

Division of Geological & Geophysical Surveys

PUBLIC-DATA FILE 93-7

**LAND SELECTION UNIT 7 (TYONEK & KENAI QUADRANGLES):
REFERENCES, DGGS SAMPLE LOCATIONS, GEOCHEMICAL AND MAJOR
OXIDE DATA**

by

D.N. Solie, M.B. Werdon, C.J. Nye, and R.A. Combellick

March 1993

THIS REPORT HAS NOT BEEN REVIEWED FOR
TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR
CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

Released by

STATE OF ALASKA
DEPARTMENT OF NATURAL RESOURCES
Division of Geological & Geophysical Surveys
794 University Avenue, Suite 200
Fairbanks, Alaska 99709-3645

LAND SELECTION UNIT 7 (TYONEK AND KENAI QUADRANGLES): REFERENCES, DGGS SAMPLE LOCATIONS, GEOCHEMICAL AND MAJOR OXIDE DATA

The Neacola Mountains Evaluation Unit 7 encompasses 298,000 acres in the Tyonek and Kenai quadrangles. The area is underlain by Mesozoic and Tertiary plutonic rocks, with a small area of Tertiary Tyonek Formation sedimentary rocks in the northeastern part of the Unit. The plutonic rocks are generally intermediate in composition, but include more felsic and mafic variants as well. The northeast-trending Lake Clark fault transects the Unit.

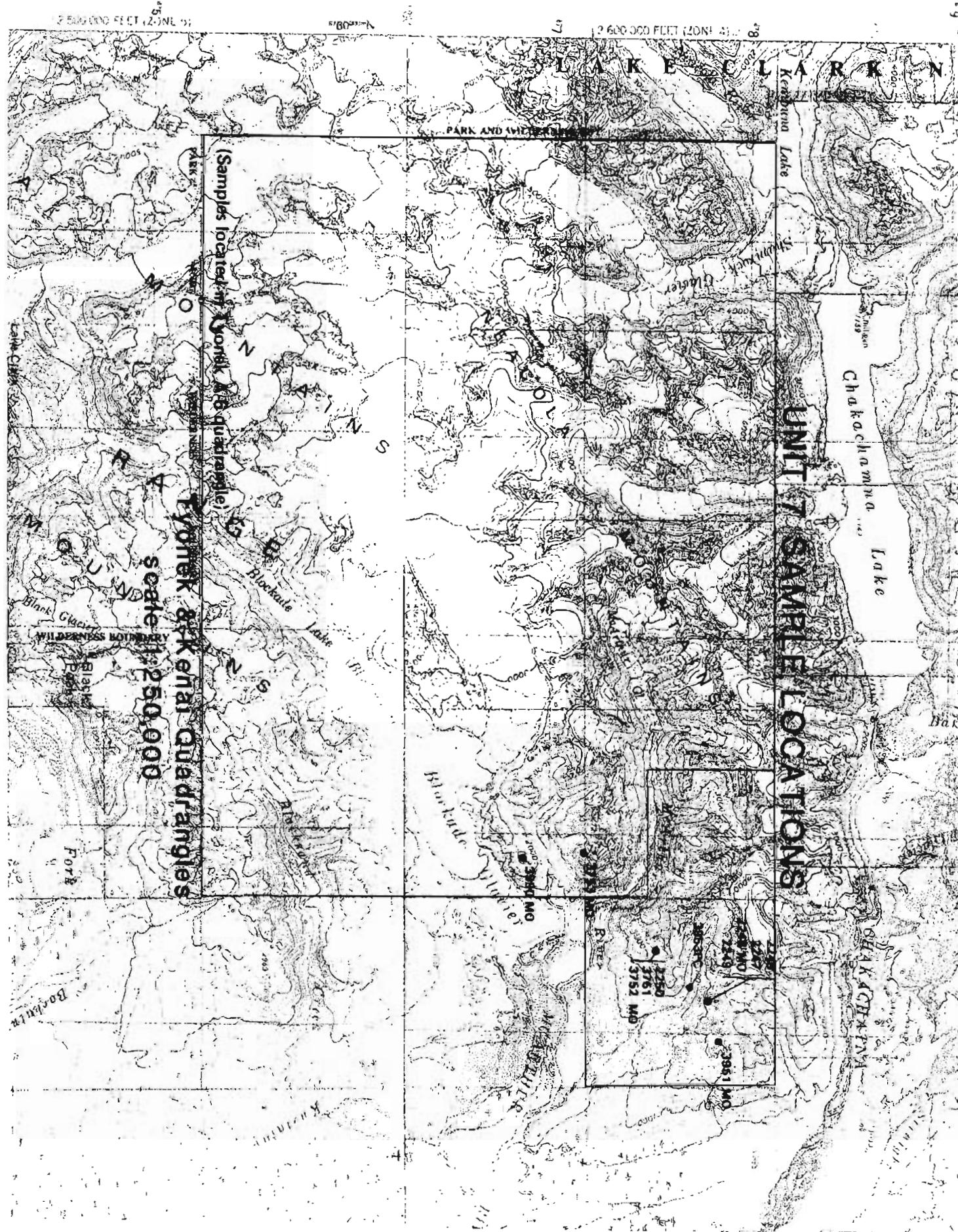
There is no known history of mining activity in Unit 7, and available geologic mapping is of a reconnaissance nature. DGGS collected rock samples anomalous in Au, Sn, Cu, Bi and Ba in zones of potassic alteration in igneous rocks. In addition to mineral resource potential, this area holds a low to moderate potential for a building stone resource, and a low to moderate potential for coal deposits in the Tertiary sedimentary rocks.

In this Public-data File, we present results of limited DGGS field work done in June 1992 in Unit 7. The work was done in support of DGGS mineral resource evaluation of lands available for selection as State land.

References used in the evaluation of Unit 7 are listed on a following page. Samples collected by DGGS are briefly described in the first table. In the geochemical tables, the asterisks in the left-hand column indicate the analytical procedure that we consider to be more reliable for those elements that were analyzed by more than one method. Major oxide compositions are plotted in the second figure according to the method of Streckeisen and LeMaitre (1979). CIPW norms were calculated using the UAF/PETCAL program, with oxide values normalized on an anhydrous basis.

The discriminant scores (Au discrim.) shown at the bottom of the major oxide table are a reflection of how similar the Unit 7 rocks are to other systems which formed gold deposits around the world. The score is based on the discriminant functions developed by Newberry and Burns (1989) and discussed in detail by Burns and others (1991). The discriminant functions statistically determine the extent to which the composition of an unaltered Unit 7 plutonic rock resembles major-oxide compositions of unaltered plutonic rocks associated with gold deposits worldwide. The discriminant score is a number between 0 and 100; a score of 100 indicates that the composition of the sample is indistinguishable from those of gold-associated plutons; a score of 0 indicates the opposite. The score is not directly proportional to the amount of gold present and does not indicate that there is gold at the sample site, but it is a good estimate of whether the sample belongs to a plutonic system that had the capability of depositing some gold. Some important limitations which must be considered in the interpretation of the scores are:

- 1) Only analyses from relatively unaltered rocks can be used.
- 2) Rocks from porphyry Cu-Mo deposits (because of alteration) and aplites will both typically have a low discriminant score, even though they may be from systems that are related to gold.

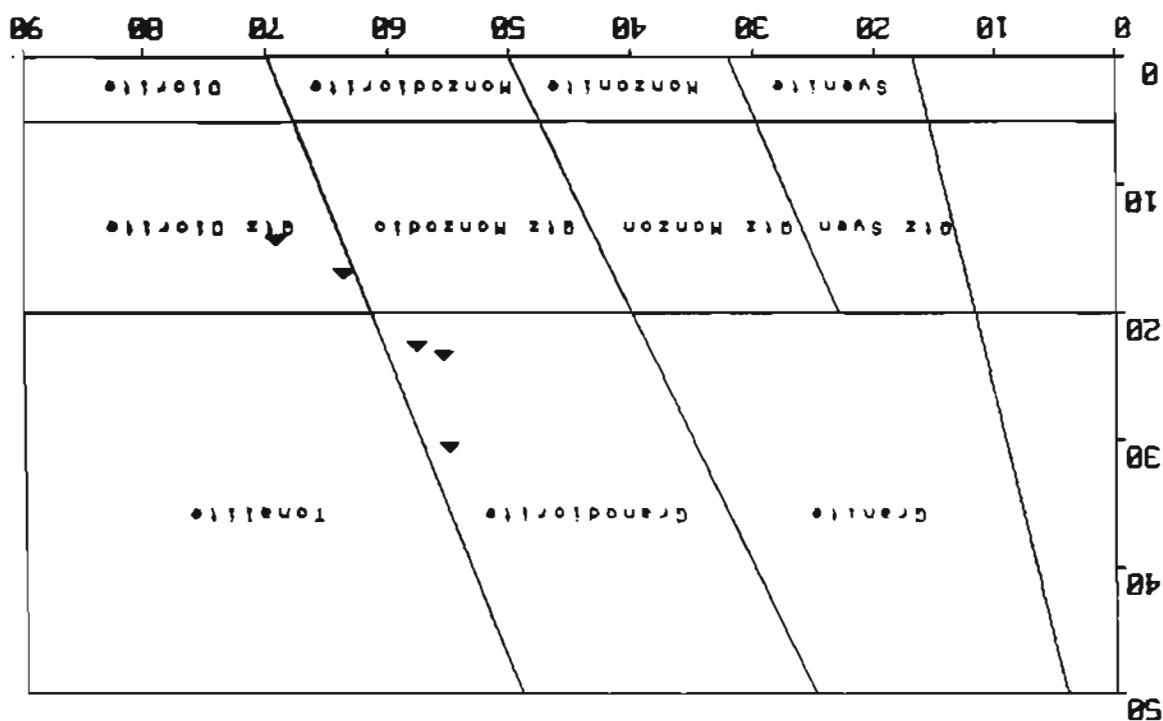

- 3) Discriminant scores are not given for alkalic (nepheline-normative) rocks, but these rocks may be related to gold.
- 4) A small percentage of plutonic rocks may appear to be related to gold systems when they are not.

Burns, L.E., Newberry, R.J., and Solie, D.N., 1991, Quartz normative plutonic rocks of interior Alaska and their favorability for association with gold: Ak. Division of Geological and Geophysical Surveys Report of Investigations 91-3, 71 p., 2 sheets.

Newberry, R.J. and Burns, L.E., 1989, The probabilistic estimation of gold resources in the Circle - Fairbanks - Kantishna area: Ak. Div. of Geological and Geophysical Surveys Public-Data File 89-9, 32 p., 1 sheet.

Streckeisen, A. and LeMaitre, R.W., 1979, A chemical approximation to the modal QAPF classification of the igneous rocks; N. Jb. Miner. Abh., v.136, p.169-206.

LAND SELECTION UNIT 7 SAMPLES


QUAD	STATION	GEOCHEM	PAN CON	M. OXIDE	ROCK DESCRIPTION	LATITUDE	LONGITUDE
Ty A-6	92CN03			3951	Med-gr. hb-bt qtz monzonite	61.08	-152.238
Ty A-6	92CN04			3953	Bouldery, vegetated mid-stream bar	61.129	-152.11
Ty A-6	92DNS56	2249			Bt granitic w/ tourmaline, white mica, spec. hem.	61.137	-152.097
Ty A-6	92DNS56	2246			Granitic w/ alteration zones; chl, musc, py	61.136	-152.097
Ty A-6	92DNS56			2248	Bt granodiorite (w/ gt?)	61.137	-152.097
Ty A-6	92DNS56	2247			Med-gr. bt granodiorite, chl, red specks	61.136	-152.097
Ty A-6	92DNS57			3752	Med-gr. bt granodiorite/granite	61.113	-152.145
Ty A-6	92DNS57	3751			Alteration vein in bt granitic; musc, py, kspar	61.113	-152.145
Ty A-6	92DNS57	2250			Malachite in 10cm wide zone in bt granite	61.113	-152.145
Ty A-6	92DNS58			3753	Fine-gr. bt granodiorite/granite	61.08	-152.238
Ty A-6	92WM207			3990	Foliated bt sph qtz diorite/schist	61.08	-152.238

	METHOD	UNIT	L.LIMIT	U.LIMIT	2248	2247	2249	2250	3751	3953(PP)
Ag*	ICP	PPM	0.5	50	-0.5	-0.5	-0.5	0.7	-0.5	-0.5
Ag	INAA	PPM	5	300	-5	-5	-5	-5	-5	-5
Al	ICP	PCT	0.01	10	2.04	1.16	1.71	1.77	2.42	1.54
As	ICP	PPM	5	2000	40	26	8	18	13	-5
As*	INAA	PPM	1	10000	4	4	3	1	2	3
Au	INAA	PPB	5	10000	12	-5	-5	52	40	11
Ba	ICP	PPM	5	2000	338	598	1323	492	339	140
Ba*	INAA	PPM	100	20000	980	1100	2200	930	710	110
Bi	AA	PPM	1	2000	15	-1	-1	-1	-1	-1
Bi*	ICP	PPM	5	2000	15	12	-5	12	-5	-5
Br	INAA	PPM	1	30000	-1	-1	-1	-1	-1	-1
Ca	ICP	PCT	0.01	10	0.51	1.06	0.69	2.29	0.77	1.73
Cd*	ICP	PPM	2	2000	-2	-2	-2	-2	-2	-2
Cd	INAA	PPM	10	2000	-10	-10	-10	-10	-10	-10
Co	INAA	PPM	10	30000	28	46	48	41	48	330
Co*	ICP	PPM	1	20000	2	3	1	0	8	24
Co	INAA	PPM	10	20000	-10	-10	-10	-10	-10	41
Cr*	ICP	PPM	2	20000	10	9	17	21	19	124
Cr**	INAA	PPM	50	30000	-50	-50	-50	-50	-50	100
Cs	INAA	PPM	1	10000	2	5	3	1	4	-1
Cu	ICP	PPM	1	20000	38	14	6	2118	96	44
Eu	INAA	PPM	2	30000	-2	-2	-2	-2	3	4
Fe	ICP	PCT	0.01	10	0.69	1.05	0.66	1.55	1.86	10
Fe*	INAA	PCT	0.5	10	1.1	1.7	0.9	2.4	2.8	10
Ga	ICP	PPM	10	2000	24	23	16	23	24	47
Hf	INAA	PPM	2	30000	2	3	-2	3	4	38
Ir	INAA	PPB	100	1000	-100	-100	-100	-100	-100	-100
K	ICP	PCT	0.01	10	1.22	1.01	1.35	0.91	1.23	0.31
La	ICP	PPM	5	2000	-5	-5	-5	-5	-5	98
La*	INAA	PPM	5	30000	12	18	20	16	21	150
Li	ICP	PPM	2	2000	14	35	24	17	13	4
Lu	INAA	PPM	0.5	2000	-0.5	-0.5	-0.5	-0.5	-0.5	1.5
Mg	ICP	PCT	0.01	10	0.07	0.12	0.09	0.32	0.33	0.73
Mn	ICP	PPM	5	20000	167	432	252	394	318	2189
Mo*	ICP	PPM	1	20000	5	1	1	2	2	4
Mo	INAA	PPM	2	30000	-2	-2	-2	-2	-2	-2
Na*	ICP	PCT	0.01	10	3.34	3.26	2.69	3.16	2.99	1.08
Na*	INAA	PCT	0.05	10	3.4	3.8	3	3.6	3.4	0.94
Nb	ICP	PPM	5	2000	9	9	6	10	9	38
Ni*	ICP	PPM	1	20000	4	3	3	7	8	27
Ni	INAA	PPM	20	30000	-20	-20	-20	-20	-20	-20
Pb*	AA	PPM	2	10000	13	4	3	3	9	7
Pb	ICP	PPM	2	10000	25	15	20	9	11	8
Rb	INAA	PPM	10	10000	68	82	78	46	74	-10
Sb	ICP	PPM	5	2000	10	10	-5	-5	-5	-5
Sb*	INAA	PPM	0.2	9999	1.1	1.3	0.5	-0.2	1.5	0.8
Sc	INAA	PPM	0.5	2000	2.5	4.1	2.7	6.9	8.1	13
Se	INAA	PPM	10	30000	-10	-10	-10	-10	-10	-10
Sm	INAA	PPM	0.2	2000	2.4	3.2	3.2	4.1	4.0	28.9
Sn*	ICP	PPM	20	2000	-20	-20	-20	-20	-20	40
Sn	INAA	PPM	200	30000	-200	-200	-200	-200	-200	-200
Sn**	XRF	PPM	1	10000	13	-5	8	-9	13	21
Sr	ICP	PPM	1	2000	98	221	248	335	184	187
Ta	ICP	PPM	5	2000	-100	-100	-100	-100	-100	-100
Ta*	INAA	PPM	1	2000	-1	-1	-1	1	1	5
Tb	INAA	PPM	1	30000	-1	-1	-1	-1	-1	2
Te	AA	PPM	0.2	100	-0.2	-0.2	-0.2	-0.2	-0.2	-0
Te	ICP	PPM	25	2000	-25	-25	-25	-25	-25	-25
Te	INAA	PPM	20	2000	-20	-20	-20	-20	-20	-20
Th	INAA	PPM	0.5	3000	3.9	5.3	6.3	4.2	5.1	25
Tl	ICP	PCT	0.01	10	0.09	0.12	0.08	0.19	0.23	0.63
U	INAA	PPM	0.5	2000	1.6	1.7	0.7	2.8	1.6	5.7
V	ICP	PPM	2	2000	26	29	18	80	72	872
W	ICP	PPM	20	2000	-20	-20	-20	-20	-20	-20
W*	INAA	PPM	2	30000	4	-2	-2	-2	8	8
Y	ICP	PPM	5	2000	-5	-5	-5	-5	-5	37
Yb	INAA	PPM	5	2000	-5	-5	-5	-5	-5	1
Zn*	ICP	PPM	2	20000	39	56	34	52	66	229
Zn	INAA	PPM	200	30000	-200	-200	-200	-200	-200	390
Zr	ICP	PPM	5	2000	-19	-5	-5	-5	-5	-5
Zr*	INAA	PPM	500	10000	-500	-500	-500	-500	-500	1400

LAND SELECTION UNIT 7

SAMPLE	3990	2248	3752	3753	3951
SiO ₂	60.1	71.1	62.8	67.8	68.8
Al ₂ O ₃	17.0	14.9	17.4	16.8	16.9
FE ₂ O ₃ TOT	6.31	1.72	3.85	2.8	0.74
FE ₂ O ₃	2.54	0.83	1.52	1.25	0.30
FeO	3.4	0.8	2.1	1.4	0.4
MgO	3.18	0.74	1.95	1.07	0.44
MnO	0.13	0.07	0.1	0.07	0.04
CaO	5.99	2.95	4.9	3.58	3.24
Na ₂ O	4.37	4.79	4.88	5.12	5.31
2O	1.84	1.87	1.98	2.01	2.1
TiO ₂	0.776	0.258	0.494	0.353	0.117
P ₂ O ₅	0.24	0.1	0.19	0.12	0.08
SUM	99.7	98.4	97.9	99.3	97.5
BA	511	697	750	678	700
NB	28	14	27	28	21
Y	17	73	<1	<1	11
SR	689	726	968	849	967
R8	62	58	54	60	63
ZR	159	73	73	124	52
CR	<1	<1	<1	<1	<1
CIPW NORMS					
QUARTZ	11.55	29.26	14.98	21.20	22.70
CORUNDUM	0.00	0.00	0.00	0.00	0.20
ORTHOCLASE	9.75	11.23	11.95	11.96	12.72
ALBITE	37.22	41.18	40.28	43.60	48.07
ANORTHITE	22.07	13.85	21.16	16.48	15.95
DIOPSIDE	5.04	0.28	1.94	0.41	0.00
HYPERTHENE	8.62	2.23	6.05	3.68	1.50
MAGNETITE	3.71	1.22	2.25	1.82	0.45
ILMENITE	1.49	0.50	0.95	0.67	0.23
APATITE	0.58	0.24	0.45	0.28	0.19
SUM	100.00	100.00	100.00	100.00	100.00
AU DISCR.	55	0	10	0	†

(Analyses by XRAL)

REFERENCES FOR LAND SELECTION UNIT 7

Cobb,EH (1979): Summary of references to mineral occurrences (other than mineral fuels and construction materials) in the Kenai and Tyonek quadrangles, Alaska. U.S. Geological Survey Open-file Report 80-86, 36 pages.

Detterman,RL; Hudson,Travis; Plafker,George; Tysdal,RG; Hoare,JM (1976): Reconnaissance geologic map along Bruin Bay and Lake Clark faults in Kenai and Tyonek quadrangles, Alaska. U.S. Geological Survey Open-file Report 76-477, 4 pages. (1 sheet, 1:250,000 scale).

Detterman,RL; Reed,BL; Lanphere,MA (1965): Jurassic plutonism in the Cook Inlet region, Alaska. In: Geological Survey Research 1965. U.S. Geological Survey Professional Paper 525-D, D16-D21.

Lambeth,RH (1978): Mineral appraisal of certain Alaska national interest lands, proposed Lake Clark National Park: a summary report. U.S. Bureau of Mines Open-file Report 114-78, 18 pages. (5 sheets, 1:1,000,000 scale).

LKB Resources,Inc (1978): NURE aerial gamma-ray and magnetic reconnaissance survey, Cook Inlet, Alaska area, Tyonek, Kenai, Seldovia, Anchorage, Seward, Blying Sound quadrangles. Vol. I and II. Department of Energy GJBX-108-(78), Grand Junction.

Magoon,LB; Adkison,WL; Egbert,RM (1976): Map showing geology, wildcat wells, Tertiary plant fossil localities, K-Ar age dates, and petroleum operations, Cook Inlet area, Alaska. U.S. Geological Survey Map I-1019, (3 sheets, 1:250,000 scale).

Moxham,RM (1951): Pumice deposits in the Alaska Peninsula - Cook Inlet region, Alaska. U.S. Geological Survey Open-file Report 49, 20 pages.

Reed,BL; Elliott,RL (1970): Reconnaissance geologic map, analyses of bedrock and stream sediment samples, and an aeromagnetic map of parts of the southern Alaska Range. U.S. Geological Survey Open-file Report 413, 145 pages. (4 sheets, 1:250,000 scale).

Reed,BL; Lanphere,MA (1969): Age and chemistry of Mesozoic and Tertiary plutonic rocks in south-central Alaska. G.S.A. Bulletin 80, 23-44.

Reed,BL; Lanphere,MA (1972): Generalized geologic map of the Alaska-Aleutian Range batholith showing potassium-argon ages of the plutonic rocks. U.S. Geological Survey Miscellaneous Field Studies Map MF-372, (2 sheets, 1:1,000,000 scale).

Reed,BL; Lanphere,MA (1973): Alaska-Aleutian Range batholith: geochronology, chemistry, and relation to circum-Pacific plutonism. G.S.A. Bulletin 84, 2583-2610.

Reed,BL; Miesch,AT; Lanphere,MA (1983): Plutonic rocks of Jurassic age in the Alaska-Aleutian Range batholith: chemical variations and polarity. G.S.A. Bulletin 94, 1232-1240.

Reed,BL; Miller,TP (1980): Uranium and thorium content of some Tertiary granitic rocks in the southern Alaska Range. U.S. Geological Survey Open-file Report 80-1052, 15 pages.