# GRAVITY SURVEY OF BELUGA BASIN AND ADJACENT AREA, COOK INLET REGION, SOUTH-CENTRAL ALASKA

By Steve W. Hackett

### **GEOLOGIC REPORT 49**



#### STATE OF ALASKA

Jay S. Hammond, Governor

Guy R. Martin, Commissioner, Dept. of Natural Resources

Ross G. Schaff, State Geologist

Cover: University of Alaska geophysicist Juergen Kienle taking a gravity reading in Tordrillo Mountains, adjacent to Beluga basin. Photo by S.W. Hackett.

### CONTENTS

| Abstract                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acknowledgments.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                 |
| ntroduction                                                                                                                                                                                                                          |
| Collection and reduction of geophysical data                                                                                                                                                                                         |
| Gravity data                                                                                                                                                                                                                         |
| Aeromagnetic data                                                                                                                                                                                                                    |
| Ground magnetic data                                                                                                                                                                                                                 |
| Regional geological setting                                                                                                                                                                                                          |
| Regional geophysical setting                                                                                                                                                                                                         |
| Gravity anomalies                                                                                                                                                                                                                    |
| Aeromagnetic profiles                                                                                                                                                                                                                |
| Geological Interpretation of geophysical data                                                                                                                                                                                        |
| General pattern                                                                                                                                                                                                                      |
| Major anomalles                                                                                                                                                                                                                      |
| 1. Bruin Bay fault system                                                                                                                                                                                                            |
| 2. Aleutian Range and McArthur River high                                                                                                                                                                                            |
| 3. Beluga basin                                                                                                                                                                                                                      |
| 4. Cook Inlet basin.                                                                                                                                                                                                                 |
| 5. Apex of the Tordrillo Block                                                                                                                                                                                                       |
| 6. Beluga Mountain fault.                                                                                                                                                                                                            |
| 7. Susitna basin                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                      |
| 8. Yenlo basement high                                                                                                                                                                                                               |
| 9. Yentna basin                                                                                                                                                                                                                      |
| 10. Castle Mountain fault system                                                                                                                                                                                                     |
| 11. Lake Clark fault system.                                                                                                                                                                                                         |
| 12. Chigmit Mountain low                                                                                                                                                                                                             |
| 13, Tordrillo Mountain low                                                                                                                                                                                                           |
| 14. East Basin-Border Ranges fault system                                                                                                                                                                                            |
| 15. Chigmit Mountain high-Mount Spurr low                                                                                                                                                                                            |
| 16. Tordrillo Mountain flank high                                                                                                                                                                                                    |
| 17. Hayes River Pass high-Dickason Mountain low                                                                                                                                                                                      |
| Structure sections and geophysical profiles                                                                                                                                                                                          |
| Structural section - profile A-A'                                                                                                                                                                                                    |
| Structural section - profile B-B'                                                                                                                                                                                                    |
| Structural section - profile C-C'                                                                                                                                                                                                    |
| Structural section - profile D-D'                                                                                                                                                                                                    |
| Summary                                                                                                                                                                                                                              |
| References                                                                                                                                                                                                                           |
| ILLUSTRATIONS                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                      |
| Plate 1. Simple Bouguer gravity map of Beluga basin and adjacent areas, south-central Alaska (1:500,000 scale)  2. Generalized regional geologic map of Beluga basin and adjacent areas, Cook Inlet region, Alaska (1:500,000 scale) |
| 3. Structural sections and geophysical profiles across Beluga basin and adjacent areas (A-A', B-B',                                                                                                                                  |
| C-C', and D-D')                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                      |
| Figure 1. Location of study area, south-central Alaska, showing boundaries of gravity survey                                                                                                                                         |
| 2. Cenozolc basin outline, Cook Inlet region, outlining the upper Shelikof Trough with enclosing                                                                                                                                     |
| Tertiary basins, highland areas, and major fault systems                                                                                                                                                                             |
| 3. Gravity stations in Beluga basin and adjacent areas                                                                                                                                                                               |
| 4. Major Mesozoic and Cenozoic tectonic elements in the Cook Inlet region, south-central Alaska                                                                                                                                      |

| CONTENTS                                                                                            | Page |
|-----------------------------------------------------------------------------------------------------|------|
| Figure 5. Generalized geologic map of south-central Alaska                                          | 5    |
| 6. Major structural features of south-central Alaska based on ERTS-1 photo interpretation and       |      |
| available geologic and geophysical data                                                             | 5    |
| 7. ERTS-1 mosaic photo of upper Cook Inlet region                                                   | 7    |
| 8. Generalized Tertiary isopach map of the Cook Inlet region delineating the probable thickness of  |      |
| Tertiary sedimentary rocks; Beluga, Susitna, and Yentna basin isopachs inferred from geophysical    |      |
| data                                                                                                | 9    |
| APPENDIXES                                                                                          |      |
|                                                                                                     | Page |
| Appendix A, Principal facts for gravity stations occupied in Beluga basin and adjacent area, Alaska | 11   |
| B. Bouguer anomaly quality (modified from Barnes, 1972, and Kienle, 1968)                           | 19   |
| C. Ground magnetic field reductions for selected stations in Beluga basin, Alaska, showing          |      |
| declination, inclination, calculated field values based on IGRF 1965 reference field updated to     |      |
| 1974, measured total field, and uncorrected magnetic field anomaly                                  | 21   |

## GRAVITY SURVEY OF BELUGA BASIN AND ADJACENT AREA, COOK INLET REGION, SOUTH-CENTRAL ALASKA

By Steve W. Hackett1

#### ABSTRACT

Two hundred gravity stations were occupied in a previously unsurveyed area between latitudes 60° and 62° N. and longitudes 151° and 153° W. Interpretation of a simple Bouguer gravity map, compiled from this survey and from previously acquired U.S. Geological Survey reconnaissance data, indicates that the tectonic framework of the region differs in many respects from that previously published.

Several gravity lows identify sedimentary basins within the Cook Inlet petroleum province. Geologic interpretation of the geophysical data provides a better estimate of the structural configuration and thickness of Tertiary sedimentary deposits in the Cook Inlet, Beluga, Susitna, and Yentna basins. Steep gravity gradients indicate these subprovinces were down dropped along deep-seated basement faults. The gravity gradients, which are offset from the fault traces, suggest a high-angle reverse nature for the Castle Mountain, Bruin Bay, and Beluga Mountain fault zones. The Beluga Mountain fault, a newly recognized structural feature, is inferred to have a vertical displacement in excess of 10,000 feet (3,000 m).

#### **ACKNOWLEDGMENTS**

The data and interpretations presented in this report are the result of a 2-year geological and geophysical study of the upper Cook Inlet region, which was part of an M.S. graduate program at the Geology Department and Geophysical Institute, University of Alaska, Fairbanks. The thesis represents a partial synthesis of gravity, magnetics, and structural geology data. The author's interest in the Beluga basin and adjacent areas began in the summer of 1967 while working in Alaska for Union Oil Company of California.

The author gratefully acknowledges the suggestions of Dr. Thomas E. Smith of the Geology Department, University of Alaska, and also Drs. Wyatt G. Gilbert, Milton A. Wiltse, and Richard D. Reger, and Garnett H. Pessel of the Alaska Division of Geological and Geophysical Surveys (Alaska DGGS). Assistance and sponsorship of Dr. Juergen Kienle of the Geophysical Institute, University of Alaska, and the cooperation of David F. Barnes of the U.S. Geological Survey were extremely helpful. Mrs. Ann Schell, Alaska DGGS Cartographer, assisted in preparation of the plates and illustrations.

Helicopter and logistical support for this gravity survey was provided by the Alaska DGGS. Special thanks are extended to Dr. Smith, former Chief Mining Geologist for the Alaska DGGS, for his continued interest and recommendations in supporting the Beluga basin project.

#### INTRODUCTION

The report area (fig. 1) centers on Beluga basin and lies between latitudes  $60^{\circ}$  and  $62^{\circ}$  N. and longitudes  $151^{\circ}$  and  $153^{\circ}$  W. The Beluga basin occupies approximately 600 square miles (1,560 square km) in the west-central portion of the Cook Inlet lowlands, a long, narrow embayment in the south-central coast of Alaska. The Cook Inlet region, which includes the Cook Inlet, Beluga, Susitna, and Yentna basins (fig. 2), is

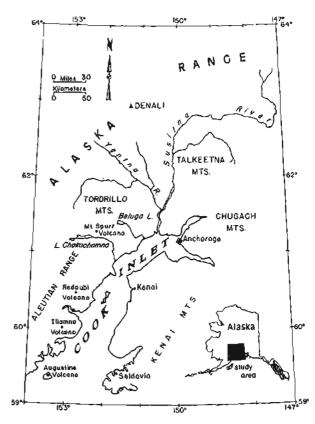



Figure 1. Location of study area, south-central Alaska, showing boundaries of gravity survey.

<sup>&</sup>lt;sup>1</sup> Alaska DGGS Exploration Geophysicist.

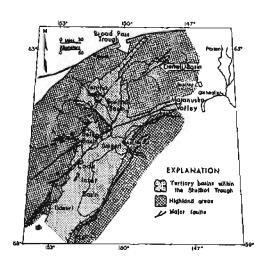



Figure 2. Cenozoic basin outline, Cook Inlet region, outlining the upper Shelikof Trough with enclosing Tertiary basins, highland areas, and major fault systems.

bordered on the east by the Kenai, Chugach, and Talkeetna Mountains, and on the north and west by the Alaska and Aleutian Ranges. These highland areas enclose a lowland embayment that is underlain by oil-, gas-, coal-, and uranlum-bearing (Eakins and Forbes, 1976) beds of Tertiary age which form exposures along the Cook Inlet shoreline and river systems. The region is generally mantled by surficial deposits of glacial and fluvial origin. Exposed bedrock units ranging in age from Permo-Triassic through late Tertiary have been identified in the area. Several major regional fault systems and their junctions are present in the upper Cook Inlet region.

In the summer of 1974, 200 gravity stations were occupied in the previously unsurveyed Beluga basin area. The data have been incorporated in a gravity map of the State of Alaska at a scale of 1:2,500,000 (Barnes, 1976).

The primary objectives of the Beluga basin gravity study were: 1) to partially eliminate a regional gravity data void in south-central Alaska (Barnes, 1967), 2) to compile and interpret the regional gravity and magnetic data over the upper Cook Inlet region, 3) to outline and trace the major structural features throughout the area, and 4) to delineate the basement configuration and gross thicknesses of Tertiary sediments in the northern portion of the Shelikof Trough.

## COLLECTION AND REDUCTION OF GEOPHYSICAL DATA

#### GRAVITY DATA

A LaCoste-Romberg gravimeter (No. 248) of the University of Alaska Geophysical Institute and standard field-data reduction procedures were used for the Beluga basin gravity survey. Two hundred new gravity stations were located on U.S. Geological Survey 1:63,360and 1:250,000-scale topographic maps of the Tyonek and Kenai quadrangles (fig. 3). Elevation control for the gravity survey was obtained by occupying sites located at U.S. Coast and Geodetic Survey Vertical Angle Bench Marks (VABM's), prominent topographic features for which photogrammetric spot elevations had been given, and accessible points along streams and rivers for which gradients could be calculated. Many of the gravity stations did not fall on sites with known elevation, and extensive use of altimetry was required to provide additional elevation control. Most stations were reached by helicopter. The Beluga River gasfield airstrip on the western shore, operated by Standard Oil Company of California, was the base of operations during the 7-day gravity survey.

Observed gravity values were tied to the Anchorage International Airport Post Office gravity base station BL31 (Barnes, 1968). A second-order base station (BELU Base) was established at the Beluga gasfield airstrip. By using a reduction density of 2.67 gm/cm<sup>3</sup>, simple Bouguer anomalies were computed with an IBM 360/40 computer. Principal facts of the gravity observations and reductions are listed in appendix A.

Elevations, when altimetry was used, may be in error by as much as 33 feet (10 m), giving rise to anomaly errors as large as  $\pm 2$  milligals (app. B). Terrain corrections were calculated for selected stations out to zone M on Hammer's charts (Hammer, 1939; Hayford and Bowie, 1912), which ranged from 0 in the lowland areas to 5 mgals in the most mountainous areas. Fortunately, the low topographic relief over much of the study area resulted in terrain corrections which were less than the errors due to poor elevation control. Therefore, a simple Bouguer gravity anomaly map, which is not corrected for terrain effects (pl. 1), was contoured from the gravity values.

#### AEROMAGNETIC DATA

Reconnaissance aeromagnetic data over the region were obtained from Grantz and others (1963), who summarized the results of 42 east-west aeromagnetic profile lines flown across the Cook Inlet-Susitna tow-lands at an altitude of about 2,500 feet above mean sea level. These lines were flown 2 miles apart over most of the Beluga basin area, but elsewhere they were up to 16 miles apart and only regional trends were investigated.

Because of the generally wide line spacing, no attempt was made to construct a contoured map. The profiles were not adjusted to a common datum and were therefore used for qualitative interpretation only. The variety of trends and anomaly patterns in the reconnaissance magnetic data reflects the diverse basement geology of the Beluga basin area, which includes a complex assembly of igneous, metamorphic, and volcanic rocks. Major magnetic anomalles are described by Grantz and others (1963). Flight lines coincident with selected gravity profiles were used in constructing geological cross sections.

#### **GROUND MAGNETIC DATA**

Ground magnetic field data were measured in 154 stations in the survey area (app. C). A portable totalfield proton-procession magnetometer with a digital counter was set up at each station. Five 3-second digital readings (±3 gammas) of the total magnetic field were recorded in succession at each locality. Because diurnal and other time variations affect the field data, individual measurements at a particular station varied by as much as 20 gammas. However, most of the stations occupied had a repeatibility of ±5 gammas. Near-surface effects are believed to have caused extremely high magnetic gradients up to 100 gammas per 25 feet in some areas. Magnetic storms produced invalid readings that may have varied as much as  $\pm 50$  to  $\pm 200$  gammas in a few minutes. Errors of 5 to 200 gammas are believed to be present in the data but greater errors are surely possible. The mean arithmetic values of the measured magnetic field data are given in appendix C. The magnetic field data were reduced and calculated by computer program. The magnetic declination, dip (inclination), theoretical regional field (1965 IGRF updated to 1974), the total measured magnetic field, and an uncorrected anomaly were computed for each occupied station. The total field values with the regional trend removed probably express deep-seated intrabasement discontinuities. Thus, ground magnetic data (anomalies) generally outline the "grain" of the basement and are useful in defining the major tectonic trends in the area. The large data net, uncertainty of errors, and high magnetic gradients prohibit the presentation of an accurate ground magnetic anomaly contour map. Selected ground magnetic profiles were qualitatively interpreted and are presented with the structural sections (pl. 3).

## REGIONAL GEOLOGICAL SETTING AND MAJOR TECTONIC FEATURES

The geology of the study area is summarized from work of several investigators whose names and publications are listed on the geologic map (pl. 2).

The larger portions of the Tyonek, Kenai, and Talkeetna quadrangles are included in the upper Shel-

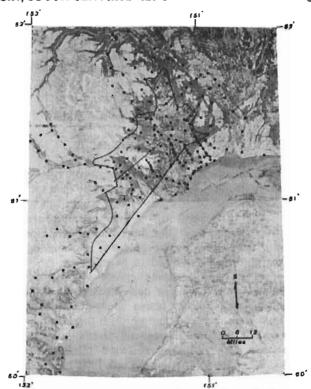



Figure 3. Gravity stations in Beluga basin and adjacent areas.

ikof Trough. This large Cenozolc trough encloses the Cook Inlet, Beluga, Susitna, and Yentna basins (fig. 2).

Regional structural trends and major tectonic elements in south-central Alaska were first delineated by Payne (1955), who recognized that south-central Alaska is dominated by five narrow, parallel, and arcuste tectonic features developed in Mesozoic time. The Shelikof Trough was superimposed on these features in early Cenozoic time (fig. 4). The predominant strike of lithologic contacts and major faults and folds either parallels or cuts obliquely across these Mesozoic and Cenozoic tectonic elements. Gates and Gryc (1963) noted that the Cenozoic Shelikof Trough is apparently not directly controlled by, but is superimposed on, all the older Mesozoic tectonic elements. This trough is characterized by broad negative gravity anomalies and magnetic patterns. The arcuate Talkeetna geanticline, which exposed a sequence of Jurassic plutonic, volcanic, and marine sedimentary rocks, appears to be laterally offset by faults in the Cook Inlet region. The Mesozoic Talkeetna geanticline is represented by areas of dextrally offset high-Bouguer values (Hackett, 1976b).

A geologic map complied by Beikman (1974) and data from USGS and Alaska DGGS personnel provide more detail information about the major lithologic units of south-central Alaska (fig. 5). Published data from industrial sources, combined with those available from state and federal agencies, provide sufficient detail on fault trends, alignment of fault blocks, and orientation of folded structures to permit a fairly detailed synthesis and delineation of the structural fea-

tures in the upper Cook Inlet region (Hackett, 1974 and 1976a). Generalized geology, major fault-bounded blocks, and physiography of the area are shown in figures 5 and 6.

#### REGIONAL GEOPHYSICAL SETTING

#### **GRAVITY ANOMALIES**

The structural grain of Beluga basin and adjacent areas is clearly delineated by the gravity data (pl. 1) and reconnaissance aeromagnetic data (Grantz and others, 1963). Gravity highs are generally associated with all known exposures of the pre-Tertiary basement rocks. and gravity lows in the lowlands correspond to the areas known or suspected to be underlain by Tertiary sediments. However, steep gravity gradients and low Bouguer anomaly values over portions of the Beluga. Susitna, and Yentna basins imply the existence of large basement discontinuities which form deep tectonic basins. In addition, a regional gravity gradient is associated with probable westward thickening of the earth's crust over the upper Cook Inlet region (Barnes, 1976). Gravity anomalies produced by the density contrast between the Tertiary sedimentary deposits and the denser, older pre-Tertlary basement complex are superimposed on the regional gravity field-a field that

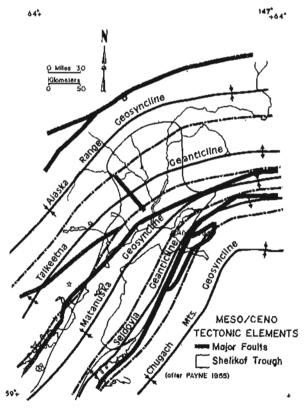



Figure 4. Major Mesozoic and Cenozoic tectonic elements in the Cook Inlet region, south-central Alaska (after Payne, 1955).

is related to the presumably thickening crust—and on gravity anomalies caused by variations in the density of the basement rock. Most anomaly amplitudes have too large a wavelength to originate within the Tertiary stratigraphic sequence itself, but many of the gradients are too steep to originate deep within the earth's crust. Hence, the larger anomalies over the Cook Iniet-Susitna lowlands are believed to result mostly from relief on the pre-Tertlary basement surface.

#### **AEROMAGNETIC PROFILES**

Aeromagnetic profiles flown across the study area (Grantz and others, 1963) generally reveal the same major structural features as the gravity map. Large-amplitude steep magnetic gradients indicate major structural discontinuities such as the Beluga Mountain, Lake Clark, Bruin Bay, and Castle Mountain fault systems, and broad magnetic closures outline the Cook Inlet, Beluga, Susitna, and Yentna sedimentary basins. Several aeromagnetic profiles are shown with geologic interpretations on plate 3.

## GEOLOGICAL INTERPRETATION OF GEOPHYSICAL DATA

#### GENERAL PATTERN

The most prominent gravity anomalies in the upper Cook Inlet region are the extensive gravity minimums found over portions of the lowland areas. These large lows are generally bounded by steep gravity gradients associated with the faulted flanks of the sedimentary basins.

A preliminary study of the subsurface pre-Tertiary rocks in the Cook Inlet basin based on well data shows that some of the components of the larger low-gravity anomalies are probably caused by changes in basement lithology. Variation in bulk-rock density and susceptibility within the Mesozolc and Cenozoic rocks complicate the interpretation of the gravity and magnetic data.

#### MAJOR ANOMALIES

The following discussions refer to the gravity and magnetic anomalies illustrated on plates 1, 2, and 3 in order of magnitude and prominence. Seventeen anomalous regions have been identified and are numbered on the simple Bouguer gravity map (pl. 1).

#### 1. BRUIN BAY FAULT SYSTEM

A wide but steep northeast-trending gravity gradient along the western margin of Cook Inlet from Tuxedni Bay to Beluga River is associated with the Bruin Bay fault system. The steep gradient reflects the faulted contact between the high-density (2.60 to 2.90 gm/cm<sup>3</sup>)

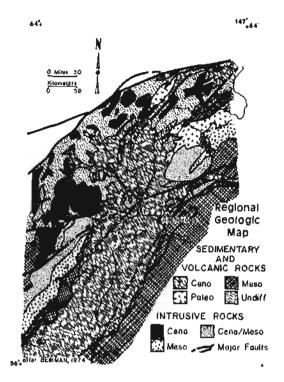



Figure 5. Generalized geologic map of south-central Alaska (modified after Beikman, 1974).

Jurassic rocks to the west and the low-density (2.20 to 2.55 gm/cm<sup>3</sup>) Tertiary sedimentary rocks of the Cook Inlet basin to the east. A prominent magnetic feature, the Moquawkie magnetic contact, marks this fault zone, where the high-susceptibility rocks of mostly Jurassic age are juxtaposed against the nonmagnetic sedimentary rocks of the Cook Inlet basin. Profiles across the magnetic anomaly are shown on plate 3, sections C-C' and D-D'.

## 2. ALEUTIAN RANGE AND MEARTHUR RIVER HIGH

An elongate northeast-trending gravity high is coextensive with portions of the Aleutian volcanic mountain chain and continues as a narrow gravity ridge across the McArthur River flats towards Beluga River. This feature, herein designated as the Aleutian Range and McArthur River high, is the most prominent gravity high within the study area, with a closure of 100 mgals; it is bounded by the Lake Clark fault system to the northwest and the Bruin Bay fault system to the southeast. Plutonic, volcanic, and sedimentary rocks of the Mesozoic Talkeetna geanticline (Payne, 1955) coincide in part with this gravity trend and are inferred to be abruptly truncated in the Beluga basin area. Grantz and others (1963) also noted a possible transverse magnetic feature, near the northern end of this gravity high, that separates magnetic rocks at shallow depths to the south

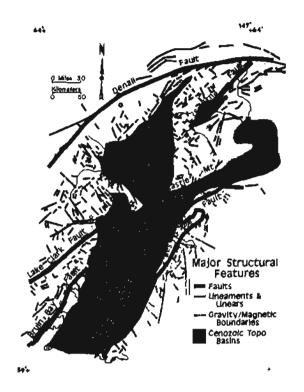



Figure 6. Major structural features of south-central Alaska based on ERTS-1 photo interpretation and available geologic and geophysical data.

from the deeply buried or absent magnetic basement to the north. This geophysical trend is offset and may correlate with a similar trend in the Talkeetna Mountains (Hackett, 1976b).

#### 3. BELUGA BASIN

A re-entrant gravity low is seen in the Capps Glacier area between Chackachatna River and Beluga Lake; the associated structural feature is designated the Beluga basin. The narrow gravity minimum, with a closure of at least -35 mgals, trends northeasterly from the Chakachatna River towards Beluga Lake and suggests a possible Tertiary depocenter within the Beluga basin area. This trend is indicated by both regional gravity and magnetic data. A smooth aeromagnetic feature suggesting thick Tertiary deposits is seen in western portions of profiles 97, 99, 101, and 103 (Grantz and others, 1963), substantiating the gravity interpretation that the area contains considerable thicknesses of nonmagnetic sedimentary rocks bounded on the south by a large basement discontinuity.

#### 4. COOK INLET BASIN

A large pronounced gravity trough is centered over Cook Inlet and the adjacent lowlands. The largest

gravity feature in the upper Shelikof Trough (the Cook Inlet basin) is a broad -140 to -150 mgal minimum that extends northeast-southwest for over 200 km from south of Kalgin Island to the lower Matanuska Valley. The axis of this gravity low is nearly coincident with the Tertiary depocenter axis of the Cook Inlet basin (Kirschner and Lyon, 1973; Hartman and others, 1972). The magnetic profiles across the Cook Inlet basin are characterized by low gradients and broadly arched configurations. The Cook Inlet magnetic pattern reflects the presence of a large, deep elongate mass of magnetic rock overlain by a thick sequence of sedimentary rocks (Grantz and others, 1963). The Cook Inlet basin is bordered on the west and north by steep gravity and magnetic gradients, indicating large basement discontinuities.

#### 5. APEX OF THE TORDRILLO BLOCK

A multicrested gravity high lies just west of the Beluga-Susitna mountain front. The southeasternmost feature is termed the Mount Susitna anomaly, and the composite north and west-central highs are called the Beluga Mountain-Talachulitna River-Judd Lake highs. The overall associated structural feature is designated the "Apex of the Tordrillo Block." This composite set of four gravity highs reflects the intrusive and metavolcanic rocks of the northern Beluga basin, Beluga Mountain, and Mount Susitna areas, Anomalies of high magnetic intensity were also found over Mount Susitna and the adjacent area to the north and west. These magnetic features are attributed to volcanic and plutonic rocks that may underlie the area at shallow depths. The closed and offset gravity maximum over the Mount Susitna pluton indicates that this quartz diorite body (rock sample and thin section SWH-74-2) is wedge shaped and that it is probably underlain to the west by a more mafic plutonic phase. The displaced inflection points of the asymmetric gravity gradients flanking this anomaly imply that the wedge-shaped pluton is bounded on the southeast and northeast by two converging high-angle reverse faults, forming the apex of the Tordrillo Block.

Other composite gravity maxima are generally centered over outcrops of pre-Tertiary metavolcanic, volcanic, and intrusive rocks; the Beluga Mountain gravity high is believed to be associated with a sequence of altered tuffaceous metavolcanic rocks (rock sample and thin sections SWH-74-8) of probable Mesozoic or Paleozoic(?) age; the Talachulitna River high is associated with a pyroxene-rich gabbro assemblage (rock sample and thin section SWH-74-9); the Judd Lake gravity high seems to reflect a complex of phonolite intrusives (rock sample and thin section SWH-74-5). These composite gravity maxima probably outline a large uplifted, fault-bounded, wedge-shaped basement block that is tilted downward to the southwest towards Beluga Lake and Beluga River.

#### 6. BELUGA MOUNTAIN FAULT

A steep asymmetric gravity gradient trends northwest along the Beluga Mountain-Mount Susitna mountain front. Its associated structural feature is designated the Beluga Mountain fault zone. The feature, about 5 miles wide and 40 to 50 mgals in amplitude, extends from Mount Susitna to the Skwentna River and probably beyond. This high-gravity gradient coincides with the Yentna-Mount Beluga lineament (fig. 7) but the gradient inflection point is offset toward the southwest. This gravity feature is therefore interpreted to be the expression of a high-angle reverse fault dipping  $60^{\circ}-75^{\circ}$ , upthrown on the southwest along the Susitna lowland-Beluga Mountain boundary.

#### 7, SUSITNA BASIN

A prominent gravity tow lies just west of the Kahiltna and Yentna River confluence. Its associated structural feature, the Susitna basin, is a -120 mgal minimum that extends for 80 km from Alexander Creek to the west-central part of the Susitna lowlands. The elbow-shaped gravity low strongly suggests a large structural trough that contains substantial thicknesses of low-density Tertiary rocks. This gravity feature correlated well with an area of low intensity but moderately dipping magnetic gradients as indicated on aeromagnetic profile 65 (Grantz and others, 1963). The gravity anomaly is postulated to be coincident with the axis of the Susitna basin Tertiary depocenter.

#### 8, YENLO BASEMENT HIGH

A relative and partially defined gravity high (-70 mgals) centered over pre-Tertiary basement outcrops of the Yenlo Hills is designated the Yenlo basement high. This north-northeast trending relative gravity maximum centered over the Yenlo Hills area is believed to reflect a fault-bounded pre-Tertiary basement block of metasedimentary, metavolcanic, and igneous rocks of probable Mesozoic or Paleozoic(?) age or both. The gravity high extends from beyond the Shell Hills in the south to the Peters Hills in the north. The southwestern and northeastern flanks of this gravity anomaly are coincident with the Peters Creek magnetic contact described by Grantz and others (1963). This geophysical feature is also expressed on detailed 1:63,360-scale aeromagnetic maps produced for the Alaska DGGS (Talkeetna quadrangle, 1972).

#### 9. YENTNA BASIN

A gravity low lies just northwest of the Kahiltna and Yentna Rivers confluence. Its associated structural feature is designated the Yentna basin. This gravity minimum, centered over the Yentna River lowlands, is suggestive of another thick sequence of Tertiary rocks. The very poorly defined Yentha basin low has a closure and amplitude of at least 35 mgals and includes a large portion of the Yentha River lowlands between the Shell Hills-Yenlo Hills and the southern Alaska Range. Reconnalssance and detailed aeromagnetic data (Grantz and others, 1963; and Alaska DGGS 1:63,360 aeromagnetic maps) indicate that major portions of the Yentha basin area are underlain by thick sequences of nonmagnetic rocks. The pre-Tertiary basement is probably at considerable depth in the central portions of this basin.

#### 10. CASTLE MOUNTAIN FAULT SYSTEM

A zone of steep east-northeast gravity gradients trends along the southern Talkeetna Mountain front towards Mount Susitna. The steep gradient reflects the western segment of the Castle Mountain fault system. This steep gravity-gradient zone extends from the southern (lank of the Talkeetna Mountains along the Matanuska Valley across the Susitna lowlands towards Mount Susitna, where it swings abruptly southward. This zone is believed to trace the western segment of the Castle Mountain fault system (Detterman and others, 1974). The inflection point of the gradients is displaced northward from the surface expression of the fault zone, implying a high-angle reverse throw for the fault system. The Moquawkle magnetic contact described by Grantz and others (1963) trends into the Castle Mountain fault system in the Mount Susitna area. Regional gravity and magnetic data strongly suggest that the Castle Mountain fault system does not continue west-southwest into the Lake Clark fault as previously inferred, but bends or splays into the Bruin Bay fault system to the south.

#### 11. LAKE CLARK FAULT SYSTEM

A wide and very steep gravity gradient trends from the Tlikakila River valley through the Lake Clark Pass-Blockade Glacier area towards Chakachatna River and reflects the Lake Clark fault system. This northeast-trending high-gravity-gradient zone, about 5 miles wide and 30 mgals in amplitude, is parallel to the Tlikakila River valley-Lake Clark Pass-Blockade Glacier area. The large gravity feature, distinctly expressed on ERTS-1 imagery (fig. 7) reflects the complex Lake Clark shear zone, which is probably a major crustal fracture. Regional gravity data imply that this fault zone splays northeasterly across the Beluga basin lowlands and does not trend directly into the Castle Mountain fault system to the east (pl. 2).

#### 12. CHIGMIT MOUNTAIN LOW

A poorly defined gravity minimum—the Chigmit Mountain low—is centered over the northern Chigmit Mountains. Part of the gravity minimum may be associated with a linear belt of intrusive rocks within the Aleutian Range batholith; this belt has been outlined, mapped, and dated by Reed and Lanphere (1973). An isostatic mountain root at the base of the crust probably contributes to the large Bouguer gravity anomaly.

#### 13. TORDRILLO MOUNTAIN LOW

A partially defined gravity low is centered in the Tordrillo Mountains. This gravity minimum, designated the Tordrillo Mountain low, implies isostatic thickening of the crust beneath a high, rugged, mountainous region. Part of this anomaly, however, could also be due to the Cenozoic plutonic complex mapped at the surface by Reed and Lanphere (1973).

#### 14. EAST BASIN-BORDER RANGES FAULT SYSTEM

A broad, steep gravity gradient along the eastern portions of Cook Inlet basin lies parallel to the Kenai Mountain front. Its associated structural feature is called the East Basin-Border Ranges fault system (Mac-Kevett and Plafker, 1974). This wide and relatively steep gravity-gradient zone extends across the Kenai Peninsula and along the Kenai Mountain front. The

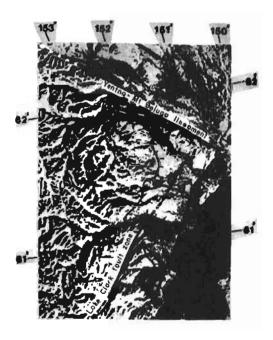



Figure 7. ERTS-1 mosaic photo of upper Cook Inlet region (showing Beluga basin outline, Yentna-Mount Beluga lineament and the Lake Clark fault zone).

zone borders the eastern flank of the Cook Inlet basin and is interpreted to be caused by extensive basement faulting. Reconnaissance aeromagnetic data (Grantz and others, 1963) indicate northeast-trending basement discontinuities along this part of the Kenai Peninsula. The width and extent of both the gravity and magnetic gradients imply considerable regional stratigraphic truncation of the Tertiary sediments along the eastern margin of the Cook Inlet basin.

#### 15. CHIGMIT MOUNTAIN HIGH-MOUNT SPURR LOW

A poorly defined gravity high and low lies between McArthur River on the south and Mount Spurr on the north. The associated structural features are designated the Chigmit Mountain high and the Mount Spurr low. The Chigmit Mountain gravity high, between Chakachatna River and McArthur River, is coincident with severely sheared plutonic rocks in the extreme northeastern Chigmit Mountains. This gravity maximum may partially outline igneous rocks of Jurassic(?) age. The poorly defined gravity low, found along the southern flanks of Mount Spurr volcano, probably reflects the large Cenozoic accumulation of low-density andesitic lavas and associated pyroclastic and sedimentary deposits (pl. 2) (Barnes, 1966).

#### 16. TORDRILLO MOUNTAIN FLANK HIGH

A poorly defined elongate gravity maximum, the Tordrillo Mountain flank high, is suggested along the eastern edge of the Tordrillo Mountains between Capps Glacier on the south and West Fork Coal Creek on the northeast. This gravity high, located along the northwestern flank of the Beluga basin, is adjacent to a highly faulted plutonic and metavolcanic rock complex of pre-Tertiary age. The gravity high reflects the structurally complex contacts between igneous, metavolcanic, and Tertiary sedimentary rocks along the eastern edge of the Tordrillo Mountain front.

#### 17. HAYES RIVER PASS HIGH-DICKASON MOUNTAIN LOW

A roughly outlined gravity high and low lie between Hayes River Pass on the south and the Skwentna River on the north. The southerly gravity maximum is designated the Hayes River Pass high; the northerly gravity minimum is referred to as the Dickason Mountain low. The Hayes River Pass gravity high reflects a fault-bounded sequence of altered tuffaceous metavolcanic rocks (rock sample and thin section SWH-74-6) that are petrographically similar to the rock sequence associated with the Beluga Mountain anomaly.

The Dickason Mountain gravity minimum roughly outlines two undefined granitic plutons (rock sample and thin section SWH-74-9) that seem to be separated

by regional faulting. This broad gravity low strongly suggests a batholitic complex of considerable areal extent connected at depth.

## STRUCTURE SECTIONS AND GEOPHYSICAL PROFILES

Available gravity, magnetic coverage, and physical rock property data for the study area are insufficient to justify a quantitative depth analysis of all the anomalous areas. However, the most prominent geophysical features may be qualitatively and semiquantitatively interpreted. Four regional structural cross sections (pl. 3) were constructed along selected gravity profiles that transect major anomalies in the study area. Although the gravity profiles have simple shapes because of the broad data base, structures giving rise to the gravity anomalies are believed to consist of complicated systems of faults and slabs (i.e., fault-bounded blocks). Only regional highs and lows bounded by steep gravity gradients have been interpreted in this section.

#### STRUCTURAL SECTION - PROFILE A-A'

The southwest-northeast gravity profile A-A' (pl. 3) suggests that thick sedimentary sequences of lowdensity Tertiary rocks are present in the Beluga basin and in the southwestern portions of Susitna basin. The inflection point of the asymmetric gravity gradient is offset to the west of the Yentna-Mount Beluga lineament. The Beluga Mountain fault, which bounds the western edge of the Susitna basin, is therefore believed to be a high-angle reverse fault that dips 600-75° southwesterly. The gravity data imply perhaps as much as 12,000 feet (3,600 m) of reverse throw for this fault. The pre-Tertiary basement surface in the Beluga basin is believed to dip 8,200 feet (2,500 m) toward the southwest from Kitty pluton, near the northeastern flank of the basin. A semiquantitative twodimensional interpretation of gravity profile A-A' was attempted with a computer program modified after Talwani and others (1959). Densities are based in part on Cook Inlet well data and values used in nearby areas. (Andreasen and others, 1964). The agreement between the measured and computed anomalies is fair, and the two selected density models 01 and 11 lend credence to the qualitative interpretation. The areas of gravity minima over the Beluga and Susitna basins partly coincide with the areas of low-gradient magnetic relief noted by Grantz and others (1963). Because of insufficient rock density and susceptibility data, these Tertiary thicknesses are considered to be approximate.

#### STRUCTURAL SECTION - PROFILE B-B'

The east-west geophysical profiles along section B-B' (pl. 3) indicate that the Castle Mountain fault system has possibly 12,000 feet (3,600 m) of high-angle

offset. The Cook Inlet and Beluga basins are outlined on the gravity profile and appear to have maximum thicknesses of 10,000 feet (3,000 m) and 3,300 feet (1,000 m), respectively, in this area. The depth of the basins, throw of the high-angle reverse fault, and stratigraphic thicknesses are also inferred qualitatively from magnetic data.

#### STRUCTURAL SECTION - PROFILE C-C'

Interpretation of the gravity minimum over Beluga basin along the northwest-southeast profile C-C' (pl. 3) is controlled vertically by the 10,717-foot (3,125-m) Pan American Chuit State No. 1 exploratory well on the western side of Cook Inlet basin (pl. 2). Subsurface well information provides some constraints for the interpretation of pre-Tertiary basement. The Beluga low is mainly caused by a relatively thick 8,200-foot (2,500-m) section of low-density Tertiary sediments (2.2-2.6 gm/ cm<sup>3</sup>)—in contrast with the higher density (2.6-3.0 gm/ cm<sup>3</sup>) pre-Tertiary basement. This gravity minimum coincides with an area of flat magnetic pattern described by Grantz and others (1963). Prominent gravity gradients along the southeast flank of the elongate gravity ridge correlate well with the Moquawkie contact, a large, recognized magnetic signature. These geophysical gradients are believed to delineate the Bruin Bay fault zone and the western boundary of the Cook Inlet basin. High Bouguer values and high-amplitude magnetic anomalies occur over rocks of Jurassic age along the extreme western portions of the Cook Inlet basin.

### STRUCTURAL SECTION - PROFILE D-D'

Profile D-D' (pl. 3) depicts an east-west structural section from the middle of Cook Inlet basin into the Chigmit Mountain front. The Bruin Bay fault, bounding Cook Inlet basin, was interpreted to be a high-angle reverse fault with 5,000 feet (1,500 m) of upthrown displacement on the west side. On the basis of available surface data (pl. 2), reconnaissance aeromagnetic information (Grantz and others, 1963), and the exploratory well data (Shell Kustatan River No. 1 and Arco Middle River State No. 2), the thickness of Tertiary sediments is inferred to be greater than 10,000 feet (3,000 m) in the extreme eastern portion of the cross section.

#### SUMMARY

Structural subdivisions of the upper Cook Inlet region are outlined by simple Bouguer gravity data. In addition to the partially explored Cook Inlet basin, regional gravity data imply the presence of other major Tertiary subprovinces: the Beluga, Susitna, and Yentna basins. Substantial accumulations of oil, gas, coal, and uranium may be contained within these sedimentary basins of Tertiary age.

Regional structural sections and geophysical pro-

files (A-A', B-B', C-C', and D-D') indicate that the deep tectonic basins are controlled by large basement faults or fault systems. Displaced inflection points of steep asymmetric gravity gradients strongly suggest a high-angle reverse nature for the Castle Mountain, Bruin Bay, and Beluga Mountain fault systems. The Beluga Mountain fault, a newly recognized linear, is implied to have a vertical displacement in excess of 10,000 feet (3,000 m). These newly outlined major tectonic features and inferred sedimentary basins (fig. 8) of possible economic significance remain to be confirmed by future detailed geophysical and geological investigations.

This generalized geophysical synthesis and semiquantitative interpretation is offered to further understanding of the tectonic features in south-central Alaska and to spur new scientific interest and exploration activity in the upper Cook Inlet region.



Figure 8. Generalized Tertiary isopach map of the Cook Inlet region delineating the probable thickness of Tertiary sedimentary rocks; Beluga, Susitna, and Yentna basin isopachs inferred from geophysical data.

#### REFERENCES

Andreasen, G.E., Grantz, Arthur, Zietz, Isidore, and Barnes, D.F., 1964, Geologic interpretation of magnetic and gravity data in Copper River Basin, Alaska: U.S. Geol. Survey Prof. Paper 316-H, p. 135-153.

- Barnes, D.F., 1967, Four preliminary gravity maps of parts of Alaska: U.S. Geol. Survey Open-File Rept. 278, 5 p.
- U.S. Geol. Survey Open-File Rept. 304, 8 p.
- \_\_\_\_\_, 1976, Bouguer gravity map of Alaska: U.S. Geol. Survey Open-File Rept. 76-70.
- Barnes, F.F., 1966, Geology and coal resources of the Beluga-Yentna region, Alaska: U.S. Geol. Survey Bull, 1202-C, 54 p.
- Beikman, H.M., 1974, Preliminary geologic map of the southeast quadrant of Alaska: U.S. Geol. Survey Mineral Inv. Map MF-612.
- Capps, S.R., 1929, The Skwentna region, Alaska: U.S. Geol. Survey Bull, 797-B, p. 67-78, map.
- \_\_\_\_, 1935, The southern Alaska Range: U.S. Geol. Survey Bull. 862, 99 p.
- Detterman, R.L., and Hartsock, J.K., 1966, Geology of the Iniskin-Tuxedni region, Alaska: U.S. Geol. Survey Prof. Paper 512, 78 p.
- Detterman, R.L., and others, 1974, Surface geology and Holocene breaks along the Susitna segment of the Castle Mountain fault, Alaska: U.S. Geol. Survey Mineral Inv. Map MF-618.
- Eakins, G.R., and Forbes, R.B., 1976, Investigation of Alaska's uranium potential: Alaska Div. Geol. and Geophys. Surveys Special Rept. 12, 372 p., 5 maps.
- Gates, G.O., and Gryc, George, 1963, Structure and tectonic history of Alaska, in Backbone of the Americas: Am. Assoc. Petroleum Geologists Mem. 2, p. 264-277.
- Gedney, Larry, Van Wormer, J.D., and Shapiro, Lewis, 1975, Tectonic lineaments and plate tectonics in south-central Alaska: Univ. of Alaska, Geophysical Institute Research Report, 8 p.
- Grantz, Arthur, 1966, Strike-slip faults in Alaska: U.S. Geol. Survey Open-File Rept. 267, 82 p.
- Grantz, Arthur, Zietz, Isidore, and Andreasen, G.E., 1963, An aeromagnetic reconnaissance of the Cook Inlet area, Alaska: U.S. Geol. Survey Prof. Paper 316-G, p. 117-134.
- Hackett, S.W., 1974, Analysis of fault patterns within and adjacent to the Tordrillo block, south-central Alaska: Geology Department, Fairbanks, University of Alaska, 18 p. (unpub.).
- , 1976a, Regional gravity survey of Beluga basin and adjacent area, Cook Inlet region, Alaska, in Abstracts, 45th Annual International Meeting: Soc. Exploration Geophysicists, Denver, CO., Oct. 12-16, 1975; Alaska Div. Geol. and Geophys. Surveys Open-File Rept. 100, 38 p.
- \_\_\_\_\_\_, 1976b, Speculative tectonic evolution of the Cenozoic Shelikof Trough, south-central Alaska, in Short notes on Alaskan geology, Alaska Div. of Geol. and Geophys. Surveys Geologic Rept. 51,

- p. 13-17.
- Hammer, Sigmund, 1939, Terrain corrections for gravimeter stations: Geophysics, v. 4, p. 184-194.
- Hartman, D.C., Pessel, G.H., and McGee, D.L., 1973, Kenai Group of Cook Inlet basin, Alaska: Alaska Div. Geol. and Geophys. Surveys Open-File Rept. 49, 9 p., 12 pls.
- Hayford, J.F., and Bowie, William, 1912, The effect of topography and isostatic compensation upon the intensity of gravity: U.S. Coast and Geod. Survey Spec. Pub. 10.
- Kienle, Juergen, 1968, Gravity survey in the general area of Katmai National Monument, Alaska: Fairbanks, Ph.D. thesis, University of Alaska, 151 p.
- Kirschner, C.E., and Lyon, C.A., 1973, Stratigraphic and tectonic development of the Cook Inlet petroleum province: in Arctic Geology, Am. Assoc. Petroleum Geologists Mem. 19, p. 396-407.
- MacKevett, E.M., Jr., and Plafker, George, 1974, The Border Ranges fault in south-central Alaska: U.S. Geol. Survey Jour. Research, v. 2, no. 3, p. 323-329.
- McGee, D.L., 1973, Coal reserves study, Chuitna-Beluga-Capps area, Alaska: Alaska Div. Geol. and Geophys. Surveys Open-File Rept. 30, 7 p.
- Maloney, R.P., 1958, Reconnaissance of the Beluga River coal field, Alaska: U.S. Bur. Mines Rept. Inv. 5430, 18 p.
- Payne, T.H., 1955, Mesozoic and Cenozoic tectonic elements of Alaska: U.S. Geol. Survey Misc. Geol. Inv. Map I-84.
- Plafker, George, 1969, Tectonics of the March 27, 1964, Alaska Earthquake: U.S. Geol. Survey Prof. Paper 643-I, p. 11-174.
- Reed, B.L., and Elliott, R.L., 1970, Preliminary reconnaissance geologic map of part of the southern Alaska Range: U.S. Geol. Survey Open-File Rept. 413, 23 p.
- \_\_\_\_\_\_, 1973, Alaska-Aleutian Range batholith Geochronology, chemistry, and relation to circum-Pacific plutonism: Geol. Soc. America Bull., v. 84, p. 2583-2610.
- Reed, B.L., and Lanphere, M.A., 1972, Generalized geologic map of the Alaska-Aleutian Range batholith: U.S. Geol. Survey Mineral Inv. Map MF 372.
- Talwani, M., Worzel, J.L., and Landisman, M., 1959, Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone: Jour. Geophys. Research, v. 64, p. 49-59.
- Warfield, R.S., 1961, Investigations of subbituminous coal deposits in the Beluga River coal field, Alaska: U.S. Bur. Mines open-file report, 70 p.
- \_\_\_\_\_\_, 1963, Investigations of a subbituminous coal deposit suitable for opencut mining, Beluga River coal field: U.S. Bur. Mines Rept, Inv. 6238, 100 p.

APPENDIX A

Principal facts for gravity stations occupied in Beluga basin and adjacent area, Alaska.

|                |             | •          | _          | •            |          | •              |        | •      |              |        |               |        |        |        |                  |  |
|----------------|-------------|------------|------------|--------------|----------|----------------|--------|--------|--------------|--------|---------------|--------|--------|--------|------------------|--|
| STATION        | LATITUDE    | LONGITUDE  | ELEV(PI) Q | OBSERVED     | NORMAL.  | F.AIR          | B 1.00 | 1.80   | 2.00         | 2.30   | 2.40          | 2.60   | 2.67   | 2.80   | 2.85             |  |
| BL31 BAS       | E 61 10.54N | 149 58.87W | 88.D 01    | 981921.2     | 0 410520 | -85.4          | -86.6  | -87.5  | ~87.7        | -88.0  | -88.1         | -88.4  | -88.4  | -88.6  | -88.6            |  |
| BELU BAS       |             | 151 2.55W  | 84.0 02    | 981878.3     | 982014.5 | -128.3         | -129.4 | -130.3 |              | -130.8 |               | -131.1 | -131.2 | -131.3 |                  |  |
| BELU I         | 61 11.39N   | 151 6.80W  | 158.0 04   | 981882.6     | 982016.0 | -118.5         | -120.5 | -122.2 |              |        | -123.4        |        | -123.9 | -124.7 |                  |  |
| BELU 2         | 61 13.43m   | 151 8.71W  | 85.0 05    | 981900.9     | 982018.6 | -109.7         | -110.8 | -111.7 |              |        | -112.3        |        |        |        |                  |  |
| BELU 3         | 61 12.72N   | 151 10.17W | 100.0 05   | 931898.3     | 982917.1 | -109.6         | -110.8 | _      |              | _      | -112.5        |        |        |        |                  |  |
|                |             | 7,71       |            | ************ | 20       |                | 2.0.0  | *****  | .,           | .,,    | ,             | ****   |        |        | 11372            |  |
| BELU 4         | 61 13.52N   | 151 13.049 | 140.0 05   | 931916.3     | 982018.7 | -89.2          | -91.0  | -92.5  | <b>~92.8</b> | ~93.4  | -93.5         | ~93.9  | -94.0  | -94.2  | -94.3            |  |
| BELT 5         | 61 14.41N   | 151 14.599 | 175.0 05   | 981936.8     | 982019.8 | -66,6          | -68.8  | -70.6  | -71.1        | -71.7  |               | -72.4  | -72.5  | -72.B  | -73.0            |  |
| BELU 6         | 61 16.27N   | 151 15.82W | 215.0 05   | 931939-5     |          | -62,5          | -65.2  | -67.4  | -68.0        | -68.8  | -69.1         | -69.6  | -69.B  | -70.2  | -70.3            |  |
| BELU 7         | 61 16.84N   | 131 17.34W | 220.0 05   | 981934.3     | 982022.9 | ~67.9          | -70.7  | -73.0  | -73.6        | ~74.4  | -74.7         | -75.2  | -75.4  | -75.8  | -75.9            |  |
| BELU 8         | 61 17.92N   | 151 17.60W | 230.0 05   | 981927.6     | 982024.3 | -75.1          | -78.0  | -80.4  | -80.9        | -81.8  | -82. Ł        | -82.7  | -82.9  | -83.3  | -83.4            |  |
|                |             |            |            |              |          |                |        |        |              |        |               |        |        |        |                  |  |
| BELU 9         | 61 19.35N   | 151 18.42W | 240,0 05   | 981924.3     | 982026.1 | -79.3          | -82.3  | -84.8  | -85.4        | -86.3  | -86.6         | -87.2  | -87.4  | -87.8  | -88.0            |  |
| 3E1.0 10       | 61 10.93%   | 151 19.33W | 242,0 04   | 981924.8     | 982026.9 | -79.3          | -82.4  | -84.9  | -85.5        | -86.4  | -86.7         | -87.3  | -87.5  | -37.9  | -83.1            |  |
| BELU 11        | 61 21.199   | 151 20.38W | 244.0 04   | 981928.5     | 982078.5 | -77.0          | -80.1  | -82.6  | -83,2        | -84.2  | ~84.5         | ~05.1  | -83.3  | -85.7  | -85.9            |  |
| <b>BELU 12</b> | 61 22.97พ   | 151 25.93W | 245.0 04   | 981931.5     | 982030.7 | -76.2          | -79.3  | -81.8  | -82.4        | -83.4  | -83.7         | -84.3  | -84.5  | -84.9  | -85.L            |  |
| BELU 13        | 61 23.97N   | 151 28.44W | 256,0 04   | 981931.7     | 982032.0 | -76,2          | -79.5  | -82.1  | -82.7        | -83.7  | -84.1         | -84.7  | -84.9  | -85.4  | -85.5            |  |
|                |             |            |            |              |          |                |        |        |              |        |               |        |        |        |                  |  |
| BELU 14        | 61 23.04N   | 151 30,99W | 258.0 05   | 981932.L     | 992030.8 | -74.4          | -77.7  | -80.4  | -81.0        | 4.5°   | -82.3         | -83.0  | -83.2  | -83.7  | -83.5            |  |
| BM U 15        | 61 24.78N   | 151 31.298 | 270,0 07   | 981937.9     | 982013.0 | -69.7          | -73.2  | ~75.9  | -76.6        | -77.6  | -78.0         | -78.7  | -78.9  | -79.4  | -79.5            |  |
| BEIJ) 16       | 61 26.27N   | 151 30.79W | 400.0 07   | 981931.9     |          | -65.4          | -70.5  | -74.6  | -75.6        | -77.1  | -77.6         | -78.7  | -79.0  | -79.7  | -79.9            |  |
| BELU 17        | 61 28.42N   | 151 33.30w | 620.0 07   | 981927.2     |          | -52 <b>.</b> l | -60.0  | ~66.4  | -67.9        | -70.3  | -71.1         | -72,7  | -73.2  | -74.3  | -74.7            |  |
| BETO T8        | 61 28.60N   | 151 37.13W | 800.0 07   | 981912.6     | 982037.8 | ~50.0          | -69.2  | -68.4  | -70.4        | -73.5  | -74.5         | -76,6  | -77.3  | -78.6  | -79.L            |  |
|                |             |            |            |              |          |                |        |        |              |        |               |        |        | **     |                  |  |
| BELU 19        | 61 19,05%   | 151 26.10w | 430.0 D5   | 981916.7     | 982025.7 | -60,6          | -74.1  | ~78.5  | -79.6        | -81.2  | -81.8         | -82.9  | -63.3  | -84.0  | -84.2            |  |
| BELU 20        | 61 16.33%   | 151 21.99W | 511.0 04   | 981919.0     | 982022.3 | -55.2          | -61.7  | -67.0  | -68.3        | -70.2  | -70.9         | -72.2  | -72.6  | -73.5  | -73.B            |  |
| THEO 1         | 61 11,44N   | 150 59.59W | 27.0 02    | 981882.6     | 982016.1 | -130.9         | -131,3 | -131.5 | -131.6       | -131.7 | -131.8        | -131.8 | 8.161- | -131.9 | -131.9           |  |
| THEO 2         | 61 13.87N   | 150 58,09W | 27.0 02    | 981882.6     | 982016.6 | -131.5         | ~£31.B | -132.1 |              | -132.3 | -132.3        | -132.4 | -132.4 | ~132.4 | -132.5           |  |
| THEO 3         | 61 12.71N   | 150 53.49¥ | 13.0 03    | 981884.6     | 982017.7 | -131.9         | -132.0 | -132.2 | -132.2       | -132.2 | <b>∽132.3</b> | -132.3 | -132.3 | -132.3 | -132.3           |  |
|                |             |            |            |              | 505516 - |                | 100 -  | 130 -  | 120 7        | 120 7  | 120 7         | 110 7  | 120 ~  | 120 7  | 130 2            |  |
| THEO 4         | 61 14.06N   | 150 47.99W | 8.0 06     | 981880.2     | 982019.4 | -130.4         | -138.5 |        |              |        | -138.7        |        |        |        | -138.7<br>-135.2 |  |
| THEO 5         | 61 14.38N   | 150 S1.23W | 10.0 05    | 981884.0     | 982019.8 | -134.9         | -135.0 | -135.1 | -135.1       |        | -135.2        |        |        |        |                  |  |
| THEO 6         | 61 15.34N   | 150 51.12W | 27.0 03    | 981887.4     | 982021.0 | -131.1         | -131.4 | -131.7 | -131.8       |        | -131.9        | -132.0 | -132.0 | ~132.1 | -132.1<br>-128.9 |  |
| THEO 7         | 61 15.83N   | 150 53,459 | 82.0 02    | 981888.0     | 982021.6 | -125.9         | -127.0 | -127.8 | -128.0       | -128.3 | -128.4        |        | -128.7 | -128.9 |                  |  |
| THEO 8         | 61 16.45W   | 150 53.95W | 45.0 05    | 981893.8     | 982022.4 | -124.4         | -125,0 | -125.4 | -125.6       | -1Z3.7 | -125.8        | -123.9 | -123.9 | -120.0 | -150.0           |  |

|            | 2.35       | -122,5                 | -129.3     | -129.5     | -120.5    | ~120.Z   | -109.9    | -107,0   | -88.6    | -85.9    | 1.28-      | -83,2    | -84.1    | -80.4    | -19,9    | -73.2    | -71.6    | -70,1     | -80.4    | -80.3    | -85.0     | -97.5     | -130.7   | -129.5   | -129.4   | -125.2   | -311.9   | -98.1    | 61.6                 |
|------------|------------|------------------------|------------|------------|-----------|----------|-----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------------------|
|            | 2.30       | -122.5                 | -129.3     | -129,5     | -120.5    | -120.1   | -109.8    | -106.8   | -88.3    | -85.4    | 83.8       | -83.0    | -83.8    | -79.8    | 79.4     | -72,7    | -71.2    | 8.69-     | -80.2    | -80.1    | -84.B.    | 4.76-     | -130.6   | -129.4   | -129.4   | -125.1   | -111,8   | -97.9    | -61.3                |
|            | 2.67       | -122.3                 | -129.1     | ~129.4     | -120.6    | -120.0   | 7,601-    | -106.3   | 87.6     | -84.3    | -83.1      | -82.3    | -83.1    | -78.1    | -78.2    | -71.6    | -70.2    | 0.69-     | -79.6    | 9.67-    | -84.4     | -97.1     | -130.5   | -129.1   | -129.4   | -125.0   | -111.6   | 9.76-    | -61.9                |
| -          | 2.60       | -122.2                 | -129.0     | -129,4     | -120,3    | 2119.9   | -109.2    | -106.1   | -87.2    | -83.7    | -82,7      | -82.0    | -82.7    | -77.1    | -11.5    | -71.0    | -69.7    | -68.6     | -79.3    | 19-61-   | -84.1     | 6.96-     | ~130.4   | -1,29.0  | -129.3   | -125.0   | -111,6   | -62      | 5.65                 |
|            | 2.40       | -122.0                 | -128.8     | -129.3     | -120.2    | -119-7   | ~108.6    | -105.3   | -86.1    | -81.9    | -81.6      | -81.0    | -81,6    | -74.5    | -75.5    | -69.3    | -68.2    | -67.3     | -73.4    | -78.6    | -83.5     | 7.96-     | -130.2   | -128.6   | -129.3   | -124.9   | -111-0   | 8-96-    | -58.5                |
|            | 2,30       | -121.9                 | -126.7     | -129.3     | -129.1    | -119.6   | -108.3    | -104.9   | -85.6    | -81.0    | 81.2       | -80,6    | -81.1    | -73.2    | -74.5    | -68.4    | -67.4    | -66.7     | -78.0    | -78.2    | -83,1     | -96.2     | -130.0   | -128.4   | -129.2   | -126.8   | -110.8   | -96.5    | -57.8                |
|            | 2.00       | -121.5                 | -128,4     | -129.2     | 9.871-    | -119.4   | -107.4    | -103.8   | -83.9    | -78.4    | -79.5      | -79.1    | 79.4     | -69.3    | ~71.5    | -65,8    | -65.2    | 9,49-     | -16.7    | -11.1    | -82.1     | -95.5     | ~129.7   | -127.9   | -129.1   | -124.6   | -110.2   | -95.7    | -77.5<br>-55.8       |
|            | 1.80       | -121.3                 | -128.2     | -129.1     | -119.7    | -119.2   | -106.8    | -103.0   | -82.9    | -76.6    | ~78.4      | -78.     | -78.3    | 2.99-    | -69.5    | -64.0    | -63.7    | -63.6     | -75.8    | ~76.3    | -81.5     | -95.0     | -129.5   | -127.5   | -129.0   | -124.5   | -109.8   | -95.2    | -56.4                |
| (cont.)    | DO.1 3     | -120.4                 | 721-       | -128.8     | -119.1    | -118.6   | -104.5    | 6.66~    | -78.5    | 9.59-    | -74.0      | -74.2    | -73.8    | -56.2    | -61,5    | -57.0    | -57.6    | -58.6     | -72.3    | -73.2    | B.87-     | ~93.0     | -128.6   | -126.0   | -128.8   | -124.0   | -108.1   | -93.0    | -70.6<br>4.9.6       |
| ) A xib    | F.AIR      | -119.2                 | -126.3     | -128.4     | -118,3    | -117.3   | -101.5    | 1.96-    | -73.1    | 3.00-    | -68.6      | 7.69-    | -68.3    | -43.1    | -51.6    | -48.3    | -50.1    | -52.3     | n. 89-   | 7.69~    | -75.5     | 900-      | ~127.4   | -124.2   | -128.4   | -123.3   | -106.1   | -90.2    | 42.0                 |
| Appendix A | NORMAL     | 982026.1               | 982020.9   | 982013.6   | 982019.9  | 982022.1 | 982022.9  | 982024.0 | 982026,5 | 982027,6 | 982028.4   | 982030.3 | 982033.0 | 982036.0 | 982037.2 | 982017.1 | 982035,2 | 98,2032,8 | 982030.1 | 982029.5 | 982028.7  | 982027.0  | 982013.8 | 982011.5 | 982008.8 | 982009.5 | 982009.5 | 982010.6 | 962011.8             |
|            | DBSERVED   | 931896.8               | 981886.9   | 981887.4   | 981895.9  | 981897.6 | 981899.7  | 981899.7 | 981913.4 | 981901.9 | 981919.8   | 981925.2 | 981923.8 | 981896.5 | 981912.3 | 981924,4 | 981929.6 | 5. 266186 | 981930.1 | 981931.9 | 981928.7  | 981918.5  | 981878.0 | 981873.7 | 981877.8 | 981881.5 | 981888.4 | 981900.1 | 981898.b<br>981920.0 |
|            | ELEV(FT) Q | 90.0 05                | 82.0 08    | 30.0 08    | 60.0 05   |          | 230.0 07  |          |          |          | 425.4 05   |          | 435.0 05 |          |          | 685.0 05 |          | 70 0.067  |          | 0.00     |           | 190.0 05  |          |          |          | \$0.0 05 | 160.0 05 | 215.0 05 | 540.0 05             |
|            | LONGITUDE  | 150 56.26W             | 150 54.704 | 150 57.514 | 151 4.009 |          | N56.9 151 |          |          |          | 151 15.364 |          |          |          |          |          |          | 151 3,814 |          |          | 151 0.39W | ۳,        |          |          |          |          |          |          | 151 26.764           |
|            | LATITUDE   | 61 18.08N<br>61 19.33N |            |            |           |          | 61 16.793 |          |          |          | 61 21.14N  |          |          |          |          |          |          | 61 24.60N |          |          | 61 21.35N | 61 20.03H |          |          |          |          | 61 6.33x |          | 61 8,86N             |
|            | STATION    | THEO 9<br>THEO 10      |            |            |           | OLSE 2   | OI SE 3   |          | CLSE S   |          | OLSE 7     |          |          | 01.32.10 |          | 0LSE 12  |          | 01SE 14   |          |          | OLSE 17   | 0LSE 18   |          |          |          | CENT 4   | CHUI S   | CHOI 6   | CHUI 8               |

|                    | 2.85       | -57.7<br>-64.8<br>-66.6<br>-65.6<br>-72.1                          | -73.6<br>-79.6<br>-102.2<br>-74.6<br>-83.7                         | -94.3<br>-110.8<br>-99.7<br>-80.9                                  | -126.4<br>-139.1<br>-145.2<br>-126.2<br>-140.9                     | -119.2<br>-129:1<br>-119.6<br>-123.4<br>-79.7                      | -71.6<br>-80.5<br>-80.8<br>-86.0                                  |
|--------------------|------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|
|                    | 2.80       | -57.3<br>-64.2<br>-66.0<br>-64.8<br>-71.4                          | -72.8<br>-78.7<br>-102.2<br>-74.0<br>-81.9                         | -94.1<br>-110.7<br>-99.6<br>-80.9                                  | -125.4<br>-139.1<br>-145.2<br>-126.2<br>-140.9                     | -119.1<br>-129.1<br>-119.5<br>-125.4<br>-79.5                      | -70.8<br>-79.7<br>-80.1<br>-85.1<br>-77.7                         |
|                    | 2.67       | -55.2<br>-62.7<br>-64.2<br>-62.9<br>-69.6                          | -70.7<br>-76.5<br>-101.9<br>-72.3                                  | -93.5<br>-110.3<br>-99.5<br>-83.8                                  | -126.3<br>-139.1<br>-165.1<br>-176.2<br>-140.9                     | -118.9<br>-129.1<br>-119.4<br>-125.3                               | -68.7<br>-77.6<br>-78.1<br>-82.9                                  |
|                    | 2,60       | -55.6<br>-61.9<br>-61.9<br>-68.6                                   | -69.6<br>-75.3<br>-101.8<br>-71.3<br>-74.9                         | -93.1<br>-110.2<br>-99.4<br>-80.7<br>-92.4                         | -126.3<br>-139.1<br>-145.0<br>-126.2<br>-140.9                     | -118.8<br>-129.0<br>-119.3<br>-125.3                               | -67.6<br>-76.5<br>-77.1<br>-81.7                                  |
|                    | 2.40       | -54.0<br>-59.6<br>-60.5<br>-59.0<br>-65.8                          | -66.4<br>-71.9<br>-101.4<br>-63.7<br>-67.9                         | -92.1<br>-109.7<br>-99.2<br>-80.6<br>-92.3                         | -126.2<br>-139.0<br>-144.9<br>-126.2<br>-140.9                     | -118.9<br>-128.9<br>-119.1<br>-125.1<br>-78.3                      | -66.4<br>-73.3<br>-76.1<br>-78.2<br>-62.3                         |
|                    | 2.30       | -53.1<br>-58.4<br>-59.2<br>-57.5                                   | -64.8<br>-70.2<br>-103.2<br>-67.4<br>-64.4                         | -91.6<br>-109.4<br>-99.1<br>-80.5<br>-92.3                         | -126.2<br>-139.0<br>-144.8<br>-126.2<br>-140.9                     | -118.4<br>-128.9<br>-119.0<br>-125.1<br>-78.0                      | -62.8<br>-71.7<br>-72.5<br>-76.5<br>-58.4                         |
|                    | 2.00       | -50.6<br>-54.9<br>-55.1<br>-53.1<br>-60.2                          | -60.0<br>-65.1<br>-100.6<br>-63.4<br>-54.0                         | -90.1<br>-108.7<br>-98.7<br>-80.2<br>-92.1                         | -126.0<br>-138.9<br>-144.6<br>-126.1<br>-140.8                     | -117.9<br>-128.7<br>-118.7<br>-126.9<br>-77.0                      | -58.0<br>-68.0<br>-71.3                                           |
|                    | 1.80       | -49,0<br>-52,6<br>-52,4<br>-50,1                                   | -56.8<br>-61.7<br>-100.2<br>-60.8<br>-47.0                         | -89.1<br>-108.2<br>-98.5<br>-80.1<br>-92.0                         | -126.0<br>-138.8<br>-144.4<br>-176.1<br>-140.8                     | -117.6<br>-128.6<br>-118.5<br>-124.8<br>-76.4                      | -54.9<br>-63.7<br>-65.0<br>-67.9<br>-39.1                         |
| ont.)              | 1,00       | -42.3<br>-43.3<br>-41.6<br>-38.4<br>-46.3                          | -48.1<br>-48.1<br>-98.7<br>-50.2<br>-19.0                          | -85.1<br>-106.2<br>-97.5<br>-79.5<br>-91.7                         | -125.6<br>-138.5<br>-143.8<br>-126.1<br>-140.7                     | -116.5<br>-128.2<br>-117.7<br>-124.4<br>-73.8                      | 53.0<br>53.0<br>53.0                                              |
| Appendix A (cont.) | F.AIR      | -34.0<br>-31.7<br>-28-1<br>-23.7                                   | -28.1<br>-31.2<br>-96.8<br>-37.0                                   | -80.2<br>-103.7<br>-96.3<br>-78.7                                  | -125.2<br>-138.2<br>-143.0<br>-126.0                               | -115.0<br>-127.7<br>-116.6<br>-123.9                               | -26.1<br>-35.0<br>-37.9<br>-36.9                                  |
| Append             | NORMAL     | 982012.8<br>982015.0<br>982015.9<br>982017.0                       | 982018.6<br>982019.8<br>982028.5<br>982034.5                       | 982044.6<br>982050.6<br>982051.9<br>902046.7                       | 982037.9<br>982032.0<br>982022.7<br>982021.4<br>982024.0           | 982026.7<br>982024.6<br>982023.4<br>982020.8                       | 982037.0<br>982041.7<br>982045.2<br>982048.9                      |
|                    | OBSERVED   | 981917.6<br>981897.7<br>981888.1<br>981885.1                       | 981872.9<br>981863.5<br>981917.6<br>981900.2                       | 981927.8<br>981926.6<br>981946.8<br>981962.3                       | 981909.7<br>981891.4<br>981873.9<br>981894.9                       | 981900.9<br>981893.2<br>981899.2<br>981893.1                       | 981893.3<br>981889.0<br>981896.3<br>981865.1                      |
|                    | ELEV(FT) Q | 650.0 05<br>910.0 07<br>1060.0 07<br>1150.0 07                     | 1250_0 07<br>1330_0 07<br>150_0 05<br>1035_0 07<br>2740_0 10       | 390.0 07<br>195.0 05<br>93.0 05<br>61.0 05                         | 32,0 04<br>26.0 02<br>61,0 03<br>5.0 04<br>10,0 07                 | 115.0 02<br>40.0 05<br>80.0 05<br>40.0 05<br>248.0 06              | 1252.0 04<br>1252.0 04<br>1180.0 07<br>1350.0 07                  |
|                    | LONGITUDE  | 151 28.984<br>151 32,004<br>151 33,654<br>151 33,424<br>151 33.844 | 151 35,16W<br>151 36,39W<br>150 54,53W<br>150 50,44W<br>150 57,05W | 150 49.75W<br>150 51.15W<br>150 44.07W<br>150 39.74W<br>150 34.05W | 150 25.31W<br>150 27.73W<br>150 28.26W<br>150 12.25W<br>150 39.14W | 150 50.87µ<br>150 47.74µ<br>150 59.96¥<br>150 58.33µ<br>151 40.88₽ | 151 46,31W<br>151 42,60W<br>151 47,21W<br>151 52,88W<br>152 1,33W |
|                    | LATITUDE   | 61 B.87N<br>61 10.58N<br>61 11.28%<br>61 12.16N<br>61 12.57N       | 61 13.40N<br>61 14.34%<br>61 21.22N<br>61 25.98N<br>61 28.96N      | 61 33.97N<br>61 38.72N<br>61 39.703<br>61 35.62N<br>61 30.95N      | 61 28.66N<br>61 24.01N<br>61 16.52N<br>61 15.62N<br>61 17.68N      | 61 19.82N<br>61 18.19N<br>61 17.18N<br>61 15.15N<br>61 23.75N      | 61 27,93N<br>61 31,66N<br>61 34,40N<br>61 37,38H<br>61 39,59H     |
|                    | STATION    | CHUI 9<br>CHUI 10<br>CHUI 11<br>CHUI 12<br>CHUI 13                 | CRUI 15<br>CRUI 15<br>SUST 1<br>SUST 2<br>SUST 3                   | SUST 6<br>SUST 6<br>SUST 7<br>SUST 7                               | SUST 9<br>SIST 10<br>SUST 11<br>SUST 12<br>COOK 1                  | COOK 2<br>COOK 3<br>CCOR 6<br>COOK 5<br>SKT 1                      | SKAT 2<br>SKAT 3<br>SKAT 4<br>SKAT 5<br>SKAT 5                    |

## Appendix A (cont.)

| STATION | LATITUDE  | LONGITUDE  | ELEV(FT) Q | OBSERVED | NORMAL   | Y.AIR | B 1.00 | 1.80  | 2.00  | 2.30  | 2.40  | 2,60  | 2.67  | 2.80  | 2.85  |
|---------|-----------|------------|------------|----------|----------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| SKWT 7  | 61 43.77N | 151 53.94W | 2050,0 07  | 981863.1 | 982057.0 | -1.1  | -27.2  | -48.2 | -53.4 | -61.3 | -63.9 | -69.1 | -71.0 | -74.4 | -75.7 |
| SKWT 8  | 61 45,77N | 152 2.66W  | 825.D 07   | 981938.8 | 982039.5 | -43.I | -53.6  | -62.1 | -64.2 | -67.3 | -68.4 | -70.5 | -71.2 | -72.6 | -73.1 |
| SKWT 9  | 61 50.518 | 152 5.54W  | 690.0 07   | 981948.2 | 982065.5 | -52.4 | -61.2  | -68.2 | -70.0 | -72.6 | -73.5 | -75.3 | -75.9 | -77.0 | -77.5 |
| SKWT 10 | 61 55.62N | 151 SR,84W | 1800.0 10  | 981889.0 | 982071.9 | -13.6 | -36.5  | -54.9 | -59.5 | -66.4 | -68.7 | -73.3 | -74.9 | -77.9 | -79.1 |
| SKWT 11 | 61 57,17N | 152 1.84W  | 570.0 07   | 981972.0 | 982073.8 | -48.2 | -55.5  | -61.3 | -62.8 | -64.9 | -65.7 | -67.1 | -67.6 | -68.6 | -68.9 |
|         |           |            |            |          | ,        |       |        |       | ****  |       |       | ****  |       |       | ****  |
| SKWT 12 | 61 58.23N | 151 50.2CW | 425.0 05   | 981977.8 | 982075.1 | -57.4 | -62.8  | ~67.1 | ~68.2 | -69.8 | -70.4 | -71.5 | -71.9 | -72.6 | -72.8 |
| SKWT 13 | 61 55.429 | 151 41,26W | 340.0 05   | 981981.6 | 982071.6 | -58.G | -62.4  | -65.9 | -66.7 | ~68.0 | -68.5 | -69.3 | -69.6 | ~70.2 | -70.4 |
| SKWT 14 | 61 52.73N | 151 30.64W | 260.0 05   | 981983.4 | 982068.2 | -60.4 | -63.7  | -66.4 | -67.0 | -68.0 | -68.4 | -69.0 | ~69.3 | -69.7 | -69.9 |
| SXWT 15 | 61 43.70N | 151 23,17W | 752.0 04   | 981942.5 | 982056.9 | -43.7 | -53.3  | -61.0 | -62.9 | -65.8 | -66.7 | -68.6 | -69.3 | -70.6 | ~71.0 |
| SKWT 16 | 61 40,75N | 151 22.07W | 620.0 07   | 981948.4 | 982053.2 | -46.5 | -54.4  | -60.7 | -62.3 | -64.7 | -65.5 | -67.1 | -67.6 | -68.6 | -69,0 |
|         |           |            |            |          |          |       |        |       |       |       |       |       |       |       |       |
| SKWT 17 | 61 33.75N | 151 22.36W | 775.0 05   | 981928:9 | 982044.4 | -42.6 | -52.5  | -60.4 | -62.4 | -65.3 | -66.3 | -68.3 | -69.0 | -70.3 | -70.8 |
| REDO I  | 60 54.9CN | 151 42.27W | 24.0 GZ    | 981948.3 | 981995.0 | -44.5 | -44.8  | -45.D | -45.1 | -45.2 | -45.2 | -45.2 | -45.3 | -45.3 | -45.3 |
| REPO 2  | 60 44.01N | 151 56.24W | 26.0 03    | 981936.1 | 981981.0 | -42.4 | -42.7  | -43.0 | -43.1 | -43.2 | ~43.2 | -43.3 | -43.3 | -43.3 | -43.4 |
| REDO 3  | 60 31.60% | 152 16.84W | 20.0 05    | 981949.8 | 981965.0 | -13.3 | -13.5  | -13.7 | -13.8 | -13.9 | -13.9 | -13.9 | -14.0 | -14.0 | -14.0 |
| REDO 4  | 60 23.95N | 152 28,73W | 360.0 07   | 981943.7 | 981955.1 | 22,5  | 17.9   | 14.2  | 13.3  | 11.9  | 11.5  | 10.6  | 10.2  | 9.6   | 9.4   |
|         |           |            |            |          |          |       |        |       |       |       |       |       |       |       |       |
| REDO 5  | 60 17.03N | 152 27.30W | 7.0 02     | 981929.4 | 981946.1 | -16.0 | -16.1  | -16.2 | -16.2 | -16.2 | -16.2 | -16.3 | -16.3 | -16.3 | -16.3 |
| REDO 6  | 60 13.62N | 152 3[.79₩ | 22.0 02    | 981932.7 | 981941.7 | -6.9  | -7.2   | -7.4  | -7.4  | -7.5  | -7.6  | -7.6  | -7.6  | -7.7  | -7.7  |
| REDO 7  | 60 6.55พ  | 152 34.75W | 23.0 02    | 4.419189 | 981932.5 | -15.9 | -16.2  | -16.4 | -16.5 | -16.6 | -16.6 | -16.7 | -16.7 | -16.7 | -16.7 |
| REDO B  | 60 1.41W  | 152 36.19W | 22.0 02    | 981900.8 | 981925.7 | -22.9 | -23.2  | -23.4 | -23.4 | -23.5 | -23.6 | -23.6 | -23.6 | -23.7 | -23.7 |
| REDO 9  | 60 3.43N  | 152 44.59W | 85.0 07    | 981913.4 | 981928.4 | -7.0  | -8.1   | -8.9  | -9.2  | -9.5  | ~9.6  | ~9.8  | -9.9  | -10,0 | -10.1 |
|         |           |            |            |          |          |       |        |       |       |       |       |       |       |       | _     |
| REDO 10 | 60 8.17N  | 152 40,88W | 14.0 G2    | 981927.8 |          | -5.4  | -5.6   | -5.8  | -5.0  | -5.9  | -5.9  | -5.9  | -5.9  | -5.9  | -6.0  |
| REDO 11 | 60 13.49N | 152 38,32W | 22.0 02    | 981940.3 | 981941.5 | 0.9   | 0.6    | 0.4   | 0.3   | 0.2   | 0.2   | 0.2   | 0.1   | 0.1   | 0.1   |
| REDO 12 | 60 18.38N | 152 38.60W | 145.0 05   | 981943.5 | 981947.8 | 9.3   | 7.5    | 6.0   | 5.6   | 5.0   | 4.9   | 4.5   | 4.4   | 4.1   | 4.0   |
| REDO 13 | 60 21.39% | 152 50.57W | 559.0 04   | 981934.0 |          | 38.6  | 31.0   | 24.8  | 23.3  | 21.0  | 20.2  | 18.7  | 10.2  | 17.2  | 16.8  |
| REDO 14 | 60 24.68N | 152 49.17W | 1200.0 07  | 981903.9 | 981956.0 | 60.8  | 45.4   | 33.2  | 30.1  | 25.5  | 24.0  | 20.9  | 19.9  | 17.9  | 17.1  |
|         |           |            |            |          |          |       |        |       |       |       |       |       |       |       |       |
| REDO 15 | 60 29,43N | 152 55.76W | 1405.0 07  | 981866.8 | 981962.2 | 36.8  | 18.9   | 4,5   | 0.9   | -4.5  | -6.3  | -9,8  | -11.1 | -13.4 | -14.3 |
| REDO 16 | 60 33.90N | 152 53.519 | 1275.0 07  | 981868.5 | 981967.9 | 20.5  | 4.2    | -8.8  | -12.1 | -16.9 | -18.6 | -21.8 | -23.0 | -25.1 | -25.9 |
| REDO 17 | 60 33.85% | 152 42.30W | 835.0 07   | 981922.5 | 981967.9 | 33.Z  | 22.5   | 14.0  | 11.9  | 8.7   | 7.6   | 5.5   | 4.7   | 3.3   | 2.8   |
| REDO 18 | 60 36,23N | 152 33.61W | 340.0 07   | 981956.0 | 981970.9 | 17.0  | 12.7   | 9.2   | 8.4   | 7.1   | 6.6   | 5.8   | 5.5   | 4.9   | 4.7   |
| REDO 19 | 60 37.15W | 152 26.88¥ | 195.0 07   | 961979.4 | 981972.1 | 25,6  | 23.1   | 21.1  | 20.6  | 19.9  | 19.6  | 19.2  | 19.0  | 18.7  | 18.5  |

|                    | 2.85       | 18.8<br>5.1<br>-3.2<br>-23.6                                     | -107.3<br>-83.7<br>-45.7<br>-50.5                        | -51.6<br>-59.5<br>-57.7<br>-79.3                                   | -61.0<br>-68.3<br>-68.5<br>-72.7<br>-89.2<br>-94.1<br>-96.4<br>-96.4                                                    | -67.3<br>-68.2<br>-64.9<br>-73.0                                   |
|--------------------|------------|------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                    | 2.80       | 18.9<br>5.2<br>-3.2<br>-23.5                                     | -107.3<br>-83.7<br>-45.7<br>-50.5                        | -53.6<br>-59.4<br>-57.6<br>-79.1<br>-60.2                          | -60.7<br>-67.9<br>-68.1<br>-72.0<br>-88.3<br>-92.3<br>-92.3<br>-94.6<br>-80.6                                           | -66.3<br>-67.4<br>-64.2<br>-72.3                                   |
|                    | 2,67       | 19.1<br>5.3<br>-3.1<br>-23.4<br>-130.9                           | -107.2<br>-83.6<br>-45.6<br>-50.4                        | -53.4<br>-59.1<br>-57.3<br>-78.8                                   | -60.1<br>-67.1<br>-67.1<br>-76.8<br>-85.9<br>-87.8<br>-97.0<br>-89.8                                                    | 63.7<br>-65.4<br>-70.4<br>-73.3                                    |
|                    | 2.60       | 19.1<br>5.3<br>-3.0<br>-21.3<br>-130.8                           | -107.2<br>-83.6<br>-45.6<br>-53.7                        | -53.3<br>-59.0<br>-57.1<br>-78.6<br>-59.3                          | -59.7<br>-66.6<br>-66.2<br>-69.0<br>-84.6<br>-85.4<br>-94.5<br>-91.1                                                    | 62.3                                                               |
|                    | 2.40       | 19.4<br>5.4<br>-2.9<br>-23.1<br>-130.5                           | -107.1<br>-83.5<br>-45.5<br>-50.1<br>-53.5               | -53.0<br>-58.6<br>-56.6<br>-78.0<br>-58.5                          | -58.7<br>-65.2<br>-66.1<br>-80.9<br>-80.0<br>-80.0<br>-80.0<br>-61.5                                                    | .58.4<br>-61.1<br>-58.3<br>-66.4                                   |
|                    | 2.30       | 19.5<br>5.5<br>-2.8<br>-23.0<br>-130.4                           | -107.1<br>-83.5<br>-45.4<br>-50.0<br>-53.4               | -52.8<br>-58.4<br>-56.4<br>-77.7                                   | -58.2<br>-64.5<br>-64.7<br>-74.9<br>-74.9<br>-74.9<br>-76.4<br>-76.4                                                    | -56.4<br>-59.5<br>-56.8<br>-65.0                                   |
|                    | 2.00       | 19.9<br>5.7<br>-22.7<br>-130.0                                   | -106.9<br>-83.4<br>-45.3<br>-49.7<br>-53.0               | -52.4<br>-57.8<br>-55.7<br>-76.8<br>-56.7                          | 586.6<br>662.5<br>736.6<br>736.6<br>736.6<br>736.6<br>736.6<br>736.6<br>736.6<br>736.6                                  | -50.4<br>-54.7<br>-52.5<br>-60.6<br>-63.5                          |
|                    | 1.80       | 20.1<br>5.9<br>-2.4<br>-22.5<br>-129.8                           | -106.8<br>-83.3<br>-45.2<br>-49.5<br>-52.8               | -52.1<br>-57.3<br>-55.3<br>-76.3<br>-55.9                          | -55.6<br>-51.2<br>-58.6<br>-57.3<br>-70.0<br>-63.3<br>-57.5<br>-63.0<br>-57.5<br>-58.2                                  | 46.4<br>-51.5<br>-49.5<br>-57.7                                    |
| ont.)              | 8 1.00     | 21.1<br>6.4<br>-1.8<br>-21.8<br>-128.8                           | -106.5<br>-83.0<br>-44.8<br>-48.8                        | -50.9<br>-55.7<br>-53.4<br>-74.0                                   | 51.4<br>-55.8<br>-55.7<br>-55.7<br>-55.3<br>-29.6<br>-29.1<br>5.6                                                       | 138.8<br>138.8<br>13.3<br>14.6<br>16.0                             |
| Appendix A (cont.) | F.AIR      | 22.3<br>7.1<br>-1.0<br>-20,8                                     | -106.1<br>-82.6<br>-44.2<br>-47.8                        | -49.5<br>-53.7<br>-51.1<br>-71.1                                   | 466.3<br>44.6<br>44.6<br>131.0<br>111.0<br>111.0<br>113.0<br>113.0                                                      | -10.6<br>-22.9<br>-23.1<br>-31.4<br>-34.2                          |
| Аррелд             | NORMAL     | 981978.2<br>981986.3<br>981994.7<br>982001.2                     | 982004.5<br>982002.5<br>982003.3<br>982004.7             | 982009.0<br>982011.8<br>982013.3<br>982014.5                       | 982016.2<br>982016.4<br>982016.7<br>982021.8<br>982025.9<br>982025.9<br>982035.0<br>982035.0                            | 982027.3<br>982023.3<br>982019.0<br>982016.6                       |
|                    | OBSERVED   | 981991.6<br>981988.3<br>981988.0<br>981973.3                     | 981895.3<br>981917.1<br>981955.3<br>981949.8             | 981948.7<br>981943.1<br>981945.3<br>981922.3                       | 981917.8<br>981917.8<br>981905.5<br>981881.0<br>961849.8<br>981777.7<br>981777.7                                        | 981870.0<br>981883.3<br>981887.8<br>981877.7                       |
|                    | ELEV(FT) Q | 95.0 07<br>55.0 05<br>60.0 05<br>75.0 04<br>100.0 10             | 33.0 02<br>30.0 02<br>40.0 05<br>75.0 05<br>90.0 05      | 135.0 05<br>160.0 05<br>180.0 05<br>225.0 07<br>340.0 07           | 405.0 07<br>530.0 07<br>740.0 08<br>11145.0 07<br>1435.0 07<br>2730.0 07<br>2850.0 07<br>3750.0 04                      | 1560.0 07<br>1245.0 07<br>1150.0 07<br>1142.0 04<br>1145.0 10      |
|                    | LONCITUDE  | 152 17.54N<br>152 3.05N<br>151 57.14W<br>151 57.60W<br>151 7.82W | 151 16.00W<br>151 26.51W<br>151 40.99W<br>151 47.03W     | 151 47.169<br>151 48.189<br>151 50.328<br>151 54.399<br>151 58.279 | 152 0.514<br>152 4.294<br>152 9.364<br>152 29.294<br>153 29.294<br>153 46.774<br>152 46.774<br>152 43.774<br>152 52.078 | 152 59.62W<br>152 53.47W<br>152 47.58W<br>152 35.37W<br>152 32.04W |
|                    | LATITUDE   | 60 41,90X<br>60 48,20X<br>60 54,69X<br>60 69,78N                 | 61 2,37N<br>61 0,85N<br>61 1,44N<br>61 2,51N<br>64 4,11N | 61 5.85N<br>61 8.11N<br>61 9.31N<br>61 10.25N<br>61 11.03N         | 61 11,52N<br>61 11,96N<br>61 11,96N<br>61 14,32N<br>61 15,91N<br>61 19,16R<br>61 21,78K<br>61 21,78K<br>61 21,92N       | 61 20_27N<br>61 17_14N<br>61 13_77N<br>61 11_63N<br>61 11_50N      |
|                    | STATION    | REDO 20<br>REDO 21<br>REDO 22<br>REDO 23<br>MCAR 1               | MCAN 2<br>MCAN 3<br>MCAN 6<br>MCAN 5<br>MCAN 6           | MCAR 8 HCAR 8 HCAR 9 MCAR 10 HCAR 11                               | HCAR 12<br>HCAR 13<br>HCAR 14<br>HCAR 15<br>MCAR 16<br>HCAR 17<br>HCAR 18<br>HCAR 20<br>HCAR 20<br>HCAR 20              | PCAR 22<br>HCAR 23<br>HCAR 24<br>HCAR 25<br>HCAR 25                |

### Appendix A (cont.)

| STATION | LATITUDE  | LO:XCITUDE | ETEA(LL) Ó | OBSERVED         | NORMAL   | F.AIR  | B 1.00 | 1.80   | 2.00   | 2,30   | 2.40   | 2.60          | 2.67   | 2.80   | 2,85   |
|---------|-----------|------------|------------|------------------|----------|--------|--------|--------|--------|--------|--------|---------------|--------|--------|--------|
| MCAR 27 | 61 12.748 | 152 20.26W | 1105.0 08  | 981876.4         | 982017.7 | -37.4  | -51.5  | -62.8  | -65.6  | -69.8  | -71.Z  | -74.1         | -75.1  | -76.9  | -77.6  |
| MCAR 28 | 61 13.70% | 151 59.84W | 820.0 07   | 981903.0         | 982018.9 | -38.8  | -49.3  | -57.7  | -59.8  | -62.9  | -63.9  | -66.0         | -66.8  | -68.1  | -68.7  |
| MCAR 29 | 61 14.68N | 151 50,68W | 2725.0 10  | 981765.8         | 982020.2 | 1.9    | -32.9  | -60.7  | -67.7  | -78.I  | -81.6  | -88.5         | ~9L.0  | -95.5  | -97.2  |
| HCAR 30 | 61 14.06N | 151 28.04W | 1820.0 08  | 981853.9         | 982019.4 | 5.7    | -17.5  | -36.1  | -40.8  | -47,8  | -50.1  | -54.7         | -56.4  | -59.4  | -60.5  |
| MCAR 31 | 61 12.80N | 151 19.41W | 750.0 08   | 981914.7         | 982017.8 | -32.5  | -42.1  | -49.8  | -51.7  | -54.6  | -55.5  | -57.4         | -50.1  | -59.4  | -59.8  |
| DICK 1  | 61 29.41N | 151 22,364 | 1355.0 03  | 981880.4         | 932038.9 | -31.0  | -48.3  | -62.2  | -65.6  | -70.B  | -72.5  | -76.0         | -77.2  | -79.5  | -80.3  |
| DICK 2  | 61 34.29N | 151 34,06W | 980.0 04   | 981927.7         | 982045.0 | -25.2  | -37.7  | -47.7  | -50.2  | -53.9  | -55,2  | -57.7         | -58.6  | -60.2  | -60.8  |
| ricz 3  | 61 38.47N | 151 40.19W | 2256.0 04  | 981847.B         | 982050.3 | 9.7    | -19.1  | -42.2  | -47.9  | -56.6  | -59.5  | -65.2         | ~67.2  | -71.0  | -72.4  |
| DICK 4  | 61 42.03X | 151 37.66W | 1475.0 10  | 981873.2         | 982054.8 | -20.9  | ~39,7  | -54.8  | -58.5  | -64.2  | -66.1  | -69.8         | -71.1  | -73.6  | -74.5  |
| DICK 5  | 61 44.52N | 151 32.66W | 1525.0 10  | 981891.5         | 982057.9 | -23.0  | -42.5  | -58.0  | -61.9  | -67.8  | -69.7  | -73.6         | -75.0  | 77.5   | -78.5  |
| DICK 6  | 61 46.13N | 151 44,91W | 2560.0 04  | 981833.3         | 982060.0 | 14.0   | -18.6  | -44.7  | -51.2  | ~61.0  | -64.3  | -70.9         | -73.1  | -77.4  | -79.0  |
| DICK 7  | 61 48.72N | 151 51.49W | 2850.0 08  | 981817.1         | 982063.2 | 22.0   | -14.4  | -43.5  | -50.8  | -61.7  | -65.4  | -72.7         | -75.2  | -79.9  | -81.8  |
| DICK 8  | 61 50,69N | 151 44.91W | 2241.0 04  | 981849.9         | 982065.7 | -5.0   | -33.6  | -56.5  | -62.2  | -70.8  | -73.7  | -79.4         | -81.4  | -85.1  | -86.5  |
| DICK 9  | 61 49.42N | 151 31,12W | 575.0 07   | 981965.3         | 982064.1 | -44.7  | -52.1  | -57.9  | -59.4  | -61.6  | -62,3  | -63,8         | -64.3  | -65.3  | -65.6  |
| DICK 10 | 61 49.16N | 151 20.85W | 340.0 05   | 981970.0         | 982063.8 | -53.8  | -58.1  | -6t.6  | -62,5  | -63.8  | -64.2  | -65.1         | -65.4  | -65.9  | -66.2  |
| DICK 11 | 61 53.67N | 151 18.77W | 190.0 05   | 981983.0         | 932069.4 | -68,6  | -71.0  | -72.9  | -73,4  | -74.1  | -74.4  | -74.9         | -75.0  | -75.3  | -75.5  |
| DICK 12 | 61 57.97N | 151 13,01W | 149.0 03   | 981983 <b>.9</b> | 982074.8 | -76.9  | -78.8  | -80.3  | -80.7  | -81.3  | -81.5  | -81.8         | -82.0  | -82.2  | -82,3  |
| DICK 13 | 61 53.32N | 151 10.55W | 180.0 05   | 981958.5         | 982069.0 | -93.6  | -95.9  | -97.7  | ~98.2  | -98.8  | -99.1  | -99.5         | -99.7  | -100.0 | -100,1 |
| DICK 14 | 61 46.65N | 151 10.38W | 325.0 U8   | 981937.7         | 982060.6 | -92.3  | -96.5  | -99.8  | -100.6 | -101-9 | -102.3 | -103.1        | -103.4 | -104.0 | -104.2 |
| DICK 15 | 61 42,97א | 151 13,52W | 3050.0 10  | 981778,8         | 982056.0 | 9.7    | -29.2  | -60.4  | -68.2  | -79.9  | -83.8  | -91.6         | -94.3  | -99.3  | -101.3 |
| ALEX 1  | 61 24.30N | 151 8.64W  | 818.0 04   | 981909.1         | 982032.4 | -46.4  | -56.8  | -65.2  | -67.3  | -70.4  | -71.4  | <b>-73.</b> 5 | -74.2  | -75.6  | -76.1  |
| ALEX 2  | 61 29.46N | 151 4.95W  | 785.0 07   | 981916.7         | 982038.9 | -48.4  | -58.4  | -66.4  | -68.4  | -71.5  | -72.5  | -74,5         | -75.2  | -76.5  | -77.0  |
| ALEX 3  | 61 31.31N | 151 1,70W  | 1010.0 07  | 981903.4         | 982041.3 | -42.9  | -55.8  | -66.1  | -68,7  | -72.5  | -73.8  | ~76.4         | -77.3  | -79.0  | -79,6  |
| ALEX 4  | 61 33.20N | 150 58.88W | 1185.0 07  | 981888.2         | 982043.7 | -44.0  | -59.1  | -71.2  | -74.3  | -78.7  | -80.3  | -83.3         | -84.4  | -86.4  | -87.1  |
| ALEX 5  | 61 36.09N | 150 SS.53W | 550.0 10   | 981926.5         | 982047.3 | -69.1  | -76.I  | -81.7  | -83.1  | -85.2  | -85.9  | -87.3         | -87.8  | -68.7  | -89.1  |
| ALEX 6  | 61 41.83พ | 150 46.80W | 92.0 05    | 981939.8         | 982054.6 | -106.1 | -107.3 | -108.2 | -108.4 | -108.8 |        |               |        |        |        |
| ALEX 7  | 61 43.94N | 150 51.81W | 160.0 08   | 981931.3         | 982057.2 | -110.9 | -112.9 |        | -114.9 |        | -115.8 |               |        |        | -116.7 |
| ALEX 8  | 61 43.35N | 150 57.46W | 165.0 05   | 981926.8         | 982056,5 | -114.1 | -116.3 | -117.9 | -118.4 | -119.0 |        |               | -119.8 | -120.0 | -120.1 |
| ALEK 9  | 61 42.06R | 151 0,13W  | 260.0 05   | 981927.3         | 982054.8 | -103.1 | -106.4 | -109.1 | -109.7 | -110.7 | -111.1 | -111.7        | -111.9 | -112.4 | -112.5 |
| ALEX 10 | 61 40.55M | 151 4.80W  | 650.0 07   | 981926.8         | 982052.9 | -65.0  | -73.3  | -79.9  | -81.6  | -84.1  | -84.9  | -86.6         | -87.2  | -88.2  | -88.7  |

### Appendix A (cont.)

| STATION | ACUTITAL  | LONGITUDE  | ELEV(FT) Q | OBSERVED | NORMAL   | F,AIR        | B 1.00 | 1.80  | 2.00  | 2.30  | 2,40  | 2,60  | 2.67  | 2.80  | 2.05  |
|---------|-----------|------------|------------|----------|----------|--------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| ALEX 11 | 61 39.13N | 151 8.10W  | 1200.0 07  | 981905.8 | 982051.1 | -32.5        | -47.8  | -60.1 | -63.1 | -67.7 | -69.3 | -72.3 | -73.4 | -75.4 | -76.1 |
| ALEX 12 | 61 37.00N | 351 11.29W | 1760.0 04  | 981880.3 | 982048.5 | -2.6         | -25.1  | -43.1 | -47.6 | -54.3 | -56.6 | -61.0 | -62.6 | -65.5 | -66.7 |
| ALEX 13 | 61 36.86N | 151 16.94W | 660.0 05   | 981941.4 | 982043.3 | -44.8        | -53.2  | -60.0 | -61.7 | -64.2 | -65.0 | -66.7 | -67.3 | -68.4 | -68.8 |
| ALEX 14 | 61 39.198 | 151 28.469 | 790.0 07   | 981940.6 | 982051.2 | -35.3        | -46.4  | -54.5 | -56.5 | -59.5 | -60.5 | -62.5 | -63.2 | -64.6 | -65.1 |
| ALEX 15 | 61 31.79% | 151 14.43W | 740.0 05   | 981935.0 | 982041.9 | -37.3        | -46.7  | -54.3 | -56.2 | -69.0 | -60.0 | -61.8 | -62.5 | -63.7 | -64.2 |
| CAPP 1  | 61 17.50N | 151 33.95W | 975.0 10   | 981882.4 | 982023.8 | -49.7        | -62.1  | -72.1 | -74.6 | -78.3 | -79.5 | -82.0 | -82.9 | -84.5 | -85.1 |
| CAPP 2  | 61 20.42N | 151 35.46W | 445.0 05   | 981909.5 | 982027.5 | -76.1        | -81.8  | -86.4 | -87.5 | -89.2 | -89.8 | -90.9 | -91.3 | -92.0 | -92.3 |
| CAPP 3  | 61 18.21N | 151 42.01W | 1050.0 08  | 981871.0 | 982024.7 | -54.9        | -68.3  | -79.0 | -81.7 | -85.7 | -87.1 | -89.8 | -90.7 | -92.5 | -93.1 |
| CAPP 4  | 61 21.70N | 151 44.62W | 630.0 07   | 981913.5 | 982029.1 | -56.3        | -64.4  | -70.8 | -72.4 | -74.8 | -75.7 | -77.3 | -77.8 | -78.9 | -79.3 |
| CAPP 5  | 61 24.33% | 151 49,84W | 630.0 07   | 981421.9 | 987032.4 | -51.3        | -59.3  | -65.8 | -67.4 | -69.8 | -70.6 | -72,2 | -72.8 | -73.8 | -74.2 |
| CAPP 6  | 61 21,30N | 151 53,58W | 1295.0 07  | 981887.3 | 982028.6 | -19.5        | -36.0  | -49.3 | -52.6 | -57.5 | -59.2 | -62.5 | -63.6 | -65.8 | -66.6 |
| CAPP 7  | 61 17,27N | 151 54.50W | 3105.0 04  | 981753.1 | 982023.5 | 21.7         | -18.0  | -49.7 | -57.6 | -69.5 | -73.5 | ~01.4 | -84.2 | -89.3 | -91.3 |
| CAPP 8  | 61 12,67N | 151 55.35W | 530.0 07   | 981917.2 | 982017.6 | -50.6        | -57.3  | -62.8 | -64.1 | -66.1 | -66.8 | -68.2 | -68.6 | -69.3 | -69.9 |
| CAPP 9  | 61 11.57N | 151 41.72W | 1610.0 07  | 981846.1 | 982016.2 | -18.7        | -39.2  | -55.7 | -59.8 | -66.0 | -68.0 | -72.1 | -73.6 | -76.3 | -77.3 |
| CAPP 10 | 61 8.34N  | 151 36.74W | 1349.0 03  | 981867.9 | 982012.1 | -17.3        | -34.5  | -48.3 | -51.8 | -56.9 | -58.7 | -62.1 | -63.3 | -65.6 | -66.4 |
| CAPP 11 | 61 4,32N  | 151 34.13W | 42.0 05    | 981958.0 | 982007.0 | <b>-45.0</b> | -45.6  | -46.0 | -46.1 | -46.3 | -46.3 | -46.4 | -46.5 | -46.5 | -46.6 |
| CAPP 12 | 60 58.69N | 151 48.74W | 50.0 05    | 981965.5 | 981999.8 | -29.6        | -30.2  | -30.7 | -30.9 | -31.1 | -31.1 | -31.2 | -31.3 | -31.4 | -31.4 |
| CAPP 13 | 61 0.98N  | 151 52.46W | 70.0 05    | 981960.4 | 982002.7 | -35.7        | -36.6  | -37.3 | -37.5 | -37.8 | -37.9 | -38,1 | -38.1 | -38.2 | -38.3 |
| CAPP 14 | 61 3.78N  | 152 7.27W  | 183.0 05   | 981944.3 | 982006.3 | -44.8        | -47.1  | -49.0 | -49.5 | -50,2 | -50.4 | -50.9 | -51.0 | -51.3 | -51.4 |
| CAPP 15 | 61 6.46N  | 152 12.82W | 245.0 07   | 981916.4 | 982009.7 | -70.3        | -75.4  | -75.9 | -76.5 | -77.5 | -77.8 | -78.4 | -78.6 | -79.0 | -79.2 |
| CAPP 16 | 61 7.82N  | 151 53.66W | 195.0 08   | 981944.6 | 982011.4 | -48.5        | -51.0  | -53.0 | -53.5 | -54.2 | -54.5 | -55.0 | -55.2 | -55.5 | -55.6 |

APPENDIX B

Bouguer Anomaly Quality<sup>1</sup>

| Code (Q) | Combined eleva-<br>for p = 2.6 |      | Elevation control                                                                     |
|----------|--------------------------------|------|---------------------------------------------------------------------------------------|
|          | Feet                           | mgal |                                                                                       |
| 1        | + 1.0                          | 0.06 | Stable bench marks (BM)                                                               |
| 2        | + 1.5                          | 0.10 | Surveyed wellsites (KB) or at sea level                                               |
| 3        | + 8.0                          | 0.20 | Vertical angle bench marks (VABM)                                                     |
| 4        | + 7.5                          | 0.50 | Photometric spot elevations on lakes, rivers, etc., or with good altimetry loops.     |
| Б        | +10.0                          | 0.80 | River gradients (50-foot contour interval maps)                                       |
| 6        | +15.0                          | 1.0  | Short distance altimetry                                                              |
| 7        | +20.0                          | 1.2  | River gradients (100-foot CI maps)                                                    |
| 8        | +25.0                          | 1.5  | Interpolation from 50-foot CI maps                                                    |
| 9        | +30.0                          | 2,0  | Moderate distance altimetry                                                           |
| 10       | +\$0.0                         | 3.0  | Interpolation from 100-foot CI maps or long-distance altimetry                        |
| 11       | +75.0                          | 5.0  | Interpolation between two control points or long range altimetry with control errors. |

<sup>&</sup>lt;sup>1</sup>Modified from Barnes, 1972; and Kienle, 1968.

| 1 |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| • |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

APPENDIX C

Ground magnetic field reductions for selected stations in Beluga Basin, Alaska, showing declination, inclination, calculated field values based on IGRF 1965 reference field updated to 1974, measured total field, and uncorrected magnetic field anomaly.

| DATE    | TIME (ADT) | NOTATE    | LATITUDE | LONGITUDE | ALTITUDE | DECLINATION        | INCLINATION | CALCULATED<br>TOTAL PIELD | MEASURED<br>TOTAL FIELD | UNCORRECTED ANOMALY |
|---------|------------|-----------|----------|-----------|----------|--------------------|-------------|---------------------------|-------------------------|---------------------|
| 8/14/74 | 1057       | BELU BASE | 61.17    | -151.04   | 84,000   | 25.427             | 16.091      | 55613.04                  | 55630.00                | 16.96               |
|         | 1148       | BELU 1    | 61.19    | -151.11   | 158.000  | 25.39 <del>9</del> | 16.090      | 55608.00                  | 55754.00                | 146.00              |
|         | 1203       | BELU 2    | 61.22    | -151,15   | 85,000   | 25.397             | 16.071      | 55614.25                  | 55647.00                | 22.75               |
|         | 1215       | BELU 3    | 61.20    | -151.17   | 100.000  | 25.375             | 16.089      | 55604.65                  | 55623.00                | 18.35               |
|         | 1229       | BELU 4    | 61.23    | -151.22   | 140.000  | 25.369             | 16.D82      | 55604.03                  | 55615.00                | 10.97               |
|         | 1239       | BELU 5    | 61.24    | -151.24   | 175,000  | 25.353             | 16.076      | 55604.53                  | 55687,00                | 82.47               |
|         | 1250       | BELU 6    | 61.27    | -151.26   | 215.000  | 25.356             | 16,057      | 55610 <b>.56</b>          | 55513.00                | -97.56              |
|         | 1300       | BELU 7    | 61.28    | -151.29   | 220.000  | 25.347             | 16.054      | 55609.79                  | 55499.00                | -110.79             |
|         | 1307       | BELU B    | 61.30    | -151,29   | 230,000  | 25,353             | 16.042      | 55614.48                  | 55536.00                | -78.48              |
|         | 1317       | BELU 9    | 61.32    | -151.31   | 240,000  | 25.357             | 16.027      | 55619.61                  | 55793,00                | 173.39              |
|         | 1328       | BELU 10   | 61.33    | -151.32   | 242.000  | 25.353             | 16.023      | 55620.30                  | 55749.00                | 128.70              |
|         | 1337       | BELU 11   | 61.35    | +151,34   | 244.000  | 25.353             | 16.010      | 55624.06                  | 55745.00                | 120.94              |
|         | 1353       | BELT 12   | 61.38    | -151,43   | 245.000  | 25.317             | 16.005      | 55619.92                  | 55609.00                | -10.92              |
|         | 1400       | BELU 13   | 61.40    | -151,47   | 256,000  | 25.302             | 16,000      | 55618.94                  | \$5300,00               | -318.94             |
|         | 1412       | BELU 14   | 61.30    | -151,52   | 258,000  | 25.235             | 16,079      | 55583.45                  | 55636,00                | 52.55               |
|         | 1420       | BELU 15   | 61.50    | -151,52   | 270,000  | 25.321             | 15.938      | 55640.93                  | 55217.00                | ~423.93             |
|         | 1433       | BELU 16   | 61.44    | -151.51   | 400.000  | 25.299             | 15.979      | 55623.73                  | 55402.00                | -221.73             |
|         | 1445       | BELU 17   | 61.39    | -151.55   | 620.000  | 25.254             | 16,020      | 55602.04                  | 55539.00                | -63.04              |
|         | 1454       | BELU 18   | 61.48    | -151.62   | 800.000  | 25.259             | 15.968      | 55617.45                  | 55324.00                | -293.45             |
|         | 1514       | BELU 19   | 61.32    | -151.43   | 430.000  | 25.286             | 16.053      | 55598.58                  | 55326,00                | -272.58             |
|         | 1527       | BELU 20   | 61.27    | 151.37    | 511,000  | 25.302             | 16.074      | 55593.99                  | 55408.00                | -185,99             |
|         | 1616       | THEO 1    | 61.19    | ~150.99   | 27.000   | 25.462             | 16.068      | 55626.44                  | 55721.00                | 94.56               |
|         | 1618       | THEO 2    | 61.20    | -150.97   | 27.000   | 25.479             | 16.059      | 55632,14                  | 55561,00                | -71.14              |
|         | 1634       | THEO 3    | 61.21    | -150,89   | 13,000   | 25.525             | 16.036      | 55647,33                  | 55738.00                | 90.67               |
|         | 1643       | THEO 4    | 61.23    | -150.80   | 8.000    | 25.584             | 16.003      | 55667.11                  | 55783.00                | 115.89              |

## Appendix C (cont.)

| DATE    | TIME (ADT) | STATION   | LATITUDE. | LONGITUDE | ALTITUDE  | DECLINATION | INCLINATION | CALCULATED<br>TOTAL FIELD | MEASURED<br>TOTAL FIELD | UNCORRECTED ANOHALY |
|---------|------------|-----------|-----------|-----------|-----------|-------------|-------------|---------------------------|-------------------------|---------------------|
|         | 1652       | THEO 5    | - 61.24 - | -150.85   | .10,000   | 25.558      | 16.009      | 55660.98                  | 55810.00                | 149.02              |
|         | 1700       | TREO 6    | 61.26     | -150.85   | 27,000    | 25,570      | 15.996      | 55666.69                  | 55814.00                | 147.31              |
| ,       | 1709       | THEO 7    | 61.26     | -150.88   | 82.000    | 25.557      | 15.995      | 55664.29                  | 55974.00                | 309.71              |
|         | 1717       | THEO 8    | 61.27     | -150.90   | 45.000    | 25,550      | 15.992      | 55664.43                  | 55817.00                | 152.57              |
|         | 1730 ´     | THEO 9    | 61.30     | -150.94   | 90,000    | 25.543      | 15.979      | 55666,65                  | 55814.00                | 147.35              |
|         | 1739       | THEO 10   | 61.32     | -151.97   | 150.000   | 25.004      | 16.140      | 55527.95                  | 55785.00                | 257.05              |
|         | 1753       | THEO II . | 61.25     | -150.91   | 82.000    | 25.535      | 16.008      | 55656.56                  | 55832.00                | 175.44              |
|         | 1802       | THEO 12   | 61.22     | -150.96   | 30.000 .  | 25,496      | 16.038      | 55641.32                  | 55855.00                | 213.68              |
| 8/15/74 | 1213       | OLSE 1    | 61,25     | -151.07   | 60.000    | 25.449      | 16.041      | 55632.20                  | 55787.00                | 154.80              |
|         | 1219       | OLSE 2    | 61.27     | -15t.08 . | 75.000    | 25.450      | 16.027      | 55636.55                  | 55751.00                | 114.45              |
|         | 1234       | OLSE 3    | 61.28     | -151.12   | 230.000   | 25.439      | 16,025      | 55633.96                  | 55606,00                | -27.96              |
| ,       | 1244       | OLSE 4    | 61.29     | -151.13   | 300,000   | 25.440 .    | 16.016      | 55636.39                  | 55650,00                | 13.61               |
|         | 1251       | OLSE 5    | 61.33     | -151.15   | 425,000   | 25.442      | 15,997      | 55641.56                  | 55715.00                | 73.44               |
|         | 1313       | OLSE 6    | 61.34     | -151,20   | 690.000   | 25,421      | 15,995      | 55636.56                  | 55784.00                | 147.44              |
|         | . 1325     | OLSE 7    | 61.35     | -151.26   | 425.000   | 25.397      | 15.997      | 55634.15                  | 35915,00                | 280.85              |
|         | 1339       | OLSE 6    | 61.38     | -151.31   | 380.000   | 25.379      | 15.988      | 55634.23                  | 55970.00                | 335.77              |
|         | 1350       | OLSE 9    | 61.41     | -151.30   | 435.000   | 25.401      | 15.960      | 55645.71                  | \$5703,00               | 57.29               |
|         | 1403       | OLSE 10   | 61.45     | -151.32   | 1025.000  | 25.406      | 15.935      | 35649.64                  | 55456,00                | -193.64             |
|         | 1420       | OLSE 11   | 61.47     | -151.15   | 780.000   | 25.504      | 15.895      | 55679.76                  | 55713,00                | 33.24               |
| r       | 1428       | OLSE 12   | 61.47     | -151.13   | 685.000   | 25.517      | 15.892      | 55683.60                  | 55006.00                | -677.60             |
|         | 1438       | OLSE 13   | 61.44     | ~151.09   | 590.000   | 25.526      | 15.903      | 55682.45                  | 55274,00                | -408.45             |
|         | 1448       | OLSE 14   | 61.41     | -151.06   | 490.000   | 25.526      | 15.922      | 55677.69                  | 55537.00                | -140,69             |
|         | 1458       | OLSE 15   | 61.37     | -151.03   | 340,000 . | 25.528      | 15.942      | \$5673.28                 | 55775.00                | 101.72              |
|         | 1513       | OLSE 16   | 61,37     | -151.02   | 300.000   | 25.531      | 15.945      | 55673.10                  | 55925.00                | 251.90              |
|         | 1521       | OLSE 17   | 61.36     | -151.01   | 260,000   | 25.531      | 15,951      | 53671.61                  | 55840.00                | 168.39              |
|         | 1528       | OLSE 18   | 61.33     | -150,99   | 190.000   | 25,529      | 15.964      | 55667.90                  | 55711.00                | 43.10               |
|         | 1605       | CHUI I .  | 61.16     | -151.06   | 89.000    | 25,414      | 16.101      | 55607.73                  | 55475.00                | -132.73             |
|         | 1615       | CEUI 2    | 61,13     | -151.12   | 145.600   | 25.371      | 16,133      | 55590.23                  | 55793.00                | 202.77              |

Appendix C (cont.)

| DATE    | TIME(ADT) | STATION  | LATITUDE | LONGITUDE | ALTITUDE | DECLINATION | INCLINATION | CALCULATED<br>TOTAL FIELD | MEASURED<br>TOTAL FIELD | UNCORRECTED ANOHALY |
|---------|-----------|----------|----------|-----------|----------|-------------|-------------|---------------------------|-------------------------|---------------------|
|         | 1623      | E 10KO   | 61.10    | -151.13   | 28.000   | 25.348      | 16.160      | 55578.87                  | 55642.00                | 63.13               |
|         | 1631      | CHUI 4   | 61.11    | -151.16   | 50.000   | 25.337      | 16,159      | 55577,12                  | 55670.00                | 92.88               |
|         | 1639      | CHUI 5   | 61.11    | -151.22   | 160.000  | 25.303      | 16.170      | 55567.19                  | 55641.00                | 73.81               |
|         | 1648      | CHUI 6   | 61.12    | -151.29   | 215,000  | 25,270      | 16.173      | 55560.35                  | 55636.00                | 75.65               |
|         | 1658      | CHUI 7   | 61.14    | -151.37   | 522.000  | 25.237      | 16.174      | 55552.05                  | 55797.00                | 244.95              |
|         | 1714      | CHUI B   | 61.14    | -151.45   | 540.000  | 25,198      | 16.186      | 55541.39                  | 55923,00                | 381.61              |
|         | 1723      | CHUL 9   | 61.15    | -151.48   | 650.000  | 25.184      | 16,184      | 55539.01                  | 55861.00                | 321.99              |
|         | 1735      | CHUI 10  | 61,17    | -151.53   | 910.000  | 25.168      | 16.174      | 55537.62                  | 55463.00                | -74.62              |
|         | 1744      | CHUL 11  | 61.19    | -151.55   | 1060.000 | 25.165      | 16,166      | 59538.36                  | 55499.00                | -39.36              |
|         | 1746      | CHUL 12  | 61.20    | -151.56   | 1150,000 | 25.168      | 16.157      | 55541.23                  | 55650.00                | 108.77              |
|         | 1757      | CITUR 13 | 61.21    | -151.56   | 1090.000 | 25.168      | 16.152      | \$5543.27                 | 55600.00                | 56.73               |
|         | 1805      | CHUI 14  | 61.22    | -151.59   | 1250,000 | 26.162      | 16.146      | 55542.60                  | 55581,00                | 38.40               |
|         | 1811      | CRUI 15  | 61.24    | -151.61   | 1330.000 | 25.158      | 16,139      | 55543.82                  | 55328.00                | -215.82             |
| B/16/74 | 0907      | SUSI 1   | 61.35    | -150.91   | 150.000  | 25.582      | 15.936      | 55685.63                  | 55653 <b>.00</b>        | -32.63              |
|         | 0920      | SUSI 2   | 61.43    | -150.84   | 1035.000 | 25.653      | 15.867      | 55711.45                  | 56090.00                | 378.55              |
|         | 0936      | SUST 3   | 61.48    | -150.95   | 2740.000 | 25.616      | 15.849      | 55696.99                  | 56545.00                | 848.01              |
|         | 1001      | SUSI 4   | 61.57    | -150.83   | 390.000  | 25.723      | 15.769      | 55756.68                  | 55597.00                | -159.68             |
|         | 1024      | 5U\$1 5  | 61.65    | -150.85   | 195.000  | 25.748      | 15.716      | 55777.69                  | 54896.00                | -881.69             |
|         | 1036      | SUS1 6   | 61.66    | -150.73   | 93.000   | 25.818      | 15.684      | 55799.56                  | 56167.00                | 367.44              |
|         | 1151      | SUSI 7   | 61.59    | -150,66   | 61.000   | 25.825      | 15,720      | 55790.47                  | 55654.00                | -136.47             |
|         | 1202      | SUSI 8   | 61.52    | -150.57   | 32.000   | 25,838      | 15.760      | 55781.72                  | 55783.00                | 1.28                |
|         | 1215      | 50SI 9   | 61.48    | -150.42   | 32.000   | 25.896      | 15.762      | 55791.34                  | 55785.00                | -6.34               |
|         | 1225      | SUSI 10  | 61.40    | -150.38   | 26,000   | 25.882      | 15.810      | 55773.24                  | 56151.00                | 375.76              |
|         | 1245      | SUSX 11  | 61.28    | -150.47   | 61.000   | 25.776      | 15.915      | 55726.18                  | 55881.00                | 154.82              |
|         | 1257      | SUSI 12  | 61.26    | -150.20   | 5.000    | 25.906      | 15,881      | 55760.04                  | \$5813.00               | 52 <b>.9</b> 6      |
| 8/17/74 | 1039      | COOK 1   | 61.29    | -150.65   | 10,000   | 25,689      | 15.934      | 55705.86                  | 55837.00                | 131.14              |
|         | 1054      | COOK 2   | 61.33    | -150.85   | 115.000  | 25.603      | 15.942      | 55687.70                  | 55943.00                | 255.30              |
|         | 1104      | COOK 3   | 61.30    | -150,80   | 40.000   | 25,618      | 15,953      | 35687.72                  | 55863.00                | 175.28              |
|         | 1120      | COOX 4   | 61.29    | -151.00   | 80.000   | 25.503      | 16.000      | 55653.54                  | 55758.00                | 104.46              |

Appendix C (cont.)

| DATE    | TIME (ADT) | STATION | LAT ITUDE | LONGITUDE | ALTITUDE | DECLINATION | INCLINATION | CALCULATED<br>TOTAL FIELD | MEASURED<br>TOTAL FIELD | UNCORRECTED ANOMALY |
|---------|------------|---------|-----------|-----------|----------|-------------|-------------|---------------------------|-------------------------|---------------------|
|         | 1130       | COOK 5  | 61.25     | -150.97   | 40.000   | 25.502      | 16.020      | 55647.70                  | 55783.00                | 135.30              |
|         | 1332       | SKXT 1  | 61.40     | -151.68   | 248.000  | 25.190      | 16.038      | 55589.01                  | 53407.00                | -182.01             |
|         | 1349       | SKWT 2  | 61.47     | -151.77   | 1250.000 | 25.171      | 16.002      | 55589,42                  | 55416.00                | -173.42             |
|         | 1401       | SKWT 3  | 61.53     | -151.71   | 1252.000 | Z5.231      | 15.948      | 55615.74                  | 55488.00                | -127.74             |
|         | 1413       | SKWT 4  | 61.57     | -151.79   | 1180.000 | 25.211      | 15.927      | 55619.95                  | 55595.00                | -24,95              |
|         | 1447       | SKWT 5  | 61,62     | -151.88   | 1350.000 | 25.181      | 15.906      | 55620.38                  | 55506.00                | -114.38             |
|         | 1500       | SKWT 6  | 61.66     | -152,02   | 3025.000 | 25.119      | 15.903      | 55598. <del>9</del> 6     | 55461.00                | -137.96             |
|         | 1516       | SKWT 7  | 61.56     | -151.90   | 2050.000 | 25.144      | 15.953      | 55594.62                  | 55503.00                | -91.62              |
|         | 1531       | SKWT B  | 61.76     | -152.04   | 825,000  | 25.155      | 15.832      | 55643,64                  | 55430.00                | -213.64             |
|         | 1544       | SKWT 9  | 61.84     | -152.09   | 690.000  | 24.164      | 15.783      | 55661.42                  | 55474.00                | -187.42             |
|         | 1558       | SKWT 10 | 61.93     | -151.95   | 1800.000 | 25.262      | 15.702      | 55692.48                  | 55402.00                | -290,48             |
|         | 1618       | SKWT 11 | 61.95     | -152.03   | 570.000  | 25.248      | 15.692      | 55702.96                  | 55491.00                | -211.96             |
|         | 1628       | SKWT 12 | 61.97     | -151-84   | 425,000  | 25,363      | 15.647      | 55735.09                  | 55562.00                | -173.09             |
|         | 1640       | SKWT 13 | 61.93     | -151.67   | 340.000  | 25.433      | 15.652      | 55745.00                  | 55472.00                | -273.00             |
|         | 1700       | SKWT 14 | 61.88     | -151.51   | 260,000  | 25.500      | 15,659      | 55753.88                  | \$6309.00               | 555.12              |
|         | 1718       | SKWT 15 | 61.73     | -151.39   | 752.000  | 25.499      | 15.747      | 55723.61                  | 55829.00                | 105.39              |
|         | 1727       | SKWT 16 | 61.68     | -151.37   | 620.000  | 25,486      | 15,779      | 55712.92                  | 55769.00                | 56.08               |
|         | 1743       | SKWT 17 | 61.56     | -151.37   | 775.000  | 25.430      | 15.864      | 55677.04                  | 55781.00                | 103.96              |
| 8/18/74 | 0944       | REDO I  | 60.92     | -151.70   | 24.000   | 24.964      | 16.391      | 55441.23                  | 55148.00                | -293,23             |
| -,,     | 1005       | REDO 2  | 60.73     | -151.94   | 26.000   | 24.761      | 16.563      | 55350.52                  | 55480.00                | 129.48              |
|         | 1031       | REDO 3  | 60.53     | -152.28   | 20.000   | 24.491      | 16.773      | 55234.64                  | \$5543.00               | 308.36              |
|         | 1047       | REDO 4  | 60.40     | ~152.48   | 360.000  | 24.333      | 16.901      | 55161.60                  | 55854.00                | 692.40              |
|         | 1113       | REDO 5  | 60.28     | -152.45   | 7.000    | 24.297      | 16.981      | 55129.79                  | 55343.00                | 213.21              |
|         | 1127       | REDO 6  | 60.23     | -152.53   | 22.000   | 24.234      | 17.036      | 55099.82                  | 55301.00                | 201.18              |
|         | 1302       | REDO 7  | 60.11     | -152.58   | 23.000   | 24.159      | 17.131      | 55053.16                  | 0.0                     | 99999.00            |
|         | 1410       | REDO 8  | 60.02     | -152.60   | 22.000   | 24.111      | 17.198      | 55020.76                  | 55601.00                | 380.24              |
|         | 1421       | REDO 9  | 60.06     | -152.74   | 85.000   | 24.052      | 17.197      | 55010.90                  | 55287.00                | 176.10              |
|         | 1438       | REDO 10 | 60.14     | -152.68   | 14,000   | 24,117      | 17,128      | 55047.21                  | 55256,00                | 208.79              |
|         | 1451       | REDO 11 | 60.22     | -152-64   | 22.000   | 24.176      | 17.056      | 55083.10                  | 55735.00                | 651.90              |
|         | 1502       | REDO 12 | 60.31     | -152.64   | 145,000  | 24.207      | 16,997      | 55108.59                  | 55402,00                | 293.41              |

Appendix C (cont.)

| PATE    | TIME (ADT) | MOITATS | LATITUDE | LONGITUOS | ALTITUDE | DECLINATION | INCLINATION | CALCULATED<br>TOTAL FIELD | MEASURED<br>TOTAL FIELD | UNCORRECTED ANOMALY |
|---------|------------|---------|----------|-----------|----------|-------------|-------------|---------------------------|-------------------------|---------------------|
|         | 1518       | REDO 13 | 60.36    | -152.84   | 599.000  | 24.122      | 16.994      | 55092.68                  | 55615.00                | 522.32              |
|         | 1541       | REDO 14 | 60.41    | -152.82   | 1200,000 | 24.156      | 16.950      | 55109.60                  | 54555.00                | -554.60             |
|         | 1800       | REDO 15 | 60.49    | -152.93   | 1405.000 | 24.131      | 16.910      | 55118.34                  | 54606.00                | -512.34             |
|         | 1817       | REDO 16 | 60.56    | -152.89   | 1275.000 | 24.182      | 16.849      | 55149.26                  | \$4176.00               | -973.26             |
|         | 1830       | REDO 17 | 60.56    | -152.70   | 835.000  | 24.281      | 16,818      | 55179.22                  | 54831.00                | -348.22             |
|         | 1845       | REDO 18 | 60.62    | -152.56   | 340.000  | 24.382      | 16.753      | 55221.77                  | 55358.00                | 136.23              |
|         | 1855       | REDO 19 | 60.62    | -152.45   | 195.000  | 24.442      | 16.734      | 55239.03                  | \$5143.00               | -96.03              |
|         | 1906       | REDO 20 | 60.70    | ~152.29   | 95.000   | 24.558      | 16.650      | 55287.68                  | 55339.00                | 51.32               |
|         | 1919       | REDO 21 | 60.80    | -152.05   | 55.000   | 24.732      | 16.532      | 55356.06                  | 55413.00                | 56.94               |
|         | 1931       | REDO 22 | 60.91    | -151.95   | 60.000   | 24.831      | 16.436      | 55404.10                  | 57266.00                | 1861.90             |
|         | 1941       | REDO 23 | 61.00    | -151.96   | 75.000   | 24.864      | 16.376      | 55429,34                  | 54983.00                | -446.34             |
| 8/19/74 | 1015       | HCAR 1  | 61.08    | -151.13   | 100,000  | 25.338      | 16.175      | 55571.90                  | 55554.00                | -17.90              |
|         | 1030       | MCAR 2  | 61.04    | -151.27   | 33.000   | 25.250      | 16.225      | 55541.83                  | 55293.00                | -248.83             |
|         | 1040       | MCAR 3  | 61.01    | -151.44   | 30.000   | 25.146      | 16.274      | 5530 <b>9.05</b>          | 55502.00                | -7.05               |
|         | 1102       | MCAR 4  | 61.02    | -151.68   | 40.000   | 25.023      | 16.308      | 55477.53                  | 55792-00                | 314.47              |
|         | 1112       | MCAR 5  | 61.04    | -151.78   | 75.000   | 24.978      | 16.313      | 55468.42                  | 55070.00                | -398,42             |
|         | 1126       | MCAR 6  | 61.07    | -151.77   | 90.000   | 24.998      | 16.290      | 55478.81                  | 55021.00                | -457 .81            |
|         | 1134       | MCAR 7  | 61,10    | -151.79   | 115.000  | 25,001      | 16.272      | 55485.08                  | 55118.00                | -367.08             |
|         | 1142       | MCAR 8  | 61.14    | -151.80   | 160.000  | 25.008      | 16.248      | 55493.73                  | 55269.00                | -224.73             |
|         | 1148       | MCAR 9  | 61.16    | -151.84   | 180.000  | 24.998      | 16.239      | 55494.67                  | 55744.00                | 249.33              |
|         | 1156       | MCAR 10 | 61.17    | -151.91   | 225.000  | 24.969      | 16.240      | 55489.56                  | \$5298.00               | -191,56             |
|         | 1203       | MCAR 11 | 61.18    | -151.97   | 340.000  | 24.940      | 16.241      | 55483.55                  | \$5078.00               | -405.55             |
|         | 1208       | MCAR 12 | 61.19    | -152.01   | 405.000  | 24.923      | 16.241      | 55480.31                  | 55198.00                | -282,31             |
|         | 1216       | MCAR 13 | 61.20    | -152.07   | 530.000  | 24,892      | 16.248      | 55472.42                  | \$4980.00               | -492.42             |
|         | 1225       | MCAR 14 | 61.20    | -152,16   | 740.000  | 24,847      | 16,261      | 55459.32                  | 54741.00                | -716.32             |
|         | 1244       | MCAR 15 | 61.24    | -152.45   | 1145.000 | 24.704      | 16.282      | 55427.36                  | 54702.00                | -725,35             |
|         | 1334       | HCAR 16 | 61.27    | -152.49   | 1435.000 | 24.694      | 16.269      | \$5428.04                 | 54994.00                | -434.04             |
|         | 1345       | HCAR 17 | 61.32    | -152.58   | 2275.000 | 24,665      | 16.245      | 55425,37                  | 54670.00                | -755.37             |
|         | 1350       | NCAR 18 | 61.36    | -152.67   | 2730,000 | 24.635      | 16.227      | 55423.11                  | 54962,00                | -461,11             |
|         | 1406       | MCAR 19 | 61.44    | -152.75   | 2790.000 | 24.626      | 16,184      | 55435.93                  | 55213.00                | -222.93             |

### Appendix C (cont.)

| DATE    | TIME (ADT) | STATION | LATITUDE | LONGITUDE | SCHILLY  | DECLINATION | INCLINATION | CALCULATED<br>TOTAL FIELD | MEASURED<br>TOTAL FIELD | UNCORRECTED ANGMALY |
|---------|------------|---------|----------|-----------|----------|-------------|-------------|---------------------------|-------------------------|---------------------|
|         | 1421       | HCAR 20 | 61.40    | -152.73   | 2850,000 | 24.618      | 16.211      | 55425.26                  | 55118.00                | -307.26             |
|         | 3431       | MCAR ZL | 61.37    | -152.87   | 3750.000 | 24.526      | 16.258      | 55388.92                  | 55053.00                | -335.92             |
|         | 1444       | MCAR 22 | 61.34    | -152.99   | 1560.000 | 24.448      | 16.300      | 55380.31                  | 54935.00                | -445.31             |
|         | 1456       | MCAR 23 | 61.29    | -152.89   | 1245.000 | 24.483      | 16.321      | 55380.46                  | 55180.00                | ~200.46             |
|         | 1503       | MCAR 24 | 61.23    | -152.79   | 1150.000 | 24.513      | 16.346      | 55377.13                  | 54795.00                | -582.13             |
|         | 1516       | MCAR 25 | 61.20    | -152.59   | 1142.000 | 24.610      | 16.335      | 55395.20                  | \$4909.00               | -486.20             |
|         | 1527       | HCAR 26 | 61.19    | -152.53   | 1345.000 | 24,638      | 16.330      | 55401.17                  | 54780.00                | <b>-621.17</b>      |
|         | 1607       | MCAR 27 | 61.21    | -152,34   | 1105-000 | 24,754      | 16.282      | 55435.16                  | 55120.00                | -315.16             |
|         | 1700       | MCAR 28 | 61.23    | -152.00   | 820,000  | 24.945      | 16.213      | 55489.77                  | 54898.00                | -591.77             |
|         | 1715       | HCAR 29 | 61.24    | -151.84   | 2725.000 | 25.031      | 16.175      | 55501.17                  | 55426.00                | -75.17              |
|         | 1740       | MCAR 30 | 61.23    | -151.47   | 1820,000 | 25.229      | 16,118      | 55558,16                  | 55955.00                | 396.84              |
|         | 1800       | HCAR 31 | 61.21    | -151.32   | 750.000  | 25.298      | 16.109      | 55580.60                  | 55591.00                | 10_40               |
| 8/20/74 | 0950       | DICK 1  | 61.49    | -151.37   | 1355.000 | 25.396      | 15.917      | 55651.24                  | 55950.00                | 298.76              |