# LIDAR-DERIVED ELEVATION DATA FOR WRANGELL ISLAND, SOUTHEAST ALASKA, COLLECTED NOVEMBER 28-29, 2023

Jenna M. Zechmann, Katreen M. Wikstrom Jones, and Gabriel J. Wolken

### Raw Data File 2024-1



Location map of the survey area.

This report has not been reviewed for technical content or for conformity to the editorial standards of DGGS.

2024 STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS



# **STATE OF ALASKA**

Mike Dunleavy, Governor

# **DEPARTMENT OF NATURAL RESOURCES**

John Boyle, Commissioner

# **DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS**

Melanie Werdon, State Geologist & Director

Publications produced by the Division of Geological & Geophysical Surveys are available to download from the DGGS website (<u>dggs.alaska.gov</u>). Publications on hard-copy or digital media can be examined or purchased in the Fairbanks office:

## Alaska Division of Geological & Geophysical Surveys (DGGS)

3354 College Road | Fairbanks, Alaska 99709-3707 Phone: 907.451.5010 | Fax 907.451.5050 dggspubs@alaska.gov | dggs.alaska.gov

# DGGS publications are also available at:

Alaska State Library, Historical Collections & Talking Book Center 395 Whittier Street Juneau, Alaska 99801

Alaska Resource Library and Information Services (ARLIS) 3150 C Street, Suite 100 Anchorage, Alaska 99503

# **Suggested citation:**

Zechmann, J.M., Wikstrom Jones, K.M., and Wolken, G.J., 2024, Lidar-derived elevation data for Wrangell Island, Southeast Alaska, collected November 28-29, 2023: Alaska Division of Geological & Geophysical Surveys Raw Data File 2024-1, 9 p. https://doi.org/10.14509/31106



# LIDAR-DERIVED ELEVATION DATA FOR WRANGELL ISLAND, SOUTHEAST ALASKA, COLLECTED NOVEMBER 28-29, 2023

Jenna M. Zechmann<sup>1</sup>, Katreen M. Wikstrom Jones<sup>1</sup>, Gabriel J. Wolken<sup>1</sup>

#### INTRODUCTION

The Alaska Division of Geological & Geophysical Surveys (DGGS) used aerial lidar to produce a classified point cloud, digital surface model (DSM), digital terrain model (DTM), and an intensity model of slopes above the Zimovia Highway on Wrangell Island, Southeast Alaska, during leaf-off conditions (cover figure). The survey provides snow-free surface elevations for use in landslide hazard assessment following a November 20, 2023, debris flow that occurred near Milepost 11 of the Zimovia Highway and tragically claimed the lives of six people. Ground control data were collected June 26–30, 2023 (Zechmann and others, 2023), and aerial lidar data were collected November 28–29, 2023, and subsequently merged and processed using a suite of geospatial processing software. This data collection is released as a Raw Data File with an open end-user license. All files are available to download on the DGGS website at <a href="https://doi.org/10.14509/31106">https://doi.org/10.14509/31106</a>.

#### LIST OF DELIVERABLES

Classified Points DSM and DTM Intensity Image Metadata

#### **MISSION PLAN**

#### **Aerial Lidar Survey Details**

DGGS used a Riegl VUX1-LR<sup>22</sup> laser scanner integrated with a global navigation satellite system (GNSS) and Northrop Grumman LN-200C inertial measurement unit (IMU) designed by Phoenix LiDAR Systems. The sensor can collect a maximum of 1,500,000 points per second at a range of 150 m or a minimum of 50,000 points per second at a range of 640 m. The scanner operated with a pulse refresh rate of 800,000 pulses per second over forested terrain and 200,000 pulses per second over alpine terrain, with a scan rate between 50 and 200 lines per second. We used a Bell 206 helicopter to survey from an elevation of approximately 180–360 m above ground level, at a ground speed of approximately 30 m/s, and with a scan angle set from 80 to 280 degrees. The total survey area covers approximately 40.1 km<sup>2</sup>.

#### **Weather Conditions and Flight Times**

The survey area was accessed by air from Juneau International Airport and Wrangell Airport (fig. 1). See table 1 for data collection start and end times and weather conditions.

<sup>&</sup>lt;sup>1</sup> Alaska Division of Geological & Geophysical Surveys, 3354 College Road, Fairbanks, AK 99709



Figure 1. Lidar data collection flightlines.

| Table 1. Data collection s | start and end times | and weather | conditions for | the lidar | collection |
|----------------------------|---------------------|-------------|----------------|-----------|------------|
| survey.                    |                     |             |                |           |            |

| Date              | Start time (AKST) | End time (AKST) | Weather conditions             |
|-------------------|-------------------|-----------------|--------------------------------|
| November 28, 2023 | 1:00 pm           | 1:50 pm         | Overcast with mid-level clouds |
| November 29, 2023 | 8:10 am           | 10:30 am        | Overcast with moderate winds   |
| November 29, 2023 | 11:00 am          | 11:10 am        | Overcast with high winds       |

#### **PROCESSING REPORT**

#### **Lidar Dataset Processing**

We processed point data in Spatial Explorer for initial filtering and multiple-timearound (MTA) disambiguation. MTA errors, corrected in this process, result from ambiguous interpretations of received pulse time intervals and occur more frequently with higher pulse refresh rates. IMU and GNSS data were processed in Inertial Explorer, and flightline information was integrated with the point cloud in Spatial Explorer. We calibrated the point data at an incrementally precise scale of sensor movement and behavior, incorporating sensor velocity, roll, pitch, and yaw fluctuations throughout the survey. We created macros in Terrasolid software and classified points in accordance with the American Society for Photogrammetry & Remote Sensing (ASPRS) 2019 guidelines (ASPRS, 2019). Once classified, we applied a geometric transformation and converted the points from ellipsoidal heights to GEOID12B (Alaska) orthometric heights.

Raster products were derived from the point cloud in ArcGIS Pro. A 50-cm DSM was interpolated from maximum return values from ground, vegetation, bridge deck, and building classes using a binning method and maximum values. A 50-cm DTM was interpolated from all ground class returns using a binning method and minimum values. We also produced an intensity image for the entire area using average binning in ArcGIS Pro, with no normalization or corrections applied.

#### **Classified Point Cloud**

Classified point cloud data are provided in LAZ format. Data are classified following ASPRS 2019 guidelines (table 2) and contain return and intensity information. For all ground points, the average point spacing is 49.0 cm, and the average density is 4.16 pts/m<sup>2</sup> (fig. 2).

| Class Code | Description                   |  |  |  |
|------------|-------------------------------|--|--|--|
| 1          | Unclassified                  |  |  |  |
| 2          | Ground                        |  |  |  |
| 3          | Low Vegetation, ≥0.0m, <0.5m  |  |  |  |
| 4          | Medium Vegetation, ≥0.5m, <3m |  |  |  |
| 5          | High Vegetation, ≥3m, ≤60m    |  |  |  |
| 6          | Building                      |  |  |  |
| 7          | Low Noise                     |  |  |  |
| 17         | Bridge Deck                   |  |  |  |
| 18         | High Noise                    |  |  |  |
| 30         | Noise (manually classified)   |  |  |  |

**Table 2.** Point cloud class code definitions.

#### **Digital Surface Model**

The DSM represents surface elevations, including heights of vegetation, buildings, powerlines, bridge decks, etc. The DSM is a single-band, 32-bit GeoTIFF file of 50 cm resolution. No Data value is set to -3.40282306074e+38 (32-bit, floating-point minimum).

## **Digital Terrain Model**

The DTM represents bare earth elevations, excluding vegetation, bridge decks, buildings, etc. The DTM is a single-band, 32-bit GeoTIFF file of 50 cm resolution. No Data value is set to - 3.40282306074e+38.

#### Lidar Intensity Image

The lidar intensity image describes the relative amplitude of reflected signals contributing to the point cloud. Lidar intensity is (1) primarily a function of scanned object reflectance in relation to the signal frequency, (2) dependent on ambient conditions, and (3) not necessarily consistent between separate scans. The intensity image is a single-band, 16-bit unsigned GeoTIFF file of 50-cm resolution. No Data value is set to 0.

#### **SURVEY REPORT**

#### **Ground Survey Details**

Ground control points were collected June 26–30, 2023, by the Alaska Division of Mining, Land and Water (DMLW), supporting an earlier, island-wide lidar survey performed in July of the same year. They deployed a Trimble R12 GNSS receiver to provide a base station occupation and real-time kinematic (RTK) corrections to points they surveyed with a rover Trimble R12i GNSS receiver/TSC5 controller. Benchmark HH-2 (PID BBDX58), located on the Heritage Harbor breakwater in Wrangell, served as the base station location. DMLW collected 257 ground control points and checkpoints to use for calibration and to assess the vertical accuracy of the point cloud, 59 of which overlapped with the November 2023 survey area. Checkpoints were collected in forest, shrubland, grassland, sphagnum bog, bare earth, and paved surfaces.

#### **Coordinate System and Datum**

We processed and delivered all data in NAD83 (2011) UTM8N and vertical datum NAVD88 GEOID12B.

#### **Horizontal Accuracy**

Horizontal accuracy was not measured for this collection.

#### Vertical Accuracy

We measured a mean offset of +62.1 cm between 19 control points and the point cloud (app. 1). This offset was reduced to -0.9 cm in non-vegetated areas (app. 2) and +8.2 cm in vegetated areas (app. 3) by applying a rubber-sheet vertical correction to the lidar point data. We used 40 checkpoints to determine the vertical accuracy of the point cloud ground class using a Triangulated Irregular Network (TIN) approach. The project vertical accuracy has a root mean square error (RMSE) of 5.5 cm in non-vegetated areas (app. 2) and 10.6 cm in vegetated areas (app. 3). We evaluated the relative accuracy for this dataset as the interswath overlap consistency and measured it at 8.2 cm RMSE.

5



![](_page_6_Figure_2.jpeg)

## **Data Consistency and Completeness**

This is a full-release dataset. There was no over-collect. Data quality is consistent throughout the survey.

#### ACKNOWLEDGMENTS

This survey area is on the traditional homelands of the Stikine Tlingit people. This work was funded by the Disaster Relief Fund under the Governor's declared disaster order on November 21, 2023. Funding was made available to DGGS by the Alaska Department of Military and Veterans Affairs' Division of Homeland Security and Emergency Management. We thank Coastal Helicopters for their aviation expertise and contribution to these data products, Joe Delabrue of the U.S. Forest Service for logistical help, and David Ciampa and Amy Helkenn of the Alaska Division of Mining, Land and Water for providing ground control points. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.

#### REFERENCES

- The American Society for Photogrammetry & Remote Sensing (ASPRS), 2019, LAS Specification 1.4 - R15. <u>https://www.asprs.org/wp-</u> <u>content/uploads/2019/07/LAS 1 4 r15.pdf</u>
- Zechmann, J.M., Wikstrom Jones, K.M., and Wolken, G.J., 2023, Lidar derived elevation data for Wrangell Island, Southeast Alaska, collected July 2023: Alaska Division of Geological & Geophysical Surveys Raw Data File 2023-28, 14p. <u>https://doi.org/10.14509/31098</u>

| GCP                               | Easting (m) | Northing<br>(m) | GCP Z (m) | Pointcloud Z<br>(m) | Dz (m) |
|-----------------------------------|-------------|-----------------|-----------|---------------------|--------|
| 1                                 | 661190.532  | 6259765.520     | 6.434     | 6.899               | 0.465  |
| 2                                 | 664332.874  | 6247664.636     | 32.768    | 33.509              | 0.741  |
| 3                                 | 662822.893  | 6250829.371     | 8.649     | 9.293               | 0.644  |
| 4                                 | 664416.102  | 6253386.508     | 15.501    | 16.133              | 0.632  |
| 5                                 | 663609.366  | 6255696.322     | 6.591     | 6.953               | 0.362  |
| 6                                 | 661661.855  | 6258454.968     | 7.872     | 8.255               | 0.383  |
| 8                                 | 662475.216  | 6261963.199     | 23.650    | 24.130              | 0.480  |
| 16                                | 667665.815  | 6248020.426     | 469.791   | 470.669             | 0.878  |
| 21                                | 664772.463  | 6243871.224     | 40.469    | 41.413              | 0.944  |
| *1                                | 661175.208  | 6259760.100     | 6.281     | 6.759               | 0.478  |
| *9                                | 661167.455  | 6259713.129     | 4.129     | 4.600               | 0.471  |
| *13                               | 664416.478  | 6247829.805     | 45.561    | 46.190              | 0.629  |
| *17                               | 662807.692  | 6250848.927     | 3.826     | 4.589               | 0.763  |
| *21                               | 663583.244  | 6255606.885     | 7.120     | 7.414               | 0.294  |
| *33                               | 661175.206  | 6259760.092     | 6.267     | 6.758               | 0.491  |
| *43                               | 667934.323  | 6250146.822     | 70.997    | 71.579              | 0.582  |
| *50                               | 664785.334  | 6243866.375     | 41.161    | 42.129              | 0.968  |
| *51                               | 664802.357  | 6243886.354     | 40.949    | 41.891              | 0.942  |
| *52                               | 664416.486  | 6247829.807     | 45.539    | 46.188              | 0.649  |
|                                   |             |                 |           |                     |        |
| Average dz (m)                    | 0.621       |                 |           |                     |        |
| Minimum dz<br>(m)                 | 0.294       |                 |           |                     |        |
| Maximum dz<br>(m)                 | 0.968       |                 |           |                     |        |
| Average<br>magnitude error<br>(m) | 0.621       |                 |           |                     |        |
| Root mean<br>square error (m)     | 0.653       |                 |           |                     |        |
| Standard deviation                | 0.206       |                 |           |                     |        |

#### **APPENDIX 1: GROUND CONTROL POINTS**

\*Non-vegetated checkpoints from the Wrangell Island July 2023 survey were repurposed as GCPs. GCP and checkpoint numbers are from Wrangell Island July 2023 survey RDF 2023-28 appendices 1-3 (<u>https://doi.org/10.14509/31098</u>).

| Check Point                       | Easting (m) | Northing (m) | Checkpoint Z<br>(m) | Corrected<br>Pointcloud Z (m) | Dz (m) |
|-----------------------------------|-------------|--------------|---------------------|-------------------------------|--------|
| 2                                 | 664420.405  | 6247819.743  | 45.273              | 45.212                        | -0.061 |
| 3                                 | 664416.482  | 6247829.808  | 45.556              | 45.473                        | -0.083 |
| 8                                 | 661175.216  | 6259760.100  | 6.276               | 6.291                         | 0.015  |
| 10                                | 661144.506  | 6259801.022  | 5.564               | 5.592                         | 0.028  |
| 11                                | 661134.744  | 6259835.947  | 2.681               | 2.753                         | 0.072  |
| 12                                | 664420.39   | 6247819.736  | 45.281              | 45.210                        | -0.071 |
| 14                                | 664344.257  | 6247675.496  | 34.129              | 34.127                        | -0.002 |
| 15                                | 664292.853  | 6247665.676  | 30.964              | 31.026                        | 0.062  |
| 16                                | 662835.592  | 6250884.603  | 8.720               | 8.710                         | -0.010 |
| 18                                | 664412.276  | 6253401.05   | 14.869              | 14.902                        | 0.033  |
| 19                                | 664436.244  | 6253416.538  | 15.871              | 15.895                        | 0.024  |
| 20                                | 663586.549  | 6255632.696  | 7.545               | 7.546                         | 0.001  |
| 22                                | 661668.493  | 6258460.207  | 8.506               | 8.507                         | 0.001  |
| 23                                | 661607.287  | 6258478.990  | 2.703               | 2.708                         | 0.005  |
| 25                                | 662472.957  | 6261957.106  | 23.530              | 23.511                        | -0.019 |
| 34                                | 664416.479  | 6247829.795  | 45.557              | 45.472                        | -0.085 |
| 39                                | 664416.486  | 6247829.801  | 45.557              | 45.471                        | -0.086 |
| 40                                | 664416.490  | 6247829.812  | 45.558              | 45.472                        | -0.086 |
| 45                                | 667637.360  | 6248034.404  | 467.415             | 467.502                       | 0.087  |
| Average dz (m)                    | -0.009      |              |                     |                               |        |
| Minimum dz<br>(m)                 | -0.086      |              |                     |                               |        |
| Maximum dz<br>(m)                 | 0.087       |              |                     |                               |        |
| Average<br>magnitude<br>error (m) | 0.044       |              |                     |                               |        |
| Root mean<br>square error<br>(m)  | 0.055       |              |                     |                               |        |
| Standard<br>deviation (m)         | 0.056       |              |                     |                               |        |

## **APPENDIX 2: NONVEGETATED CHECK POINTS**

| Check Point                       | Easting (m) | Northing (m) | Checkpoint Z<br>(m) | Corrected<br>Pointcloud Z (m) | Dz (m) |
|-----------------------------------|-------------|--------------|---------------------|-------------------------------|--------|
| 78                                | 661188.843  | 6259745.231  | 5.008               | 5.107                         | 0.099  |
| 79                                | 661163.712  | 6259737.654  | 4.853               | 5.016                         | 0.163  |
| 80                                | 661229.031  | 6259732.045  | 6.101               | 6.125                         | 0.024  |
| 81                                | 664352.603  | 6247692.345  | 34.429              | 34.565                        | 0.136  |
| 82                                | 662822.302  | 6250873.882  | 6.582               | 6.69                          | 0.108  |
| 84                                | 664414.593  | 6253407.873  | 14.504              | 14.654                        | 0.15   |
| 85                                | 664435.208  | 6253398.2    | 15.985              | 16.17                         | 0.185  |
| 86                                | 664409.924  | 6253376.571  | 15.289              | 15.372                        | 0.083  |
| 88                                | 663596.42   | 6255676.882  | 7.020               | 7.155                         | 0.135  |
| 89                                | 663595.073  | 6255692.526  | 7.048               | 7.093                         | 0.045  |
| 90                                | 663604.848  | 6255691.94   | 6.455               | 6.46                          | 0.005  |
| 91                                | 663585.595  | 6255590.48   | 6.728               | 6.773                         | 0.045  |
| 92                                | 661672.989  | 6258464.789  | 7.492               | 7.729                         | 0.237  |
| 93                                | 661609.035  | 6258499.075  | 4.084               | 4.125                         | 0.041  |
| 95                                | 662449.873  | 6261956.781  | 22.616              | 22.59                         | -0.026 |
| 96                                | 662460.247  | 6261952.096  | 21.964              | 22.077                        | 0.113  |
| 97                                | 662468.880  | 6261942.576  | 22.189              | 22.194                        | 0.005  |
| 135                               | 667935.278  | 6250169.121  | 70.516              | 70.591                        | 0.075  |
| 136                               | 667942.531  | 6250159.169  | 70.855              | 70.895                        | 0.04   |
| 156                               | 664787.500  | 6243872.030  | 40.720              | 40.704                        | -0.016 |
| 157                               | 664810.891  | 6243888.221  | 40.399              | 40.471                        | 0.072  |
|                                   |             |              |                     |                               |        |
| Average dz (m)                    | 0.082       |              |                     |                               |        |
| Minimum dz<br>(m)                 | -0.026      |              |                     |                               |        |
| Maximum dz<br>(m)                 | 0.237       |              |                     |                               |        |
| Average<br>magnitude<br>error (m) | 0.086       |              |                     |                               |        |
| Root mean                         | 0.106       |              |                     |                               |        |
| square error<br>(m)               |             |              |                     |                               |        |
| Standard<br>deviation (m)         | 0.069       |              |                     |                               |        |

# **APPENDIX 3: VEGETATED CHECK POINTS**