STATE OF ALASKA

DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL AND GEOPHYSICAL SURVEYS

Bill Sheffield, Governor

Esther C. Wunnicke, Commissioner

Ross G. Schaff, Director and State Geologist

May 1986

This report is a preliminary publication of DGGS. The author is solely responsible for its content and will appreciate candid comments on the accuracy of the data as well as suggestions to improve the report.

Report of Investigations 86-4 SUMMARY OF ALASKA EARTHQUAKES FOR THE PERIOD JULY, AUGUST, AND SEPTEMBER 1984

Compiled by Hans Pulpan and J.N. Davies

STATE OF ALASKA Department of Natural Resources DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS

According to Alaska Statute 41, the Alaska Division of Geological and Geophysical Surveys is charged with conducting 'geological and geophysical surveys to determine the potential of Alaskan land for production of metals, minerals, fuels, and geothermal resources; the locations and supplies of ground water and construction materials; the potential geologic hazards to buildings, roads, bridges, and other installations and structures; and shall conduct such other surveys and investigations as will advance knowledge of the geology of Alaska.'

In addition, the Division of Geological and Geophysical Surveys shall collect, record, evaluate, and distribute data on the quantity, quality, and location of underground, surface, and coastal water of the state; publish or have published data on the water of the state and require that the results and findings of surveys of water quality, quantity, and location be filed; require that water-well contractors file basic water and aquifer data, including but not limited to well location, estimated elevation, welldriller's logs, pumping tests, flow measurements, and water-quality determinations; accept and spend funds for the purposes of this section, AS 41.08.017 and 41.08.035, and enter into agreements with individuals, public or private agencies, communities, private industry, and state and federal agencies; collect, record, evaluate, archive, and distribute data on seismic events and engineering geology of the state; and identify and inform public officials and industry about potential seismic hazards that might affect development in the state.

Administrative functions are performed under the direction of the State Geologist, who maintains his office in Anchorage. DGGS offices are located at:

> (Basement) Fairbanks, 99709 (907)474-7147

.400 Willoughby Center (3rd fl.)Juneau, 99801 (907)465-3400

.794 University Ave. .3601 C St. (8th fl.) P.O Box 7028 Anchorage, 99510 (907)561-2020

> .Fish Hatchery Road P.O. Box 772116 Eagle River, 99577 (907)688-3555

This report is for sale by DGGS for \$2. DGGS publications may be inspected at the following locations. Mail orders should be addressed to the Fairbanks office.

> (Basement) Fairbanks, 99709

.400 Willoughby Center .P.O. Box 7438 (4th fl.) Juneau, 99801

.794 University Ave. .3601 C St. (10th fl.) P.O. Box 7005 Anchorage, 99510

> State Office Bldg. Ketchikan, 99901

CONTENTS

			Page
Introdu	ction		1
Data co.	llect	ion	1
Data pro	cèss	sing	4
Velocity	у шод	lels	7
Earthqu	ake z	nagnitude	8
Recorde	i ear	thquakes	8
		event	16
Acknowle	dgme	nts	16
Reference	ces c	:ited,	16
Appendix	(A -	Data for Alaska earthquakes of M ≥3 that were located the third quarter 1984	
du	fing	the third quarter 1984	17
Appendix	c B -	Data for Alaska earthquakes of all magnitudes that were	
		during the third quarter 1984	20
		FIGURES	
		1100100	
Figure	l.	Map of all seismic-network stations operated by the	
		University of Alaska and by other organizations	
		whose data were used in this report	2
	2.	Station-use record	5
	3.	Graph showing the typical response of a seismic-network	
		station operated by the University of Alaska	
		Geophysical Institute	6
	4.	Map showing epicenter locations of earthquakes that	
		occurred north of lat 61° N. during the third	
		quarter of 1984	9
	5.	Map showing epicenter locations of earthquakes of M,	
		≥3 that occurred north of lat 61° N. during the	
		third quarter of 1984	10
	6.	Map showing epicenter locations of earthquakes that	
	- •	occurred south of lat 61° N. during the third	
		quarter of 1984	11
	7.	Map showing epicenter locations of earthquakes of M.	
	′ •	≥3 that occurred south of lat 61° N. during the	
		third quarter of 1984	12
	8.	Map showing epicenter locations of earthquakes that	
	٠.	occurred in the third quarter of 1984 and are not	
		shown in figures 4 or 5	15
		SHOWN IN LIEUTES 4 OF Jerrer Printers and Pr	13
		TABLES	
Table	1.	Names and parameters of seismic-network stations used	
		to prepare this report	3
	2.	Velocity model 1	7
	3.	Velocity model 2	7
	4.	Velocity model 3	8
	5.	Modified Mercalli scale	13

SUMMARY OF ALASKA EARTHQUAKES FOR THE PERIOD JULY, AUGUST, AND SEPTEMBER 1984

Hans Pulpan and J.N. Davies, editors

INTRODUCTION

This report lists the parameters of earthquakes that occur in and near areas encompassed by the network of seismograph stations operated or recorded by the University of Alaska Geophysical Institute (UAGI) (fig. 1; table 1). The goal of this report is to provide a convenient reference source for earthquake activity in the seismic-network area and quantitative information that researchers, administrators, planners, and other interested people can use. Therefore, this report contains hypocentral parameters and information about the quality of data and precision of the parameters. Because of the substantial quantity of data, this report is based on routine data processing. However, earthquakes are located as accurately and with as many useful data as possible. Additional data and more sophisticated methods of analysis might lead to more accurate locations.

DATA COLLECTION

The data used in this report are derived from two principal sources: seismic stations operated by UAGI and seismic stations operated by other agencies whose data are continuously recorded by UAGI under data-sharing or data-exchange agreements. For earthquakes of local magnitude (M₂) ≥3, we receive records of earthquake arrival times at several stations of the Alaska Tsunami Warning System that is operated by the National Oceanic and Atmospheric Administration (NOAA).

Signals from various stations are transmitted by UAGI-operated VHF-radio links and leased commercial-telephone circuits to one of two recording centers in Homer and Fairbanks that are operated by the University of Alaska. Remote stations are serviced and calibrated annually; stations easily accessible by road are serviced more frequently if necessary. Difficult access to many stations can result in lengthy data losses if instruments have malfunctioned. Significant data losses result in lower detection thresholds and poorer solution qualities for earthquakes in the affected regions. To discern such conditions, a station-use record is provided in figure 2.

Data are recorded on 16-mm film on several Teledyne Geotech Develocorders that have a 20-channel capacity. Satellite-linked clocks provide time marks that are superimposed on the records. Figure 3 shows the typical response of the seismic-network system from transducer to recorder.

University of Alaska Geophysical Institute, Fairbanks, Alaska 99775. DGGS, 794 University Ave., Basement, Fairbanks, Alaska 99709.

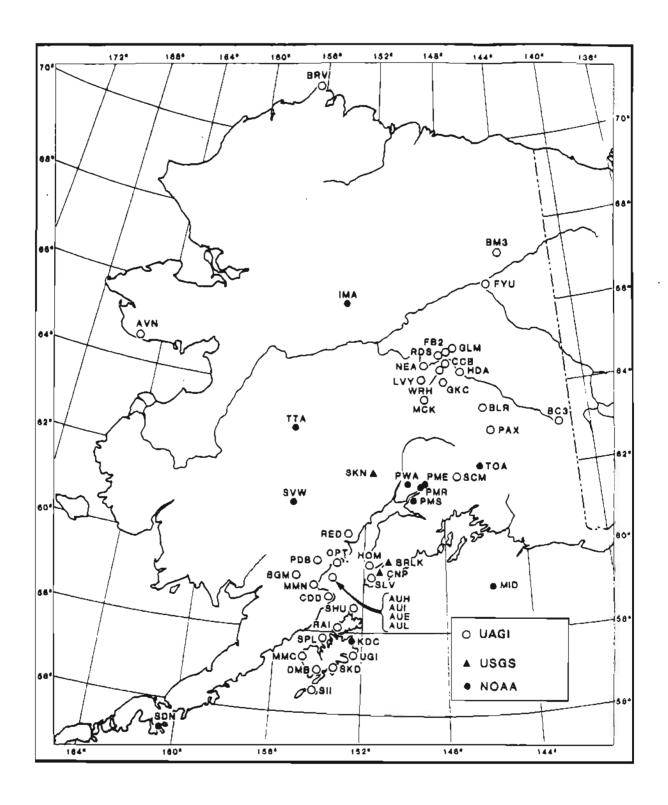


Figure 1. All seismic-network stations operated by the University of Alaska and by other organizations whose data were used in this report. Stations BGM, PDB, and SLV were installed and operated by the U.S. Geological Survey and are currently operated by the University of Alaska. See table 1 for station names.

Table 1. Names and parameters of seismic-network stations used to prepare this report.

Code	Station	Latitude (N.)	Longitude (W.)	Elevation (m)	Velocity model	Operator
ANV	Anvil Mountain	64° 33.90'	165° 22,28'	323	1	UAGI
AUE	Augustine East	59° 21.54'	153° 22.33'	172	2	UAG1
AUH	Augustine Hill	59° 21.83'	153° 26.61'	900	2	UAGI
AUI	Augustine Island	59° 20.11'	153° 25.66'	293	2	UAGI
AUL	Augustine Lava Flow	59° 22.93'	153° 26.07'	360	2	UAGI
всз	Beaver Creek	63° 4.00'	141° 45.50'	762	1	UAGI
BGM	Big Mountain	59° 23,56'	I55° 13.76'	625	2	UA/USGS ^C
BLM	Blue Mountain	58° 2.70'	156° 20.70'	539	3	UAGI
BLR	Black Rapids	63° 30.10'	145° 50.70'	810	1	UAGI
вмз	Burnt Mountain	67° 17.18'	144° 25.17'	305	1	UAGI
BRLK	Bradley Lake	59° 45.85'	150° 53.13'	631	2	USG\$
BRV	Barrow	71° 16.43'	156° 47.08'	13	1	UAGI
CCB	Clear Creek Butte	64° 38.80'	147° 48.33'	219	1	UAGI
CDD	Cape Douglas	58° 55.79'	153° 38.58'	622	2	UAGI
CNP	China Poot	59° 31.55'	151° 14.16'	564	2	USGS
CTG	Chinitna Glacier	60° 57.90'	141° 20.00'	1554	5	USGS
DMB	Deadman Bay	57° 5.23'	153° 57.63'	300	3	UAGI
FB2	Fairbanks	64° 54.00'	147° 47.60'	320	Ţ	UAGI
FLP	Featherly Pass	57° 42.40'	156° 16.10'	486	3	UAGI
FYU	Fort Yukon	66° 33.96'	145° 13.90'	137	1	UAGI
GKC	Gold King Creek	64° 10.72'	147° 56.08′	490	1	UAGI
GLM	Gilmore Dome	64° 59.24'	147° 23.34°	820	1	UAGI
HDA	Harding Lake	64° 24.35'	146° 57.23'	450	1	UAGI
HOM	Homer	59° 39.501	151° 38.60'	198	2	UAGI,
IMA	Indian Mountain	66° 4.10'	153° 40.72'	1380	1	NOAA
KDC	Kodiak	57° 44.87'	152° 29.50'	13	3	NOAA
KSM	King Salmon Mountain	58° 51.80'	156° 10.50'	560	3	UAGI
LVY	Levy	64° 13.00'	149° 15.20'	230	1	UAGI
MCK	McKinley Park	64° 43.94'	148° 56.10'	618	1	UAGI
MID	Middleton Island	59° 25.67'	146° 20.33'	37	4	NOAA
MMC	Middle Cape	57° 20.00'	154° 38.10'	340	3	UAGI
MMN	McNe11 River	59° 11.11'	154° 20.20'	442	2	UAGI
MSP	Moose Pass	60° 29.35'	149° 21.64'	150	2	USGS
NEA	Nenaua	64° 34.63′	149° 4.63'	364	l	UAGI
NKI	Nikolski	52° 56.56'	168° 51.44'	8	2	NOAA
OPT	Oil Point	59° 39.16'	153° 13.78'	450	2	UAGI
PAX	Paxson	62° 58.25'	145° 28.12'	1130	1	UAGI
PDB	Pedro Bay	59° 47.27'	154° 11.55'	305	2	UA/USGS
PME	Palmer East	61° 37.70'	149° 1.90'	232	2	NOAA
PMR	Palmer Observatory	61° 35.53'	149° 7.85′	100	2	NOAA
PMS	Palmer - Arctic Valley	61° 14.68'	149° 33.63'	716	2	AAON
PUB	Puale Bay	57° 46.40°	155° 31.00'	280	3	UAGI

aSee tables 2, 3, and 4.

bUniversity of Alaska Geophysical Institute.

cU.S. Geological Survey.

dNational Oceanic and Atmospheric Administration.

Table I. (con.)

Code	Station	Latitude (N.)	Longitude (W.)	Elevation (m)	Velocity model	Operator
PWA	Palmer West - Houston	61° 39.05'	149° 52.72'	137	2	UAGI
RAI	Raspberry Island	58° 3.63'	153° 9.55'	520	3	UAGI
RDT	Redoubt	60° 34.43'	152° 24.37′	930	2	USGS
RDS	Richard D. Siegrist	64° 49.59'	148° 8,68'	930	I	UAGI
RED	Redoubt Volcano	60° 25.14'	152° 46.32'	1087	2	UAGI
SCM	Sheep Mountain	61° 50.00'	147° 19.66'	1020	4	UAGI
SDN	Sand Point	55° 20.40'	160° 29.83'	19	6	NOAA
SHU	Shuyak Island	58° 37.68'	152° 20.93'	10	3	UAGI
SII	Sitkinak Island	56° 33.60'	154° 10.92'	500	3	UAGI
SKD	Sitkalidak Island	57° 9.85'	153° 4.82'	135	3	UAGI
SKN	Skwentna	61° 58.86'	151° 31.78'	564	2	USGS
SLV	Seldovía	59° 28.28'	151° 34.83'	91	2	UA/USGS
SPL	Spiridon Lake	57° 45.55'	153° 46.28'	600	3	UAGI
SPU	Mount Spurr	61° 10.90'	152° 3.26'	800	2	USGS
SSN	Susitna Mountain	61° 27.83'	150° 44.60'	1297	1	USGS
SVW	Sparrevohn	61° 6.49'	155° 37.30'	762	2	NOAA
TOA	Tolsona	62° 6.29'	146° 10.34"	909	4	NOAA
TTA	Tatalina	62° 55.80'	156° 1.32'	914	2	NOAA
UGI	Ugak Island	57° 23.67'	152° 16.90'	213	3	UAGI
WRH	Wood River Hill	64° 28.28'	148° 5.39'	314	1	UAGI
WWW	Wonder Why Ridge	58° 20.90'	156° 19.90'	414	3	UAGI

DATA PROCESSING

Arrival times of body waves are read from the 16-mm film with Geotech filmviewers that provide a time resolution of 0.1 s/mm. Thus, the impulsive arrivals can be read to 0.05 s.

Earthquake locations are based on arrival times of P and S waves. As many S arrivals as possible are used to help determine hypocentral depth. Most S readings are obtained from vertical components because few three-component systems are recorded. When large earthquakes occur, traces overlap on multichannel-film recorders; consequently, S arrivals are difficult to identify.

After earthquakes are identified and arrival times are determined, phase data are processed with the HYPOELLIPSE computer program (Lahr, 1980) to obtain earthquake parameters. Each solution is checked for the root-mean-square (RMS) error of travel-time residuals and the spatial distribution of stations used. Solutions that have residuals 0.5 s or greater are reread. If the stations used are poorly distributed, additional data are sought from stations not recorded by UAGI. Events recorded by fewer than six stations receive less attention. Data for earthquakes of M ≥3.5 are processed more carefully, sometimes by changing control parameters in the computer program.

STATION CODE	JULY	1984 AUGUS T	SEPTEMBER
AUE HUA I UA		- -	<u> </u>
AUL BC3 BLR			
BM3		-	
CCB COD CNP CPT			
DMB FBA FYU CKC			
CLM CLB			
HOML [MA			
F			
M (O MMN NEA			
190 289 809			
PME PMR PMS		-	
249 PWA PA[000			
ROS REO SCM SON			
SHU SK D			
SK V SL V SP L S V X			
SVW TOA TTA			
UĞI WRH YKU			
	L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	

Figure 2. Station-use record. Lines indicate that at least one arrival-time was read from a specific station operating on a specific day. Nonuse does not imply that a station was malfunctioning, but rather that no data were required to locate earthquakes. See table 1 for station names.

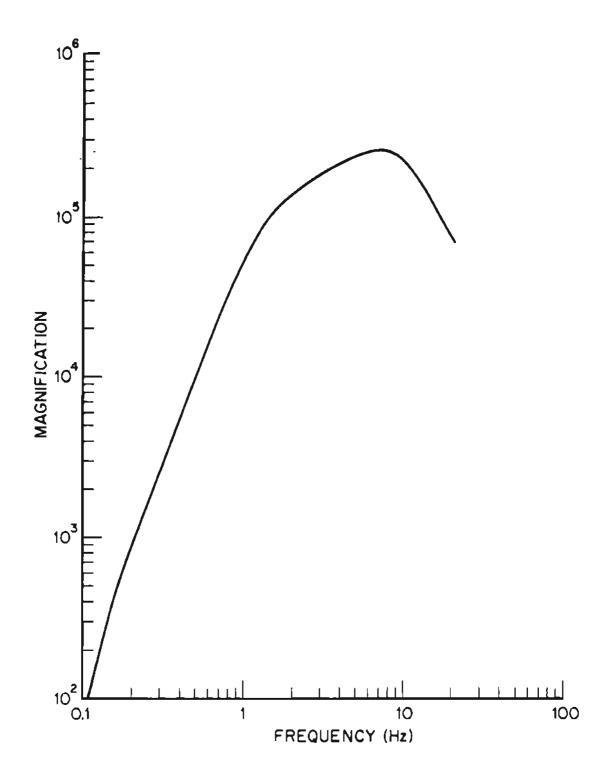


Figure 3. Typical response of a seismic-network station operated by the University of Alaska Geophysical Institute. Magnification is the ratio of the amplitude measured on the filmviewer to that of the actual ground motion recorded. Actual values vary with station.

VELOCITY MODELS

The tectonic regime and geologic setting vary greatly throughout the area covered by the UAGI seismic network. Although our knowledge of the seismic-velocity structure is limited, significant variations exist. To account for these variations, each UAGI station is associated with one of three velocity models (see tables 1 through 4), depending on the station's location. The models vary only with depth; lateral variation of velocity is not considered. For stations outside the UAGI seismic network, we generally use models adopted by the station's operators (table 1). For all models, S velocity = P velocity.

 $\sqrt{3}$

Table 2. Velocity model 1.

Layer	Depth (km)	P velocity (km/sec)
1	0-24	5.9
2	24-40	7.4
3	40-76	7.9
4	76-300	8.3
5	301-545	10,4
6	>545	12.6

Model I is used primarily in central and northern Alaska (figs: 4 and 5) and is based on unpublished data by Biswas (oral commun., 1978). The upper mantle structure is based on travel-time studies by Biswas and Bhattacharya (1974).

Table 3. Velocity model 2.

Depth (km)	P velocity (km/sec)
0.2	2 75
	2.75
2-4	5.3
4-10	5.6
10-15	6.2
15-20	6.9
20-25	7.4
25-33	7 .7
33-47	7.9
47-65	8.1
>65	8.3
	0-2 2-4 4-10 10-15 15-20 20-25 25-33 33-47 47-65

Model 2 is associated with stations located in the Cook Inlet - Kenai Peninsula area (figs. 6 and 7) and is used by the USGS for locating earthquakes in the same area. It is a modified version of the model determined by Matumoto and Page (1969) from travel-time studies of aftershocks of the 1964 Great Alaska earthquake.

Table 4. Velocity model 3.

Layer	Depth (km)	P velocity (km/sec)
1	0-1.6	4.2
2	1.6-12	5.5
3	12-42	6.6
4	42-60	8.06
5	60-80	8,09
6	80-100	8.11
7	100-150	8.14
8	150-200	8.27
9	200-250	8.41
10	250-300	8.50
11	300-350	8.74
12	>350	9.02

Model 3 is used on Kodiak Island and the Alaska Peninsula. The depth and velocity of the first three layers are based on refraction experiments in the central Aleutian Islands (Engdahl and Tarr, 1970). The remaining layers are based on work by Herrin and others (1968).

EARTHQUAKE MAGNITUDE

Earthquake magnitudes are determined from the maximum amplitude of the body-wave trace. Because regional body-wave phases are used, we determine local magnitudes (M_L). The relationship we use was derived by Richter (1958) using earthquake data recorded on standard horizontal Wood-Anderson seismographs in California. Corrections were made for differences in response and magnification between the standard instruments used by Richter and the instruments we used. However, no corrections were made for differences in attenuation properties between California and Alaska. Additionally, no corrections were made for measuring vertical ground motion rather than horizontal ground motion.

The magnitude of each earthquake is usually calculated at several seismic-network stations and then averaged. When large earthquakes occur, the instrument response saturates the maximum trace amplitude of the recorder at most of our stations. Therefore, we frequently list local magnitude determined by NOAA's Palmer Observatory. Felt reports and intensity observations based on the Modified Mercalli Intensity Scale (table 5; Richter, 1958) are also listed. The intensity levels are defined in the explanation at the end of table 5.

RECORDED EARTHQUAKES

Appendix A lists hypocenter, magnitude, and quality parameters for each earthquake of M ≥ 3 that was located during the third quarter of 1984 (see also figs. 5, 7, and 8). Appendix B lists the same parameters for all earthquakes that were located during the same period (see also figs. 4 and 6). Detection threshold and solution quality vary throughout the areas shown in figures 4, 6, and 8. Appendix A is probably complete for M > 3. As shown

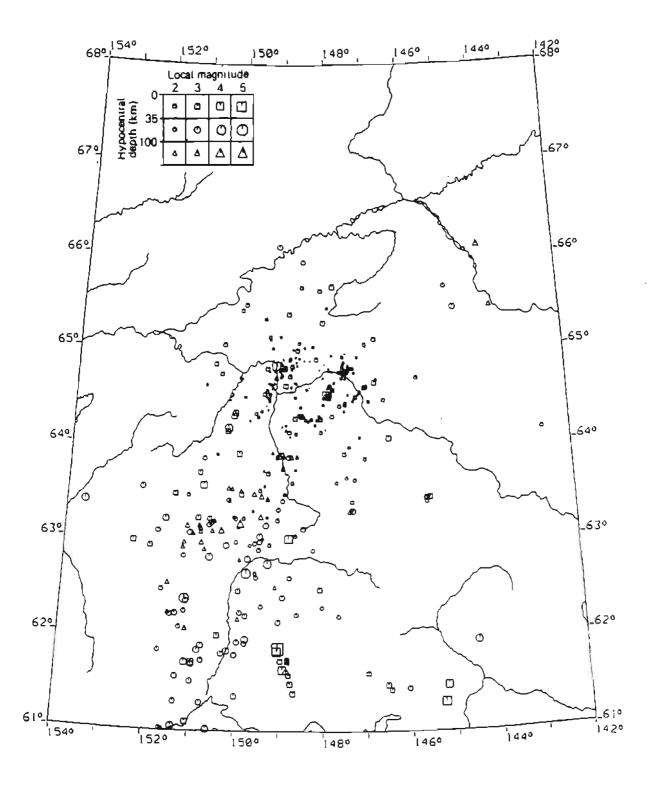


Figure 4. Epicenters of earthquakes that occurred north of lat 61° N. during the third quarter of 1984. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

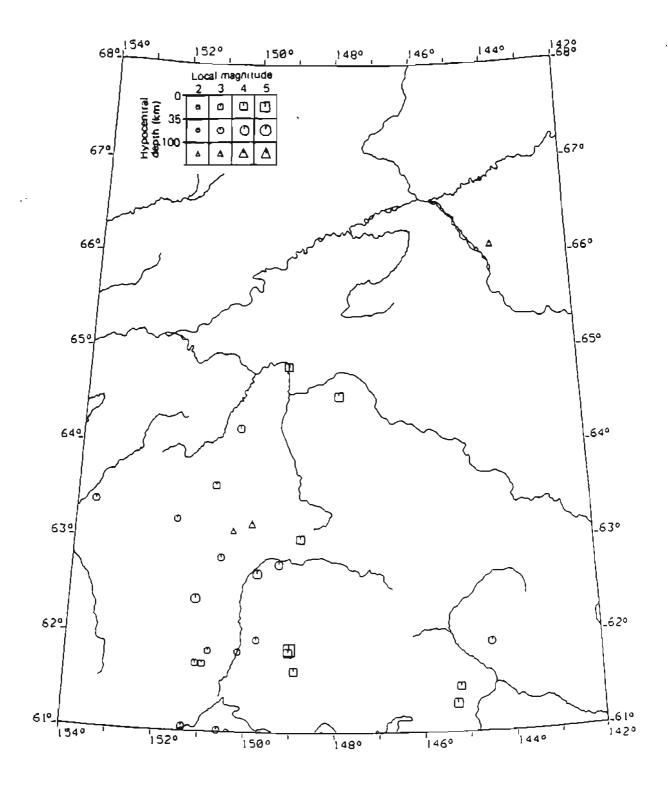


Figure 5. Epicenters of earthquakes with M ≥3 that occurred north of lat 61° N. during the third quarter of 1984. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

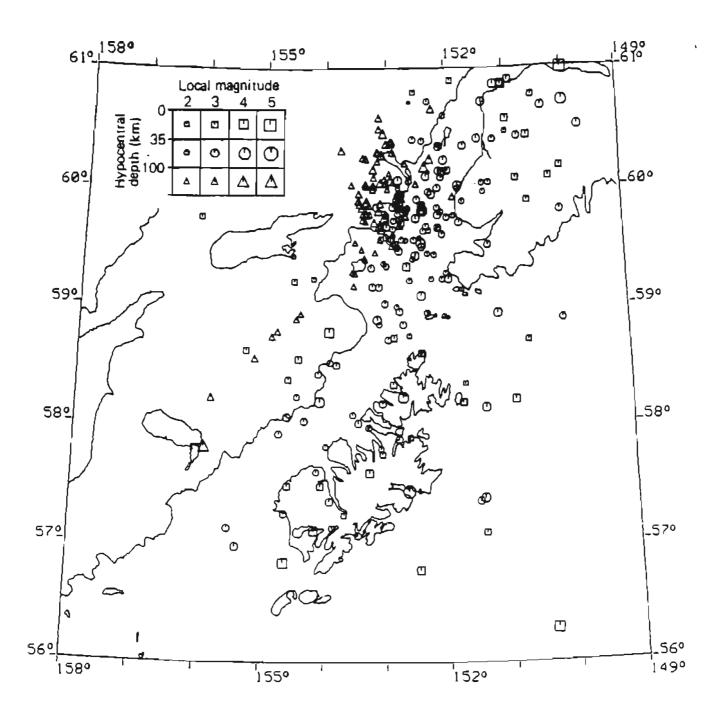


Figure 6. Epicenters of earthquakes that occurred south of lat 61° N. during the third quarter of 1984. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

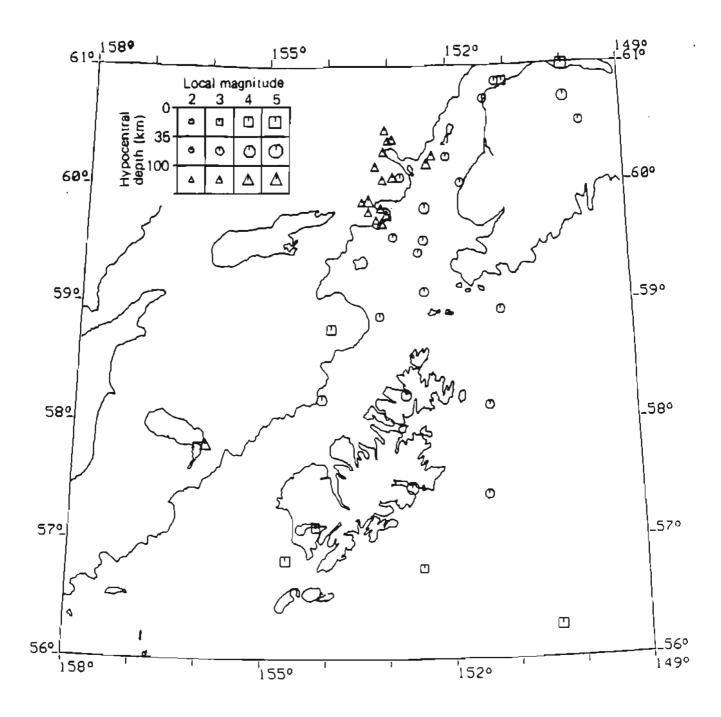


Figure 7. Epicenters of earthquakes with M₂ ≥3 that occurred south of lat 61° N. during the third quarter of 1984. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

Table 5. Modified Mercalli scale, 1956 version.

- I. Not felt. Some very low frequency effects, such as seiching in lakes, may be observed resulting from large, distinct earthquakes.
- II. Felt by persons at rest, on upper floors, or favorably placed.
- III. Felt indoors. Hanging objects swing. Vibration like passing of light trucks. Duration estimated. May not be recognized as an earthquake.
- IV. Hanging objects swing. Vibration like passing of heavy trucks; or sensation of a jolt like a heavy ball striking the walls. Standing motor cars rock. Windows, dishes, doors rattle. Glasses clink. Crockery clashes. In the upper range of IV, wooden walls and frame creak.
- V. Felt outdoors; direction estimated. Sleepers wakened. Liquids disturbed, some spilled. Small unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.
- VI. Felt by all. Many frightened and run outdoors. Persons walk unsteadily. Windows, dishes, glassware broken. Knickknacks, books, etc., off shelves. Pictures off walls. Furniture moved or overturned. Weak plaster and masonry D cracked. Small bells ring (church, school). Trees, bushes shaken (visibly, or heard to rustle--CFR).
- VII. Difficult to stand. Noticed by drivers of motor cars. Hanging objects quiver. Furniture broken. Damage to masonry D, including cracks. Weak chimneys broken at roof line. Fall of plaster, loose bricks, stones, tiles, cornices (also unbraced parapets and architectural ornaments—-CFR). Some cracks in masonry C. Waves on ponds; water turbid with mud. Small slides and caving in along sand or gravel banks. Large bells ring. Concrete irrigation ditches damaged.
- VIII. Steering of motor cars affected. Damage to masonry C; partial collapse. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys, factory stacks, monuments, towers, elevated tanks. Frame houses moved on foundations if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.
 - IX. General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged. (General damage to foundations—CFR.) Frame structures, if not bolted, shifted off foundations. Frames racked. Serious damage to reservoirs. Underground pipes broken. Conspicuous cracks in ground. In alluviated areas, sand and mud ejected, earthquake fountains, sand craters.

 $^{^{3}\}mathrm{CFR}$ refers to supplemental comments by Charles F. Richter.

- X. Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dikes, embankments. Large landslides. Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and flat land. Rails bent slightly.
- XI. Rails bent greatly. Underground pipelines completely out of service.
- XII. Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown into the air.

in figure 1, the distribution of stations varies significantly; thus detection-threshold levels also vary significantly.

The reliability of a hypocenter location can be assessed from two sets of information: the quality of the input data and the results of statistical tests. The number of P and S phases used to locate the earthquake (NP and NS), the largest azimuthal separation between stations as measured from the epicenter (GAP), and the distances from the epicenter to the closest and third closest station (D1, D3) are the most important parameters that control the reliability of the hypocenter location. A GAP of more than 180° means that the epicenter is located outside the seismic network; therefore, locations will generally be less reliable. Also, as D1 exceeds hypocentral depth, the reliability of hypocentral depth decreases. Magnitude threshold and location reliability vary throughout the state because of the uneven distribution of stations (fig. 1).

The RMS travel-time residual and the horizontal (ERH) and vertical (ERZ) projections of the maximum axes of the one-standard-deviation confidence ellipsoid reflect the precision of the solution. Because we use simplified velocity models, the RMS residuals probably measure the incompatibility of these models; they only secondarily account for random reading errors and phase misidentifications. Although the precision of hypocentral locations is fairly well indicated by ERH and ERZ, their absolute accuracy is difficult to determine because adequate calibration studies with known sources, such as explosions, have not been performed in the region.

Seismicity south of lat 61° N. (fig. 6) dominantly reflects the subduction of the North Pacific plate beneath the North American plate. A well-defined Benioff zone dips about 45° NW. below Cook Inlet and the Alaska Peninsula. Near lat 60° N., high seismic activity at depths greater than 70 km is typical of the area. The Benioff zone terminates at about lat 64° N. A cluster of hypocenters at an intermediate depth (>50 km) near lat 63° N. (below Mt. McKinley) pinpoints where the strike of the Benioff zone changes from north-northeast to more northeast. The cluster of shallow hypocenters near Fairbanks is characteristic of the seismic activity in central Alaska. Although the seismic-station distribution near Fairbanks is dense and provides the lowest detection threshold throughout the network (with the exception of Augustine Volcano), the concentration of epicenters indicates a very active seismic zone.

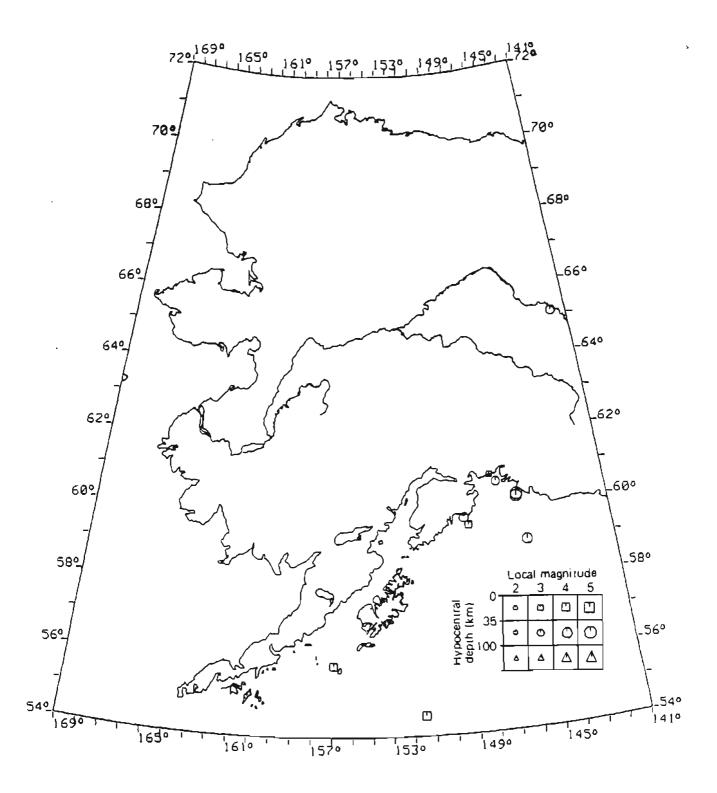


Figure 8. Epicenters of earthquakes that occurred in the third quarter of 1984 and are not shown in figures 4 or 5. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

SIGNIFICANT EVENT

The most significant earthquake that occurred in Alaska during the third quarter of 1984 was an earthquake of M₂ = 5.7 that occurred August 14, 1984, about 80 km northeast of Anchorage. The epicenter, derived by the UAGI, was located 10 km from the surface trace of the Castle Mountain fault. The USGS used additional local and regional station readings and located the epicenter more precisely within 1 km of the surface trace (J. Lahr, written commun., 1984). This location, as well as the alignment of aftershocks, and the first-motion focal-mechanism solution of the main shock strongly indicate that this earthquake was associated with slip along the Castle Mountain fault and that the Talkeetna segment of the fault is currently active.

ACKNOWLEDGMENTS

We thank Tom Sokolowski and the staff of the NOAA Tsunami Warning System in Palmer for helping us to record several of their station signals on a continuous basis. We also thank John Lahr of the USGS for sharing information with us and providing the HYPOELLIPSE computer program.

The operation of the seismic networks and preparation and publication of this report were made possible by support from the Division of Geological and Geophysical Surveys of the State of Alaska and the University of Alaska Geophysical Institute.

REFERENCES

- Biswas, N.N., and Bhattacharya, B., 1974, Travel-time relations for the upper mantle from central Alaskan data: Bulletin of the Seismological Society of America, v. 64, p. 1953-1966.
- Engdahl, E.R., and Tarr, A.A., 1976, Aleutian seismicity Milrow seismic effects: U.S. Coast and Geodetic Survey Publication CGS-746-102, p. 1-54.
- Herrin, E., Arnold, E.P., Bolt, B.A., and Engdahl, E.R., 1968, Seismological tables for P phases: Bulletin of the Seismological Society of America, v. 58, p. 1223-1226.
- Lahr, J.A., 1980, HYPOELLIPSE/MULTICS: A computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern: U.S. Geological Survey Open-file Report 80-59, 68 p.
- Matumoto, T., and Page, R.A., 1969, Micro aftershocks following the Alaska earthquake of 28 March 1964: determination of hypocenters and crustal velocities in the Kenai Peninsula Prince William Sound area, in The Prince William Sound Alaska earthquake of 1964: Washington, D.C., U.S. Government Printing Office, v. 28, p. 157-174.
- Richter, C.F., 1958, Elementary Seismology: San Francisco, W.H. Freeman and Co., 768 p.

APPENDIX A Data for Alaska earthquakes of $\rm M_L$ ≥ 3 that were located during the third quarter 1984.

	01 02 05 05	AR 3	#N 8 50 11 34	TIME SEC 21.7 34.2 1.2 31.0 38.5	58 60 61 62	AT N 3 HIN 47.2 46.9 58.1 45.9 61.7	DE0 (53 (46 (49	NG W 5 HIM 55.8 55.9 45.9 16.5	DEPTH RM 1.7 43.4 41.6 73.3 59.3	HAG NF NS GAP DEG 3.5 12 1 137 3.5 10 2 329 3.1 4 2 308 3.8 13 1 166 3.0 12 7 264	D1 D3 KH KH 23 71 246 297 237 295 126 145 102 149	RMS SEC 0.39 0.16 0.50 0.29 0.42	ERH 2.1 21.6 99.0 1.9 3.4	ERZ Q KH 2.3 C 58.0 D 99 O D 5 1 O 7 1 D
	07	8	35	12.4	61	1.0	150	35.0	98.3	3.3 7 0 314 PALMER NL = 3.4	101 314	0.21	99.0	99.0 0
										FELT III AT ANCHO	RAGE, EAG	LE RIVE	R AND	
	09	14 14 17	14	30.8 51.2 40.4 54.3	60 61	11.7 15.5 50.6 16.2	152 150	4.5 15.1 10.5 22.7	77.9 105.2 77.9 3.3	3.7 17 3 186 3.4 14 4 177 3.1 11 0 253 3.9 8 0 310	52 86 34 87 62 220 171 209	0.34	2.6 2.2 41.8 99.0	2.9 D 3.1 C 50.1 D 89.9 D
	11 11 11 13	7 23 0		25.4 14.1 44.0 49.1 22.6	59 63 57	32.6 52.5 7.1 23.2 42.9	153 150 151	24.4 25.6 21.4 26.2 57.7	77.0 134.1 113.4 41.7 3.8	3.4 18 3 85 3.0 11 10 133 3.0 15 0 103 3.4 8 0 284 3.0 14 7 88	45 48 27 60 99 165 81 102 42 192	0.38 0.21 0.15	1.4 1.8 2.6 9.9	3.3 8 1.7 C 6.3 C 14 7 D 1 7 C
	14	l	3	8.3	61	52.1	149	0.9	3.8	5.7° 18 0 90 NEIS MB = 8.7. SL FELT VI AT PALMER ANCHORAGE. TALKEE	AND WILL TNA. AND	GE Ow. Fel Valde2.	THIS	
	14	l	94	37.3	61	50.2	149	2.4	3 8	EVENT WAS FELT TH ALASKA FROM FAIRS 4.2" 9 0 124 FELT IV AT ANCHOR VASILLA ARBA.	ANKS TO R	OMER. 0.48	3.8	8.4 C
	l 4	7	41	7.9	6١	38.6	1 18	54.3	29.3	3.7° 14 O 143 FELT III AT PALME		0.32	2.0	1.9 C
	l 4	12	34	43.1	66	6.8	143	58.8	111.8	3.0 7 0 209 PALMER HL - 3.9	76 242		17.8	34.6 D
	16	18	26	56.7	54	33.0	151	28.9	31.3	3.7 8 2 348 PALMER ML - 4.5	308 362	0.32	99 0	99 O D
	17	10	l	4 4	93	29.8	156	37 l	41.7	4 5 10 0 280 NEIS MB - 4 6. PA		0.18	77.6	57 7 D
	17 19		2	28.8		34.3		54.8	44.4	3.1 6 0 330	395 601	1 04	99.0	99 0 D 6.9 D
			31	27.7		42.7	_	58.2	39.6	ELT AT ANCHORAGE		PALHER.		ASILLA.
	22	7	35	41.0 32.8	57	56.8	154	56 L 9.6	30.0 17.9	3.3 4 1 341 3.2 6 0 273	66 118		18.1	99 0 D
	23	٥٥	41	51 4	54	32.5	147	53.8	13.4	ELT III AT FORT	ha inwrigh			168 AT
	26	3	12	47.3	60	43.1	181	21 5	94.3	FAIRBAKS AND BIBLS 3,1 10 1 124 PALMER HL - 3.4 FBLT ON THE RENAI	119 140	0.35		11 4 C
	27	6	38	14 8	58	96 8	151	9.4	42.0	3.2 11 2 215	63 78	0.29	3.6	5 2 D
	27	20	41	15.5		93.1		19.3	130.6	PALHER HL - 4 0 4.5 12 2 81	26 62	0.28	2.1	4 5 B
	29	7	20	47.1		28.1	193		191.1	NEIS KB - 4 5 3 3 13 3 139	16 99	0 34	3.0	4 4 C
SEP	30 04	5		29.8	60	17.5	153	4 2	143 B 21 l	3 2 8 4 180 3 8 13 0 217	22 84 31 64		3 2 3.0	2.8 D 1 2 D
										PACHER ML = 3.8 FELT III AT NEAMA AND HEALY			FAIRB	ANKS
	05	18	24	0.6	59	7.3	145	36.3	65 3	4 2 8 0 230 NEIS MB + 4 6	54 317	0 25	11.1	10.9 D
	06 0 6	7 8		33.9 38.8	65 59			56.0 24.6	47 7 81. l	3.8 6 0 202 3.3 5 0 201	229 283 73 77		4.2 5 1	99 0 D
	07	7 19	19	23.8	83	2.0 51 B	148	47 1	33 4	3.9 7 1 288 3.3 7 1 288 FELT 111 AT ANCHO	359 412 128 225	0.10	57.6 37.1	99 0 D 35.8 0

aSee explanation of column headings at end of appendix A.

^{*}Magnitude value determined by Alaska Tsunami Warning System (NOAA Palmer Observatory).

1984 SEP 13	НR	HM	TIME SEC 19.6	LAT N DEG HIN 58 14.1	LONG W DEG HIM 192 43.3	DEPTH	HAG 3.9	ИР 15	Ви	GAP DEG 134	D1 KM 32	D3 EH 56	R#S SEC 0.25	ERH KH	ERZ	•
	12		59.8	61 43.1	151 7.0	73.1	3.2 PALH	8	1 2 L -	227	37	300	0.20	10.0	3.6 6.5	
30	4	! 7	28. l	60 22.5	145 52.0	36.2	FELT Felt	EM V1 III	- 5. AT C	VALOE	A. AN Z. SE	O. BE CHORA WARD,	RKLEY GE. AN	22.9 MS - 5. D Sutto A, Chuo Kr	l DN,	۵
20	4	26	6.4	60 19.1	145 53.7	65.4	4.7° WEIS FELT	KB IV	0 - 5. AT 0	270 I. MS XORDOV	186 - 4. A AND	296 6) Felt	0 34	10.5 T VALDS	5 9 82.	D
	. 5		37.4	60 1.7	151 48.6	73.1	3.2	8	3	203	42	64	0.25	2.7	3.2	
	18 4		24.l 2.2	60 11.6	152 20.5 145 15.9	105.8	3.9	19 6	0	163	39	78	0.25	2.8	6.1 3.8	
	10		31.3	60 3.6	153 5.0	131.6	3.2	9	0	240 139	125	209 69	0 32	6.6 2.4	2.2	
29	-		13.9	63 13.4	151 40.0	45.5	3.0	5	1	333	148	197	0 37	11.3	99.0	
	13		13.4	60 30.2	149 42.8	42.0	3.1	. 9	1	309	143	169	0 35	5.6	9 0	
40	(4	39	20 Z	63 11.8	149 55.6	104 1	3.8°			120	78	148	0.27	2.3	5 5	C
											ers (REEK	AND CA	NTWELL		
	_									NCHOR						
	. 9	3	54 J	59 49.2	153 6.7	114.5	3.3	15	4	88	20	61	0.34	1.6	2.6	
27	ιι	20	8.5	63 23.0	193 35 0	70.4	3.4'	4	0	130	133	304	0 06	41.1	99 0	D
	10		8.0	62 23.4	151 9.5	47 3	4.4	14	٥	65	106	153	0 50	1.9	20 7	
	23		40.3	58 8.8	151 23.2	81.l	3.2	7)	210	79	149	0.39	3.8	12.1	
	B		23.8	61 50.8	150 50.4	83. l	3.0	В	2	107	39	185	0.19	2.3	3.8	
49	14	19	17.0	60 58.9	149 58.3	34.5	4.3	9	0	257	165	177	0.33	18 1 ELT III	15.0	D
														SILLA		
							WILL			5						
20	9	37	81.6	62 50.0	150 37.4	96.3		9	4	174	106	169	0.28	2.1	6.4	D

Explanation for Appendix A

Earthquakes are listed in chronological order. The following data are given for each earthquake.

- 1. ORIGIN TIME in Universal Time (UT): date, hour (HR), minute (MN), and second (SEC). To convert to Alaska Standard Time (AST), subtract 9 hr.
- 2. LAT N, LONG W: epicenter in degrees and minutes of north latitude and west longitude.
- 3. DEPTH: depth of focus (measured in kilometers).
- 4. MAG: local magnitude from maximum trace amplitude. Quotation marks around an entry mean that the value determined by the Alaska Tsumani Warning System (Palmer) was used.
- 5. NP: number of P arrivals used to locate earthquake.
- 6. NS: number of S arrivals used to locate earthquake.
- 7. GAP: largest azimuthal separation between stations (measured in degrees).
- 8. D1: distance from the closest station to the epicenter (measured in kilometers).
- 9. D3: distance from the third closest station to the epicenter (measured in kilometers).
- 10. RMS: root-mean-square error of the travel-time residuals (measured in seconds).
- li. ERH: largest horizontal deviation (measured in kilometers), from the hypocenter within the one-standard-deviation confidence ellipsoid. The quantity measures the epicentral precision for an earthquake. Values of ERH >99 km are tabulated as 99 km.
- 12. ERZ: largest vertical deviation (measured in kilometers), from the hypocenter within the one-standard deviation confidence ellipsoid. This quantity measures the precision of the hypocentral depth. Values of ERZ that >99 km are listed as 99 km.
- 13. Q: reliability of the hypocenter. This index measures precision of the hypocenter location and also reflects the quality of the data used to derive the hypocenter parameters.

APPENDIX B

Data for Alaska earthquakes of all magnitudes that were located during the third quarter 1984.

_	_								
1984 MR MF 81 JUL 02 6 7 59. 02 12 13 15. 02 16 41 38. 02 21 29 39. 03 6 41 12.	6 64 51.8 6 61 15.2 6 61 66.2 8 57 36.0	DEG HIN 147 56.6 151 19.5 149 57.0 153 16.3 152 7.6	63.4 2 71.2 2 20.3	3.5 4 4.5 7 8.5 8 5.0 11 2.2 9	DEG 3 174 2 265 1 180 1 271 4 189	8H EM 6 25 126 205 63 207 49 150 34 62	SEC 0.05 0.23 0.47 0.40 0.31	1.9 5.7 4.8 5.7 2.9	3.2 C 10.2 D 6.0 D 10.3 D 4.4 D
03 7 21 48 03 15 4 17 03 20 13 22 04 1 54 6 04 6 4 24	5 55 20.6 4 59 27.5 6 64 34.0	183 9.0 152 62.7 158 15.1 147 49.9 144 27.7	12.5 2 67.4 1 10.1 0 37.1 3	2.6 13 2.6 5 1.9 9 0.8 6 1.5 7 PALMER HL	2 116 3 158 4 94 1 105 6 327 - 3.7	24 83 44 115 41 57 9 33 425 468	0.41 0.27 0.36 0.16 0.27	2.2 6.2 1.7 1.4 99.0	2.2 C 7.1 C 2.2 C 3.9 B 71.2 D
04 8 44 12. 04 11 37 39. 04 12 46 38. 04 16 27 5. 04 16 29 34.	2 61 34.1 7 64 42.6 7 64 31.4	149 27.9 151 18.6 148 15.6 148 39.6 161 57.1	47.5 2 10.7 (9.0	3.3 12 2.8 7 0.3 5 1.1 7 3.7 8	3 142 1 229 3 134 2 109 3 147	66 155 151 214 14 28 21 42 50 72	0.41 0.62 0.20 0.30 0.12	2.3 14.1 1.0 1.5 1.6	5.1 D 99.0 D 3.2 B 6.2 C 3.3 C
04 18 53 51. 04 20 10 28. 05 4 57 2. 05 11 34 44. 05 13 48 14.	6 59 2.1 2 63 25.0 2 58 57.2	162 57.7 183 0.8 147 17.4 152 18.9 147 45.2	81.8 25.0 54.3	3.5 13 2.5 10 1.7 7 2.3 8 3.3 8	5 136 5 113 3 212 2 139 1 157	37 73 38 46 73 91 36 75 88 116	0.36 0.38 0.62 0.18 0.41	1.5 1.3 2.4 1.9 4.2	2.3 C 2.2 C 98.0 D 4.1 C 1.7 D
08 14 30 20. 05 18 86 5. 06 10 17 7. 06 19 6 52. 07 1 27 12.	2 58 21.0 0 60 6.8 1 59 20.1	152 2.2 151 42.8 152 16.7 153 14.4 151 26.5	4.1 40.0 99.9	2.9 9 1.8 4 1.4 4 2.6 10 3.0 12	3 176 0 203 2 166 3 109 3 246	51 59 48 126 41 89 8 12 73 85	0.34 0.00 1.35 0.97 0.36	2.4 26.2 5.2 1.6 2.5	3.6 D 28.9 D 8.1 D 3.7 C 4.5 D
07 1 32 17. 07 9 56 49. 07 16 21 13. 07 23 25 14. 08 0 16 46.	8 68 51.3 1 65 3.8 0 60 21.5	153 2.2 152 42.9 150 25.6 152 5.7 152 56.7	54.0 2 24.0 1 93.4 3	1.9 6 2.6 12 1.8 4 3.0 12 2.7 14	3 151 4 105 3 333 5 213 6 88	33 63 33 67 64 129 36 94 15 43	0.24 0.25 0.41 0.48 0.36	3.1 1.0 63.2 2.3 1.5	3.8 C 3.7 B 81.3 D 2.8 D 1.7 B
06 2 37 17. 08 4 48 18. 08 7 55 28. 08 18 53 34.	6 60 23.0 9 65 1.6	153 8.3 152 59.8 149 13.2 153 48.5	128.9	3.2 15 3.0 12 1.1 5 2.6 7	2 115 3 222 2 289 2 256	29 55 13 111 51 69 48 86	0.36 0.58 0.15 0.27	1.7 3.0 5.2 3.1	4.0 C 2.7 D 88.2 D 5.6 D
09 18 39 17. 09 18 29 27. 10 0 36 13. 10 2 7 86. 10 7 49 51.	3 59 55.6 5 63 52.4 0 60 22.0	152 44.9 152 43.4 146 58.4 152 6.3 150 20.4	100.9 2 11.9 1 78.7 1	1.6 9 2.7 13 1.7 10 1.5 8 3.0 8	5 102 4 102 1 136 3 215 3 298	42 70 42 68 58 70 37 101 106 137	0.39 0.36 0.30 0.20 0.48	1.6 1.5 1.5 4.4 3.1	2.1 C 2.3 C 1.3 C 3.1 D 7.6 D
10 10 12 20. 10 14 25 38. 10 23 53 41. 11 2 8 50. 11 5 20 44.	5 59 34.9 3 56 46.2 0 59 48.6	150 14.3 152 54.5 152 28.5 153 42.0 153 0.8	98.0 2 8.2 3 78.2 2	2.7 15 2.2 10 3.0 4 2.3 8 2.3 8	2 69 3 74 0 347 2 114 4 159	108 149 20 40 109 100 38 83 43 79	0.26 0.26 0.77 0.26 0.27	1.8 1.4 99.0 2.2 2.0	8.0 C 3.9 B 99.0 D 4.9 B 2.2 C
11 6 31 1. 11 9 6 30. 11 18 2 49. 11 22 27 26. 11 22 30 33.	3 59 13.2 4 63 27.2 5 65 57.2	152 7.3 154 30.7 145 31.0 148 29.4 148 43.9	11.0 1.9 87.1	2.7 9 2.3 10 2.1 6 2.0 6 2.0 12	6 118 4 253 3 134 2 231 1 106	30 58 11 63 17 128 122 149 32 57	0.29 0.80 0.43 0.35 0.24	1.3 2.0 2.0 9.7 2.1	2.0 B 1.9 D 1.6 C 12.1 D 2.5 C
12 5 58 0. 12 6 3 39. 12 11 9 4. 12 20 53 17. 12 21 7 55.	1 64 9.3 0 63 43.1 2 59 35.4	180 18.8 150 16.7 150 83.6 162 28.0 150 84.8	30.5 6.1 68.8	3.7 13 2.2 7 2.1 7 2.7 5 2.9 11	0 129 4 265 3 212 2 174 2 249	49 63 50 81 97 130 45 68 96 146	0.22 0.35 0.40 0.20 0.32	2.0 2.6 2.7 3.7 2.8	2.1 B 7.1 D 1.5 D 3.7 C 3.5 D
13 6 0 24. 13 6 14 46. 13 8 59 51.	9 64 38.8	153 5.1 149 20.9 145 11.1	23.7	2.8 10 1.2 6 3.7 10	7 115 3 301 0 324	27 62 13 63 366 418	0.26 0.49 0.21	1.4 3.1 99.0	1.6 8 1.7 D 61.1 D

^{*}See explanation of column headings at end of appendix B.
*Magnitude value determined by Alaska Tsunami Warning System (NOAA Palmer Observatory).

ORIGIN 1984 HR HN JUL 13 20 3 13 23 6	TIME SEC 17.8 56.5	LAT N DEG MIN 59 45.5 59 47.1	LONG W DEG MIN 156 5.3 152 59.6	DEPTH KM 25.4 107.4	MAG 2.2 2.3	NP 5	NS 3 4	GAP DEG 248 99	D1 KM 107 20	D3 KM 153 56	RMS SEC 0.68 0.19	ERH KM 2.9 1.4	ERZ Q KH 99.0 D 2.9 B
13 23 25 14 2 8 14 4 21 14 5 40 14 11 40	20.5 41.5 18.2 11.9 7.8	59 35.7 58 44.8 62 14.7 63 54.6 59 41.7	152 59.3 154 52.0 151 32.4 148 59.2 153 5.4	84.5 118.8 111.9 6.4 108.9	2.3 2.7 2.0 2.7 3.8	7 10 6 7	3 2 0 0 6	122 224 205 184 73	15 58 29 20 9	38 106 225 75 41	0.13 0.44 0.08 0.39 0.41	2.6 5.6 17.7 8.8 1.5	2.6 C 2.9 D 25.9 D 68.0 D 2.0 B
14 18 12 15 1 8 15 10 55 15 11 58 15 13 51	59.6 40.2 30.0 59.9 14.4	60 8.4 65 0.7 59 39.1 63 25.1 59 47.5	152 56.2 148 36.6 152 16.6 145 31.5 153 19.3	117.3 14.9 78.1 7.8 127.9	2.1 1.8 2.1 2.0 3.2	7 6 7 15	4 3 4 1 5	109 263 162 138 67	32 30 36 19 16	80 53 60 146 48	0.24 0.20 0.31 0.30 0.36	1.8 2.2 1.9 2.5 1.8	2.1 B 1.5 C 2.9 C 1.8 C 1.7 B
15 15 33 15 18 7 15 21 1 16 7 21 16 11 9	15.9 53.1 19.2 50.4 44.7	59 14.5 65 4.7 64 47.9 59 57.7 63 35.2	152 3.5 146 57.2 147 26.4 152 46.3 150 47.9	55.5 11.5 20.0 99.8 26.0	FELT	IV	AT K		HNA L	ODGE.	0.22 0.15 0.36 0.40 0.33 4.1 WONDE		2.7 C 14.0 D 0.8 D 1.8 C 4.3 D
16 11 40	25.2	59 10.6	153 6.5	77.7	2.6	7	5	86	25	41	0.27	1.4	2.3 B
16 16 32	16.3	64 49.1	149 20.5	12.2	1.9	8	2	272	30	71	0.32	1.9	2.0 D
17 1 26	47.9	59 34.5	153 5.4	103.8	2.2	7	3	134	12	67	0.47	3.5	3.5 C
17 3 31	29.3	64 43.9	149 8.2	189.8	2.3	5	1	258	48	64	0.34	27.4	9.4 D
17 21 45	24.9	59 31.0	152 23.7	65.0	2.6	8	3	100	47	58	0.28	1.3	2.7 B
19 3 37 19 10 27	45.7 56.4	59 54.0 59 55.3	148 52.9 152 44.9	40.0 87.9	3.9 NEIS 2.5	10 MB 10	- 4.4 4	296 4 100	113 40	159 69	0.57	6.6 1.7	5.9 D 2.8 C
19 14 11	24.8	60 3.8	152 52.0	111.1	2.3	7	3 2 3	119	40	80	0.16	2.7	2.7 C
19 14 58	6.6	63 27.3	149 17.6	106.1	2.2	12		149	36	126	0.39	2.2	3.4 C
19 19 41	19.2	64 43.2	145 41.1	46.6	1.8	6		318	70	102	0.33	4.4	11.5 D
19 19 59	30.1	59 24.9	152 33.0	63.8	2.0	6	2	147	47	55	0.33	2.1	4.1 C
19 22 40	33.3	64 19.5	148 30.5	16.0	2.1	9	1	78	26	38	0.26	1.0	5.5 C
19 22 43	52.2	64 25.0	148 31.6	6.5	1.2	4	3	231	22	43	0.29	2.6	5.4 D
20 7 49	31.9	57 7.8	155 31.5	95.3	2.6	6	3	286	95	127	0.92	7.7	7.5 D
20 9 45	53.1	59 54.6	152 48.2	93.9	2.8	16	8	111	37	69	0.58	1.3	2.0 C
21 2 19 21 3 35 21 7 12 21 13 15 21 14 40	57.1 17.8 22.4 21.6 25.5	65 7.5 63 54.0 59 39.0 64 48.2 60 5.3	149 16.7 149 4.4 152 21.8 147 22.9 153 0.7	0.2 12.0 91.3 5.1 123.5	1.0 1.6 2.3 1.3 2.7	5 9 6 11	2 0 5 2 2	298 223 95 216 136	62 20 49 22 39	74 104 65 36 74	0.39 0.11 0.26 0.21 0.21	2.8 4.4 1.9 2.3 2.6	99.0 D 2.4 D 2.0 B 10.0 D 2.4 C
22 14 55	7.7	58 14.1	154 26.9	87.2	2.3	5	3	289	66	131	0.17	7.0	5.0 D
23 3 8	19.8	59 41.3	152 18.9	87.4	2.3	7	6	118	38	52	0.30	2.0	2.5 C
23 7 28	21.3	63 56.5	149 11.4	139.8	1.6	8	1	213	27	80	0.19	4.0	7.7 D
23 9 40	50.1	60 5.9	152 3.4	68.2	2.4	9	5	167	53	75	0.27	1.6	2.6 C
23 12 28	30.5	60 0.1	151 46.7	68.5	2.1	6	6	199	39	61	0.24	1.8	2.6 C
23 17 0 23 20 15 24 0 48 24 3 11 24 3 21 24 5 18	33.7 29.8 41.2 50.5 47.5 49.7	59 26.5 59 37.0 62 49.0 63 33.3 63 10.2 60 14.6	152 30.2 152 3.1 149 44.6 150 7.8 150 38.5 152 0.8	67.0 68.9 90.4 108.8 98.9 87.8	3.2 2.3 2.9 1.9 2.2 3.0	8 12 7 6 15	1 6 2 1 3 7	88 126 144 181 306 192	31 110 62 106 46	53 67 166 128 175 83	0.70 0.30 0.32 0.23 0.36 0.44	1.5 1.2 1.7 7.6 4.7 1.7	4.1 C 3.0 C 7.0 D 4.7 D 5.0 D 1.9 D
24 5 54	5.9	64 53.5	148 38.3	0.2	0.6	4	3	237	40	48	0.31	2.0	99.0 D
24 7 49	12.7	63 37.2	147 39.2	84.1	1.7	9	3	159	64	91	0.22	2.1	3.2 C
24 8 29	21.0	63 29.7	149 54.6	2.7	2.3	9	6	171	55	124	0.37	2.2	1.2 D
24 10 5	38.9	59 42.0	152 45.9	100.9	2.7	15	4	86	55	72	0.37	1.3	2.4 B
24 10 6	46.6	64 16.3	148 20.7	47.3	1.2	5	0	283	26	49	0.59	24.5	21.8 D
24 10 16	9.1	59 52.5	152 22.7	83.4	2.1	4	4	140	48	64	0.19	1.9	2.9 C
24 10 34	57.9	63 5.0	151 1.3	127.5	2.2	6	0	299	192	235	0.04	45.1	46.8 D
24 13 54	38.4	65 38.7	148 3.9	28.0	1.8	5	4	329	84	112	0.32	3.6	49.5 D
24 14 57	49.2	60 0.8	152 47.1	90.7	1.8	6	3	120	45	83	0.30	2.5	3.9 C
24 15 3	37.4	59 46.5	151 52.0	53.6	1.9	7	5	126	45	78	0.25	1.6	3.6 B
24 15 50	14.4	57 26.6	152 38 3	61.3	4.5°	5	0	117	22	41	3.09	4.4	7.9 D
24 20 15	4.7	66 6.7	149 5 7	40.7	2.4	7	0	232	148	171	0.31	8.7	99.0 D
25 0 31	51.5	64 40.7	148 41 2	4.5	0.5	4	4	178	22	37	0.11	1.1	9.6 C
25 3 10	8.9	62 9.0	149 1 2	44.0	2.4	9	4	248	96	204	0.40	2.4	48.2 D
25 3 46	6.7	65 18.4	147 59 6	2.0	2.2	7	3	301	46	74	0.40	1.9	3.7 D

ORIGIN 1984 RR MM JUL 25 4 59	TIME SEC 50.5	LAT M DEG HIM 62 39.7	LONG W DEG HIN 149 46.0	DEPTH EM 95.7	4.2 NEIS		0 - 4.:		Di KH 119	D3 KM 187	RHS SEC 0.21	ERH KM 5.7 FELT I	ERZ Q KM 30.3 D
25 5 27 25 6 54 25 7 8 25 9 7	20.3 0.1 28.2 41.3	57 83.8 64 33.8 64 19.4 64 25.8	152 36.9 147 48.7 147 46.0 147 34.7	34.8 12.4 36.8 11.0	ANCRO 2.0 1.5 1.9 1.6						LHER A	2.2 0.7 14.6	
25 9 39 25 12 36	31.4 46.2	60 10.4 61 27.8	153 12.4 157 25.6	155.3 45.7	3.3 4.8° Neis	HB	- 4.3		37 180	70 260	0.33	2.0 7.0	3.2 C 48.7 D
25 13 58 25 15 7 25 15 54	42.5 31.5 31.8	80 59.5 83 54.0 64 32.9	147 15.2 148 44.5 147 22.8	17.7 105.1 6.5	7ELT 2.3 2.4 0.9	7 12 5	AT A 3 4 2	202 141 154		XIAK. 240 71 35	PELT 0.27 0.25 0.21	2.8 2.3 1.6	1.8 D 1.8 C 1.8 C 6.8 C
25 16 22 25 2) 59 25 23 29 26 8 26 26 9 7 26 10 12	16.4 33.1 41.8 3.7 30.3 40.8	59 45.4 64 37.6 56 50.0 58 51.3 57 15.3 59 14.6	152 29.6 147 0.0 184 37.7 153 6.4 154 36.0 152 14.3	77.8 4.5 29.3 41.7 62.4 61.0	2.9 1.1 3.8 2.0 2.7 1.9	15 5 6 4 10 8	5 0 4 5 2	101 226 236 124 204 125	43 29 41 51 45	81 49 115 89 82 65	0.31 0.24 0.68 0.33 0.19 0.17	1.5 2.1 6.6 1.4 3.4	2.3 C 11.0 D 2.4 D 7.3 C 3.6 D 3.3 B
28 14 1 26 14 20 26 16 24 26 16 48 26 17 44	5.8 24.3 46.2 47.0 18.2	59 43.3 58 33.6 61 26.9 59 45.8 63 16.0	153 11.2 155 8.5 146 31.8 153 0.9 149 26.9	109.4 123.7 26.7 117.9 120.0	3.0 2.7 2.5 3.6 2.6	13 7 11 16 12	7 7 0 4 1	99 244 224 79 149	8 84 56 17 58	57 120 175 66 147	0.27 0.36 0.24 0.30 0.39	1.7 4.2 4.9 1.3 2.2	2.4 B 3.6 D 3.9 D 3.3 B 5.2 D
26 18 58 26 21 0 25 21 4 26 23 27 27 1 36	43.3 51.1 55.5 30.2 21.6	59 47.5 60 2.1 62 59.2 63 45.4 64 31.3	152 47.5 153 19 1 151 12.9 148 57.4 147 11.9	77 0 136.3 115.5 27.3 1.3	2.0 2.5 2.0 1.1 1.7	10 8 5 4	6 3 0 1 3	91 154 302 198 171	29 43 141 3 18	70 56 226 92 51	0.33 0.42 0.07 0.26 0.21	1.2 3.3 44.9 6.0 1.6	2.0 C 4.1 C 15.7 D 4.7 D 35.9 C
27 3 3 27 8 53 27 7 28 27 7 29 27 7 39	38.1 10.5 11.2 6.6 51.5	59 53.5 60 4.7 80 35.8 64 12.8 60 4.8	151 42.4 152 48.9 153 7.3 148 58.7 152 54.8	67 3 96.4 155 6 7.0 109.4	2.0 3.1 2.8 0.7 3.7	6 13 12 5	5 4 1	201 107 282 216 95	26 38 28 13 39	48 85 108 52 79	0 21 0 34 0 45 0 42 0 30	2.8 1.7 3.7 3.9 1.9	2.6 C 2.4 C 3 2 D 10.9 D 4.2 C
27 8 39 27 19 22 27 20 31 28 5 32 28 5 37	50.3 38.5 99.4 59.8 33.2	64 19.4 60 4.8 63 84.2 64 47.4 64 17.8	148 30.5 150 48.0 148 36.2 147 36.1 148 2.7	8.4 27.4 106.9 11.8 12.6	1.02.31.7	8 7 5 7	4 9 2 3 2	78 272 151 248 186	26 66 25 15 20	38 81 68 26 54	0.28 0.30 0.14 0.32 0.35	0.8 2.4 3.4 1.9 1.6	4.3 C 12.3 D 4 I C 2.2 D 5 5 D
28 6 38 28 6 46 28 7 42 28 7 53 28 10 41	7.8 28.7 13.4 25.3 26.7	63 1.6 59 97.8 64 5.2 63 52.7 64 8.3	149 24.2 153 27.3 148 23.8 149 4.8 148 38.3	81.5 141.9 28.6 96.2 17.4	1.5 2.8 2.5 1.4 1.4	5 11 4 6 7	1 7 3 0 4	286 78 330 204 139	82 37 93 18 38	186 63 116 82 53	0.16 0.44 0.73 0.35 0.38	7.9 1.8 6.3 9.4 1.3	4.7 D 2.0 B 77.4 D 13.3 D 1 O C
28 11 40 28 12 19 28 13 27 28 16 14 28 20 30	23.7 2.4 40.3 24.0 42.0	63 25.3 62 28.5 63 39.2 59 36.7 59 17.7	150 11.4 149 56.7 147 13.4 182 52.3 151 59.6	100 0 21 7 98 3 85 7 91 2	1.4 2.1 1.8 1.7	5 8 8 9	0 4 4 4 5	322 214 174 78 217	71 107 71 41 31	140 197 85 77 79	0.24 0.39 0.31 0.19 0.18	71.3 5.2 1.8 1.3 3.1	55.5 D 7 2 D 5.7 D 3.3 B 2.6 D
28 21 45 28 22 22 28 22 22 29 0 57 29 0 58	3.9 53.0 44.8 13.2 49.3	64 8.3 59 43.8 64 47.7 59 34.5 59 34.4	148 48.5 153 20.1 147 50.6 152 43.9 152 39.6	0.4 127 1 11.6 76.8 75.3	0.6 2.2 0.8 2.2 1.8	5 9 4 10 7	3 6 3 5	154 105 162 79 81	42 11 12 29 33	93 83 17 68 62	0.22 0.33 0.14 0.31 0.21	1.3 1.7 1.2 1.1	99 0 C 3.6 C 2.4 C 2.2 B 2.3 B
29 4 59 29 8 20 29 9 16 29 11 36 29 13 45	35.6 46.1 34.2 58.0 3.2	59 0.4 63 19.1 60 24.0 63 9.1 62 13.3	152 49 0 149 35.2 152 53 6 150 52.3 151 29.4	63.6 86.1 120.3 66.7 39.6	1.9 1.3 2.5 1.6 2.3	5 6 9 6 8	3 0 7 2 2	165 272 206 193 311	48 58 7 116 212	55 149 99 182 289	0.19 0.05 0.36 0.38 0.28	3.8 18 9 2.3 8.2 54.7	4.3 C 8.5 D 3.1 D 11.1 D 99.0 D
29 13 19 29 16 36 29 22 15 29 23 35 29 23 59	48.4 48.9 19.1 51.8 20.2	63 5 8 60 40.1 63 32.2 62 16.9 60 23.6	151 50.2 152 13.3 149 28.5 149 25 3 152 55 2	42.6 105.4 88.3 73.4 136.7	2 3 3.0 1.6 2.0 3.1	5 8 14	2 5 2 1 5	336 217 319 137 131	161 41 35 116 9	226 125 148 160 98	0.23 0.38 0.13 0.41 0.55	6.3 2.3 14.0 2.7 2.0	99.0 D 3.4 D 3.5 D 5 1 D 2.8 C

1984 JUL 30		TIME SEC 16.3 43.1	LAT N DEG MIN 64 28.5 64 48.8	LONG W DEG HIN 149 16.8 148 58.4	DEPTH KM 9.6 19.8	NAG	ир 5 7	814 0 6	GAP DEG 311 249	D1 K# 15 27	D3 KH 67 57	RMS SEC 0.25 0.35	ERH KH 2.1 1.4	ERZ Q KM 2.7 C
30 30	7 29	14.0	63 8 4	150 50.5	101.5	3.8	9	5	260 112	116	188	0.35	2.7	6.0 D 5.1 C
30	9 21	4.3	64 30.4	149 17.7	14.4	1.1	8	8	236	13	58	0.37	1.1	1.6 D
30 30	10 20 13 38 18 33 20 44 2 16	43.4 29.9 19.2 10.3 17.3	62 31.5 61 2.7 57 49.0 60 25.9 59 57.4	149 6.1 151 21.2 155 55.4 150 46.0 152 13.3	100.0 78.9 128.0 84.8 88.7	2.0 3.3° 4.3° 2.6 2.9	5 11 11 8 13	0 1 0 6	346 256 251 325 136	138 104 126 242 48	229 155 182 428 65	0.13 0.34 0.28 0.20 0.29	99.0 9.7 6.9 99.0 1.4	99.0 D 10.3 D 13.7 D 99.0 D 2.3 C
31	3 45 8 13 14 9 21 11 23 23	43.1 0.5 46.9 5.3 14.5	57 5.6 64 49.0 64 44.2 63 55.6 64 27.7	151 25.5 147 30.6 149 0.8 147 26.1 147 26.2	32.3 10.8 2.1 0.7 1.8	2.4 1.3 0.9 1.8 1.5	5 6 4 10 6	3 6 5 0 8	316 205 246 118 124	62 16 18 36 24	101 30 53 75 31	0.37 0.38 0.32 0.38 0.38	3.8 1.0 1.6 1.4 0.6	1.8 D 2.4 D 17.3 D 3.9 C 17.7 C
AUG 01 01 01 01	3 5 3 8 5 15 5 46	19.7 21.7 3.1 45.4	64 9.3 58 47.2 64 10.4 64 17.0	148 47.8 153 55.8 148 53.3 148 7.9	17.5	1.7 3.5 0.9 1.1	8 12 5 4	8 1 4 5	156 157 210 338	42 23 48 15	49 71 51 44	0.38 0.39 0.19 0.30	0.9 2.1 2.3 1.2	0.9 C 2.3 C 43.0 D 14.3 D
01 01	10 25 14 23 14 24 17 25 18 19	40.3 23.5 7.0 12.6 31.0	56 58.5 59 48.9 62 48.4 64 55.8 59 58.2	155 23.5 152 24.4 149 55.5 146 34.0 161 21.4	94.7 79.7 100.0 15.6 45.6	2.9 2.9 1.7 0.7 2.0	5 14 6 4 8	0 5 5	326 110 346 299 186	131 46 115 23 35	180 60 207 46 50	0.05 0.21 0.12 0.20 0.20	99.0 1.4 99.0 1.7 1.7	93 4 D 2.9 8 99.0 D 3.1 C 3.9 C
01		58.4 11.7 59.4 14.6 38.1	63 43.1 64 26.5 64 56.6 64 17.0 63 83.7	149 17.2 147 58.9 148 39.6 148 24.5 148 58.0	23.4 8.6 8.0 11.5 2.2	1.8 1.2 0.9 1.2 1.3	7 7 5 6 5	4 6 8 6 5	262 111 250 125 200	18 28 26 16	96 29 45 50 100	0.69 0.32 0.16 0.25 0.33	3.2 0.6 1.6 0.9 6.4	1.5 D 2.7 C 6.3 D 3.8 C 28.4 D
02		34.2 26.3 24.1 37.2 45.0	60 46.9 64 49 9 64 30.6 58 31.7 59 10.6	146 50.9 147 21.8 147 56.3 153 55.0 153 13.3	43.4 11.9 12.3 73.9 88.7	3.5 1.0 1.1 2.3 2.7	10 6 6 7 12	2 5 4 3 8	329 227 106 208 70	246 22 9 47 22	297 37 37 92 37	0.16 0.23 0.20 0.33 0.29	21.6 1.4 1.0 2.6 1.3	58.0 D 4 0 C 3.5 B 3 4 D 2.2 B
03 03 03 03	3 13 9 20 6 13	16.9 53.6 49.6 44.8 23.0	84 51 8 57 14.7 59 34.5 60 2.9 64 42.7	150 37.3 153 40.6 152 31.8 152 29.2 149 58.9	30.8 30.0 65.6 104.3 11.9	1 9 1 9 2 3 2 4 1 1	2 5 12 7 5	5 0 12 5 5	338 251 85 130 329	80 37 40 44 48	129 86 96 64 95	0.31 0.46 0.32 0.38 0.34	4.5 17.1 0.8 1.8 2.5	27.4 D 27.0 D 1.9 B 2.2 C 8.8 D
03 04 04		24.0 16.0 22.0 26.2 50.9	62 80.5 59 29.6 60 13.3 64 47.8 64 43.4	151 13.1 153 24.2 152 40.2 149 2.2 147 31.8	94.3 132.6 103.7 8.5 4.5	2.1 2.2 2.5 1.0 1.3	7 11 9 5 6	0 9 5 5	303 72 131 254 174	152 18 23 25 16	239 53 104 58 31	0.10 0.34 0.28 0.11 0.39	46.3 1.4 1.7 1.6 0.9	13.7 D 1.7 B 2.1 8 3.6 D 7.7 C
04 04 04	11 44 16 4 17 41 18 32 20 16	34.9 39.2 0.5 47.2 50.1	62 37.2 64 38.4 64 18.1 64 36.3 64 31.3	149 32.6 150 49.8 148 39.4 148 22.6 149 21.1	94.2 29.3 13.4 22.1 18.1	2.0 1.1 2.1 1.0 0.8	7 3 7 5	5 4 1 4	240 343 135 128 324	128 84 33 20 15	212 133 56 28 67	0.36 0.34 0.30 0.36 0.18	5.0 5.2 1.1 1.3 2.1	4.2 D 99.0 D 6.6 C 3.0 C 1.8 D
05 08	3 43 7 14 11 8 13 5 13 31	59.1 46.3 9.1 47.8 28.2	89 40.5 89 44.3 64 54.5 84 46.4 64 8.2	152 8.3 152 51.6 148 26.7 147 35.5 142 40.5	68.1 91.1 6.7 9.1 73.0	1.9 2.1 0.6 0.7 1.9	8 9 5 4	7 7 5 3 0	120 93 232 280 228	26 23 17 17 127	52 69 42 27 254	0.31 0.36 0.26 0.31 0.32	1.4 1.3 1.3 1.9	2.5 C 2.2 C 4.4 C 3.2 D 57 7 D
05 05 05	14 11 17 34 17 43 19 88 22 48	1.2 31.0 38.5 11.0 41.6	61 58.1 62 48.9 60 51.7 63 26.3 63 47.7	149 45.9 149 18.8 151 8.9 149 17.4 148 58.3	41.6 73.3 59.3 9.4 117.8	3.6° 3.6° 1.3 1.8	1312	2 1 7 4 5	308 166 284 337 141	237 128 102 37 7	298 148 149 129 88	0.50 0.29 0.42 0.31 0.32	99.0 1.9 3.4 3.7 2.8	99.0 D 3.1 D 7.1 D 1.3 D 2.0 C
	6 19	39.0 6.5 20.9 51.5 44.3	64 37.6 65 7.8 63 5.2 36 58.0 58 11.5	147 48.1 148 43.0 151 5.4 152 48.2 151 45 0	23.9 21.8 60.4 60.9 34.1	0.9 1.9 2.8 2.6 2.5	6 6 12 5	4 3 8 4	120 304 335 93 235	2 57 130 45 60	28 75 214 56 84	0 31 0.17 0.48 0.38 0.31	1.2 4.1 12.8 0.9 1.7	0.8 C 2.3 D 24.3 D 2.7 C 1.3 D

ORIGIN 1984 HR MB AUG 06 22 33 06 23 33 07 4 10 07 8 35	TIME SEC 2.3 19.6 48.9 12.4	LAT # DEG MIN 64 49.3 63 29.4 64 38.3 61 1.0	LONG W DEG MIN 147 50.7 151 25.0 146 58.9 150 35.0	DEPTH EM 11.4 5.0 11.7 95.3	NAG 0.6 2.3 1.0 3.3	NP 5 4 7 ER E	NS 4 6 5 0	GAP DEG 159 222 229 314	DI KH 9 128 26 10)	D3 EM 20 166 48 314	RHS SEC 0.30 0.35 0.32 0.32	ERH 1.0 3.3 1.5 99.0	ERZ Q EM 2.2 C 2.3 D 4.7 D 99.0 D
					PALH	III ER.	ΑT	ANCEO	•		E BIVE		
07 10 30	24.7	65 1.3	148 42.7	3.9	0.8	4	3	313	35	60	0.17	3.1	26.5 D
07 11 16 07 11 17 07 14 15 07 14 16 07 22 52	18.6 4.4 30.6 2.1 21.9	60 5.6 63 15.3 58 11.7 60 21.5 63 13.1	152 15.6 149 17.8 154 4.5 151 41.0 150 31.9	83.6 79.6 77.9 70.0 116.8	3.0 1.2 3.7 2.8 2.1	10 5 17 9	8 0 3 0 0	173 340 186 309 291	43 56 52 181 98	72 146 85 287 168	0.29 0.01 0.33 0.27 0.30	1.5 93.4 2.6 99.0 26.1	2.4 C 52.4 D 2.9 D 16.9 D 13.1 D
07 23 49 08 1 52 08 3 38 08 7 29 08 7 37	9.9 42.8 30.4 17.9 40.0	63 14.2 62 59.5 57 49.3 63 35.2 64 52.3	150 38.6 150 49.0 153 58.6 149 22.1 147 30.0	30.4 181.1 47.9 43.5 18.3	2.1 2.5 2.0 1.2 0.8	7 8 4 5	1 3 0 5	330 187 278 315 287	102 119 14 27 14	168 167 69 117 31	0.31 0.32 0.19 0.29	8.0 4.9 3.1 99.0 1.8	4.5 D 16 8 D 2.0 D 99.0 D 0 9 C
08 8 22 08 8 50 08 8 56 08 9 9 08 9 23	58.9 44.8 35.1 22.4 4.2	84 52.9 84 37.7 64 43.9 64 37.5 64 49.1	147 27.5 146 59.8 149 7.4 146 19.6 149 2.5	15.9 13.1 8.9 6.7 1.3	0,6 1.0 1.0 0.3	5 5 5 5	4 5 5 5 5	295 226 260 119 257	16 25 17 21 37	33 49 57 25 60	0.12 0.20 0.26 0.19 0.19	2.3 1.9 1.6 0.8 1.8	2.9 C 3.9 C 4.2 C 5.5 C 38 2 D
08 10 23 08 12 59	44.8	62 56.9 64 55.1	149 34.8 148 58.0	85.7 16.8	1.9	9 5	đ 5	144 264	90 38	150 56	0.37	1.6	3.0 D 4.1 C
08 13 37 08 15 57 08 22 18 08 22 37 09 7 36	24.1 51.6 44.3 10.2 16.3	61 41.8 63 54.9 64 47.7 63 45.4 64 48.8	150 67.5 150 30.4 149 9.2 148 38.4 147 13 6	44.4 19.1 9.4 20.5 18.3	2.7 1.1 1.0 1.0 0.9	10 5 4 5 4	2 5 5 1 4	221 298 274 238 294	44 70 25 15 30	192 101 62 84 44	0.42 0.33 0.15 0.24 0.27	5.1 1.6 1.8 2000 2.9	6.3 D 1.1 D 5.4 D 14.4 D 4.7 D
09 8 14 09 11 15 09 11 30 09 13 41 09 14 43	51.2 13.8 28.4 13.3 40.4	60 15.8 64 57.6 64 67.3 58 1.1 61 50.6	152 15.1 147 46.7 147 46.6 153 27.0 150 10.5	105.2 8.3 6.5 50.6 77.9	3.4 0.9 0.6 2.8 3.1	14 5 9	4 5 4 3 0	177 306 306 125 253	34 7 6 18 82	87 35 34 64 220	0.34 0.23 0.30 0.29 0.25	2.2 1.8 1.6 1.4	3.1 C 1.6 C 1.7 D 1.6 B 50.1 D
09 19 31 10 0 7 10 4 19 10 6 52 10 10 36	21.5 20.8 44.2 44.3 36.3	83 52.3 64 38.9 63 44.9 65 27.7 59 50.5	150 48.8 147 52.6 149 23.6 143 45.4 152 45.6	90.3 19.4 121.7 140.0 80.2	2.3 0.8 1.5 2.4 2.2	6 6 7 4 11	6 5 1 4	307 95 273 256 108	85 23 199 34	113 27 94 218 84	0.41 0.39 0.11 0.61 0.29	3.5 0.8 6.6 22.6 1.2	3.6 D 1.3 C 4.6 D 27.7 D 2.1 B
10 12 27 10 17 7 10 18 2 10 19 38 10 21 14	30.0 54.3 3.3 59.7 54.3	63 30.3 56 16.2 64 37.8 63 19.9 59 45.7	149 36.5 150 22.7 146 56 7 147 19.1 151 58.3	115.3 3.3 16.0 63.5 59.2	2.4 3.9 1.7 1.6 2.2	1 1 8 6 5 7	5 0 4 5 5	229 310 234 187 177	42 171 25 92 39	122 209 50 133 86	0.36 0.19 0.32 0.23 0.35	2.9 99.0 2.4 2.1	1.9 D 89.9 D 1.1 D 4.8 C 2.4 C
11 1 47 11 1 57 11 2 9 11 7 17 11 12 3	33.8 28.4 58.3 14.1 19.0	59 49.9 59 32.6 69 43.1 59 52.5 65 20.3	152 40.9 152 34.4 151 45.8 153 25.8 149 24.5	88.4 77.0 61.8 134.1 33.3	1.9 3.4 2.7 3.0 1.3	16 10 11 5	5 3 4 10 5	238 85 161 133 313	37 45 9 27 83	66 48 37 60 90	0.23 0.26 0.36 0.36 0.47	3.1 1.4 2.1 1.6 3.0	2.9 D 3.3 8 2.2 C 1.7 C 17.2 D
11 12 22 11 13 36 11 13 55 11 14 83 11 15 21	26.8 23.2 48.5 56.9 31.9	64 32.5 59 31.3 62 29.5 64 46.2 59 52.8	150 12.6 151 17.8 148 3.9 149 0.1 152 45.9	17.8 48.2 26.4 1.1 100.0	1.6 2.5 2.3 0.6 2.8	9 12 8	8 4 5 6	302 251 89 246 111	55 17 83 22 80	102 110 143 55 71	0.31 0.26 0.51 0.11 0.31	1.8 2.3 1.8 1.5 1.5	1.1 D 1.4 D 4.7 D 36.1 D 2.3 C
11 19 16 11 23 31 11 23 38 12 2 30 12 5 38	45.8 44.0 54.1 55.4 46.3	84 26.0 63 7.1 65 27.2 59 47.4 59 32.5	149 21.3 150 21.4 144 41.0 153 15.8 152 49.7	18.6 113.4 85.2 116.6 99.7	0.5 3.0° 2.6 3.4 2.2	15 9 8 10	4 0 0 8 5	314 103 162 111 151	21 99 127 15 28	73 165 189 52 71	0.29 0.21 0.15 0.26 0.31	2,2 2,8 3,8 1,4 1,3	2.6 C 6.3 C 16.0 D 2.4 B 2.2 C
12 6 6 12 9 9 12 11 59 12 15 35 12 15 36	54.7 0.5 43.3 1.3 12.8	59 93.2 65 9.3 63 11.8 63 14.5 80 2.3	153 19.8 149 2.0 150 35.8 150 54.5 153 34 7	122.8 12.4 66.2 9.0 155.9	2.9 1.0 2.3 2.5	10 5 6 8	7 4 3 7 5	102 293 332 197 175	27 56 102 113 44	62 65 171 144 62	0 27 0 18 0 57 0 31 0 41	1.5 3.2 7.8 3.5 2.7	1.9 B 12.9 D 10.7 D 2.0 D 2.1 C
12 20 26 13 21 18	47.5 50.8	59 40.1 62 24 7	152 32.5 148 55.6	93.6 39.4	2.1 2.4	10	3 5	95 73	20 92	49 134	0.34 0.32	1.7 3.8	2.9 B 11.7 D

1984 RE AUG 12 22	2 22 3 12	TIME SEC 25.6 21.3 26.5	LAT W DEG MIN 62 29.0 59 27.0 64 26.8	LONG W DEG MIR 151 42.3 152 11.4 147 15.2	DEPTH KM 38.8 55.2 0.1	MAG 2.1 2.1 1.0	7 10 5	#8 3 7 4	GAP DBG 217 100 149	D1 KM 57 35 17	D3 KM 268 55 40	RMS SEC 0 32 0.31 0.24	27.0 0.9	ERZ Q EM 62.3 D 2.1 C 99.0 C
13 1 13 1	29 2 30 2 48 3 41 3 26	49.1 22.3 57.8 39.3 19.0	57 23.2 59 47.3 59 28.2 83 37.2 64 55.2	151 26.2 153 22.7 153 10.4 148 42.6 148 48.0	41.7 123.8 109.4 12.2 17.1	3.4 2.4 2.2 1.5	8 12 9 7 8	0 8 4 7 4	254 115 74 298 253	51 17 21 17 33	102 48 66 100 48	0.15 0.29 0.33 0.31 0.31	9.9 1.5 1.6 1.5	14.7 D 2.3 B 2.1 B 0.9 D 1.0 D
13 8	3 11	5,6 54.5 27.7 40.4 24.4	63 53.4 59 53.3 64 55.9 60 18.7 60 26.1	148 48.7 150 37.3 148 46.5 152 53.0 160 36.2	62.3 33.4 17.5 117.7 2.6	2.1 2.2 1.0 2.7 2.6	9 7 5 9	3 5 7 0	130 279 254 261 243	19 53 32 76 104	74 71 47 101 119	0.28 0.25 0.20 0.32 0.26	3.1 2.5 1.6 3.0 12.3	3.1 B 3.7 D 3.5 C 2.8 D 48.6 D
13 13 13 18 13 28 13 22 14 0	9 54	29.4 33.5 12.0 49.9 22.8	63 28.7 62 59.2 59 14.4 64 43.2 61 42.9	161 9.4 152 23.6 184 11.6 147 32.1 180 87.7	7.6 32.4 4.9 18.6 3.8	1.6 2.5 1.7 1.1 3.0	7 10 5 6 14	7 8 3 8 7	212 132 167 173 86	114 121 10 15 42	159 192 47 31 192	0.38 0.38 0.32 0.38 0.32	2.3 1.8 1.0 0.9 1.1	1.6 D 4.4 D 1.7 C 1.7 C
14 1	2	8.3	61 52.1	149 0.9	3.8	ANCE EVEN	EM VI DARO N T	AT P B. T B FE	ALKEET	AND NA. LOUGE	WILLO V CIKA TUO 1	W. FEL ALDEZ. HUCH O	RIKT	
14 1	54	37.3	61 50.2	149 2.4	3.8	4.2° FELT	. IA 8	AT A	124 NCHORA	23	90	0.45 THE P	3.8 REMER	5.4 C
14 4 14 4 14 6 14 7	2 33 4 26 4 30 4 31 3 13 7 33 7 41	40.1 18.2 48.6 14.2 2.3 53.3 7.9	81 35.0 61 48.8 59 46.5 57 21.5 61 45.1 61 44.2 61 38.8	148 48.5 190 17 9 152 4.3 193 54.7 148 48 3 148 57.8 146 54.3	20.4 47.8 68.1 37.7 28.3 17.8 29.3	YAST 2.1 2.5 2.1 2.8 2.1 2.3 3.7* FELT	9 9 11 5 9	AREA 5 7 1 4 5 AT	204 175 153 244 142 127 143 PALMER	19 67 47 45 25 18 7	240 157 67 90 146 136 57	0.31 0.40 0.26 0.33 0.35 0.41 0.32 LLA	5.0 2.4 1.6 4.2 5.6 2.0	3.1 D 5.0 D 2.4 C 2.2 D 7.9 C 5.7 G 1.9 C
14 12		43.1	66 6.8	143 58.8	111.8	3.0 Palm	ER H	0 L -	209 3.9	78	242	0 35	17.8	34.6 D
		5.0 28.6 57.0 53.9	62 56.3 64 44.6 61 29.6 65 9.2	152 0.3 148 47.4 148 44.6 149 [7.5	24 / 1 16 / 1 33 / 4 19 / 3	2.1 1.9 2.5 1.2	6 8 10 5	3 3 3 9	230 213 229 300	110 23 23 65	212 48 157 76	0.40 0.33 0.34 0.34	5.0 2.2 4.0 1.7	6.1 D 1.2 D 2.7 D 1.0 D
15 10 15 14 15 20 15 21	17 10 10 52	32.9 52.6 56.6 45.5 40.4	59 34.9 58 4.0 64 38.7 64 18.9 64 49.5	153 4.4 154 36.2 149 13.2 149 33.6 148 53.7	93.0 80.4 19.1 16.4 1.0	2.2 2.8 0.6 1.3 1.3	8 9 4 8 5	6 7 5 6 5	83 262 290 244 243	12 111 10 37 29	67 l 46 58 73 53	0.29 0.34 0.35 0.31 0.22	1 5 3 5 1 7 1 6 1 5	2.5 B 6.0 D 1 9 D 0.9 D 47 1 D
16 2 16 2 16 4	0 47 2 31 2 53 1 18 3 21	50.2 30.7 43.3 17.8 54.1	62 5.4 64 33.4 63 8.7 63 14.4 64 49.5	151 16.1 149 24.8 149 57.8 149 51.0 147 16.3	76.4 22.4 87.3 83.1 18.3	2.1 1.8 1.2 1.7 1.4	6 7 5 8	2 4 2 4 3	152 257 175 175 233	18 16 83 71 26	218 68 166 165 41	0.39 0.62 0.24 0.36 0.27	4.4 2.7 11.5 36.2 2.3	4 1 C 1 3 D 4.4 D 7 7 D 1.1 C
16 17 16 17 16 18		45.7 12.9 56.7	61 53.9 68 5.2 54 33.0	150 45.6 153 32.3 151 88.9	67.1 76.7 31.3	2.8 2.3 3.7 PALM	4 3 Jer H	3 2 2 L -	172 257 348 4.5	41 23 308	181 73 362	0.32 0.10 0.32	5.4 3.3 99.0	4.2 D 8.3 D 99.0 D
16 20 17 3	0 0	5.6 46.2	64 50.8 63 25.0	148 44.3	16.5 2.1	1.7	4 8	1 7	299 132	48 50	52 172	0.01 0.34	4.8	1.9 D 1.6 C
17 8 17 10	3 23 1	4.3	57 29.2 53 29.8	154 34.9 158 37.1	32.0 41.7	2.4 4.5	10	0	301 280	57 325	106	0.36	8.5 77.6	8.7 D 57.7 D
17 10 17 10 17 17	38	28 8 43 7 58 3	59 34.3 62 39.9 64 19.1	182 54.8 149 34 2 150 8 2	44.4 64.1 25.5	NEIS 3.1 1.6 2.6	6 8 7	- 4. 0 1	6, PA1 330 213 281	JMER 395 123 59	801 174 100	1.04 0.25 0.15	99.0 11.1 11.5	99.0 D 13.8 D 91.8 D
	42 40 34 317	4.3 26.0 17.5 38.8 8.8 21.2	57 36.5 64 53.3 57 8.2 64 29.5 59 50.5 58 47.6	154 7.4 147 28 8 153 52.2 146 30.7 152 47.2 154 46.4	59.4 19.8 32.8 12.1 83.3 125.3	2.3 1.0 2.0 1.6 2.7 2.6	4 6 2 8 10 8	3 4 3 11 4	280 169 279 272 106 224	27 12 48 23 33 50	80 31 100 69 64 98	0 38 0.24 0.12 0 34 0 34 0.32	3.3 1.4 2.7 2.6 1.1 4.2	3.6 D 0.8 C 3.6 D 1.8 D 1.9 C 3.5 D

ORIGIN 1984 RR MN AUG 18 14 6 18 15 44 18 16 16 19 1 46 19 2 23	TIME SEC 47.5 53.6 5.2 3.5 34.1	LAT M DEG MIM 59 44.5 59 33.0 60 43.6 60 25.4 60 1.7	LONG W DEG HIN 153 23.1 153 30.5 152 17.4 150 57.9 153 20.0	DEPTH EM 126.3 112.7 98.1 28.4 137.4	HAC 2.6 2.2 2.2 1.7 2.6	7 6 8 4 8	NS GAP DEG 5 198 5 158 2 290 4 281 5 209	D1 EM 13 19 43 100 42	D3 RH 106 105 146 117	RMS SEC 0.34 0.27 0.21 0.18 0.34	ERH 2.3 2.6 6.1 2.8 2.6	ERZ Q KH 2.3 D 2.4 C 2.7 D 7.2 D 2.4 D
19 2 52 19 4 31 19 4 42 19 18 34 19 23 38	30.2 27.7 22.2 49.5 55.9	59 41.5 60 42.7 61 37.4 64 31.0 63 40.3	148 39.7 149 55.2 148 49.7 149 52.8 147 24.9	9.1 39.6 39.1 21.6 76.9	3.0 4.0 FELT 2.3 1.2		2 328 0 284 NCRORAGE 3 214 4 274 4 283	147 150 EEN 83 39 76	242 187 AI. Pr 238 90 110	0.15 0.25 ALMER, 0.34 0.34 0.13	51.8 27.9 AND W/ 12.0 2.3 3.3	51.8 D 6.9 D ASILLA, 23.0 D 0.9 D 5.1 D
20 1 44 20 2 32 20 4 29 20 6 48 20 7 34	41.9 0.1 39.6 5.5 41.0	64 47.0 60 51.7 59 21.0 64 33.2 55 56.8	147 46.2 151 1.3 152 59.3 149 16.3 155 56.1	15.4 4.6 70.9 20.0 30.0	0.5 2.2 2.2 1.2 3.3	5 4 7 6 4	9 148 3 301 7 177 2 250 1 341	13 108 25 10 222	16 158 60 62 290	0.21 0.25 0.27 0.38 0.23	1.1 44.8 1.7 3.1 99.0	1.9 C 42.4 D 2.7 C 1 2 D 99.0 D
20 12 30 20 13 8 20 14 8 20 14 10 20 14 20	10.9 45.3 34.2 39.8 0.3	83 8.3 59 52.8 64 37.9 64 38.3 64 21.0	148 27.0 152 49.9 148 45.6 147 48.8 150 6.3	69.6 98.1 3.8 24.0 16.4	2.3 1.5 0.9 1.9 2.7 PALM	12 5 6 10 13 ER HL	7 182 4 110 4 165 3 94 3 99 - 3.2	71 34 16 1 90	150 65 37 26 106	0.38 0.23 0.36 0.27 0.42	1.4 1.7 1.9 1.1 1.2	2.7 D 2.5 B 10.0 C 0.8 B 3.0 D
20 18 43 20 19 43 21 3 15 21 6 10 21 10 47	39.9 46.9 54.2 48.9 6.5	64 48.6 59 50.3 64 51.5 64 50.1 57 48.1	148 4.2 152 37.7 148 58.9 147 28.2 153 4.9	3.0 76.3 2.9 0.9 24.1	0.5 2.2 0.9 0.2 1.9	3 11 6 5	2 176 7 120 6 250 4 204 2 142	22 40 32 17 29	55 72 57 26 60	0.13 0.29 0.16 0.16	2.3 1.4 1.5 1.2 1.6	32.8 D 2.1 B 18.4 D 32.6 D 8.4 C
21 14 7 21 15 22 21 18 18	34.7 19.5 31.5	65 2.5 64 30.7 57 21.6	148 26.1 147 13.5 151 30.7	19.8 0.0 39.8	0.9 0.8 2.7	3 4 8	2 312 3 183 1 254	28 18 47	53 42 97	0.14 0.34 0.33	4.4 2.9 5.6	9 0 D 99.0 D 1.6 D
21 18 44 21 19 2 21 19 4 21 20 9 22 3 21	57.4 56.1	65 40.7 63 3.4 64 25.8 64 48.1 59 49.4	144 53.5 149 27.6 147 26.9 147 32 2 152 22 7	52.5 92.3 13.9 9 9	1 9 2.8 1.4 0.4 2.8	12 7 3 5	5 350 1 224 3 220 4 197 3 211	140 80 28 16 45	179 171 53 32 70	0 56 0 23 0 24 0 22 0 31	10.9 6.9 1.9 1.3 2.0	29,2 D 6.3 D 2.5 C 3 6 C 2.5 D
22 4 3 22 9 49 22 14 35 22 14 36 23 23 31	2.4 32.6 51.7	84 39.2 84 55.4 57 6.6 62 18.3 63 19.4	147 49.8 148 9.0 154 9 8 148 0.8 147 18.0	14.1 41.3 17.9 74.8 45.9	0.3 1.9 3.2 1.8 2.5	5 6 4 10	3 111 0 209 0 273 0 272 3 88	24 11 66 166 95	28 35 118 261 134	0.17 0.31 0.34 0.10 0.43	2.1 3.7 16.1 99.0	4.0 B 3.9 D 12.1 D 51.2 D 19.7 D
23 3 24 23 6 11 23 6 33 23 9 1 23 11 11	3.7 51.6 58.0 36.9 49.4	64 16.3 62 85.1 62 59.5 64 46.9 64 37.9	149 44.9 150 44.5 150 0.9 147 22.5 147 51.9	17.8 109.6 8.8 1.3	0.9 2.3 1.9 0.3 0.5	5 10 9 4 5	4 257 2 297 5 256 4 236 4 153	47 128 99 23	83 202 183 25 26	0.38 0.26 0.39 0.33 0.25	3.5 7.0 2.6 1.4 1.6	1.2 D 6.1 D 3 4 D 30.9 D 1.6 C
23 11 28 23 11 37 23 12 28 23 19 18 23 20 41	18.6 30.7	80 53.6 68 3.4 62 64.7 59 25.9 64 32.5	151 53.5 140 56.0 149 29.1 154 32.6 147 53.6	7.5 0.2 88.6 18.0 13.4	FELT	111	4 248 3 332 4 341 3 230 0 83 AT FORT	AY I HAI	RIGHT	. ALSO	FELT A	5.3 D 99.0 D 3.4 D 6.1 D 1.6 8
23 20 46 23 21 1 23 21 7 23 22 34 24 16 23	51.8 38.3	64 30.9 64 32.7 64 32.3 63 13.6 56 45.6	147 50.3 147 53.3 147 55.1 149 3.3 152 37.0	13.3 9.0 16.7 64.3 13.0	1.4 0.8 1.5 1.9	7 7 8 10 7	2 190 2 121 1 102 7 262 4 94	13 12 11 57 21	38 34 34)51 84	0.27 0.15 0.20 0.24 0.21	1.1 1.2 1.1 2.0 2.4	1.8 C 1.7 B 1.7 8 2.2 C 4.1 B
24 16 42 24 23 1 25 0 9 25 1 47 28 3 25	52.5 19.9 21.0	84 47.6 84 34.8 84 9 3 64 32.5 84 80.0	149 17.9 149 20.8 148 2.3 147 52.9 148 54.0	23.1 2.3 6.5 13.8 18.3	0.7 1.5 1.5 0.9 1.4	4 8 6 8 7	2 289 1 255 1 205 1 107 3 255	28 82 35 12 36	68 74 64 34 36	0.37 0.38 0.10 0.18 0.19	5,4 6,7 6,7 1,5 2,7	3.3 D 99.0 D 23.5 D 1.5 B
25 6 16 25 9 4 25 11 41	6.6	64 51 3 61 50.5 58 36.6	146 37.2 151 43.4 152 25.1	10.6 ° 63.1 10.1	0.7 2.1 2.5	5 4 6	4 286 3 233 4 142	23 168 3	45 259 99	0.18 0.23 0.24	2.3 5.1 1.6	4.8 D 8.6 D 1.1 C

1984 H AUG 25 1	RIGIF R HW 14 37 3 32	TIME SEC 1.1 47.3	LAT # DEG HIN 58 44.4 60 43.1	LONG W DEG H(N 152 51.8 151 21.5	DEPTR KM 10.0 94.5	HAG NP NS 2.5 8 4 3.1 10 1 PALMER HL -		D3 RMS EM SEC 74 0.29 140 0.35	ERM ERZ Q KM KM 1.3 2.2 C 4.7 11 4 C
2 6 26 26 2	4 12 6 37 21 58	22.3 2.3 34.3	84 56.5 84 51.1 84 32.5	147 8.6 147 22.0 147 50.8	17.0 3.2 11.9	FELT ON THE 1.0 4 2 0.5 6 4 1.3 6 2	290 13 162 21 128 12	1NSULA 46 0.17 37 0.25 35 0.11	2.8 4.6 D 1.5 12.3 C 1.2 3.9 8
27	0 54 4 58 6 38	27.3 27.2 6.0 14.8	64 35.7 64 19.2 63 55.3 55 56.8	147 45.9 146 4.7 149 59.3 151 9.4	10.6 18.8 15.7 42.0	1.3 6 2 1.1 6 5 2.5 6 0 3.2 11 2 PALHER HL =	110 6 180 17 289 49 215 63	32 0.26 56 0.38 111 0.27 76 0.29	1.2 3.3 B 1.0 2.0 C 22.0 3.6 D 3.6 5.2 D
27	9 14	33.4	59 9.2	131 43.9	38.2	1.7 6 8	178 37	68 0.17	1.5 3.0 C
27 I	10 45 15 0 10 41	43.3 24.6 15.5	64 54.5 64 47.4 59 53.1	148 48.7 147 31.5 153 19.3	22.7 13.0 130.6	1.2 5 5 0.7 5 6 4.5 12 2 NEIS HB = 4	297 33 201 18 81 26	56 0.32 23 0.17 62 0.28	1.8 0.8 D 1.3 2.8 C 2.1 4.5 B
	81 15 8 47	58.5 21.8	68 11.2 64 48.8	149 88.8 148 45.0	130.9	2.2 6 2 0.8 6 5	188 86 222 29	246 0.32 46 0.25	7.9 12.9 D 1.2 21.1 D
28 28 28	9 34 0 32 1 10 3 40 4 27	31.2 22.6 58.7 31.8 45.9	64 37.0 64 38.6 63 10.0 61 1.5 61 0.8	149 12.6 146 53.8 150 52.6 151 36.6 151 33.5	18.0 0.9 130.0 54.6 61.8	1.1 7 6 2.1 6 2 1.8 5 1 1.8 3 3 1.8 3 3	251 8 190 11 296 160 309 93 308 94	56 0.36 52 0.35 223 0.05 177 0.28 177 0.16	1.8 0.8 D 1.5 2.7 D 16.4 27.7 D 4.1 9.3 D 4.6 8.9 D
28 2 29 29	19 12 20 23 0 3 2 15 4 43	16.4 12.5 0.2 20.8 15.5	63 14.2 58 1.9 60 9.5 64 39.3 64 23.5	150 1.6 154 19.5 152 5.8 149 14.8 149 19.0	80.6 72.4 89.8 3.4 14.9	1.9 6 0 2.6 6 1 2.7 5 1 0.9 5 5 0.7 4 4	291 167 300 108 265 47 291 12 223 24	200 0.26 134 0.12 116 0.09 59 0.30 74 0.26	61.3 29.9 D 15.0 10.8 D 16.8 23.7 D 1.7 10.3 D 1.0 3 4 C
29 29 29 1	5 2 7 20 7 21 4 12 8 12	18.1 47.1 6.2 7.7 26.1	59 53.9 60 28.1 61 31.0 60 46.1 64 46.3	153 28.5 153 2.7 150 58.3 150 30.2 147 30.4	126.9 151.1 64.4 20.2 14.2	2.2 6 4 3.3 13 3 2.7 11 0 2.1 4 3 1.5 7 2	140 31 139 16 253 60 303 130 134 20	70 0.32 99 0.34 268 0.37 156 0.28 25 0.36	2.7 2 3 C 3.0 4.4 C 9.8 7.3 0 23.4 72.5 D 1.1 4.9 C
30 30 30	2 29 2 29 5 31 5 50 9 39 4 44	44.0 22.3 29.8 17.3 39.7 21.9	64 47.3 64 47.2 60 17.5 59 48.0 63 59.9 64 62.9	147 30.3 147 35.2 153 4.2 150 4.5 147 21.1 149 1.0	7.6 11.7 143.8 78.7 1.4 12.8	0.4 4 5 0.8 7 6 3.2 8 4 2.8 5 4 1.4 8 5 0.9 8 6	209 19 122 16 180 22 310 72 127 76 256 34	23 0.15 24 0.39 84 0.34 165 1.17 93 0.37 58 0.25	1.2 4.5 C 0.7 2 0 C 3.2 2.8 D 4.4 4.6 D 1.0 2.0 D 1.6 4.9 C
30 2 30 2 31 1	5 46 11 36 11 37 8 24 11 34	7.9 48.4 3.7 2.8 46.5	59 46.6 61 23.7 58 22.7 60 53.8 59 50.3	152 39.5 148 40.2 154 35.3 150 53.8 152 48.3	114.6 26.1 4.0 22.3 80.8	2.5 6 1 2.6 9 4 2.2 5 2 2.6 3 3 1.9 7 6	108 59 240 33 223 82 304 116 109 32	70 0.19 165 0.39 91 0.27 154 0.35 66 0.27	2.7 8.0 C 3.4 2.7 D 4.2 4.5 D 18.0 58.3 D 1.5 2.3 B
01 01 01 1	1 31 6 0 9 5 9 40 20 31	30.1 27.6 42.0 12.9 54.3	64 47.9 59 25.2 59 24.3 64 40.0 60 3.1	147 31.8 153 21.3 153 20.7 149 10.6 152 59.9	13.2 111.3 100.7 15.0 111.2	0.3 5 3 2.1 6 5 2.0 7 5 0.8 3 2 2.7 11 5	199 17 171 10 131 9 317 11 130 43	22 0.14 57 0.23 56 0 31 56 0 00 73 0.33	1.5 2.9 C 2.8 1.9 C 2.2 2.5 C 3.5 3.3 D 2.3 2.4 C
02 02 02	0 32 6 3 6 56 7 36 9 56	53.3 10.0 55.9 20.6 31.1	80 1.7 84 45.8 85 27.7 60 14.1 60 0.3	153 11.9 150 28.1 147 53.5 153 8.1 192 57.6	100.0 20.5 13.7 138.3 104.6	2.8 å 0 1.7 5 5 1.0 5 4 2.4 8 3 2.2 7 5	333 470 335 70 326 58 174 29 154 42	548 0.35 118 0.22 72 0.23 77 0.31 73 0.30	99.0 99.0 D 3.7 1.4 D 3.5 1.4 D 3.2 4.2 C 2.7 3.4 C
02 1 03	6 11	44.5 15.1 53.0 13.4 4.1	89 54.1 59 66.2 60 3.0 69 29.3 64 40.0	153 27.3 151 51.9 151 15.4 149 54.1 149 18.5	129.0 153.4 53.1 49.3 17.3	2.8 11 5 2.7 6 1 2.2 7 4 1.9 6 3 0.8 5 5	140 30 238 33 242 49 316 109 297 13	61 0.37 58 0.36 67 0.33 119 0.36 62 0.20	2.1 1.9 C 5.1 4.0 D 2.8 4 0 D 4.9 24.9 D 1.8 2.2 C
03 1	0 4	21.7	58 42.8	150 40 3	7.4	2.2 5 1 PALHER NL -	285 98	99 0.31	33.2 35.3 D
03 1 04	3 16 7 51 4 12 8 47	\$2.6 \$.7 \$5.1 \$8.9	61 26.8 64 20.0 58 37.6 64 51.1	148 3 5 148 34 4 155 16 8 149 8 0	38.7 [].2 [4.9 2)]	2.3 10 2 1.3 7 4 2.2 3 2 3.8 13 0 PALMER HL =	274 80 138 28 248 131 217 31 3.8	229 0.12 51 0.18 144 0.12 64 0.32 ALSO FELT AT	7.9 7.6 D 1.3 6.6 C 99.0 99.0 D 3.0 1.2 D

ORIGIN 1984 HR HM SEP 04 13 21 04 14 52	TIME SEC 50.2 22.1	LAT # DEG MIN 60 25.0 58 56.6	LONG W DEG HIN 152 32.3 154 24.1	DEPTH EU 89.5 118.7	HAG 2.5 2.4	หค ห 3 7	IS GAF DEG 1 232 3 203	D1 KH 13 27	D3 KH 123 95	RMS SEC 0.00 0.26	ERH KM 27.7	ERZ Q KH 6.3 D 5.0 D
04 16 6 04 18 0 04 20 36 05 4 9	11.3 22.3 28.9 13.7	63 9.7 62 13.9 58 11.0 60 10.1	151 9.3 151 22.0 153 3.3 150 3.0	103.3 78.5 48.2 9.4	2.6 2.8	9 7 13 4	3 203 1 186 2 106 4 302	128 29 15 98	188 285 64 153	0.25 0.41 0.30 0.16	5.4 6.9 1.7 31.3	8.6 D 7.2 D 3.2 B 30.8 D
05 9 57 05 18 24	55.7 0.6	64 28.5 59 7.3	146 52.6 145 36.3	0.1 65.3	1.3 4.2° Wris	9 8 - 8H	2 177 0 230 4.6	9 54	58 317	0.19 0.25	1.8 11.1	89.6 C 10.9 D
06 3 5 06 7 21 08 8 29	4.5 33.9 58.8	59 48.4 85 7.3 59 6.1	152 38.3 141 56.0 152 24.6	88.6 47.7 81.1	1.4 3.8 3.3	5 6 5	4 121 0 202 0 201	37 229 73	70 283 77	0.19 0.17 0.04	3.0 4.2 5.1	3.9 C 99.0 D 18.4 D
08 14 8 06 22 49 07 7 19 07 6 35 07 18 38	24.5 38.0 23.8 59.4 58.7	81 36.3 64 54.4 83 2.0 59 50.4 83 32.2	148 55.0 148 15.7 148 47.1 153 24.1 149 55.3	32.9 12.8 33.4 143.4 104.2	2.1 0.4 3.9 2.9 1.8	8 5 7 7	5 244 4 213 1 286 4 273 5 184	32)2 359 23 34	171 45 412 101 161	0.47 0.23 0.10 0.20 0.39	3.4 1.8 57.8 2.5 2.1	1.4 0 2.1 C 99.0 D 2.5 D 2.4 D
08 1 54 08 2 27 08 9 59 08 13 13 08 15 37	23.4 39.7 55.7 30.7 18.2	64 47.9 60 24.3 57 53.1 60 4.2 80 24.6	147 27.5 152 23.0 152 47.3 152 36.0 151 10.8	4.0 83.0 63.1 97.2 43.4	0.8 2.3 2.6 2.3	5 7 8 7 5	3 142 4 232 3 198 8 142 5 271	21 21 23 40 88	33 113 166 86 107	0.08 0.28 0.30 0.27 0.33	1.0 2.4 4.5 1.9 2.5	13.3 C 4.0 D 5.9 D 2.7 C 4 5 D
08 23 28 09 2 5 09 2 14 09 13 41 09 20 47	40.7 47.2 29.8 33.4 37.7	84 33.0 59 30.6 61 17.6 60 1.6 63 18.5	147 8.3 152 48.5 150 44.9 153 13.2 147 21.3	2.7 84.9 40.2 132.9 64.9	0.7 2.2 2.6 2.8 1.6	6 5 9	4 165 6 92 4 280 7 145 5 191	18 29 147 50 79	47 70 209 78 101	0.34 0.33 0.28 0.30 0.41	1,1 1,3 3,6 2,1 1,8	11 9 C 2.8 C 8.3 D 2.8 C 3.2 D
09 22 26 09 23 4 10 2 17 10 2 25 10 5 4	32.7 44.5 4.5 52.1 30.3	59 44.9 60 34.6 60 2.8 59 51.0 80 8.1	152 45 6 150 57.1 151 22.3 152 52.8 152 2.8	93.1 25.3 54.6 95.1 70.2	2.1 2.7 2.0 2.4 2.2	7 6 6 10 1	7 106 4 267 5 234 10 101 5 197	29 102 46 30 51	75 118 65 64 78	0.33 0.37 0.34 0.38 0.32	1.2 2.6 2.2 1.3 1.7	2.2 C 10.4 D 3.0 D 2.0 C 2.7 D
10 7 39 10 11 23 10 12 10 10 19 22	5.9 0.5 45.6 31.8	64 46.4 63 27.1 64 13.8 60 51.8	147 24.3 145 32.3 148 10.7 151 1.0	6.8 3.2 14.3 12.3	0.8 2.2 1.0 3.3	6 9 8 7	5 150 3 134 5 98 1 288 1 ANCEO	24 18 13 128	36 127 50 225	0.22 0.81 0.35 0.39	0.8 2.7 0.9 37.1	8.4 C 3.1 D 2.1 C 35.8 D
11 8 3 11 17 54 12 7 24 12 7 51	56.2 35.3 57.6 19.4	64 46.5 59 20.9 62 0.3 57 56.9	148 55.3 152 39.0 150 24.0 183 16.8	16.4 34.7 4.2 41.7	0.8 2.9 2.7 2.4	6 7 10	5 238 2 333 2 258 5 106	27 147 218 11	55 189 290 54	0.37 0.92 0.28 0.28	1.8 99.0 9.8 1.9	1.0 D 99.0 D 12.1 D 2.5 B
12 9 35 12 1) 86 12 22 52 13 2 50 13 4 8	34.1 8.5 26.8 41.1 19.6	58 53.8 59 43.0 63 26.0 63 33.8 58 14.1	154 28.3 152 44.2 150 12.3 150 13.1 152 43.3	123.9 83.0 77.7 163.3 54.0	2.5 2.7 1.9 2.1 3.9	12 9 4 5	6 207 5 97 1 197 1 196 1 134	33 29 71 68 32	77 62 176 189 56	0.30 0.28 0.51 0.88 0.25	1.9 1.8 27.4 2.8 1.7	3.4 D 2.4 B 12.6 D 8.1 D 3.6 B
13 5 37 13 7 32 13 20 12 14 5 53 14 22 57	33.9 1.7 37.8 49.2 21.3	62 15.7 63 28.9 58 13.5 64 22.5 61 48.0	151 10.0 149 26.0 155 50.1 149 28.6 150 0.3	78.7 106.3 139.7 12.7 44.0	2.1 2.8 3.0 1.2 2.6	9 8 9 7 8	1 170 4 262 2 278 4 241 3 169	37 37 133 30 32	208 123 150 76 141	0.25 0.30 0.29 0.32 0.47	9.5 4.4 9.3 1.7 3.6	9 9 C 2.2 D 6.7 D 1.1 D 5.4 D
16 5 0 15 6 55 15 7 58 15 12 51	36.6 43.0 97.1 59.8	63 27.5 63 28.5 64 36.7 61 43.1	145 27.0 148 56.6 147 43.4 151 7.0	1.7 95.3 13.0 73.1	2.3 2.0 0.6 3.2 Palhe	8 10 6 6	2 136 6 130 4 107 2 227 - 3.2	20 34 8 37	128 97 31 200	0.40 0.33 0.32 0.20	2.0 1.3 0.8 10.0	2.7 C 2.1 C 2.8 C 6.5 D
15 13 10	38.9	64 46.L	147 27 8	9.6	0.4	5	8 141	21	23	0.23	1.0	3.8 C
13 18 29 18 8 15 16 8 39 18 12 38 16 12 47	52.2 20.6 37.7 26.5 12.9	64 21.1 60 36.7 61 44.0 59 49.6 64 48.5	149 36.4 152 1 0 148 45.2 152 39.9 148 54.2	13.2 84.3 20.7 88.7 16.7	1.4 2.1 2.3 2.5 0.9	8 5 7 6	6 251 4 277 3 147 5 116 3 236	36 47 23 37 27	76 129 146 66 54	0.33 0.28 0.27 0.29 0.24	1 5 2.6 5.1 1.8 2.5	0 9 D 2.8 D 4.8 D 2.7 8
16 14 10 16 15 29 16 16 51 16 17 21 16 17 50	51.6 17.5 54.7 58.9	62 57.6 60 30.2 62 4.6 59 55.0 62 22.0	149 41 8 153 7 0 151 7 5 152 28 1 151 7 9	81.3 129.1 108.4 93.9 69.3	1.6 2.7 2.5 2.5 2.4	9 5 5 11 7	2 148 3 259 1 213 5 136 2 176	94 21 24 52 48	175 100 257 59 188	0.40 0.20 0.12 0.35 0.30	1.7 3.6 24.8 1.4 2.3	3.3 D 4 3 D 6.7 D 2.2 D 6.2 D

1984 RR SEP 16 22 17 C	42 28	TIME SEC 53.8 2.4	LAT N DEG MIN 63 6.1 60 3.8	LONG W OEG MIN 180 50.3 183 20.4	DEPTH EX 119.1	#AG 2.0 2.8	9 6 6	ns 2 5	GAP DEG 191 234 112	D1 KM 118 44 77	D3 XH 147 104 138	RHS SEC 0.31 0.35 0.38	ERR KM 2.6 3.4 4.0	ERZ Q KM 4.1 D 2.4 D 7.3 C
17 E	12 20 30 24	12,2 58.3 19.0 10.8 16.0 58.3	59 28.9 62 56.0 59 17.8 59 11.0 61 58.3	149 46.3 152 46.7 149 14.1 153 33.9 153 32.0 149 48.9	73.2 78.5 85.8 101.9 113.8 72.8	2.4 2.7 1.7 2-1 2.3 2.3	12 9 8 10	8 3 6 3	79 134 143 114 138	32 67 12 23 50	40 162 65 46 206	0,30 0,34 0.38 0.33 0.52	1.4	2.6 B 2.9 C 3 9 C 2.7 C 3.7 D
17 2 17 21 18 9 18 10 18 23	14 32 31	37.2 17.4 56.0 43.3 4.0	61 5.8 64 36.8 60 8.1 89 86.6 58 53.4	151 2.7 147 0.1 150 14.9 152 47.8 150 3.6	33.5 3.2 10.5 89.0 90.8	2.7 1.1 2.3 2.3 2.5	5 7 5 9 8	2 2 5	311 198 319 114 284	120 23 83 41 98	183 46 174 72 134	0.25 0.24 0.19 0.31 1.11	4.4 1.9 27.2 1.3 3.3	99.0 D 15.2 D 37.5 D 2.3 C 4.7 D
19 1 19 10 19 12 19 13	48	23.3 27.1 28.3 0.9 46.8	59 13.6 64 35.7 64 56.7 64 45.1 64 40.4	152 36.2 147 43.5 147 30.6 148 59.4 147 43.1	67.3 11.9 9.0 21.2 24.6	1.0 1.3 1.0 0.8	9 7 7 8 7	5 4 5 5	101 99 164 238 108	46 7 7 20 5	84 33 36 53 29	0.30 0.36 0.36 0.38 0.40	1.5 0.7 1.4 1.9 0.9	2.8 C 2.5 C 2.3 C 0.7 D 1.3 C
	59 17	31.0 28.1	59 57.7 60 22.5	152 43.7 145 52.0	99.3 38.2	FELT	HB IV III	= 5. AT C : AT	VALDES ORDOVA	A, ANG	CHORA	GE. AN	1.9 22.9 HS = 5 D SUTT R, CRU	ON.
20 4	28	8.4	60 19.1	148 53.7	65.4	4.7' NEIS	15 HB	0 - 8.	270 1. 88	186	296 0	0.34	10.5	8.9 D
20 5 20 20	11	37.4 44.3	60 1.7 64 19.1)51 40.6 148 27.1	72.1 15.0							0.28 0.40	T VALD ITINA. 2.7 1.1	3.2 D 2.8 C
21 1 21 2 21 11	46	11.7 44.8 28.3 32.2 43.7	62 13.6 63 8.7 65 25.8 62 56.1 64 43.1	148 36.0 180 34.1 149 80.0 151 14.5 147 28.8	41.8 101.0 27.1 108.2 19.1	2.0 2.2 1.6 2.1	8 5 9 7	3 2 2 4 3	138 162 316 201 141	80 107 108 107 19	169 132 132 169	0.87 0.24 0.08 0.36 0.71	2.8 7.6 6.5 3.7	55.3 D 6.7 D 99.0 D 4.9 D 1.3 D
21 18 21 18 21 20 22 2	54	34.7 38.3 48.5 48.9	60 19.6 60 0.6 61 44.4 64 22.5	193 45.2 152 7.1 150 44.7 147 28.4	197.4 80.1 68.5 4.3	2.8 2.6 2.4 0.9	11 9 11 6	4 2 2 4	109 175 203 144	56 47 49 28	81 67 181 32	0.31 0.34 0.42 0.30	3.6 2.1 4.8 0.7	3.2 C 5.2 C 4.7 D 9.1 C
22 5 22 18 22 18 22 16 23 4	112	37.5 24.1 36.8 18.2 2.2	57 58.5 60 11.6 64 51.0 64 50.5 61 17.8	184 43.6 152 20.5 147 30.8 147 30.4 148 18.9	83.2 105.8 9.2 4.4 8.7	2.7 3.9 0.9 0.7 4.2	12 19 6 5	8 8 8	235 163 130 132 240	60 35 18 17 125	129 78 30 30 209	0.34 0.25 0.21 0.28 0.10	2.2 2.8 0.7 1.1 6.6	3.0 D 8.1 C 3.0 B 7.0 C 3.6 D
23 6 23 12 23 13		46 0 48.2 55.1 13.5 58.8	68 3.3 64 42.4 65 5.3 60 18.5 64 40.1	146 13.8 148 41.6 148 34.2 153 7.5 148 38.3	23.6 14.6 18.5 138.1 11.8	1.1 1.3 1.3 2.7 0.8	4 5 7 6	4 2 8 1 3	243 247 258 113 168	26 36 35 23 23	90 54 61 83 34	0.57 0.58 0.33 0.31 0.31	1.9 1.6 1.3 2.8 1.7	0.9 D 10.2 D 0.9 D 4.8 C 4.0 C
24 3 24 6 24 9	55 2 53 10 10	25.0 45.0 51.6 47.3 16.9	65 23.8 83 20.4 87 4.4 64 28.8 84 41.3	148 49.7 149 2.5 153 27.6 146 52.2 147 30.1	7.4 83.4 36.3 1.9 0.3	2.0 1.9 2.7 1.0 0.2	10 9 5 5	3 7 9 3 3	221 263 260 229 131	71 44 25 9 18	92 135 80 89 34	0.41 0.38 0.27 0.10 0.12	2.2 2.2 2.0 1.6 1.2	1.3 D 2.2 D 1.3 D 13.5 D 99.0 C
24 10 24 13		31.3 39.0	60 3.6 61 21.9	183 5.0 149 59.0	131.6 43.6	3.2	9	4 l	139	44 107	69 269	0.32 0.39	2.4 7.5	2.2 C 22.8 D
24 15 24 17 24 18	47	12.5 11.0 56.4	58 25.8 82 14.8 59 58.7	154 6.2 149 54 0 152 16.3	87.3 88.8 83.2	FELT 2.5 2.2 2.6	9 4 7	ANCH 6 2 5	ORAGE 186 144 160	62 90 50	77 173 65	0 25 0 28 0 24	2.8 4.1 1.6	2.4 D 9.5 D 2.1 C
25 3	13 29 20	27.3 13.9 58.8 8.1 8.6	57 48.5 63 13.4 63 29.9 64 10.8 84 17 4	153 3.5 131 40.0 148 53.8 147 55 8 148 [6.]	29.8 45.5 81.1 11.7 15.4	2.1 3.0 1.4 0.8 1.4	7 3 7 9	4 1 5 5 8	89 333 241 168 80	34 148 26 0 20	43 197 116 32 48	0.34 0.37 0.21 0.21 0.29	1.2 11.3 2.3 1.4 0.7	2.8 C 99.0 D 2.3 C 1.6 C 2.3 B
25 9 25 16	15	26.1 56.0	64 34.4 64 44.9	147 5.4 147 29.0	18.0	1.4	7 5	4 5	178 189	18 30	48 33	0.42 0.18	1.2	1.2 C 4.3 C

ORIGII 1984 RR MW SEP 25 17 35 26 2 43 26 4 18	SEC 16.6 14.4 30.2	LAT N DEG HIW 51 28.6 68 40.7 62 33.4	LONG W DEG MIN 148 27.4 148 30.9 151 34.4	DEPTH EM 21.3 25.0 112.5	HAG 2.1 1.6 2.3	MP 5 7 9	2 3 1	GAP DEG 227 313 210	D1 EM 65 93 64	D3 EN 179 120 218	RMS SEC 0.14 0.87 0.34	ERH 3.7 3.1 4.3	ERZ Q EM 3.2 D 99.0 D 10.4 D
26 7 34 26 13 32 26 14 39	36.6 13.4 26.2	59 31.4 60 30.2 63 11.5	152 53.9 149 42.6 149 55.5	105.5 42.0 104.1		HB -	AT 1	PRAPP		73 169 146 REEK	0.35 0.35 0.27 AND CA	1.4 5.6 2.3	2.3 B 9 0 D 5.5 C
26 16 59 26 17 30 27 3 42 27 6 45	25.6 46.8 33.6 18.0	62 37.0 59 39.7 60 6.2 60 16.1	148 40.3 153 4.0 153 11.8 153 23.2	78.2 111.7 133.5 164.9	FELT 2.0 2.8 2.6 2.5	11 A 10 10 10	1 8 8	108 108 87 86 203	AGE. 115 9 42 30	150 65 66 70	0.39 0.19 0.29 0.32	1.9 2.0 2.1 3.4	7.9 C 4.3 B 2.6 B 3.5 D
27 8 11 27 9 2 27 11 20 27 18 45 27 19 47	8.6 34.3 8.5 39.0 31.0	63 15.2 59 49.2 63 23.0 64 40.9 63 3.7	150 4.5 153 6.7 153 35.0 147 41.7 148 37.9	94.2 114.5 70.4 12.4 77.4	1.6 3.3 3.4° 0.4 1.7	9 15 4 6 9	3 4 0 5 7	170 86 130 106 255	78 20 133 7 76	160 61 304 30 132	0.23 0.34 0.06 0.34 0.25	2.6 1.6 41.1 0.7 2.4	2.8 D 2.6 B 99.0 D 2.7 C 2.8 C
27 21 35 27 21 38 28 0 40 28 1 55 28 10 24	30.9 48.2 45.6 15.1 8.0	62 12.6 64 13.7 60 15.4 59 17.3 62 23.4	147 37.8 148 53.2 153 20.2 153 31.1 151 9.5	41.4 17.4 164.8 107.9 47.3	1.9 0.9 2.7 2.3 4.4	5 7 6 9	4 5 4 7 0	110 205 237 69 65	45 47 36 7 106	140 55 96 44 153	0.51 0.36 0.34 0.34 0.50	4.0 1.5 3.1 1.4 1.9	11 9 C 1.2 D 2.4 D 2.1 B 20.7 D
28 11 34 28 11 43 28 20 25 28 23 24 28 23 58	9.2 5.8 12.9 40.3 5.6	60 0.2 60 9.4 64 43.4 68 8.8 59 52.2	153 12.8 151 56.9 147 59.4 161 23.2 152 23.8	124.4 85.1 12.3 61.1 76.8	2.5 2.6 0.8 3.2 2.7	6 6 7 6	4 4 1	141 207 81 210 137	39 54 12 79 48	60 79 29 149 64	0.24 0.30 0.34 0.39 0.26	1.9 2.5 0.8 3.8 1.5	2.2 C 3.1 D 2.4 B 12.1 D 2.5 C
29 8 2 29 14 19	23.6 17.0	61 50.8 60 58.9	150 50 4 149 58.3	83.1 34.8		NCHO					0.19 0.33 4.7, F RER, WA		
30 1 49 30 3 41 30 8 27	5.1 42.2 21.1	62 54.4 58 33.2 64 36.9	148 13.3 154 25.8 146 57.8	86.1 3.9 10.3	1.9	5 6 7	3 2 4	99 208 208	9 9 62 23	140 93 48	0.26 0.14 0.27	1.9 2.0 1.1	5 9 C 3.4 C 3.9 C
30 9 37 30 12 13 30 12 30 30 12 31 30 14 24	21.6 21.5 12.5 28.0 2.2	62 50.0 64 58.8 63 33.3 57 29 2 60 48.2	190 37.4 147 28.6 152 14.5 154 3.5 152 31.9	96.3 9.0 64.7 0.2 5.9	3.3 0.4 2.5 2.5 1.8	9 4 7 8 5	4 4 3 2 4	174 190 244 234 230	106 3 164 35 137	169 41 179 83 158	0.28 0.16 1.27 0.31 0.32	2.1 2.5 4.6 3.9 3.0	5.4 D 2.3 C 9.3 D 1.6 D 3.4 D
30 14 53 30 17 56 30 22 11 30 22 16	27.1 22.9 1.4 16.0	60 43.2 59 40.6 64 5.9 63 10.4	192 35.8 152 7.4 147 5.8 149 19.5	0.4 84.1 0.8 98.5	1.1 2.6 1.0 2.7	4 6 5 12	2 3 3 1	289 131 271 140	35 83 35 65	150 83 64 132	0.26 0.35 0.18 0.30	5.3 1.4 1.8 2.9	2.3 D 4.8 C 96.1 D 5.6 D

Explanation for Appendix B

Earthquakes are listed in chronological order. The following data are given for each earthquake.

- 1. ORIGIN TIME in Universal Time (UT): date, hour (HR), minute (MN), and second (SEC). To convert to Alaska Standard Time (AST), subtract 9 hr.
- 2. LAT N, LONG W: epicenter in degrees and minutes of north latitude and west longitude.
- 3. DEPTH: depth of focus (measured in kilometers).
- 4. MAG: local magnitude from maximum trace amplitude. An asterisk that follows an entry means that the value determined by the Alaska Tsumani Warning System (Palmer) was used.
- 5. NP: number of P arrivals used to locate earthquake.
- 6. NS: number of S arrivals used to locate earthquake.
- 7. GAP: largest azimuthal separation between stations (measured in degrees).
- 8. D1: distance from the closest station to the epicenter (measured in kilometers).
- 9. D3: distance from the third closest station to the epicenter (measured in kilometers).
- 10. RMS: root-mean-square error of the travel-time residuals (measured in seconds).
- Il. ERH: largest horizontal deviation (measured in kilometers), from the hypocenter within the one-standard-deviation confidence ellipsoid. The quantity measures the epicentral precision for an earthquake. Values of ERH >99 km are tabulated as 99 km.
- 12. ERZ: largest vertical deviation (measured in kilometers), from the hypocenter within the one-standard deviation confidence ellipsoid. This quantity measures the precision of the hypocentral depth. Values of ERZ that >99 km are listed as 99 km.
- 13. Q: reliability of the hypocenter. This index measures precision of the hypocenter location and also reflects the quality of the data used to derive the hypocenter parameters.