peninsula, 10 km depth 5–35 8–12 55 6.8 19.1 -0.1 

5 Mw
 9.0 earthquake along the Alaska Peninsula, 13 km depth 5–35 11–15 55 7.8 16.8 -0.1 

6 Mw
 9.0 earthquake along the Alaska Peninsula, 17 km depth 5–35 15–19 45 7.0 12.4 -0.2 

7*(4) Mw
 9.0 earthquake according to the SAFRR project 8–54 11–14 55–65 2.8 14.8 -0.7 

8 Mw
 9.2 Alaska Peninsula earthquake 7–50 12–17 45 5.6 13.3 -2.4 

9 Mw
 9.25 Alaska Peninsula earthquake 5–31 5–18 50 6.3 23.5 -0.2 

10*(9) Mw
 9.0–9.1 earthquake in the Cascadia subduction zone Wang and 

others, 2003 
Wang and 

others, 2003 35–45 7.5 10.9 0.0 

11 Mw
 8.6 outer-rise earthquake along the Alaska Peninsula 2–23 2–23 25 13.9 2.5 -0.1 
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Although the above sensitivity study may indicate that 
scenario 1 produces the maximum wave in Chignik, there 
are multiple possibilities for the slip distribution between 
the 10 km (6.2 mi) and 50 km (31 mi) depth that result in 
similar (lesser and greater) maximum wave heights in Chig-
nik. Therefore, to ensure we do not overlook other relevant 
scenarios, we supplement scenario 1 with scenarios 2 and 
3, which have a slightly skewed bell-type slip curve in the 
downdip direction. As in scenario 1, scenarios 2 and 3 model 
a hypothetical Mw 8.9 earthquake rupturing the Aleutian 
megathrust at the 1938 aftershock area, but place maximum 
slip at depths different from the one used in scenario 1.

Scenario 2: Mw
 8.9 earthquake along the Alaska Penin-

sula, 25 km (15.5 mi) depth

The slip skewness parameter, q, is set to 0.33 to model 
the maximum slip of 35 m (115 ft) at a depth of 25 km 
(15.5 mi). This depth corresponds to the average depth of 
sensitivity cases B and C. The proposed slip distribution 
is shown in figure 9B; vertical coseismic deformations for 
this scenario are shown in figure 10B.

Scenario 3: Mw
 8.9 earthquake along the Alaska Penin-

sula, 35 km (21.7 mi) depth

The slip skewness parameter, q, is set to 0.66 to model 
the maximum slip of 35 m (115 ft) at a depth of 35 km 
(21.7 mi). This depth corresponds to the average depth of 
sensitivity cases A and B. The proposed slip distribution 
is shown in figure 9C; vertical coseismic deformations for 
this scenario are shown in figure 10C.

In light of the recent Mw 9.0 earthquake off the Pacific coast 
of Tohoku in 2011, which resulted in a large amount of slip 
near the trench, we also consider tsunami scenarios with 
maximum slip near the trench.

Scenario 4: Mw
 9.0 earthquake along the Alaska Penin-

sula, 10 km (6.2 mi) depth

This event is a hypothetical Mw 9.0 earthquake rupturing 
the Aleutian megathrust at the 1938 aftershock area. As in 
the previous scenarios, the slip is uniformly distributed in 
the along-strike direction of the plate interface from Kodiak 
Island to the Shumagin Islands archipelago and is tapered 
on both ends of the rupture. However, the location of the 
hypothetical slip is closer to the trench. The slip skewness 
parameter, q, is set to 0.15 to model the maximum slip 
of 55 m (180 ft) at a depth of 10 km (6.2 mi). This depth 
corresponds to the average depth for cases C and D. The 
proposed slip distribution is shown in figure 9D; vertical 
coseismic deformations for this scenario are shown in 
figure 10D.

To account for potential variations in the depth of the 
slip distribution, in scenarios 5 and 6 we consider several 
modifications of the slip pattern in scenario 4. As in sce-
nario 4, scenarios 5 and 6 also model a hypothetical Mw 9.0 

earthquake rupturing the Aleutian megathrust at the 1938 
aftershock area, and have a skewed bell-type slip curve in 
the downdip direction.

Scenario 5: Mw
 9.0 earthquake along the Alaska Penin-

sula, 13 km (8.1 mi) depth

The slip skewness parameter, q, is set to 0.25 to model the 
maximum slip of 55 m (180 ft) at a depth of 13 km (8.1 mi). 
This depth corresponds to the average depth of sensitivity 
for cases B, C, and D. The proposed slip distribution is 
shown in figure 9E; vertical coseismic deformations for 
this scenario are shown in figure 10E.

Scenario 6: Mw
 9.0 earthquake along the Alaska Penin-

sula, 17 km (10.6 mi) depth

The slip skewness parameter, q, is set to 0.35 to model the 
maximum slip of 45 m (148 ft) at a depth of 17 km (10.6 
mi). Similar to the previous scenario, the rupture depth cor-
responds to the average depth of sensitivity for cases B, C, 
and D; however the slip skewness parameter, q, now places 
the maximum slip at the different depth. The proposed 
slip distribution is shown in figure 9F; vertical coseismic 
deformations for this scenario are shown in figure 10F.

As in previous tsunami modeling studies (Nicolsky and 
others, 2015), we simulate tsunami runup in the Chignik area 
based on the USGS Science Application for Risk Reduction 
(SAFRR) project (scenario 7), two scenarios based on the 
research of Butler and others (2014) (scenarios 8 and 9), a 
rupture of the Cascadia zone (scenario 10), and a hypotheti-
cal Mw 8.6 outer-rise event (scenario 11). Scenarios marked 
by an asterisk are the same as in Nicolsky and others (2015).
Scenario 7: Mw

 9.0 earthquake according to the SAFRR 
project*

The USGS Science Application for Risk Reduction 
(SAFRR) project, in collaboration with NOAA and State of 
California agencies, has developed a plausible hypothetical 
tsunami scenario (Kirby and others, 2013) to describe the 
impacts of a tsunami generated by an earthquake in the 
Alaska Peninsula region (Ross and others, 2013). This 
scenario is the same as scenario 4 in the tsunami modeling 
study for Unalaska/Dutch Harbor by Nikolsky and others 
(2015). The assumed slip distribution is shown in Nicolsky 
and others (2015, fig. 22D); the coseismic deformations 
for this scenario are shown in Nicolsky and others (2015, 
fig. 23D).

A recent study by Butler and others (2014) describes a layer 
of sand that was discovered in the Makauwahi sinkhole on 
the Island of Kaua’i, Hawai’i. The origin of this layer is at-
tributed to inundation of the sinkhole by a giant paleotsunami 
following a Mw 9+ earthquake in the eastern Aleutian Islands. 
Butler (2012) provides an in-depth examination of previous 
great Aleutian earthquakes and tsunamis impacting Hawai’i. 
In subsequent research Butler (2014) considered several 
hypothetical events with a 35 m (115 ft) displacement on 
the megathrust and up to a 50 m (164 ft) displacement near 
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Figure 10. Computed vertical ground-surface deformation related to the proposed slip distributions shown on figure 9 (fig. 10A–H) and an 
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the trench. We assume that similar hypothetical events might 
occur along the Alaska Peninsula and consider the following 
two scenarios.

Scenario 8: Mw
 9.2 Alaska Peninsula earthquake

In this scenario we assume 35 m (115 ft) slip on the plate 
interface and up to a 46 m (151 ft) slip near the trench. The 
slip is distributed almost uniformly along strike between 
the Shumagin Islands and Kodiak Island except for the 
edges of the rupture, where it tapers. The proposed slip 
distribution is shown in figure 9G; vertical coseismic 
deformations for this scenario are shown in figure 10G. 
A similar scenario was proposed in the tsunami modeling 
study for Unalaska/Dutch Harbor (scenario 6 of Nicolsky 
and others, 2015, fig. 22G).

Scenario 9: Mw
 9.25 Alaska Peninsula earthquake

In this scenario similar to Butler (2014) we assume a 20 
m (65.6 ft) slip on the plate interface between the 17.9 km 
(11.1 mi) and 30.8 km (19.1 mi) depth, and up to a 50 m 
(164 ft) slip near the trench between 5 km (3.1 mi) and 
17.9 km (11.1 mi) depth. The slip is distributed uniformly 
along strike between the Shumagin Islands and Kodiak 
Island. The proposed slip distribution is shown in figure 
9H; vertical coseismic deformations for this scenario are 
shown in figure 10H. A similar scenario was proposed in 
the tsunami modeling study for Unalaska/Dutch Harbor 
(scenario 7 of Nicolsky and others, 2015, fig. 22H).

Although a rupture of the Cascadia zone is not a worst-case 
scenario for Chignik, in the interest of community prepared-
ness we also simulate a large hypothetical earthquake along 
the western seaboard of the U.S.

Scenario 10: Rupture of the Cascadia zone, including the 
entire megathrust between British Columbia and northern 
California*

This scenario is the same as scenario 9 in the tsunami mod-
eling studies for Unalaska/Dutch Harbor and Sand Point. 
The vertical coseismic deformations for this scenario are 
shown in Nicolsky and others (2015, fig. 23I).

Finally, we note that outer-rise earthquakes are known to 
have occurred in the subducting plate in the vicinity of the 
oceanic trench (Stauder, 1968; Byrne and others, 1988). Great 
tensional outer-rise events occurred near Japan on March 2, 
1933 (the Mw 8.4 Sanriku-oki earthquake [Kanamori, 1971]) 
and near Indonesia on August 19, 1977 (the Mw 8.3 Sumba 
earthquake [Gusman and others, 2009]). Because at least 24 
significant outer-rise events have occurred along the Alaska–
Aleutian Arc (Christensen and Ruff, 1988), we simulate a 
large hypothetical outer-rise earthquake in our modeling.

Scenario 11: Rupture of the tensional outer-rise part 
of the subduction plate south of the trench along the  
Alaska Peninsula

We consider a hypothetical Mw 8.6 outer-rise event par-
allel to the Alaska Peninsula and parameterize it by five 
subfaults, listed in table 3. The fault parameters required 
to compute seafloor deformation are the epicenter location, 
area, dip, rake, strike, and amount of slip on the fault. We 
use the equations of Okada (1985) to calculate distribution 
of coseismic uplift and subsidence resulting from this slip 
distribution. The dip of each subfault is in a range reported 
by Stauder (1968), and we assume that the hypothetical 
earthquake ruptures through the entire slab. Vertical coseis-
mic deformations for this scenario are shown in figure 10I.

MODELING RESULTS
We performed numerical calculations for each of the 

11 hypothetical earthquake scenarios. Water dynamics are 
modeled in each grid (listed in table 1) and we compute the 
extent of inundation only in the high-resolution grids. The 
simulated extents of inundation in Chignik and Chignik La-
goon for all considered scenarios are shown in figures 11A 
and 11B, respectively, as well as the locations of water-level 
stations used in computations of wave heights. 

We begin discussion of the modeling results by exam-
ining scenarios 1–3, in which tsunamis are triggered by 
hypothetical Mw 8.9 earthquakes. We note that this group 
of hypothetical earthquakes results in 18–20 m (59–66 ft) 
waves at the computational station in Anchorage Bay (fig. 
12A). In Chignik Lagoon, on the northeast side of the village, 
the waves at the computational station may reach up to 12 m  
(39 ft) (fig. 13A). Scenarios 1–3 display similar waves with 
the maximum crest arriving about 1 hour after the earth-
quake. The numerical experiments reveal that the first crest 
of the tsunami in Anchorage Bay is followed by an 18–20 m  
(59–66 ft) withdrawal of the ocean. Significant wave activ-
ity continues for at least 12 hours after the earthquake, with 
waves reaching 5 m (16 ft) above pre-earthquake sea level. 
Unlike Anchorage Bay, Chignik Lagoon is a shallow water 
body and the leading wave of the tsunami, when it arrives at 
the lagoon, starts to steepen and eventually becomes a bore 
as it approaches and runs ashore. Note the abrupt increase in 
the modeled sea level shortly after 1 hour, shown in figure 
13A. In the numerical experiment, the tsunami overwhelms 
Chignik Lagoon and then water drains back to the ocean over 
the next 12 hours. Scenarios 1–3 all produce devastating 
flooding in both communities, and all near-coast infrastruc-
ture and buildings are likely to be affected.

The Mw 9.0 hypothetical earthquakes in scenarios 4–6 
result in the largest waves of all the numerical experiments 
conducted. The highest waves in Anchorage Bay for these 
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scenarios occur approximately 1 hour 45 minutes after the 
earthquake and reach between 20 m (66 ft) and 25 m (82 ft) 
(fig. 12B). In the computer experiments, the waves com-
pletely inundate the city and the runway, and penetrate deep 
into gullies. Figure 11A shows that the only place that might 
escape flooding in Chignik is the community landfill on the 
western side of Anchorage Bay. Significant wave activity, 
with 20 m (66 ft) variations between the wave crests and 
troughs, occurs for at least 3 hours after the earthquake. The 
highest waves for scenarios 4–6 reach 15 m (49 ft) in Chig-
nik Lagoon (fig. 13B). Again, note the dramatic water-level 
rise approximately 1 hour 45 minutes after the earthquake. 
Such an abrupt change in the water level is a typical sign of 
a tsunami bore. The computed water-level dynamics for sce-
narios 4–6 are similar to the dynamics simulated in scenarios 
1–3, where the village of Chignik Lagoon is flooded by a 
bore. For scenarios 4–6, the school, the runway, and almost 
all infrastructure in Chignik Lagoon are flooded (fig. 11B).

Scenario 7, a hypothetical Tohoku-type earthquake 
occurring between Shumagin Islands and Kodiak Island, 
predicts a 10 m (33 ft) wave in Anchorage Bay and a 6 m 
(20 ft) wave in Chignik Lagoon, resulting in severe flooding 
in both communities. The modeled water levels for Chignik 
and Chignik Lagoon are shown in figures 12C and 13C. 
The hypothetical Mw 9.2 and Mw 9.25 earthquakes consid-
ered in scenarios 8 and 9, respectively, also produce severe 
inundation in both communities. The simulated inundation 
extent for scenario 9 is almost the same as the flooding areas 
predicted by scenarios 4 and 5. Recall that scenarios 4 and 5 
as well as scenario 9 assume a large amount of slip near the 
trench. At some locations the maximum modeled water level 
reaches 30–33 m (98–108 ft) above ground. The computed 
runup for scenarios 4–6 and 9 is comparable to the level of 
flooding during the 2011 Tohoku event in Japan, where water 
levels reached up to 35–40 m (115–131 ft) above sea level 
(EERI/ ERI/ ITST, 2011). 

The hypothetical tsunamis modeled in scenarios 10 and 
11 flood low-lying areas along the shoreline. The extent of 
hypothetical inundation in both communities from these 
hypothetical events is shown in figures 11A and 11B. The 
maximum wave reaches up to 3–3.5 m (10–11.5 ft) in Anchor-
age Bay and the maximum wave is 2 m (6.6 ft) in Chignik 

Lagoon, as shown in figures 12D and 13D, respectively. Both 
scenarios predict a series of erratic waves, which could cause 
dangerous currents in Anchorage Bay and Chignik Lagoon. 
For scenario 10, the numerical simulation again predicts a 
series of bore waves that propagate along Chignik Lagoon. 
The largest wave arrives at Chignik Lagoon about 6 hours 
after the earthquake and significant wave action could con-
tinue afterward for at least 8 hours. Note on figure 12D that 
the maximum wave for scenario 10 arrives at Anchorage 
Bay almost 8 hours after the first crest. The estimated extent 
of inundation for both communities is shown in figures 11A 
and 11B. All limits of inundation are included in the data 
distribution package associated with this report. 

TIME SERIES
To help emergency managers assess the tsunami hazard 

for this area, we supplement the inundation maps with the 
time series of the modeled water level and velocity dynam-
ics at certain locations around Chignik and Chignik Lagoon 
(Appendices A-1 and B-1, respectively). Scenarios 1–3 model 
tsunamis triggered by a group of hypothetical Mw 8.9 earth-
quakes that visually resemble each other, and thus simulated 
tsunami dynamics for these scenarios are rather similar (figs. 
12A and 13A). Likewise, scenarios 4–6, which are related to 
a group of hypothetical Mw 9.0 earthquakes, exhibit compa-
rable numerical results as illustrated in figures 12B and 13B. 
Scenario 5 simulates the highest wave and is considered the 
worst-case scenario for both communities. Scenario 7 is 
extensively used in other tsunami hazard mitigation studies 
(Ross and others, 2013; Nicolsky and others, 2015), while 
scenario 9 predicts devastating tsunamis in both communities. 
Therefore, for the sake of brevity, for each labeled location 
in these figures we plot the sea level and water velocity for 
only scenarios 1, 5, 7, and 9. 

In all plots in Appendices A-2 and B-2, zero time cor-
responds to the time when the earthquake occurs. The 
pre-earthquake elevation/depth with respect to the MHHW 
is stated for each location. The post-earthquake elevations/
depth corresponding to the MHHW datum are also listed for 
each scenario. To show the height of arriving tsunamis for 
offshore locations, we use a vertical datum with a zero mark 
corresponding to the pre-earthquake sea level. The dashed 

Table 3. Fault parameters for the hypothetical tensional Mw 8.6 outer-rise earthquake (scenario 11)

Latitude 
(°N) 

Longitude 
(°W) 

Depth 
(km) 

Length 
(km) 

Width 
(km) 

Strike 
(°) 

Dip 
(°) 

Rake 
(°) 

Slip 
(m) 

55°19'08.4" 152°40'58.8" 2 100 15 235.00 45 -90 25 
54°47'27.6" 153°57'39.6" 2 100 15 240.00 45 -90 25 
54°19'51.6" 155°19'04.8" 2 100 15 248.26 45 -90 25 
53°59'06.0" 156°44'52.8" 2 100 15 250.75 45 -90 25 
53°40'48.0" 158°11'06.0" 2 100 15 255.17 45 -90 25 
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Figure 12. Modeled time series of water level in Anchorage Bay for (A) scenarios 1, 2, and 3; (B) scenarios 4, 5, and 6; (C) scenarios 7, 8, 
and 9; and (D) scenarios 10 and 11. The station location is marked by the red triangle in figure 11A. The vertical datum is such that zero 
corresponds to the pre-earthquake sea level.

0 2 4 6 8 10 12
−25

−20

−15

−10

−5

0

5

10

15

20

Time after earthquake (hours)

S
ea

 le
ve

l (
m

et
er

s)

Scenario 1 Scenario 2 Scenario 3

0 2 4 6 8 10 12
−20

−15

−10

−5

0

5

10

15

20

25

Time after earthquake (hours)

S
ea

 le
ve

l (
m

et
er

s)

Scenario 4 Scenario 5 Scenario 6

0 2 4 6 8 10 12
−25

−20

−15

−10

−5

0

5

10

15

20

25

Time after earthquake (hours)

S
ea

 le
ve

l (
m

et
er

s)

Scenario 7 Scenario 8 Scenario 9

0 2 4 6 8 10 12 14 16 18
−4

−3

−2

−1

0

1

2

3

4

Time after earthquake (hours)

S
ea

 le
ve

l (
m

et
er

s)

Scenario 10 Scenario 11

A

B

C

D



 Tsunami inundation maps for the communities of Chignik and Chignik Lagoon, Alaska 21

0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

Time after earthquake (hours)

S
ea

 le
ve

l (
m

et
er

s)

Scenario 1 Scenario 2 Scenario 3

0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14

16

Time after earthquake (hours)

S
ea

 le
ve

l (
m

et
er

s)

Scenario 4 Scenario 5 Scenario 6

0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

Time after earthquake (hours)

S
ea

 le
ve

l (
m

et
er

s)

Scenario 7 Scenario 8 Scenario 9

0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

1.5

2

Time after earthquake (hours)

S
ea

 le
ve

l (
m

et
er

s)

Scenario 10 Scenario 11

A

B

C

D

Figure 13. Modeled time series of water level in Chignik Lagoon for (A) scenarios 1, 2, and 3; (B) scenarios 4, 5, and 6; (C) scenarios 7, 8, 
and 9; and (D) scenarios 10 and 11. The station location is marked by the red triangle in figure 11B. The vertical datum is such that zero 
corresponds to the pre-earthquake sea level.
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lines show water levels after the tsunami. The velocity mag-
nitude is calculated as water flux divided by water depth, thus 
the velocity value can have large uncertainties when the water 
depth is small. In the plots provided, the velocity is computed 
only where the water depth is greater than 0.3 m (1 ft). 

Analysis of the time series plot shows that a hypothetical 
earthquake with a magnitude of 8.9 can cause devastating 
waves that inundate the entire city of Chignik and flood the 
village of Chignik Lagoon. The maximum water level and 
velocity for all considered scenarios in both communities are 
listed in tables A-1 and B-1. 

SOURCES OF ERRORS AND 
UNCERTAINTIES

The hydrodynamic model used to calculate propagation 
and runup of tsunami waves is a nonlinear, flux-formulated, 
shallow-water model (Nicolsky and others, 2011b) that 
has passed the validation and verification tests required 
for models used in production of tsunami inundation maps 
(Synolakis and others, 2007; NTHMP, 2012). Because of 
the shallow bathymetry in Chignik Lagoon, the hypothetical 
tsunami is likely to impact the village as a bore—a single, 
breaking wavefront followed by a train of secondary waves. 
Therefore, the so-called Boussinesq-type models (Nwogu, 
1993; Kirby and others, 1998; Lynett and others, 2002) may 
be more appropriate in modeling propagation of these waves. 
However, it was illustrated in the 2011 NTHMP Model 
Validation Workshop (NTHMP, 2012; Horrillo and others, 
2015) that the classical shallow-water models are probably 
adequate to predict the runup in most geophysical conditions. 
Further details about the limitations of the employed model-
ing approach are described in earlier reports by Suleimani and 
others (2010, 2013, 2015) and Nicolsky and others (2011a, 
2011b, 2013, 2014, 2015), as well as in NTHMP (2012). 
The accuracy of the later waves is limited by the accuracies 
of the bathymetry and coastline that are outside the extent 
of the high-resolution DEM but still impact the modeling. 

SUMMARY
We present the results of numerical modeling of earth-

quake-generated tsunamis for Chignik and Chignik Lagoon, 
Alaska. The earthquake scenarios considered in this report 
include a range of magnitudes for the simultaneous rupture of 
the Semidi and Kodiak segments (listed as capable of produc-
ing M 8.5 and M 8.8 earthquakes, respectively) in the USGS 
Probabilistic Seismic Hazard Assessment for Alaska (Wes-
son and others, 2008). Hypothetical scenarios 4–6 (Mw 9.0 
earthquakes along the Alaska Peninsula, with maximum slip 
near the trench) result in the “worst case” tsunami-inundation 
hazards for the Chignik area communities. 

We emphasize that each of the scenarios considered are 
geologically reasonable and present potential hazards to the 
communities. The maps in figure 11, showing the results of 
our modeling for Chignik and Chignik Lagoon, have been 
completed using the best information available and are 
believed to be accurate; however, their preparation required 

many assumptions. We considered a suite of tectonic sce-
narios and provide an estimate of maximum credible tsunami 
inundation for each scenario. Actual conditions during a 
tsunami event could vary from those considered, so the ac-
curacy cannot be guaranteed. The limits of inundation shown 
should be used only as a guideline for emergency planning 
and response action. Actual areas inundated will depend on 
specifics of the earth deformation, land construction, and 
tide level, and may differ from areas shown on the map. The 
information on this map is intended to assist state and local 
agencies in planning emergency evacuation and tsunami 
response actions in the event of a major tsunamigenic earth-
quake. These results are not intended for land-use regulation 
or building-code development. 
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Appendix A-1. Locations of time series points in Anchorage Bay and the city of Chignik. The longitude and latitude locations 
of the time series points are listed in Table A-1.
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Appendix A-2. Time series of water level (left) and velocity (right) at selected locations in Anchorage Bay for scenarios 1, 5, 
7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The post-earthquake 
elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, to show the 
height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. The dashed 
lines show the water level after the tsunami.
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Appendix A-2, continued. Time series of water level (left) and velocity (right) at selected locations in Anchorage Bay for 
scenarios 1, 5, 7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The 
post-earthquake elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, 
to show the height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. 
The dashed lines show the water level after the tsunami.
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Appendix A-2, continued. Time series of water level (left) and velocity (right) at selected locations in Anchorage Bay for 
scenarios 1, 5, 7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The 
post-earthquake elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, 
to show the height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. 
The dashed lines show the water level after the tsunami.
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Appendix A-2, continued. Time series of water level (left) and velocity (right) at selected locations in Anchorage Bay for 
scenarios 1, 5, 7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The 
post-earthquake elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, 
to show the height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. 
The dashed lines show the water level after the tsunami.
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Appendix A-2, continued. Time series of water level (left) and velocity (right) at selected locations in Anchorage Bay for 
scenarios 1, 5, 7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The 
post-earthquake elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, 
to show the height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. 
The dashed lines show the water level after the tsunami.
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Appendix A-2, continued. Time series of water level (left) and velocity (right) at selected locations in Anchorage Bay for 
scenarios 1, 5, 7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The 
post-earthquake elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, 
to show the height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. 
The dashed lines show the water level after the tsunami.
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Appendix B-1. Locations of time series points in Chignik Lagoon and the village of Chignik Lagoon. The longitude and latitude 
locations of the time series points are listed in Table B-1.
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Appendix B-2. Time series of water level (left) and velocity (right) at selected locations in Chignik Lagoon for scenarios 1, 5, 
7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The post-earthquake 
elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, to show the 
height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. The dashed 
lines show the water level after the tsunami.
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Appendix B-2, continued. Time series of water level (left) and velocity (right) at selected locations in Chignik Lagoon for 
scenarios 1, 5, 7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The 
post-earthquake elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, 
to show the height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. 
The dashed lines show the water level after the tsunami.
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Appendix B-2, continued. Time series of water level (left) and velocity (right) at selected locations in Chignik Lagoon for 
scenarios 1, 5, 7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The 
post-earthquake elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, 
to show the height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. 
The dashed lines show the water level after the tsunami.
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Appendix B-2, continued. Time series of water level (left) and velocity (right) at selected locations in Chignik Lagoon for 
scenarios 1, 5, 7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The 
post-earthquake elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, 
to show the height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. 
The dashed lines show the water level after the tsunami.
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Appendix B-2, continued. Time series of water level (left) and velocity (right) at selected locations in Chignik Lagoon for 
scenarios 1, 5, 7, and 9. The pre-earthquake elevation/depth with respect to the MHHW is stated for each location. The 
post-earthquake elevation/depth corresponding to the MHHW datum is also listed for each scenario. For offshore locations, 
to show the height of an arriving tsunami, the vertical datum is such that zero corresponds to the pre-earthquake sea level. 
The dashed lines show the water level after the tsunami.
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Table B-1. Longitude and latitude locations of the tim
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 is provided for onshore locations, and the m
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 post-earthquake depth is provided for 

offshore locations.
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