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Jessica Larsen4, and Nathan Graham4 

ABSTRACT 

This publication reports analytical conditions and secondary standard results for 
electron probe microanalysis (EPMA) of glass in support of tephra studies in Alaska between 
2018 and 2023. Long-term accuracy and precision are evaluated for our standardized 
method and compared between analytical sessions and instruments at the University of 
Alaska Fairbanks (UAF) and the U.S. Geological Survey (USGS) Menlo Park, California. Future 
versions will provide updates with secondary standard results from future analytical 
sessions and any changes to the analytical routine and conditions. 

INTRODUCTION 

This report and accompanying data files detail methods, list individual secondary 
standard analyses, and summarize the accuracy and precision of volcanic glass EPMA data 
for analyzing Alaska tephra matrix glass samples. This report covers analyses made between 
2018 and 2023, during which an effort was made to standardize the analytical setup, 
although slight variations in calibration and processing did occur. The goal of this standard 
routine, and in comparing multi-year secondary standard results, is to ensure that data for 
unknown sample analyses is precise and comparable. This standard will enable us to 
correlate tephra units better and detect changes in composition at a volcano over time. 
Digital data accompanying this report can be downloaded from doi.org/10.14509/31045. 

This approach follows the global tephra community best practice guidelines endorsed 
by the IAVCEI Commission on Tephrochronology (formally INTAV; Kuehn and others, 2011; 
Wallace and others, 2022). By aggregating multi-year secondary standard data, we provide 
a transparent and complete estimate of result accuracy and precision for projects that collect 
data over multiple years and for comparison between different projects using the same 
method.  

We prepared a traveling mount of secondary standards that can be used on multiple 
instruments in different laboratories (fig. 1) because microbeam standards or reference 
materials often suffer heterogeneities at small scales and between individual aliquots (chips 
of materials or single crystals; Jarosewich and others, 1980). Thus, we can ensure our 
standard analyses 
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are directly comparable and independently verify compositions of internal lab standards. This 
mount includes five natural volcanic glasses: two low-silica glasses (VG-2, A-99) and three high-
silica glasses (VG-568, RLS-132, KN-18). Three of these standards (VG-2, A-99, VG-568) were 
provided by the Smithsonian Museum of Natural History and are readily available to the 
analytical community4.  

Figure 1. Backscatter electron image and chip identification of secondary standards on the 
traveling mount used in this study. 

METHODS  

We mounted unknown tephra samples with epoxy in 25-mm-diameter rounds 
(hereafter called “round mounts”) or on commercially produced polished petrographic 
sections. We progressively polished round mounts with diamond grit to 1 µm and a final 
polish with 0.05 µm colloidal silica or 0.1 µm alumina suspension. Petrographic section 
preparation followed vendor protocols but typically included a final polish of 0.1 µm or finer. 
Our traveling standard mount was in a 25 mm-diameter round mount. Samples and 
calibration standards were all carbon-coated to ~22 nm thickness (indigo-blue interference 
on brass monitors). 

 
4 naturalhistory.si.edu/research/mineral-sciences/collections-overview/reference-materials/smithsonian-
microbeam-standards  

https://naturalhistory.si.edu/research/mineral-sciences/collections-overview/reference-materials/smithsonian-microbeam-standards
https://naturalhistory.si.edu/research/mineral-sciences/collections-overview/reference-materials/smithsonian-microbeam-standards
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Analyses were performed at the UAF Advanced Instrumentation Laboratory and the 
USGS Electron Microprobe in Menlo Park, California.  

UAF analyses reported here used a JEOL JXA 8530F electron microprobe. Tephra matrix 
analyses were performed at 15 kV, 10 nA, and a 5 µm defocused beam. Identical beam conditions 
were used on the Menlo Park JEOL JXA 8530F+ electron microprobe. Calibration standards, 
spectrometer assignments, peak and background count times, and time-dependent intensity 
corrections are summarized for each analyte in Conditions and Calibrants data tables, and 
attempts were made to keep these values constant over all sessions. However, some variations 
occurred and are noted. All elements were measured on Kα lines with linear background 
corrections. Data were collected and processed with Probe for EPMA software (Probe Software 
2023). In UAF analyses, Na, K, and Al were measured first and corrected with a time-dependent 
intensity correction (TDI; Nielsen and Sigurdsson, 1981). Menlo Park analyses did not implement a 
TDI correction for the analyses reported here. All cations were obtained from raw intensities using 
the Phi-Rho-Z intensity corrections (Armstrong, 1988), while oxygen was calculated by cation 
stoichiometry; however, oxygen equivalent for halogens (Cl) was not used. 

ACCURACY AND PRECISION 

Multiple secondary standard basalts and rhyolite glasses were run throughout all analytical 
sessions, and individual secondary standard point analyses are provided in the 
SecondaryStandardResults data file. We consider precision after normalization to 100 percent 
anhydrous (but including Cl), with Fe concentrations calculated as the total Fe (denoted by FeOT) and 
compared to normalized “accepted” values (SecondaryStandardValues data table) to determine 
accuracy. Normalization corrects many anomalously low or high totals (above or below a 100 percent 
total), which, through our examination, appear to affect all elements proportionally. Normalization is 
often necessary for analyzing unknown tephra that may be affected by secondary hydration resulting 
in low totals, or where analysis of thin glass on bubble walls results in low totals. Although this is less 
of an issue for the secondary standards presented here, we prefer to treat our secondary standards 
similarly to our unknowns to provide the most accurate representation of unknown analysis accuracy 
and precision.  

Our traveling secondary standard mount was incorporated into analyses as an unknown block 
one or more times per analytical session. It included Smithsonian standard glasses VG-2 (NMNH 
111240-52), A-99 (NMNH 113498-1), VG-568 (NMNH 72854), USGS standard RLS-132, and KN-18. 
Four of the measured standards were part of the UAF EPMA internal standard block and had unique 
names BG-1 (“VG-2_UAF”), BG-2 (“A-99_UAF”), BG-3 (NMNH 113716-1), Rhyolite (“VG-568_UAF”), 
and CCNM (also known as “Lipari” UA5831). An internal aliquot of VG-2 was also analyzed on the USGS 
Menlo Park microprobe (“VG-2_cal”) along with an internal rhyolite (RLS-75). Accepted values for 
Smithsonian glasses are from Jarosewich and others (1980), except for Mg on VG-2 from Helz and 
others (2014), and Cl concentrations from various sources compiled on the Smithsonian NMNH 
website5 RLS-132 values are reported in Macdonald and others (1992). All our accepted values and 
their referenced sources are provided in the SecondaryStandardValues data table.  

We report summary reproducibility as 2σ relative percentages for all secondary standards in 
table 1 for the aggregated analyses of secondary standards in all analytical sessions and in both labs. 
Relative 2σ reproducibility for SiO2 is 0.5 to 1.5 percent for all standards (n = 20–184). Other oxide 
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uncertainties are strongly correlated with concentration, where expected uncertainties are 
exponentially higher at lower concentrations (fig. 2): <5 percent uncertainties are typical for major 
oxides >5 wt.% concentration and ~5–10 percent uncertainties for 1–5 wt.% concentrations. Minor 
oxides (0.1–1 wt.%) have 10–20 percent uncertainties, and trace element (<0.1 wt.%) uncertainties 
were generally poor (approaching 100 percent as concentration nears detection limit). Na2O 
reproducibility was notably worse, specifically for UAF EPMA internal standards BG-3, VG-568_UAF, 
and CCNM. We suspect this is due to cumulative Na migration and beam damage to these heavily used 
internal standard aliquots. In a SiO2–Na2O diagram, Na depletion correlates with increased Si, a 
common trend observed with Na migration (fig. 3). We do not see the same trend in our external 
working standard mount of VG-568, which is the same material analyzed in the same session, 
suggesting this trend is due to the material differences and not those in analytical conditions or 
processing. In fact, the stability of Na on our VG-568 mount suggests that the combined defocused 5 
µm beam, 10 nA current, and TDI correction compensate well for any Na loss. 

Table 1. The precision of repeat secondary standard analysis reported as 2σ relative %. 
Concentrations approximating zero return undefined “infinite” relative precisions and are 
displayed as “Inf.” 
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VG-2 1.3 9.8 2.5 4.8 22.2 3.2 3.4 7.2 28.4 25.1 105.1 204 

VG-2_UAF 1.8 4.1 2.2 3.3 21.3 3.9 1.9 7.4 19.6 36.9 52.9 34 
VG-
2_CalVO 0.9 10.3 1.5 1.9 20.7 2.0 3.6 4.0 26.6 18.6 35.4 155 

A-99 1.3 5.1 3.3 5.1 27.1 4.4 2.7 8.2 13.3 13.7 170.9 108 

A-99_UAF 1.5 3.2 2.8 4.5 23.2 3.8 3.1 10.3 12.9 17.0 61.0 82 

BG-3 2.1 6.0 3.6 6.0 30.4 10.8 6.8 22.1 59.3 44.7 254.2 104 

VG-568 0.6 75.9 1.9 13.5 198.4 90.8 12.1 8.5 6.4 1,208.1 40.8 92 
VG-
568_UAF 1.0 48.7 2.5 9.3 149.9 49.2 9.9 23.2 5.6 579.6 21.9 127 

RLS-132 0.6 32.8 2.5 8.0 29.1 43.0 36.6 5.0 6.7 Inf 21.4 89 

RLS-75 0.7 91.7 1.1 8.1 110.9 Inf 19.5 4.3 5.9 2,285.5 10.9 24 

KN-18 0.9 38.8 3.5 6.8 79.1 Inf 229.3 6.2 6.6 638.4 15.1 99 

CCNM 1.1 58.9 2.1 6.3 52.0 39.6 6.2 22.6 5.6 460.2 8.2 21 

Accuracy is assessed as the measured concentration divided by the accepted 
literature concentration for each standard (multiplied by 100 to express as a percentage). 
Results are shown in table 2. With few exceptions, the accuracy of average glass 
measurements is within 2σ reproducibility of the accepted literature value (fig. 4).  
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Figure 2. Log-linear relationship between concentration and precision for different analytes in 
repeat analyses of secondary standards. 

Figure 3. Results for UAF standard block VG-568 glass to removable standard block glass VG-
568. Literature-accepted values are shown as a black square. Na loss is evident only on glass 
chips that are part of the internal standard block. 
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Table 2. Accuracy of repeat secondary standard analysis reported as 100 * measured/accepted 
concentrations. 

Standard 
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VG-2 99.7 100.6 100.5 100.8 96.8 100.9 99.3 103.7 99.2 103.3  204 

VG-2_UAF 100.2 99.7 102.2 97.8 99.8 99.3 99.1 100.2 102.2 97.4  34 

VG-2_CalVO 99.9 100.5 100.4 101.0 94.9 100.7 98.2 103.8 93.7 102.0  155 

A-99 99.9 97.8 101.0 99.2 124.3 100.8 98.6 101.5 100.6 114.7  108 

A-99_UAF 100.2 98.5 102.1 97.9 125.7 97.5 97.9 101.4 106.1 116.0  82 

BG-3 99.7 101.4 101.2 98.3 93.8 97.0 99.8 109.3  106.9  104 

VG-568 100.1 64.4 101.2 88.7   85.6 98.4 99.2   92 

VG-568_UAF 99.9 65.5 102.2 89.1   90.0 96.9 102.0   127 

RLS-132 100.6 92.9 100.3 100.3 95.4 95.9 87.7 97.4 98.3 0.0 102.1 89 

RLS-75 100.9 103.2 102.3 99.1 76.8  91.5 103.0 98.9  98.0 24 

KN-18 100.1 93.4 100.8 99.9 90.6  62.8 92.0 99.9   99 

CCNM 99.4  100.7 99.9   101.7 99.0 103.2  104.4 21 

Exceptions to this (Cl in VG-2, Mn in A-99_UAF, Ca in VG-568, Fe in VG-568_UAF, and 
Ca and Na in KN-18) are in minor or trace elements where uncertainties are generally high 
in measured and literature determinations. SiO2, the largest oxide constituent of any volcanic 
glass, has relative accuracy ± 0.5 percent for all basalt to rhyolite compositions. There is no 
systematic under or over-estimation for low or high Si concentrations.  

Concentrations of Al2O3, however, are consistently 1–2 percent higher relative to 
literature values (except RLS-132). While within the 2σ reproducibility, this systematic offset 
suggests some slight error in our calibration, background correction, or offset in the literature 
values. Concentrations of FeOT are also consistently 1–2 percent lower than literature values 
in low SiO2 glasses, despite concentrations being higher with subsequently lower uncertainty. 
Like Al2O3, while these values are within 2σ reproducibility, the systematic offset is notable 
and could result in bias in comparison to other datasets using different calibration strategies. 
There was no observed difference in FeOT calibrations using ilmenite (May and October 2018) 
vs. fayalite (all other sessions). 

Variations between analytical sessions are shown in a series of “Harker” style 
discrimination diagrams, where each major element oxide is plotted against SiO2 in a separate 
panel for each standard. Points are colored by session date. These plots are provided in the 
appendix (app. A). Chlorine, a minor to trace element in volcanic glass, has concentrations 
showing apparent session-to-session offsets, with lower concentration results for 2020–2022 
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sessions and higher in 2018 and 2019 (fig. 5). Despite this apparent difference in secondary 
standards, two samples of matrix glass from Redoubt Volcano (AT-1389, AT-1405) were 
analyzed for Cl in both May 2019 and January 2022 (results of these repeat glass analyses are 
provided in the RepeatUnkns table), resulting in median Cl concentrations that are identical at 
0.18 wt.% (fig. 5). This suggests that corrections between methods on these dates might not be 
warranted. 

 
Figure 4. Accuracy (100*measured/accepted) plots for all major oxides. Standard concentrations (in 
wt.%) are annotated above box plots. Box plot horizontal lines show the lower quartile, median, and 
upper quartile, while lines extend to the minimum and maximum values within 1.5x the interquartile 
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range, excluding outliers. P2O5 plot clips range of RLS-132 due to high uncertainty at very low 
concentrations. 

Figure 5. Cl concentration results (wt.%) for repeat analyses of two Redoubt tephra samples on 
sessions with apparent differences in Cl values for secondary standards (RLS-132 shown). The 
similarity of Cl in these two samples suggests that the secondary standards may have some Cl 
heterogeneity. See figure 4 for a boxplot explanation. 

DISCUSSION 

Results of secondary standard analyses demonstrate good reproducibility and 
accuracy for glasses following our reported EPMA method. Importantly, by aggregating 
uncertainty results over multiple analytical sessions and years, we demonstrate long-term 
comparability of results important for tephra correlation and petrologic studies (Lowe and 
others, 2017).  

These results provide the foundation to explore and test future improvements to our 
analytical routine. The strong correlation between concentration and reproducibility suggests a 
demonstrated effective limit of quantification for our analyses. Trace concentrations below 0.01 
wt.% all have >100 percent uncertainty. This threshold is reached between 0.01 and 0.1 wt.% for 
all elements, suggesting extreme caution should be applied when interpreting values for trace 
element analyses. Longer peak count times should allow for better analysis at low concentrations; 
however, within our typical peak times of 10 to 30 seconds, we do not see particularly strong 
improvements in precision (fig. 6). Both the UAF and USGS Menlo Park laboratories are 
considering adding simultaneous energy-dispersive x-ray spectroscopy (EDS) capabilities, which 
may allow longer analysis of minor elements by analyzing high-concentration components (e.g., 
SiO2, Al2O3) on the EDS detector.  

Failure to enable the TDI correction during the two sessions on the USGS Menlo Park 
EPMA did not appear to result in significant Na loss in our secondary standards. However, 
some caution is warranted in interpreting unknown glasses from these sessions, especially 
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those that may be hydrated and thus more sensitive to Na migration. Future analyses on all 
instruments will include this correction.  

Figure 6. Consideration of individual analyte peak counting time with uncertainty of secondary 
standards (compare to figure 2). 

Future secondary standard results will be reported in subsequent versions. By 
maintaining a long-term record of secondary standard results, we hope to identify any 
systematic changes through time and correct these to provide comparable results between 
studies. Future improvements or identification of the need to adjust unknown data reported 
here can be discussed and justified in future iterations. All matrix glass analyses from Alaska 
tephra will be stored in the Geological Database of Information on Volcanoes in Alaska 
(GeoDIVA; Cameron and others, 2019; Cameron and others, 2022). If a need for systematic 
changes in previously reported analyses is found and justified in this data series, these 
adjustments can be made to the analyses in the database, like adjustments made to trace 
element bulk chemical data (Nye and others, 2018). 
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APPENDIX A: HARKER STYLE DISCRIMINATION DIAGRAMS 
Al2O3 
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TiO2 
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