STATE OF ALASKA

DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL AND GEOPHYSICAL SURVEYS

Bill Sheffield, Governor

Esthet C. Wunnicke, Commissioner

Ross G. Schaff, Director and State Geologist

May 1986

This report is a preliminary publication of DGGS. The author is solely responsible for its content and will appreciate candid comments on the accuracy of the data as well as suggestions to improve the report.

Report of Investigations 86-5 SUMMARY OF ALASKA EARTHQUAKES FOR THE PERIOD OCTOBER, NOVEMBER, AND DECEMBER 1984

Compiled by Hans Pulpan and J.N. Davies

STATE OF ALASKA Department of Natural Resources DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS

According to Alaska Statute 41, the Alaska Division of Geological and Geophysical Surveys is charged with conducting 'geological and geophysical surveys to determine the potential of Alaskan land for production of metals. minerals, fuels, and geothermal resources; the locations and supplies of ground water and construction materials; the potential geologic hazards to buildings, roads, bridges, and other installations and structures; and shall conduct such other surveys and investigations as will advance knowledge of the geology of Alaska.'

In addition, the Division of Geological and Geophysical Surveys shall collect, record, evaluate, and distribute data on the quantity, quality, and location of underground, surface, and coastal water of the state; publish or have published data on the water of the state and require that the results and findings of surveys of water quality, quantity, and location be filed; require that water-well contractors file basic water and aquifer data. including but not limited to well location, estimated elevation, welldriller's logs, pumping tests, flow measurements, and water-quality determinations; accept and spend funds for the purposes of this section, AS 41.08.017 and 41.08.035, and enter into agreements with individuals, public or private agencies, communities, private industry, and state and federal agencies; collect, record, evaluate, archive, and distribute data on seismic events and engineering geology of the state; and identify and inform public officials and industry about potential seismic hazards that might affect development in the state.

Administrative functions are performed under the direction of the State Geologist, who maintains his office in Anchorage. DGGS offices are located at:

> .794 University Ave. (Basement) Fairbanks, 99709 (907) 474-7147

.400 Willoughby Center .Fish Hatchery Road (3rd fl.) Juneau, 99801 (907)465-3400

.3601 C St. (8th fl.) P.O Box 7028 Anchorage, 99510 (907)561-2020

> P.O. Box 772116 Eagle River, 99577 (907) 688-3555

This report is for sale by DGGS for \$2. DGGS publications may be inspected at the following locations. Mail orders should be addressed to the Fairbanks office.

> .794 University Ave. (Basement) Fairbanks, 99709

.400 Willoughby Center .P.O. Box 7438 (4th f1.) Juneau, 99801 Ketchikan, 99901

.3601 C St. (10th fl.) P.O. Box 7005 Anchorage, 99510

State Office Bldg.

CONTENTS

			Page
		L	1
Data col	llect	ion	1
Data pro	cesa	ing	4
Velocity	mod	els	7
		agnitude	8
		thquakes	8
		nts,	16
Reference	es	***************************************	16
Appendix	t A -	Data for Alaska earthquakes of M ≥3 that were located the fourth quarter 1984	
dur	ing	the fourth quarter 1984	17
Appendix	(B -	Data for Alaska earthquakes of all magnitudes that were	
100	ated	during the fourth quarter 1984	20
		FIGURES	
		r IGURE2	
Figure	1.	Map of all seismic-network stations operated by the University of Alaska and by other organizations whose	
		data were used in this report	2
	2.	Station-use record	5
	3.	Graph showing typical response of a seismic-network	J
		station operated by the University of Alaska Geo-	
		physical Institute	6
	4.	Map showing epicenter locations of earthquakes that	
		occurred north of lat 61° N. during the fourth quarter	
		of 1984	9
	5.	Map showing epicenter locations of earthquakes with	
		M, ≥3 that occurred north of lat 61° N. during the	
		fourth quarter of 1984	10
	6.	Map showing epicenter locations of earthquakes that	
		occurred south of lat 61° N. during the fourth	
		quarter of 1984	11
	7.	Map showing epicenter locations of earthquakes with	
		$M_{T} \ge 3$ that occurred south of lat 61° N. during the	
		fourth quarter of 1984	12
	8.	Map showing epicenter locations of earthquakes that	
		occurred in the fourth quarter of 1984 and are not	
		shown in figures 4 or 5	15
		TABLES	
Table	1.	Names and parameters of seismic-network stations used	
		to prepare this report	3
	2.	Velocity model 1	7
	3.	Velocity model 2	7
	4.	Velocity model 3	8
	5.	Modified Mercalli scale	13

SUMMARY OF ALASKA EARTHQUAKES FOR THE PERIOD OCTOBER, NOVEMBER, AND DECEMBER 1984

Hans Pulpan and J.N. Davies, editors

INTRODUCTION

This report lists the parameters of earthquakes that occur in and near areas encompassed by the network of seismograph stations operated or recorded by the University of Alaska Geophysical Institute (UAGI) (fig. 1; table 1). The goal of this report is to provide a convenient reference source for earthquake activity in the seismic-network area and quantitative information that researchers, administrators, planners, and other interested people can use. Therefore, this report contains hypocentral parameters and information about the quality of data and precision of the parameters. Because of the substantial quantity of data, this report is based on routine data processing. However, earthquakes are located as accurately and with as many useful data as possible. Additional data and more sophisticated methods of analysis might lead to more accurate locations.

DATA COLLECTION

The data used in this report are derived from two principal sources: seismic stations operated by UAGI and seismic stations operated by other agencies whose data are continuously recorded by UAGI under data-sharing or data-exchange agreements. For earthquakes of local magnitude $(M_{\perp}) \ge 3$, we receive records of earthquake arrival times at several stations of the Alaska Tsunami Warning System that is operated by the National Oceanic and Atmospheric Administration (NOAA).

Signals from various stations are transmitted by UAGI-operated VHF-radio links and leased commercial-telephone circuits to one of two recording centers in Homer and Fairbanks that are operated by the University of Alaska. Remote stations are serviced and calibrated annually; stations easily accessible by road are serviced more frequently if necessary. Difficult access to many stations can result in lengthy data losses if instruments have malfunctioned. Significant data losses result in lower detection thresholds and poorer solution qualities for earthquakes in the affected regions. To discern such conditions, a station-use record is provided in figure 2.

Data are recorded on 16-mm film on several Teledyne Geotech Develocorders that have a 20-channel capacity. Satellite-linked clocks provide time marks that are superimposed on the records. Figure 3 shows the typical response of the seismic-network system from transducer to recorder.

University of Alaska Geophysical Institute, Fairbanks, Alaska 99775.

DGGS, 794 University Ave., Basement, Fairbanks, Alaska 99709.

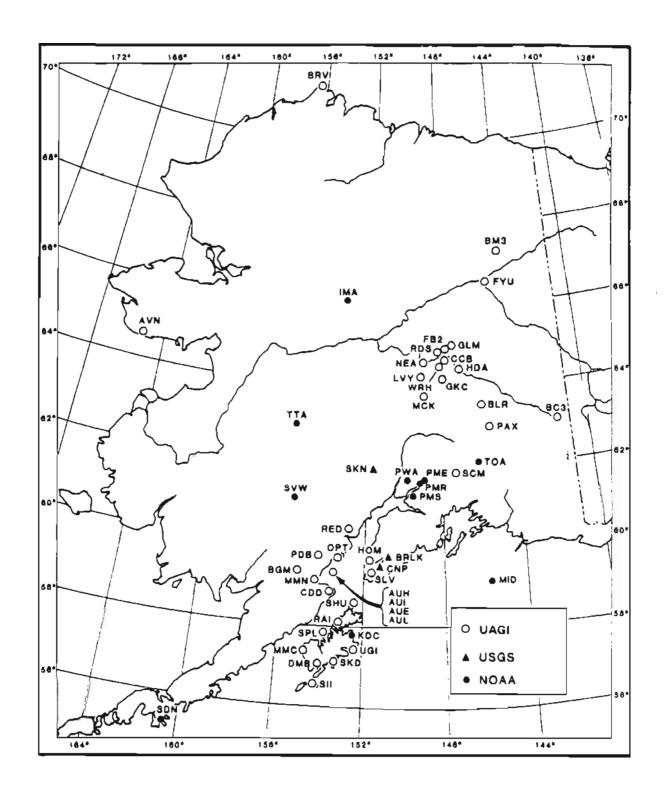


Figure 1. All seismic-network stations operated by the University of Alaska and by other organizations whose data were used in this report.

Stations BGM, PDB, and SLV were installed and operated by the U.S. Geological Survey and are currently operated by the University of Alaska. See table 1 for station names.

Table 1. Names and parameters of seismic-network stations used to prepare this report.

Code	Station	Latitude (N.)	Longitude (W.)	Elevation (m)	Velocity model	Operator
ANV	Anvil Mountain	64° 33.90'	165° 22.28'	323	1	UAGI
AUE	Augustine East	59° 21.54'	153° 22.33'	172	2	UAGI
AUH	Augustine Hill	59° 21.831	153° 26.61'	900	2	UAGI
AUI	Augustine Island	59° 20.11'	153° 25.66'	293	2	UAGI
AUL	Augustine Lava Flow	59° 22.93'	153° 26.07'	360	2	UAGI
BC3	Beaver Creek	63° 4.00'	141° 45.50'	762	1	UAGI
BGM	Big Mountain	59° 23.56'	155° 13.76'	625	2	UA/USGS ^C
BLM	Blue Mountain	58° 2.70'	156° 20.70'	539	3	UAGL
BLR	Black Rapids	63° 30.10'	145° 50.70'	810	1	UAGI
BM3	Burnt Mountain	67° 17.18'	144° 25.17'	305	1	UAGI 4
BRLK	Bradley Lake	59° 45.85'	150° 53.13'	631	2	USGS
BRV	Barrow	71° 16.43'	156° 47.08'	13	1	UAGI
CCB	Clear Creek Butte	64° 38.801	147° 48.33'	219	1	UAGI
CDD	Cape Douglas	58° 55.79'	153° 38.58'	622	2	UAGI
CNP	China Poot	59° 31.55'	151° 14.16'	564	2	USGS
CTG	Chinitna Glacier	60° 57.90'	141° 20.00'	1554	5	USGS
DMB	Deadman Bay	57° 5.231	153° 57.63′	300	3	UAGI
FB2	Fairbanks	64° 54.00'	147° 47.60'	320	1 😅	UAGI
FLP	Featherly Pass	57° 42.40'	156° 16.10'	486	3	UAGI
FYU	Fort Yukon	66° 33.96'	145° 13.90'	137	Įŧ	UAGI
GKC	Gold King Creek	64° 10.72'	147° 56.08'	490	ì	UAGI
GLM	Gilmore Dome	64° 59.24'	147° 23.34'	820	1	UAGI
HDA	Harding Lake	64° 24.35'	146° 57.23'	450	1	UAGI
MOM	Homer	59° 39.50'	151° 38.60'	198	2	UAGI,
IMA	Indian Mountain	66° 4.10'	153° 40.72'	1380	1	NOAA ^d
KDC	Kodiak	57° 44.871	152° 29.50'	13	3	NOAA
KSM	King Salmon Mountain	58° 51.80'	156° 10.50'	560	3	UAGI
LVY	Levy	64° 13.00'	149° 15.20'	230	1	UAGI
MCK	McKinley Park	64° 43.94'	148° 56.10'	618	1	UAGI
MID	Middleton Island	59° 25.67'	146° 20.33'	37	4	NOAA
MMC	Middle Cape	57° 20.001	154° 38.10'	340	3	UAGI
MMN	McNeil River	59° 11.11'	154° 20.20'	442	2	UAGI
MSP	Moose Pass	60° 29.35'	149° 21.641	150	2	USGS
NEA	Nenana	64° 34.63'	149° 4.63'	364	1	UAGI
NKI	Nikolski	52° 56.56'	168° 51.44'	8	2	NOAA
OPT	Oil Point	59° 39.16'	15 3° 13.78¹	450	2	UAGI
PAX	Paxson	62° 58.25'	145° 28.12'	1130	1	UAGI
PDB	Pedro Bay	59° 47.27'	154° 11.55'	305	2	UA/USGS
PME	Palmer East	61° 37.70'	149° 1.90'	232	2	NOAA
PMR	Palmer Observatory	61° 35.531	149° 7.85'	100	2	NOAA
PMS	Palmer - Arctic Valley	61° 14.68'	149° 33.63'	716	2	NOAA
PUB	Puale Bay	57° 46.40'	155° 31.00'	280	3	UAGI

aSee tables 2, 3, and 4.
bUniversity of Alaska Geophysical Institute.
cU.S. Geological Survey.
dNational Oceanic and Atmospheric Administration.

Table 1. (con.)

Code	Station	Latitude (N.)	Longitude (W.)	Elevation (m)	Velocity model	Operator
PWA	Palmer West - Houston	61° 39.05'	149° 52.72'	137	2	UAGI
RAI	Raspberry Island	58° 3.63'	153° 9.55'	520	3	UAGI
RDT	Redoubt	60° 34.43'	152° 24.37'	930	2	USGS
RDS	Richard D. Siegrist	64° 49.59'	148° 8.68'	930	1	UAGI
RED	Redoubt Volcano	60° 25.14'	152° 46.32'	1087	2	UAGI
SCM	Sheep Mountain	61° 50.00'	147° 19.66'	1020	4	UAGI
SDN	Sand Point	55° 20.40'	160° 29.83'	19	6	NOAA
SHU	Shuyak Island	58° 37.68'	152° 20.93'	10	3	UAGI'
SII	Sitkinak Island	56° 33.60'	154° 10.92'	500	3	UAGI
SKD	Sitkalidak Island	57° 9.85'	153° 4.82'	135	3	UAGI:
SKN	Skwentna	61° 58.86′	151° 31.78'	564	2	USGS
SLV	Seldovia	59° 28.28'	151° 34.83'	91	2	UA/USGS
SPL	Spiridon Lake	57° 45.55′	153° 46.28'	600	3	UAGI
SPU	Mount Spurr	61° 10.90'	152° 3.26'	800	2	USGS
SSN	Susitna Mountain	61° 27.83′	150° 44.60'	1297	1	USGS
SVW	Sparrevohn	61° 6.49'	155° 37.30'	762	2	NOAA
TOA	Tolsona	62° 6.29'	146° 10.34'	909	4	NOAA
TTA	Tatalina	62° 55.80'	156° 1.32'	914	2 ·	NOAA
UGI	Ugak Island	57° 23.67'	152° 16.90'	213	3	UAGI
WRH	Wood River Hill	64° 28.28'	148° 5.39'	314	.µ. 3	UAGI
WWW	Wonder Why Ridge	58° 20.90'	156° 19.90'	414	3	UAGI

DATA PROCESSING

Arrival times of body waves are read from the 16-mm film with Geotech filmviewers that provide a time resolution of 0.1 s/mm. Thus, the impulsive arrivals can be read to 0.05 s.

Earthquake locations are based on arrival times of P and S waves. As many S arrivals as possible are used to help determine hypocentral depth. Most S readings are obtained from vertical components because few three-component systems are recorded. When large earthquakes occur, traces overlap on multichannel-film recorders; consequently, S arrivals are difficult to identify.

After earthquakes are identified and arrival times are determined, phase data are processed with the HYPOELLIPSE computer program (Lahr, 1980) to obtain earthquake parameters. Each solution is checked for the root-mean-square (RMS) error of travel-time residuals and the spatial distribution of stations used. Solutions that have residuals 0.5 s or greater are reread. If the stations used are poorly distributed, additional data are sought from stations not recorded by UAGI. Events recorded by fewer than six stations receive less attention. Data for earthquakes of M $_{\rm L} \ge 3.5$ are processed more carefully, sometimes by changing control parameters in the computer program.

STATION CODE	OCTOBER .	1984 NOVEMBER	DECEMBER
ANV AUE AUH AU I			~
AUL BC3 BLR BM3 BRLK BRW			
CC8 CDD CNP OM8 F82			
F8A FYU GKC GLM HDA			
HOM KOC LVY MCK			
MMN NEA OPT PAX PDB			
841 647 647 648			
RDS RED SCM SDN			
SHU SK V SPL			
ŠVW TOA TTA UGI WRH			

Figure 2. Station-use record. Lines indicate that at least one arrival-time was read from a specific station operating on a specific day. Nonuse does not imply that a station was malfunctioning, but rather that no data were required to locate earthquakes. See table I for station names.

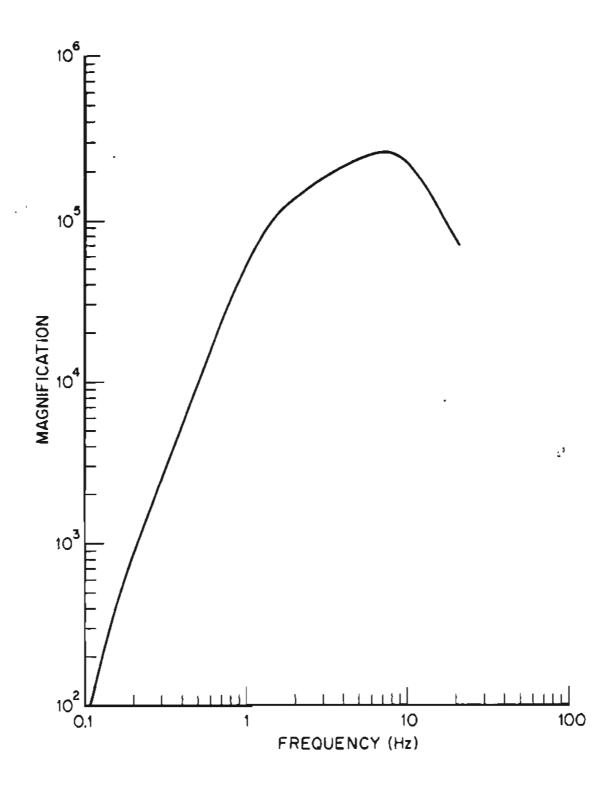


Figure 3. Typical response of a seismic-network station operated by the University of Alaska Geophysical Institute. Magnification is the ratio of the amplitude measured on the filmviewer to that of the actual ground motion recorded. Actual values vary with station.

VELOCITY MODELS

The tectonic regime and geologic setting vary greatly throughout the area covered by the UAGI seismic network. Although our knowledge of the seismic-velocity structure is limited, significant variations exist. To account for these variations, each UAGI station is associated with one of three velocity models (see tables 1 through 4), depending on the station's location. The models vary only with depth; lateral variation of velocity is not considered. For stations outside the UAGI seismic network, we generally use models adopted by the station's operators (table 1). For all models, S velocity = P velocity.

 $\sqrt{3}$

Table 2. Velocity model 1.

Layer	Depth (km)	P velocity (km/sec)
,	0-24	5.9
2	24-40	7.4
3	40-76	7.9
4	76-300	8.3
5	301-545	10.4
6	>545	12.6

Model l is used primarily in central and northern Alaska (figs. 4 and 5) and is based on unpublished data by Biswas (oral commun., 1978). The upper mantle structure is based on travel-time studies by Biswas and Bhattacharya (1974).

Table 3. Velocity model 2.

Layer	Depth (km)	P velocity (km/sec)
1	0-2	2.75
2	2-4	5.3
3	4-10	5.6
4	10-15	6,2
5	15-20	6.9
6	20-25	7.4
7	25 -33	7.7
8	33-47	7.9
9	47-65	8.1
10	>65	8.3

Model 2 is associated with stations located in the Cook Inlet - Kenai Peninsula area (figs. 6 and 7) and is used by the USGS for locating earthquakes in the same area. It is a modified version of the model determined by Matumoto and Page (1969) from travel-time studies of aftershocks of the 1964 Great Alaska earthquake.

Table 4. Velocity model 3.

Layer	Depth (km)	P velocity (km/sec)
1	0-1.6	4.2
2	1.6-12	5.5
3	12-42	6.6
4	42-60	8.06
5	60-80	8.09
6	80-100	8.11
7	100-150	8,14
8	150-200	8.27
9	200-250	8.41
10	250-300	8.50
11	300-350	8.74
12	>350	9.02

Model 3 is used on Kodiak Island and the Alaska Peninsula. The depth and velocity of the first three layers are based on refraction experiments in the central Aleutian Islands (Engdahl and Tarr, 1970). The remaining layers are based on work by Herrin and others (1968).

EARTHQUAKE MAGNITUDE

Earthquake magnitudes are determined from the maximum amplitude of the body-wave trace. Because regional body-wave phases are used, we determine local magnitudes (M_L). The relationship we use was derived by Richter (1958) using earthquake data recorded on standard horizontal Wood-Anderson seismographs in California. Corrections were made for differences in response and magnification between the standard instrument used by Richter and the instruments we used. However, no corrections were made for differences in attenuation properties between California and Alaska. Additionally, no corrections were made for measuring vertical ground motion rather than horizontal ground motion.

The magnitude of each earthquake is usually calculated at several seismic-network stations and then averaged. When large earthquakes occur, the instrument response saturates the maximum trace amplitude of the recorder at most of our stations. Therefore, we frequently list local magnitude determined by NOAA's Palmer Observatory. Felt reports and intensity observations based on the Modified Mercalli Intensity Scale (table 5; Richter, 1958) are also listed. The intensity levels are defined in the explanation at the end of table 5.

RECORDED EARTHQUAKES

Appendix A lists hypocenter, magnitude, and quality parameters for each earthquake of M ≥ 3.0 that was located during the fourth quarter of 1984 (see also figs. 5, 7, and 8). Appendix B lists the same parameters for all earthquakes that were located during the same period (see also figs. 4 and 6). Detection threshold and solution quality vary throughout the areas shown in figures 4, 6, and 8. Appendix A is probably complete for M ≥ 3 . As shown

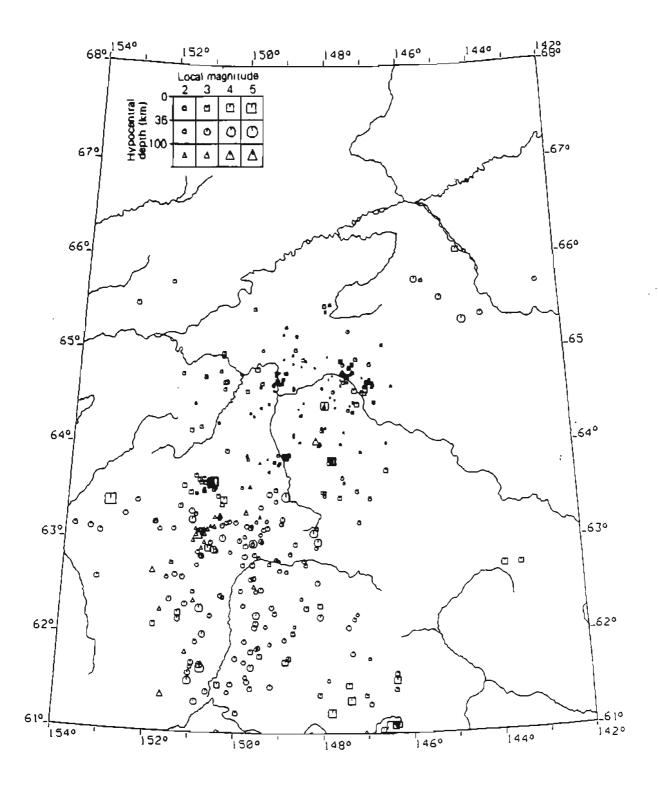


Figure 4. Epicenters of earthquakes that occurred north of lat 61° N. during the fourth quarter of 1984. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

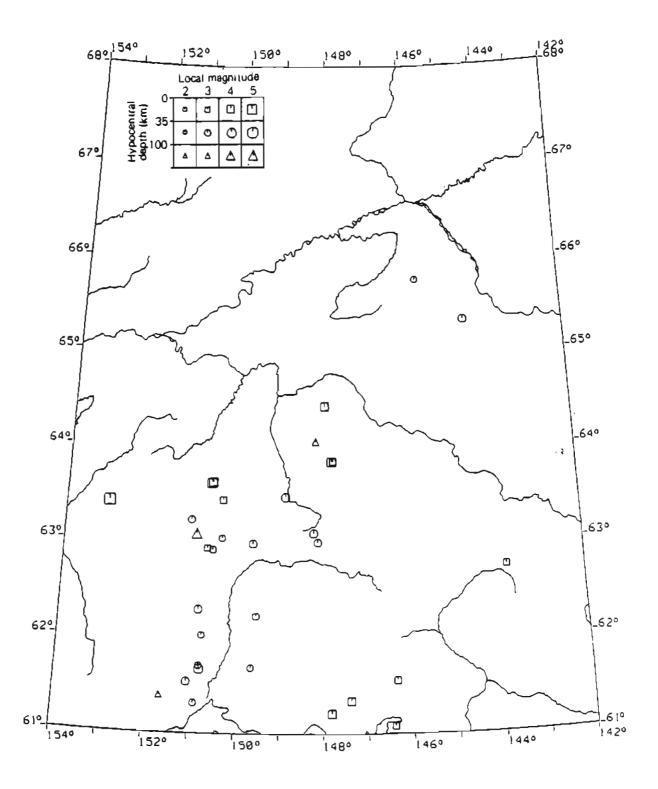


Figure 5. Epicenters of earthquakes with M ≥3 that occurred north of lat 61° N. during the fourth quarter of 1984. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

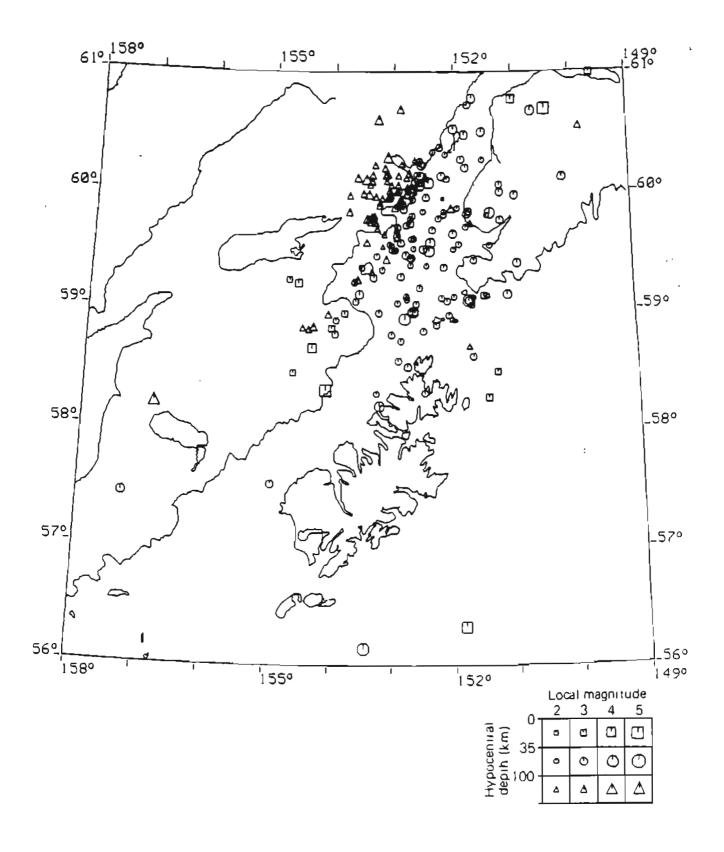


Figure 6. Epicenters of earthquakes that occurred south of lat 61° N. during the fourth quarter of 1984. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

— 11 —

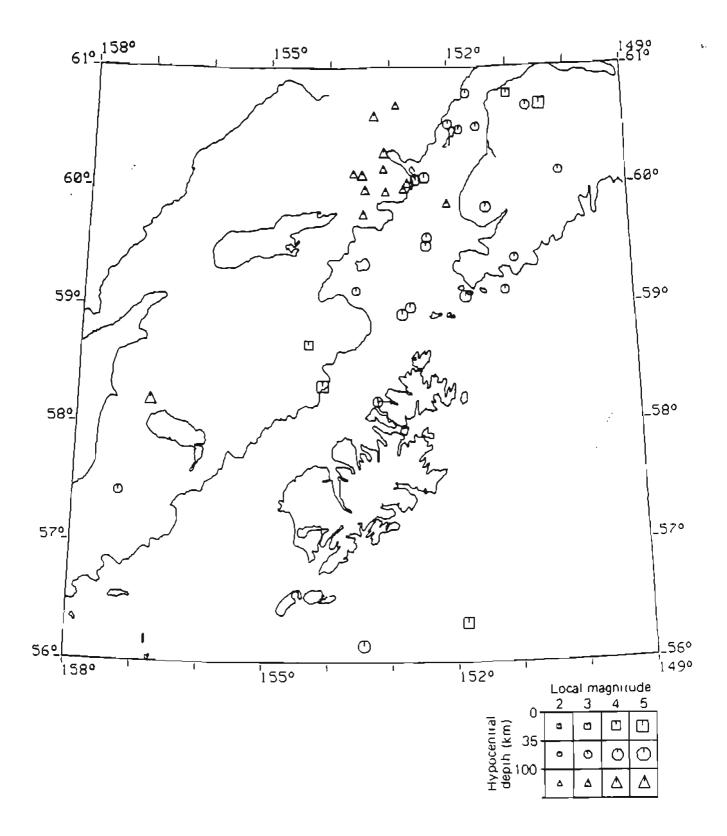


Figure 7. Epicenters of earthquakes with M ≥3 that occurred south of lat 61° N. during the fourth quarter of 1984. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

Table 5. Modified Mercalli scale, 1956 version.

- I. Not felt. Some very low frequency effects, such as seiching in lakes, may be observed resulting from large, distinct earthquakes.
- II. Felt by persons at rest, on upper floors, or favorably placed.
- III. Felt indoors. Hanging objects swing. Vibration like passing of light trucks. Duration estimated. May not be recognized as an earthquake.
- IV. Hanging objects swing. Vibration like passing of heavy trucks; or sensation of a jolt like a heavy ball striking the walls. Standing motor cars rock. Windows, dishes, doors rattle. Glasses clink. Crockery clashes. In the upper range of IV, wooden walls and frame creak.
- V. Felt outdoors; direction estimated. Sleepers wakened. Liquids disturbed, some spilled. Small unstable objects displaced or upset. Doors swing, close, open. Shutters, pictures move. Pendulum clocks stop, start, change rate.
- VI. Felt by all. Many frightened and run outdoors. Persons walk unsteadily. Windows, dishes, glassware broken. Knickknacks, books, etc., off shelves. Pictures off walls. Furniture moved or overturned. Weak plaster and masonry D cracked. Small bells ring (church, school). Trees, bushes shaken (visibly, or heard to rustle--CFR).
- VII. Difficult to stand. Noticed by drivers of motor cars. Hanging objects quiver. Furniture broken. Damage to masonry D, including cracks. Weak chimneys broken at roof line. Fall of plaster, loose bricks, stones, tiles, cornices (also unbraced parapets and architectural ornaments—-CFR). Some cracks in masonry C. Waves on ponds; water turbid with mud. Small slides and caving in along sand or gravel banks. Large bells ring. Concrete irrigation ditches damaged.
- VIII. Steering of motor cars affected. Damage to masonry C; partial collapse. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys, factory stacks, monuments, towers, elevated tanks. Frame houses moved on foundations if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.
 - IX. General panic. Masonry D destroyed; masonry C heavily damaged, sometimes with complete collapse; masonry B seriously damaged. (General damage to foundations—CFR.) Frame structures, if not bolted, shifted off foundations. Frames racked. Serious damage to reservoirs. Underground pipes broken. Conspicuous cracks in ground. In alluviated areas, sand and mud ejected, earthquake fountains, sand craters.

³CFR refers to supplemental comments by Charles F. Richter.

- X. Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dikes, embankments. Large landslides. Water thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and flat land. Rails bent slightly.
- XI. Rails bent greatly. Underground pipelines completely out of service.
- XII. Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown into the air.

in figure 1, the distribution of stations varies significantly; thus detection-threshold levels also vary significantly.

The reliability of a hypocenter location can be assessed from two sets of information: the quality of the input data and the results of statistical tests. The number of P and S phases used to locate the earthquake (NP and NS), the largest azimuthal separation between stations as measured from the epicenter (GAP), and the distances from the epicenter to the closest and third closest station (Di, D3) are the most important parameters that control the reliability of the hypocenter location. A GAP of more than 180° means that the epicenter is located outside the seismic network; therefore, locations will generally be less reliable. Also, as D1 exceeds hypocentral depth, the reliability of hypocentral depth decreases. Magnitude threshold and location reliability vary throughout the state because of the uneven distribution of stations (fig. 1).

The RMS travel-time residual and the horizontal (ERH) and vertical (ERZ) projections of the maximum axes of the one-standard-deviation confidence ellipsoid reflect the precision of the solution. Because we use simplified velocity models, the RMS residuals probably measure the incompatibility of these models; they only secondarily account for random reading errors and phase misidentifications. Although the precision of hypocentral locations is fairly well indicated by ERH and ERZ, their absolute accuracy is difficult to determine because adequate calibration studies with known sources, such as explosions, have not been performed in the region.

Seismicity south of lat 61° N. (fig. 6) dominantly reflects the subduction of the North Pacific plate beneath the North American plate. A well-defined Benioff zone dips about 45° NW, below Cook Inlet and the Alaska Peninsula. Near lat 60° N., high seismic activity at depths greater than 70 km is typical of the area. The Benioff zone terminates at about lat 64° N. A cluster of hypocenters at an intermediate depth (>50 km) near lat 63° N. (below Mt. McKinley) pinpoints where the strike of the Benioff zone changes from north-northeast to more northeast. The cluster of shallow hypocenters near Fairbanks is characteristic of the seismic activity in central Alaska. Although the seismic-station distribution near Fairbanks is dense and provides the lowest detection threshold throughout the network (with the exception of Augustine Volcano), the concentration of epicenters indicates a very active seismic zone.

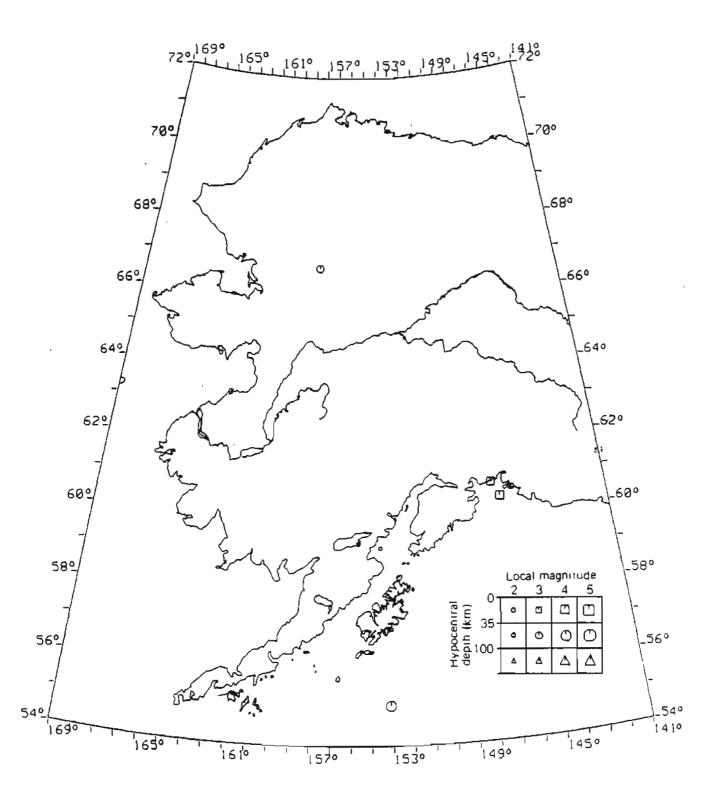


Figure 8. Epicenters of earthquakes that occurred in the fourth quarter of 1984 and are not shown in figures 4 or 5. Symbol sizes are shown for local magnitudes 2 through 5. Symbols larger or smaller than those shown reflect local magnitudes that must be interpolated relative to the symbol sizes shown.

There was no unusual seismic activity during the fourth quarter of 1984. The seismic network on Kodiak Island was not operating during a large part of this period and only a few events were recorded for the Kodiak area.

ACKNOWLEDGMENTS

We thank Tom Sokolowski and the staff of the NOAA Teunami Warning System in Palmer for helping us to record several of their station signals on a continuous basis. We also thank John Lahr of the USGS for sharing information with us and providing the HYPOELLIPSE computer program.

The operation of the seismic networks and preparation and publication of this report were made possible by support from the Division of Geological and Geophysical Surveys of the State of Alaska and the University of Alaska Geophysical Institute.

REFERENCES

- Biswas, N.N., and Bhattacharya, B., 1974, Travel-time relations for the upper mantle from central Alaskan data: Bulletin of the Seismological Society of America v. 64, p. 1953-1966.
- Engdahl, E.R., and Tarr, A.A., 1976, Aleutian seismicity, Milrow seismic effects: U.S. Coast and Geodetic Survey Publication CGS-746-102, p. 1-54.
- Herrin, E., Arnold, E.P., Bolt, B.A., and Engdahl, E.R., 1968, Seismological tables for P phases: Bulletin of the Seismological Society of America, v. 58, p. 1223-1226.
- Lahr, J.A., 1980, HYPOELLIPSE/MULTICS: A computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern: U.S. Geological Survey Open-file Report 80-59, 68 p.
- Matumoto, T., and Page, R.A., 1969, Micro aftershocks following the Alaska earthquake of 28 March 1964: determination of hypocenters and crustal velocities in the Kenai Peninsula Prince William Sound area, in The Prince William Sound Alaska earthquake of 1964: Washington, D.C., U.S. Government Printing Office, v. 2B, p. 157-174.
- Richter, C.F., 1958, Elementary Seismology: San Francisco, W.H. Freeman and Co., 768 p.

APPENDIX A Data for Alaska earthquakes of M ≥ 3.0 that were located during the fourth quarter 1984.

03 03	ĸЯ	HN 14 56 56 17	Tine SEC 34.7 1.5 1.4 23.6	LAT N DEG MIN 61 33.4 59 59.9 60 0.1 62 45.1	146 20.9 152 46.0 152 46.0 143 48.5	26.5 104.3 104.6 1.2	HAG NP NG GAP DI D3 NHS ERH ERZ Q DEG EM KM SEC KM KN 3.3 0 2 220 80 164 0.33 3.2 3.7 D 3.1 16 8 122 46 78 0.32 1.6 2.0 C 3.1 15 6 122 47 79 0.33 1.8 2.0 C 3.6*-11 1 172 86 133 0.25 2.0 2.4 C FELT II AT SALANA AND NEBESNA 4.3* 17 0 187 44 81 0.17 1.7 4.9 C NEIS MB = 5.0, FELT III HOMER
07 08 08	3 16 0 21	35 49 10	33.3 25.1 38.7 10.0	69 6.2 63 27.2 63 14.6 61 42.6	150 21.2 151 4.6 150 47.9	8.7 71.0 60.7	3.1 13 4 86 23 48 0.35 2.1 2.7 8 3.3° 15 0 72 77 140 0.46 1.8 2.2 D 3.2° 6 0 135 188 236 0.13 3.6 85.8 D 3.0 9 1 120 49 179 0.29 2.0 4.0 B PALHER HL - 3.6 3.1 6 4 294 72 142 0.38 3.4 7.0 D
11 13	3	18 29	47.9 38.0 38.8 29.1 38.7	57 25.9 61 19.2 60 16.2 60 41.6 62 14.4	150 53.1 152 54.0 152 53.1	55.8 43.3 134.6	3.3 5 3 337 213 256 0.89 99.0 99.0 0 3.1 11 1 114 81 143 0.31 2.7 10.0 C 3.0 7 3 149 18 90 1.74 3.8 7.5 D 3.0 7 3 288 31 124 0.32 5.2 2.9 D 3.3 14 0 108 75 124 0.37 2.7 4.4 C NEIS MB = 3.8
14	10 18 5	45	40.6 50.7 56.5	60 57.5 60 31.9 63 3.9	181 59.9	74.9	3.4 6 0 280 97 242 0.10 20.2 8.2 D NEIS HB = 3.2, PALMER HL = 3.4 3.3 9 3 229 44 120 0.32 2.6 4.3 D 4.9 16 0 72 123 150 0.23 2.6 7.2 B NEIS HB = 4.6, FELT 111 AT PALMER AND MASILLA.
	15		41.8 18.8	65 46.9 50 9.3			3.0 12 0 184 119 181 0.29 4.0 13.4 D 3.0 7 1 178 44 82 0.35 3.8 6.4 C
	23 4		27.4 45.0	63 1.2 61 40.4			3.6 20 0 71 89 130 0.44 1.4 4 7 C 4.2 10 0 247 176 241 0.37 20.0 52.9 D NEIS MB - 4.5, PALMER ML - 4.0
19	20	43	13.3	459 49.7	181 23.4	80.2	FELT II ANCHORAGE AND PALMER 3.9 14 2 123 35 108 0.64 1.8 3.8 C
	11 14	6 12	22.5 19.3	60 29.0 64 27.3			PALMER HL = 3.7, FELT I AT ANCHORAGE. 3.2 8 2 260 53 112 0.24 2.7 4.0 D 3.9 15 0 71 6 31 0.29 1.0 1.2 B
22	17	48	51.7	61 12.9	147 48.8	5.9	3.9 6 1 329 267 284 0.29 99.0 99.0 D
29	ı	39	18 8	65 20 5	144 29.5	37.2	3.7° 8 0 261 163 477 0 67 41.5 14 0 D
NOA Q1	8	18	2.1	60 40.1	130 39.8	63.2	3.5 6 0 161 119 132 0.17 4.1 12.8 D PALMER ML + 3.5
02	17	45	45.7	58 50 (152 48.4	65.5	4.2° 9 0 98 43 57 0 15 2.0 4.5 B NEIS NB - 4.0
03	13	19	4.6	55 5.1	153 6.2	42.6	4.3 8 0 335 299 430 0.39 99.0 43.5 D
04	9	36	96.6	60 33.5	146 48.4	30.8	NEIS MB - 4.6. PALMER NL - 4.3 3.7 5 1 328 272 328 0 18 48 3 89.4 D
08 08 09	15	11 19 58	15.2 21.1 58.1 6.8	60 7.6 59 34.6 60 30.3 63 52.4	152 23.0 151 31.3 147 49.0	87.3 67.1 14.4	3.1 7 4 254 91 122 0.34 3.6 4 5 D 3.6 8 2 91 43 65 0.36 2.2 3.5 C 3.2 6 3 269 69 110 0.36 2.8 9.3 D 4.2* 13 0 81 35 68 0.41 1.1 1.5 C NEIS MB = 3.7. FELT IV FAIRBANKS AND ESTER. 3.1* 8 2 172 134 173 0.30 2.8 9.7 D
1) 13	5 0 16	4B 37		61 20.6 62 1.9 60 2.6 60 38.4	147 23.2 150 45.6 152 42.2	25.9 63.3 106.9	3.2 12 2 79 39 72 0.23 1.1 2.0 C 3.8 16 0 233 85 207 0.42 5.2 3.0 D 3.0° 13 2 143 41 182 0.27 2.9 6.3 C 3.4 6 2 130 42 89 0.31 2 8 4.5 C 3.8 15 4 174 34 106 0.34 2.6 3.5 C
17	9	3	21.0	63 24.5	3 15 3 1.1	31.2	5.3° 14 260 176 206 0.37 8.8 11.6 D NEIS MB = 4 9, FELT III AT MC GRATH AND
					9 146 13.5 3 151 50.7		LAKE MINCHUMINA. FELT II AT TALKERTNA. 3.7º 17 0 89 77 127 0 35 1.6 5 3 8 4 2° 9 0 257 163 309 1.01 10.6 2.5 D NEIS MB = 4.8

a *See explanation of column headings at end of appendix A. *Magnitude value determined by Alaska Tsunami Warning System (NOAA Palmer Observatory).

APPENDIX A (con.)

19	84		IGIN	TIME SEC	LAT M	LONG W	DEPTH	MAG	NP	ВК	GAP DEG	K.R.	KK 53	RKS SEC	ERH KX	ERZ Q KH
NOA	19	٥	44	24.4	55 12.5	150 51.0	223.5	4.6		0	272	182	233	0.16 GEGIK	42.7	35.3 D
	2 l	20	8	24.4	60 5.3	152 24.5	96.9		10	2	162	LT [1 42	67	0.31	2.0	3.6 C
		13 10		59.7 27.0	63 0.1 59 59.5		87.0 138.0	3.74 3.5 PALE	9		111 (54	39 88	160 59	0.27 0.31	2 · 1 2 · 7	6 · l · C 2 · 4 · G
	25	8	50	0.0	58 19.5	154 5.8	27.8	4.5°	5	0	254	72	124	0.36	89.5	15.5 0
	26	1	42	14.8	62 56.8	150 41.4	25.7	3.G PALHI	18	0	181	118	158	1.15	2.8	3.8 D
	26	2	41	40.8	82 56.0	150 33.7	98.8		15	0	175	117	157	0.39	3.4	9.6 D
	28	3	52	46.1	58 59.5	152 40.0	80.2	3.9	9	4	122	57	80	0.31	1.4	2.7 C
	30		19	37.4	64 5 4		100.0	3.6*	4		179	93	285	0.81	46 2	76 2 D
DEC	01	18	25	53.4	60 41.0	150 25.5	17.2					123 LH e r			3.3	11 5 D
		_												LDOTNA		
	02	9	43	5.4	59 47.2	153 26.6	123.6	3.3	8 44		135	19	80	0.29	2.1	2.5 B
	03	22	16	66.6	60 46.3	150 59.5	20.2	3.0	9 2 K UI	ī	231	105	l 3 9	0.28	13.9	48.4 D
	03	22	53	31.0	63 29.5	148 53.3	98.5	4.01	ιa	o	104	27	90	0.24	1.9	3.8 B
	04		36	21.1	80 0.8		120.9	3.2	.5	4	133	41	67	0.15	2.1	2.3 C
	04	8	36	21.3	59 59.7	193 2.7	121.6	3.0	13	4	180	40	72	0.33	2.2	2.2 C
	04	19	42	28 7	60 4.2	152 33.3	93.2	3.6 Palm	I3 Er hi	2	32 L 3.4	220	345	0.38	10.6	22.8 D
	05	13	58	55 O	61 41.4	149 37.9	51.6	3.0	14	4	177	29	123	0.34	2.2	2.7 C
		16		28 4	59 8 (60.2	3.2	8	2	217	44	134	0.28	3 4	ס 1.5
	08		7	48.7	83 38.0		28.8	4.6° NB13	₩8 •		8, £8	85 LT FA		0.37 K8.	2.2	4.3 D
	08		23	19.5	63 38.7		34.0	4.3*		0	138	83	128	0.43	2. L	27 D
	12		21 50	57.0 53.8	60 18.1		128.3 82.5	4.0	.9	3	80 247	22 35	84 102	0.23	2.6 38.0	3 1 B 34 2 D
			-					-	-	_	210		471	0.24	14.5	9.1 D
		13		33.7	86 34 . 6		60.6	3.2 PALH	ER KI		3 3	181				
	14	18	27	22.6 23.1	60 10.1 59 52.2		129.0 187.4	3.l 3.l	7 5	2	157 163	3 3 59	74 96	0.21	3.} 4.6	3 0 C 6 0 D
	16		เอ	38.5	60 7.5		30 9	3.1	ě	4	321	91	181	0.44	11.1	41.9 D
		18		24.7	59 30.6		76.7	B.E HLAS	10	. 2	94	46	58	0 18	i . 8	2 2 C
	17	21	31	26.0	61 23.6	15) 36.)	100.0	3.2	8	0	289	6 6	337	0.19	99.0	99.0 0
	19	0	51	50.7	68 17.5		19.1	J.B.		Ĭ AT H		43	334	0 31	13.2	2.9 D
	20	3	48	38.7	56 8.4	193 25.9	51.4	4.5'	7	0	233	188	391	0.39	14.9	21.6 D
	22	10	27	40.8	61 4.7	146 24.8	99		13	ı,	280	97	217	0.31	5.4	2.3 D
	23	22	3	1.3	62 16.2	150 50.8	55.91	3.7	14	ō	153	91	191	0 27	2.7	7 4 0
	24	7	13	45.9	58 11.6	133 12.9	44 5	3 6	7	1	204	66	133	0 31	6.3	9 5 D
		13		34.6	58 40.8		1.2	3 4	7	0	230	48	124	0 67	6 4	9 1 D
		19		22.1	59 58.5	153 3.9	118.8	3.1	6	4	126	52	71	0.27	2.0	2.6 B
	28	4	29	52.5	59 24.0	150 56.5	53.1	3 . l	8	3	248	22	133	0 31	3.1	4.0 D

Explanation for Appendix A

Earthquakes are listed in chronological order. The following data are given for each earthquake.

- 1. ORIGIN TIME in Universal Time (UT): date, hour (HR), minute (MN), and second (SEC). To convert to Alaska Standard Time (AST), subtract 9 hr.
- 2. LAT N, LONG W: epicenter in degrees and minutes of north latitude and west longitude.
- 3. DEPTH: depth of focus (measured in kilometers).
- 4. MAG: local magnitude from maximum trace amplitude. Quotation marks around an entry mean that the value determined by the Alaska Tsumani Warning System (Palmer) was used.
- 5. NP: number of P arrivals used to locate earthquake.
- 6. NS: number of S arrivals used to locate earthquake.
- 7. GAP: largest azimuthal separation between stations (measured in degrees).
- 8. Dl: distance from the closest station to the epicenter (measured in kilometers).
- 9. D3: distance from the third closest station to the epicenter (measured in kilometers).
- 10. RMS: root-mean-square error of the travel-time residuals (measured in seconds).
- 11. ERH: largest horizontal deviation (measured in kilometers), from the hypocenter within the one-standard-deviation confidence ellipsoid. The quantity measures the epicentral precision for an earthquake. Values of ERH >99 km are tabulated as 99 km.
- 12. ERZ: largest vertical deviation (measured in kilometers), from the hypocenter within the one-standard deviation confidence ellipsoid. This quantity measures the precision of the hypocentral depth. Values of ERZ that >99 km are listed as 99 km.
- 13. Q: reliability of the hypocenter. This index measures precision of the hypocenter location and also reflects the quality of the data used to derive the hypocenter parameters.

APPENDIX B Data for Alaska earthquakes of all magnitudes that were located during the fourth quarter 1984.

ORIGIN TIME 1984 HR NN SEC OCT 01 i 59 31.6 01 2 9 6.0 01 8 7 87.7 01 9 26 25.2 01 17 47 1 4	LAT N LONG W DRG MIN DEG MIN 62 51.8 149 49.1 60 1.4 152 45.0 60 2.3 152 40.5 60 12.6 151 48.1 60 6.2 153 21.8	DEPTH KM 87.4 88.4 87.6 64.2 143.0	MAG NP 2.0 15 2.2 7 2.4 5 2.8 5 2.8 9	NS GAP DEG 5 148 5 145 5 132 6 223 4 151	D1 D3 KM EM 107 148 44 74 43 68 59 83 48 58	RHS SEC 0.33 0.28 0.35 0.32 0.39	ERH ERZ Q KH KH 1.2 4.6 D 1.7 2.5 C 1.8 3.7 C 2.5 4.0 D 2.2 2 9 C
02 6 28.2	64 48.0 149 4.9	12.8	0.7 4	4 266	25 60	0.13	1.9 4.3 C
02 2 36 17.9	64 36.2 147 46 3	19.9	1.4 10	6 96	5 31	0.37	0.7 0.7 C
02 4 8 19.5	59 56.5 152 51.8	109.7	2.5 8	4 140	38 75	0.39	2.2 2.6 C
02 18 39 48.2	59 20.9 153 11.0	82.7	2.2 6	5 138	14 75	0.28	2.6 2.3 C
02 18 5 33.5	62 20.6 181 11.0	79.4	2.6 12	4 178	45 192	0.57	2.8 6.7 D
02 23 15 28.0	\$8 16.5 152 28.7	37 4	2 5 7	3 220	38 97	0 26	3.3 4.3 C
03 1 39 23.1	62 23.4 151 32.5	87.7	2.4 11	3 206	48 229	0,41	4.1 8.3 D
03 3 51 39.1	81 43.8 150 59.2	63.4	2.5 15	6 111	40 173	0 43	1.1 1.5 C
03 5 46 27.2	60 8.8 182 32.4	99 2	2.9 9	6 160	33 74	0 36	1.8 2.8 C
03 6 53 9.1	59 50.7 183 44.8	152.8	2.9 6	4 219	36 129	0.41	3.5 3 9 D
03 7 14 34.7 03 14 56 1.5 03 19 17 23.8	81 33.4 146 20.9 59 59.9 152 46.0 82 45.1 143 48.5	26.5 104.3 1.2	3.3 9 3.1 15 3.0 11 FELT II	2 220 6 122 1 172 AT SALANA	60 164 46 78 88 133 AND NEBES	0.32 0.35 0.25	3.2 3 7 D 1.6 2.0 C 2.0 2.4 C
03 20 33 28.9 03 21 2 0.7	65 30.5 147 58.8 61 29.4 149 11.9	4.0 43.8	1.8 8	2 307 3 227	84 97 12 139	0.32	3.9 1.8 D 2.7 3.4 D
04 1 29 31.5	64 3.4 146 30.0	6.8	1.2 6	6 181	45 90	0.43	2.6 2.4 D
04 5 8 26.2	65 31.3 147 90.3	11.1	1.3 6	5 311	63 98	0.37	2.3 I.1 D
04 11 35 43.8	65 12.1 148 59.8	7.7	0.9 6	6 264	38 79	0.25	1.4 I.5 C
04 17 26 2.4	65 44.0 151 50.0	36.5	2.0 7	0 323	183 223	0.25	58.0 99.0 D
04 18 15 15.8	65 1.9 149 29.9	45.3	1.4 8	0 279	54 91	0.80	9.7 7.8 D
04 22 41 4.2	59 5.1 (5) 45.5	50.6	4.3° 17 NEIS MB	0 157 - 5.0, FE	44 61 LT III BOH		1.7: 4 9 C
05 13 13 38.6	60 9 6 153 6.7	129.0	2.7 11	7 90	34 73	0.32	1.6 1.8 C
05 15 26 49.0	65 26.9 147 56.9	6.8	1.4 7	7 304	58 90	0.35	1.3 1 1 D
05 16 43 52.9	64 45.4 147 27.3	9.4	1.2 8	4 141	21 34	0.39	1.0 1.4 C
05 22 41 4.2	59 3.1 151 45.5	50.6	2.8 17	0 187	44 81	0.17	1.7 4.9 C
06 0 14 10.8	63 25.4 152 22.5	63.7	2.2 8	5 245	187 208	0.89	7.8 21.8 D
08 1 35 58.2	62 19.3 149 10.9	39.5	2.2 13	2 107	81 128	0.42	9.2 27.5 D
06 2 9 58.5	63 34.3 148 54.3	0.6	2.6 10	0 190	19 56	0.38	1.4 3.8 C
06 12 55 28 1	59 47.1 153 24 5	120.5	2.6 6	4 116	18 43	0.31	1.6 2.9 C
07 1 40 13.3	59 60.0 151 13 2	65.7	2.8 8	4 243	45 98	0.42	2.4 2.7 D
07 2 24 28.0	64 24.8 148 36.5	9.8	0.6 7	7 145	26 38	0.39	0.8 3.5 C
07 3 23 33.3	59 8.2 153 33.8	89.5	3.1 13	4 86	23 45	0.35	2.1 2.7 B
07 6 42 12.9	59 48.2 153 21.8	129.6	2.8 10	4 117	18 52	0.35	1.8 2.4 C
07 14 22 55.9	62 49.0 148 27.0	60.7	2.0 11	8 194	105 152	0 47	1.3 4.5 D
07 16 35 25 1	63 27.2 150 21 2	6.7	3.3 15	0 72	77 140	0 46	1.8 3.2 D
07 17 24 56.0	63 31.5 151 8 2	0.9	2.3 14	8 151	112 155	0.38	1.5 1 0 D
07 22 35 10 4 08 0 49 38 7	62 15.1 151 20.2 63 14.5 151 4.6	24.0 71.0	PALKER M 2.5 (3 3.2" 6	L = 3.7 3 184 0 135	32 213 188 236	0 37 0 13	8.5 10.1 D 5.6 55.8 D
08 14 20 55.8	63 13.8 149 33.9	84.3	1.7 10	6 225	64 152	0.44	1.7 2.4 D
08 17 9 8.3	58 29.1 151 17.5	0.3	2.5 7	1 220	64 116	0.47	2.9 1 6 D
08 17 55 31.9	59 47.8 153 20.2	134.5	2.8 8	5 115	17 48	0.41	2.0 2.4 C
08 19 23 11.1	64 40.7 149 14.9	17.7	0.7 6	6 284	14 60	0.25	1.5 0.9 C
08 20 29 55.4	62 28.8 151 0.4	76.0	1.9 11	2 175	61 205	0.35	3 2 4.6 D
08 21 10 10.0		60.7	3.0 9 Palher H		49 179	0.29	2.0 4.0 B
09 1 19 7.8	64 44.0 146 52.2	14.6	1.0 7	7 227	37 46	0.35	1.1 1.0 D
09 2 29 6.4	59 44.8 152 42 8	85.5	2.6 9	5 101	31 61	0.36	1.3 1.9 C
09 4 12 32.0	59 27.0 152 43.3	86.0	2.3 6	4 86	37 85	0.34	1.3 2.7 B
09 4 59 51.0	59 53.4 153 13.6	109.1	2.6 5	3 130	56 62	0.27	2.1 2.9 B
09 5 19 35.9	58 59.8 152 42.9	56.8	2.2 6	4 123	46 103	0 29	1.3 3.5 B
09 11 36 5.2	63 42 0 142 33.0	58.5	2.2 6	8 280	239 273	0 55	5.1 60.8 D

a *See explanation of column headings at end of appendix B. Magnitude value determined by Alaska Tsunami Warning System (NOAA Palmer Observatory).

ORIGIN TIHI 1984 HR MN SEC OCT 09 17 36 25.5 09 23 4 23.0 10 9 16 50.8	DEG HIN 64 39.2 68 46.0	LONG W DEG MIN 147 0.5 145 28.9 151 54.9	DEPTH KM 10.8 48.3 60.4	HAG 1.2 1.8 2.2	หp 9 6 7	NS 6 4 3	GAP DEG 181 334 139	D1 KH 26 124 19	D3 RM 41 166 75	RHS SEC 0.44 0.79 0.14	ERH KH 0.9 4.4 1.9	ER2 Q KM 1.2 D 27.2 D 3.0 C
10 13 3 25.3 10 18 2 17.5 10 17 40 48.1 10 19 55 33.3 10 20 3 54.6	64 32.7 60 47.0 63 14.2	151 7.9 147 50.3 151 41.3 149 19.8 149 6.7	40.5 12.0 74.0 84.7 63.5	1.4 0.8 3.1 1.7 2.2	5 6 6 9	5 4 4 4 5	327 100 294 265 192	95 11 72 59 130	146 35 142 126 216	0.92 0.18 0.38 0.48 0.17	3.6 0.9 3.4 2.3 1.9	99.0 D 1.9 B 7 O D 2.5 D 9.8 D
10 21 17 17.4 11 4 14 32.3 11 5 1 34.3 11 8 16 47.6 11 12 37 47.3 11 21 18 38.0 12 5 14 94.2 12 5 17 24.2	60 3.7 59 47.1 57 25.9 59 23.4 61 19.2 59 54.5	152 46.9 151 13.5 152 43.3 157 17 2 152 42.8 150 53.1 152 50.3 147 31.7	85.2 50.9 89.0 36.1 76.8 56.8 98.2	2.4 2.5 2.0 3.3 2.1 3.1 2.4	9 5 5 7 1 8 7	54435185	104 245 111 337 96 114 111	27 51 32 213 41 81 36 13	77 94 71 256 68 143 72 30	0.25 0.31 0.23 0.89 0.19 0.31 0.25 0.45	1.5 3.7 1.4 99.0 1.2 2.7 1.7	2.2 8 3.9 D 3.1 B 99.0 D 2 8 B 10.0 C 2.7 B
12	59 28.5 64 13.0 64 47.0	147 35.1 152 47.3 148 3.2 147 20.6 147 52.6	9.2 76.9 18.6 18.9 18.5	1.2 2.8 1.0 1.0	6 10 9 7	6 6 5 6 5	171 79 92 161 91	11 32 7 23 11	34 68 49 38 31	0 39 0 28 0 37 0 27 0 45	1.0 1.2 0.8 0.8 0.7	2.5 C 1.8 B 1.1 C 1.2 C 1.9 C
12 13 27 23 8 12 17 25 48.6 13 3 30 29.1 13 4 29 12.8 14 0 8 28.1	61 44.7 60 41.8 64 13.0	151 11.2 149 47.5 152 53.1 147 57.9 147 33.4	4.1 72.6 134.6 8.3 77.1	1.8 2.0 3.0 0.9 1.7	9 9 7 9	8 3 7 5	309 202 288 95 97	94 95 31 5 68	121 262 124 49 88	0.48 0.49 0.32 0.32 0.40	1.5 5.3 5.2 0.7 1.5	1 1 D 5.1 D 2.9 D 1.4 C .3.8 C
14 0 48 5.9 14 4 30 17.5 14 4 49 38.7	84 9.0	149 49.8 148 43.6 149 31.9	148.4 11.4 75.4	2.9 1.0 3.3		7 0	309 108 108	138 27 75	214 47 124	0 65 0 45 0 37	13.9	11.8 D 1.2 C 4.4 C
14 10 19 48.8 14 15 16 12.5		147 13.3 182 6.7	17.7 78.7	NEIS NEIS 2.3	8	• 3. 0 • 3.	250	97 LHER 30	242 HL = 81	0.10 3.4 0.28	20.2	8.2 D 2.8 C
14 18 45 55.2 15 4 15 20.4 15 7 2 22.1 15 11 13 20.5 15 14 7 16.3	62 9.4 60 5 6 63 32.4	151 59.9 149 32.5 152 33.1 150 48.4 148 57 5	74.9 66.9 103.5 4.2	3.3 2.6 2.7 1.4 2.2	9 13 9 7 9	3 8 7 2	229 103 149 203 183	44 67 38 95 24	120 122 70 143 46	0.32 0.46 0.29 0.34 0.39	2.6 1.4 1.8 1.9	4.3 D 5 1 C 2.2 C 1.3 D 1.0 D
15 14 30 8.4 15 14 34 42.1 15 18 40 52.6 16 0 34 42.1 16 1 16 35.8	64 57.8 61 2.1 61 25.8	147 4.4 150 29 0 146 41.1 150 38 4 149 32.1	14.9 27.7 2 0 35.9 20.3	0.9 1.4 2.5 2.7 1 1	6 5 13 16 6	8 6 1 2 8	185 313 248 112 265	23 80 95 77 23	45 112 278 161 69	0.44 0.40 0.23 0.42 0.31	1.0 3.0 4.2 1.7	1.0 D 43 2 D 1 6 D 2 7 D 0 7 C
16 1 40 51 4 16 6 5 53 1 16 7 11 42 0 16 13 25 23 2 16 13 42 40 1 16 14 22 16 3 16 16 32 27 3	80 18.4 99 58.2 64 44.9 99 2.7 59 4.6 81 59.0	150 34 8 181 31.0 152 53.5 147 3 2 181 42.6 153 37 3 148 53.4 147 7.0	24.6 56.4 109.2 1.2 45.2 92.7 38.9 12.3	1.4 2.0 2.9 0.7 2.1 2.3 2.1	7 3 12 5 7 6 11	7 3 4 4 3 2 3 6	300 245 109 203 192 195 96 120	89 37 31 59 17 45	132 85 73 39 103 68 138 73	0.62 0.11 0.23 0.30 0.22 0.14 0.33 0.48	1 8 24.3 2.2 1 1 1.9 3.0 1 7 0.8	99.0 D 27 I D 3 2 C 51 I D 7 9 D 4 7 D 2.5 C 0.9 C
16 16 44 46.0 16 21 27 18.8 16 23 11 7.0 17 2 1 40.4 17 11 33 53.8	59 59.0 63 54.6 64 38.8	153 1.3 153 44 0 148 54.4 146 48.7 153 16 3	61.8 169 I 0.1 2.6 108.2	2.5 2.7 2.1 1.0 2.4	10 10 11 7 8	6 2 0 5 5	91 177 121 230 98	39 34 30 28 6	64 71 56 48 53	0 29 0 31 0 30 0 46 0 22	1.3 1.3 1.3	2.2 B 2 8 C 1.4 C 14.5 D 2 1 B
17 11 34 24.3 17 15 22 34.4 17 17 32 10.3 17 17 48 47. 17 19 0 41.6	58 52.9 59 11 8 59 27 9	132 9 9 152 17 3 132 33.6 133 16.6 149 47.6	64.5 31.3 72.8 97.3 90.4	2.6 2.3 2.3 2.3 2.2	8 7 5 7	4 4 3 6 4	131 148 224 95 158	44 29 52 17 75	68 83 84 63 144	0 25 0 33 0 15 0 37 0 33	1.3 1.2 2.3 1.6 1.7	3 1 8 3.9 C 3 9 D 2.8 C 2.6 D
17 22 55 30.1 18 0 57 10.1 18 3 18 39 1 18 3 27 2. 18 4 4 13	8 63 26.7 59 48.7 60 1.4	130 47 6 149 7.3 133 19 3 153 3 3 151 56.0	128 6 81 5 118 4 113 5 68 7	2.6 1.9 2.4 2.7 2.2	14 13 8 10 5	3 9 3 4 4	189 138 117 131 230	118 33 19 42 139	146 101 34 69 207	0.27 0.44 0.31 0.36 0.35	2.2 1 1 2.3 1.8 8.2	2 8 C 1 8 C 3.9 C 2 3 C 17 I D

APPENDIX B (con.)

ORIGIN 1984 RR MN OCT 18 5 19	7148 SEC 56.5	N TAJ NIH DSD G.E EB	LONG W DEG MIN 150 58.7	DEPTH KM 191.4		NS GAP DEG 0 72 - 4.6. FE	D1 D3 EH EH 123 150 LT III AT	RMS SEC 0.23 Palmer	ERM KM 2.6 AND	ERZ Q KH 7 2 8
18 9 17 18 10 7 18 12 35 18 17 0	49.8 41.8 15.8 23.9	60 5.9 65 46.9 60 9.3 60 14.2	152 37.8 145 40.0 153 21.2 152 32.0	96.0 66.2 147.8 97.2	WASILLA. 2.7 9 3.0 12 3.0 7 2.9 5	6 141 0 164 1 178 3 170	37 74 119 161 44 62 24 81	0.33 0.29 0.35 0.31	1.7 4.0 3.8 3.1	2.3 C 13.4 D 8.4 C 5.0 C
18 17 21 18 23 47 19 0 48 19 1 50 19 4 44	51.3 27.4 30.4 54.3 45.0	64 56.8 63 1.2 64 38.4 63 16.7 81 40.4	147 12.1 148 7.7 148 2.8 150 33.1 150 47.0	2.5 74.1 12.9 124.7 67.2			10 47 89 130 12 21 95 162 176 241 LMER HL - AND PALME		1.5 1.4 0.6 3.5 20.0	1.6 C 4.7 C 2.6 B 2 7 D 52.9 D
19 5 47	14.7	59 5.0	152 6.6	53.3	2.4 8	3 215	69 80	0.13	3.4	5.8 D
19 19 23	1.9	62 7.4	(5) 52.7	30.5	2.3 9	1 255	24 234	0.24	6.5	3.8 D
19 20 43	13.3	59 49.7	(5) 23.4	60.2	3.9 14	2 123	39 105	0.84	1.8	3 8 C
20 7 45 20 10 29 20 11 2	11.9 29.1 45.1	52 3.2 62 16.9 59 47.0	148 42.0 151 44.8 152 15.0	21.7 103.1 74.3	PALHER MI 2.0 11 2.3 12 2.1 7	4 98 5 225 4 134	FELT I AT 56 148 35 215 37 64	ANCHOR 0.37 0.42 0.33	2.4 2.4 2.1	2.9 D 4 1 D 2.3 C
20 17 14	18 7	64 42.1	146 56.0	2.2	1.8 10	2 192	33 42	0.46	l . 2	2.7 D
20 19 26	41 7	62 46.3	148 24.5	65.6	1.7 10	6 194	110 151	0.39	l . 6	4 4 D
21 11 8	22 9	60 29.0	151 49 0	75.9	3.2 8	2 260	53 112	0.24	2 . 7	4.0 D
21 11 13	49 3	59 33.3	153 1.2	91.0	1.9 6	3 82	71 85	0.33	l . 5	4 6 B
21 14 3	49 5	60 3.6	152 45.7	107.7	2.0 5	2 125	40 89	0.19	2 . 7	3.7 C
21 14 12 22 4 27 22 13 34 23 13 49 22 16 15	19.3 22.7 21.8 14.8 44.1	64 27.3 62 19.0 60 45.8 61 4.3 62 45:5	147 58 5 148 23 7 146 9 2 146 25.1 150 56.3	15.9 14.5 39.0 4.8 90.4	3.9° 13 2.1 12 2.5 6 2 2 8 1 7 6	0 71 6 125 2 290 2 280 0 184	6 31 78 167 135 249 98 217 92 223	0.29 0.37 1.66 0.36 0.01	1 0 2.1 8.2 5.2 6.3	1 2 B 3 3 D 5 7 D 2 7 D
22 17 46	51.7	61 12.9	147 48 8	5.9	3.9 6	1 329	267 284	0.29	99.0	99.0 D
22 22 43	6.7	63 15.6	148 57 4	87.6	2.3 13	3 128	53 114	0.32	1.9	3 9 C
23 1 9	9.0	64 47.7	148 55 0	12.7	1.4 8	2 235	26 54	0.28	2.9	1 8 D
23 3 5	30.6	59 31.0	132 57 2	92.6	1.8 7	4 83	22 76	0.24	1.8	2.6 B
23 3 45	11.5	58 31.8	152 45 4	52.3	2.8 12	4 105	26 68	0.29	1.4	3 6 B
23 5 18	31.8	63 9.8	149 18.2	89 2	2.1 12	7 139	66 132	0 29	1.3	2.4 C
23 8 48	4.8	63 29.2	147 37.0	19.1	1.9 12	4 118	71 88	0 43	1.7	2 O D
23 9 54	14.0	61 9.3	146 20.2	19.7	2.7 12	2 280	98 215	0 23	3.7	2.9 D
23 18 47	54.4	63 56.3	148 58.9	0.4	1.9 13	0 123	22 57	0 44	1.3	1.4 C
23 20 28	47.1	61 25 6	150 9.4	47.3	2.0 6	2 239	58 157	0 50	5.0	3.7 D
23 21 7	35.7	59 16.8	153 19.4	89.6	2.6 9	6 128	9 43	0.23	1.8	1 8 B
23 21 48	36.3	63 17.6	150 26.2	110.1	2.3 11	4 250	89 158	0.48	3.4	3 0 D
24 13 47	3.2	60 16.8	151 52.1	74.8	2.8 6	4 229	52 91	0.39	2.4	3.7 D
25 2 35	20.3	61 33.6	147 53 3	52.4	1.8 7	1 230	43 198	0.18	7.1	5 4 D
25 4 22	51.2	58 42.1	151 45.3	130.8	2.4 3	2 239	33 135	1.89	8.4	3 0 D
25 18 18	26.1	64 38.4	148 44.0	18 9	1.3 8	3 168	18 36	0 39	1 1	1 0 C D D 2 7 8 7 6 8 4 5 5 D C C D C C
25 20 25	5.3	62 59.9	149 38.3	81.3	1.8 10	7 150	89 157	0 31	2 1	
26 1 17	5.6	58 18.2	153 18.0	55.4	2.2 5	2 273	65 113	0 25	4 1	
26 5 5	52.6	59 44.7	153 17.4	107.7	2.2 8	5 105	!1 51	0 27	1 4	
26 15 50	46.7	62 37 2	151 37.4	100 0	1.9 8	1 213	72 240	0 29	6 2	
26 15 54	54.8	59 39 3	153 8 8	106 5	2.4 7	5 89	5 61	0 30	1 9	
26 16 17	43.2	62 29.6	149 53.9	76 8	2.1 10	5 133	102 153	0 32	1 4	
26 17 1	39.8	59 6.3	152 12 1	52.7	2.4 5	3 140	84 72	0 39	2 4	
26 18 25	20.3	59 14.3	153 38 7	93 9	2.4 6	5 131	16 40	0 09	2 8	
26 19 51	4.0	62 48.7	149 1 6	68 2	1 4 6	4 153	103 182	0 31	1.5	5 0 0
26 20 32	53.1	61 46.9	149 59 7	45 0	2.4 9	3 172	50 141	0 37	3.5	5 3 0
26 21 59	38.0	64 29.3	147 17.1	17.5	1.1 8	4 125	18 39	0 46	1.2	1 1 C
26 23 44	45.8	64 41.2	149 0.9	21 1	1 3 10	0 222	13 50	0 19	2.7	1 1 D
27 0 45	21.7	62 46.7	149 14 7	2 4	1 8 7	3 152	108 160	0 31	2.3	1 8 D
27 1 49	38.1	61 12.3	149 57 3	32	2.2 7	2 254	62 156	0 25	5 6	2 5 D
27 4 57	16.6	63 10.7	150 33 5	119 8	2.1 13	4 183	102 142	0 33	1 8	2 7 D
27 6 45	18.7	59 37.1	152 39 7	78.8	2.1 6	5 101	54 88	0 24	1 1	3 2 B
27 7 14	6.3	63 12.9	150 16 5	99.3	1 8 7	3 178	88 152	0 33	2 2	3 O D
27 10 54	28.1	59 19.8	153 21 5	104.0	2.4 9	3 94	4 48	0.35	2 1	2 4 C
27 13 53 27 16 57	12.0	59 14.9 60 8.6	153 39 5 152 11 9	120 5 77 4	2.3 6 2.9 8	3 81 3 187	16 39 44 80	0.22 0.25	3.3	2 2 B 3 3 D

ORIGIN 1984 HR HN OCT 27 20 1 26 2 47 28 10 4	TIME SEC 22.5 44.0 39.0	LAT N DEG MIN 59 57.9 64 46.3 62 52.2	LONG W DEC HIN 152 27.0 147 33.4 150 51.9	DEPTH KH 98.8 9.1 97.6	HAG 2.8 1.0 2.0	NP 6 7 10	NS 2 6	GAP DEG 146 126 185	D1 KM 34 21 105	D3 KH 85 28 170	RMS SEC 0.32 0.48 0.38	ERH KM 2.8 0.7 2.7	ERZ Q KH 5.4 D 4 0 C 10 0 D
28 15 0 28 20 50 29 1 39 29 2 19 29 9 47	42.5 14.1 18.8 47.7 57.9	61 30.3 63 51.2 65 20.5 83 9.0 59 49.0	147 26.4 149 31.2 144 29.5 149 23.8 152 9.7	26.8 121.1 37.2 78.6 73.3	2.9 1.8 3.7° 2.1 2.2	13 8 6 12 8	2 3 0 5 3	246 260 261 142 148	37 32 163 69 62	193 98 477 180 78	0.39 0.38 0.67 0.49 0.25	5.0 3.2 41.5 1.5	2.3 D 3.2 D 14.0 D 2.3 D 2.8 C
29 10 0 29 14 21 29 14 45 30 1 8 30 3 29	38.3 10.9 59.5 20.0 2.2	59 3.6 64 26.2 63 19.9 59 50.5 64 47.6	152 37.0 149 19.5 151 5.6 152 9.5 148 56.7	78.2 12.8 76.9 68.1 2.9	2.4 1.2 2.6 1.8	7 8 6 4 7	5 7 2 3 4	106 232 151 151 238	5 t 17 1 t 6 63 25	61 59 152 114 54	0.30 0.31 0.31 0.08 0.44	1.3 1.2 5.2 2.2 1.6	2.7 8 1.0 D 10.2 D 4.2 C 13.4 D
30 9 42 30 19 13 30 23 7 NOV 01 0 53 01 5 14 01 8 18	34.5 5.6 22.8 44.4 46.9 2.1	59 5.9 62 58.5 64 42.3 59 31.7 64 48.0 60 40.1	152 46.4 149 48.6 147 31.2 152 29.9 149 9 5 150 39.8	68.5 65.3 23.6 74.4 23.5 63.2	2.0 2.4 1.5 2.8 1.5 3.5 PALM	6 16 9 9 8	4 5 2 3 5 0	155 152 130 114 251 161	46 141 15 44 25 119	58 158 33 72 63 132	0.28 0.41 0.37 0.13 0.33 0.17	2.9 1.1 1.5 1.7 2.1 4.1	2.9 C 6.4 D 1.1 C 2.9 B 1 I D 12 8 D
01 20 11 02 9 27 02 10 41 02 12 7	9.8 12.8 16.6 12.8	63 11.2 60 22 8 63 26.6 60 0.8	150 22.4 152 13 6 146 54 1 152 56.4	92.1 91.8 18.1 102.2	2.2 2.6 1.7 2.5	13 5 11 7	- 3 9 5	177 231 159 121	94 30 53 43	99 93 75	0.43 0.31 0.79 0.30	l 9 2.8 l.0 3.1	3 2 D 4.2 D 1.2 D 3.1 8
1)2 17 45	45.7	58 56.0	152 48.4	65 · B	4.2" NEIS	В	0	98	43	57	0.15	2.0	4 5 B
02 18 55 02 23 3 03 9 14 03 9 19	36.4 1.6 27.4 21.5	60 16.4 60 6.4 84 35.7 64 3.9	152 33.4 132 30.8 148 26.1 148 34.3	98.9 88.1 15.6 18.0	1.9 1.5 0.8 1.0	4 6 9	4 2 6 9	174 154 224 138	20 38 18 34	106 97 50 41	0.08 0.42 0.43	2 . 8 2 . 8 1 . 2 0 . 7	3 0 C 5.3 C 2.1 D 0.7 C
03 13 19	4.6	55 5.1	153 6.2	42.6	4.3 Neis	8 HB	0 4	335 6, PA	299 LHER	430 HL -	0.39 4.3	99.0	43.5 D
04 2 55 04 3 16 04 8 37 04 9 26	9.1 48.3 24.1 56.6	62 42.7 63 49.8 64 48.4 60 33.5	149 0.7 149 4.9 147 17 6 146 48 4	57.9 13.6 8.7 30.8	1.2	12 6 7 3	2 5 1 1	117 202 172 328	114 13 21 272	154 68 41 328	0.37 0.31 0.12 0.18	1.7 1.6 1.8 48.3	5.8 C 1.1 D 11.2 C 89 4 D
04 10 55 04 13 14 04 13 50 04 16 3 04 18 1	57.3 38.8 19.6 21.8 2.0	61 30.2 59 59.3 59 42.6 64 47.3 59 15.3	150 22.8 132 45.7 151 48 0 147 33 2 154 43 3	34.3 92.7 68.8 10.4 7.2	2.8 2.1 2.2 1.9 2.1	1 I 6 4 8 5	3 3 4 2	231 121 157 127 267	67 46 11 20 23	186 73 96 28 72	0.46 0.18 0.18 0.42 0.63	4.7 2.5 4.3 1 1 2.8	3.1 D 4.4 B 3 O C 5.0 C 1.9 D
04 19 30 04 23 26 05 0 18 05 6 37 03 8 26	15.2 56.3 28.3 52.1 25.8	60 7.9 59 34.8 59 34.0 64 20.0 63 2.0	153 36.1 152 52.2 153 13.5 149 40.9 151 3.1	181 6 87 1 117 7 19 6 134 8	3.1 2.6 2.8 1.0 2.0	7 7 7 7	4 3 6 5 4	254 79 126 256 300	51 22 28 25 120	70 59 76 159	0 34 0 29 0 32 0 46 0 31	3.6 1.6 1.6 2.1 2.7	4 6 D 2 9 8 1 9 C 1 0 D 2 8 D
05 13 23 05 17 34 06 4 45 08 7 43 08 10 25	8.0 59.2 52.4 47.2 18.4	58 58.8 64 3.5 58 59.4 59 7.1 59 58.3	153 48.1 148 5.1 152 38.1 151 59.9 153 17.7	11.1 110 8 68.3 53.9 127.8	2.4 1.7 2.3 2.2 2.6	5 13 8 8	1 6 6 4 3	189 91 106 157 142	10 15 44 55 36	50 55 60 85 58	0.59 0.27 0.34 0.18 0.32	3.1 1.7 1.3 1.5 3.0	3.1 D 2 O 8 2.7 C 4.4 C 2.5 C
07 11 39 07 22 28 08 1 11 08 1 34 08 1 42 08 9 5 08 10 52	21.8 15.9 21.1 35.1 23.7 4.9 52.4	59 46.6 59 46.0 59 34.9 64 46.2 63 0.8 60 6.2 62 57.7	152 41.0 151 13.1 152 23 0 147 47 6 149 25.7 153 6 5 148 10 4	84 8 96.3 87.3 17.5 79.8 131.9 61.5	2.3 2.9 3.6 0.6 1.5 2.3 1.8	4 8 6 11 5	1 3 2 8 5 2 7	202 299 91 106 139 196 140	35 27 43 14 84 40 94	85 114 65 31 158 87 150	0 10 0.33 0.36 0.43 0.38 0.24 0.35	7 1 4.1 2.2 0.7 1.6 3.8 1 4	8 2 D 3.5 D 3 5 C 1 5 C 2.9 D 4.3 D 4 2 D
08 14 48 08 15 19 08 17 6 08 19 8 09 1 49	20.2 58.1 9.4 39.9 26.4	64 31 5 60 30.3 60 4.3 84 36 5 59 57.3	148 13.0 151 31 3 153 1 8 149 12 1 153 4.6	14.6 67.1 113.1 16.3 112.2	0 7 3.2 2.3 0.9 2.3	6 8 4 6	6 3 5 4	197 269 136 240 124	5 69 41 7 35	42 110 72 56 65	0 42 0 36 0 15 0 38 0 28	0.9 2.8 2.8 1.5 2.4	1 3 D 5 3 D 2 7 C 1.1 D 3.2 B
09 4 50 09 6 56	14 2	64 46.2 63 52 4	147 30 4 147 49.0	10.3 14.4	l l 4 2 °	7 13	3 0	134 81	20 35	31 68	0.42 0.41	l . Q l . l	5 2 C 1 5 C
09 8 13 09 8 23 09 12 30	20.5 58.1 39.7	63 52.1 63 51.5 58 28.3	147 47.7 147 49.5 154 37 8	19.6 18.6 0.0	NEIS 1.2 1.2 2.3							0.6 0.6 26.0	

ORIGIN 1984 NR HN NOV 09 12 41 09 13 58 09 15 17 09 17 43 09 19 51	SEC 13.7 10.9 24.2 2 1 40.2	LAT N DEG HIN 59 33.1 80 0.9 59 48.8 63 53.0 63 3.3	LONG W DEG MIN 151 24.0 152 54.8 151 26.6 147 52.0 150 21.2	DEPTH KH 73.7 105.2 44.8 15.8 90.9	MAG 2.1 2.0 1 9 1.4 3.1*	NP 3 5 5	NS 5 3 3 8 2	GAP DEG 297 119 206 123 172	Dt RH 10 44 34 33 134	D3 EN 118 76 102 66 173	RMS SEC 0.11 0.17 0.21 0.37 0.30	888 888 2.3 2.1 2.0 0.7 2.8	2RZ Q KH 2.9 D 3.1 B 3.0 C 0.7 C 9.7 D
10 1 31 10 3 43 10 14 33 10 15 19 10 16 28	44.4 48.5 55.0 3.9 49.7	58 50.9 63 46.1 64 43.7 60 43.8 64 43.4	154 0.9 148 30 5 147 35.4 151 45.5 147 35.2	1.3 27.3 3.2 73.1 0.7	2.3 2.1 0.9 2.7 0.4	5 9 6 6	1 3 5 2 4	267 149 121 289 121	23 44 14 66 14	64 84 30 137 31	0.37 0.70 0.28 0.37 0.19	11.1 1.8 0.8 3.8 0.8	4.3 D 24.4 D 10.1 C 6.8 D 48.4 C
10 22 37 11 4 14 11 5 33 11 5 45 11 10 8	24.1 24.9 10.8 43.3 46.1	59 57.7 65 5.5 63 52.4 61 20.6 64 56.6	153 11.0 146 32.8 147 46 9 147 23 2 148 59.0	111.3 10.0 2.3 25.9 8.8	2.4 1.3 3.2 3.8 0.7	5 6 12 16 5	2 6 2 0 5	132 300 79 233 259	35 41 59 55 41	60 79 72 207 65	0.16 0.29 0.23 0.42 0.27	3.2 1.4 1.1 5.2 1.8	4.1 C 1 4 C 2.0 C 3.0 D 11-0 D
11 14 18 12 2 9 12 4 54 12 6 18	51.2 43.0 3.2 40.8	39 7.2 64 51.2 63 24.8 63 35.7	152 46.8 147 42.5 150 23.5 15) 17.8	74.0 9.3 138.5 0.7	2.3 0.3 2.6 2.2	6 3 13	4 4 5 6	148 143 185 220	44 21 81 118	65 24 145 178	0.29 0.25 0.34 0.48	2.D 0.9 2.0 1.6	3.0 C 3.3 C 2.5 D 9 D
12 7 44 12 13 59 12 20 13 12 23 18 13 0 37	48.2 37.5 19.9 22.3 49.5	63 51.9 63 9.3 59 27.2 59 50.8 62 1.9	147 50 8 150 59.9 192 42.2 152 30.3 150 45 6	19.4 124.3 92.9 78.7 63.3	1.2 1.8 2.8 1.9 3.0	8 8 8 13	7 3 3 4 2	144 210 84 129 143	35 121 37 46 41	69 205 64 77 182	0 45 0 31 0 22 0 20 0 27	0.7 2.9 1.8 2.0 2.9	0 7 C 6 7 D 3.1 B 3 0 B 6 3 C
13 1 46 13 3 17 13 3 23 13 5 16 13 8 1	41.6 50.2 45.4 30.5 16.9	59 17.5 64 41.8 63 32.6 63 53.1 60 4.4	152 52.2 150 22.3 146 2.0 147 53.3 152 54.9	88.7 11.3 18.8 11.6 107.0	2.6 1.8 1.3 1.1 2.5	8 9 8 9	3 2 5 4 3	84 289 180 214 125	32 63 49 33 39	60 107 104 66 78	0.35 0.37 0.34 0.38 0.34	1.9 3 1 1.5 1.4 2.3	5.6 8 1.4 D 1.2 D 2.2 D 2.7 C
13 8 58 13 16 2 13 16 9 13 22 11 13 22 20	45.8 80.0 5.9 30.9 23.4	63 12.6 60 2.8 62 29.2 61 37.9 62 51.6	148 58.7 132 42.2 149 32.7 149 47.2 150 50.2	8.6 108.9 71.4 57.1 78.1	1.8 3.4 1.9 2.2 2.4	9 6 10 9	3 2 6 3 4	133 130 123 132 183	58 42 102 54 104	147 89 137 130 167	0 45 0.31 0.71 0.54 0.31	1.5 2.8 1.0 3.0 2.2	1.6 D 4 5 C 4 0 C 5 9 C 6 9 D
13 23 29 14 3 11 14 11 37 14 15 54 14 19 42	44.5 13.4 58 6 32.5 58.1	61 51.5 63 8.9 60 36.4 64 59.8 61 50.8	149 38.4 150 42.9 153 15 7 180 28 4 151 8.5	15.7 (13.4 161.3 28.5 100.0	2 3 2.0 3.6 1.9 2.3	11 11 15 7	2 4 4 5 0	141 168 174 297 217	40 110 34 81 25	122 139 106 128 319	0 24 0.33 0.34 0.37 0.62	3 1 5.5 2.6 2.6 99 0	4.7 C 4.3 D 3 5 C 50 2 D 99.0 D
14 23 0 15 0 33 15 8 19 15 10 41 13 16 58	21.4 47.9 25.9 1.8 37.8	59 51.7 63 52 2 63 8.2 64 53.4 64 12.9	152 49 4 147 47.2 150 53 7 146 52 3 150 57.4	95.0 6 1 63 5 16.3 7.4	2.5 2.6 1.9 1.6 1.7	5 13 6 7 9	3 0 2 2 7	138 94 206 250 304	33 35 118 27 83	70 69 187 54	0 22 0 41 0 35 0 19 0 40	1.9 1 1 2 8 2.9 1.5	2.8 C 2 7 C 12 2 D 1 4 D 1 1 D
15 17 2 16 3 44 16 10 22 16 16 22 18 17 1	30.6 3.6 33.3 5.8 50.9	63 54.6 64 23.6 62 55.3 64 48.8 61 47.3	148 35.5 149 31 0 150 29.8 147 33.4 146 47.5	6 9 12.6 89.5 13.2 29.8	1.4 1.3 2.2 1.0 2.0	8 9 11 7 9	0 9 4 6 3	154 252 173 125 134	20 27 118 21 28	57 69 157 28 146	0.22 0.44 0.38 0.28 0.34	1 7 1 2 2 9 0 7 3 5	2 9 C 0 8 D 6.9 D 2.9 8 3 O C
16 18 37 16 19 10 17 0 39 17 0 43 17 0 53	1.2 1.1 32.8 41.3 42.5	59 44.7 62 23.0 58 49.8 63 5 8 62 49.7	151 43.5 145 30.3 152 29 9 149 27 8 149 5 7	125.3 64.8 42.2 84.9 63.6	2.5 1.6 2.5 1.6 2.0	5 7 9 7 12	3 2 6 4	169 118 121 156 123	37 89 24 76 101	95 165 78 164 155	0.29 1.11 0.25 0.43 0.44	2 8 1 3 1 6 1 8	4.3 C 7 2 C 5.0 C 2.9 D 4 4 C
17 3 39 17 6 39 17 9 3	6.9 21.0	60 9.1 64 15.5 63 24.5	133 7.4 150 32.1 153 1 1	124.2 24.6 31.2	2.8 1.3 5.3* NEIS CAKE	HB .	снин		FELT	(1 AT	0.34 0.39 0.37 MC GRA TALBE		
17 10 12 17 11 35	59.0 8.1	63 5.0 64 25.3	153 12.2 148 0 4	85.3 7.7	1.0	6 7	6 2	265 116	150	263 27	1 00 0.27	8 . 4 L 1	21.4 D 3.3 8
17 13 53 17 14 30 17 19 21 17 21 54 17 23 15	48 0 47 5 28 3 19 4 26 9	63 8.3 62 13.5 59 57.0 64 41.0 58 36.8	133 47 8 148 4 6 152 40 4 149 11.6 151 41 6	45.2 41.6 89.1 15.8 39.7	2.2 2.2 1.2 2.6	7 14 7 9 6	4 3 4 9 4	276 83 125 244 259	174 59 46 13 38	255 158 66 52 118	0 80 0 45 0 27 0 42 0 13	7.1 2.3 1.7 1.1 2.7	99.0 D 13 5 C 2.7 B 0.6 D 4.7 D

APPENDIX B (con.)

ORIGIN 1984 HR MM NOV 17 23 36 18 3 12 18 4 36 18 7 26 18 8 29	TIME SEC 28.6 15.9 31.4 18.9 15.0	LAT N OEG MIN 61 24.2 65 16.9 63 6.9 58 16.1 56 19.5	LONG W DEG MIN 148 4 8 148 55 9 148 13.5 151 26.5 151 50.7	DEPTH KH 20.0 34.3 62.9 13.7 0.6	2.1 8 1.3 6 3.7 17 2.7 5 4.2 9 NEIS MB -	NS GAP DEG 4 252 5 289 0 89 3 223 0 287 4.8	D1 KM 60 63 77 66 163	D3 RMS EN SEC 221 0.46 80 0.47 127 0.35 141 0.25 309 1.01	3.1 2.1 1.8	ERZ Q KH 1 4 D 7 5 D 9 3 8 2 6 C 2 5 D
18 11 24 18 11 53 18 16 46 19 0 44	53.0 35.9 11.6 24.4 46.8	81 37.6 54 20.7 68 4.8 58 12.5 61 32.5	148 20.8 148 33.7 144 32.9 156 51.0	17.5 16.3 4.9 223.5	2.1 5 1.0 9 2.8 10 4.6 10 MEIS MB - 2.5 12	4 253 6 74 4 189 0 272 4.8. FE 5 218	57 27 62 182 LT II 32	157 0 50 36 0.25 179 0.49 233 0.46 AT EGEGIE 131 0.59	0.7 3.1 42.7	2 0 0 0.9 8 3.0 D 35 3 D
19 13 55 19 15 8 20 1 17 20 6 16 20 12 17	13.7 41.5 23.6 48.3 29.1	63 32.3 64 21.2 59 30.6 64 48.3 62 20.2	147 38.3 146 32.2 152 69.1 150 31.6 149 50.2	15.5 15.9 17.2 0.4 68.0	1.3 9 0.9 8 1.7 4 1.5 7 2.0 t0	7 179 6 118 3 226 6 294 4 122	52 25 21 74 91	98 0.45 36 0.45 85 0.22 122 0.47 143 0.45	0.7 3.9 1.9	1.0 D 2.7 C 3 2 D 2.2 D 5.1 C
21 3 52 21 4 48 21 14 14 21 16 38 21 20 6	5.8 25.5 12.8 1.8 24.4	59 52.3 62 41.8 64 42.1 57 31.5 60 5.3	151 56.3 191 58.9 146 52.5 134 57.0 152 24.5	74.5 168.4 7.7 61.5 96.9	2.0 4 2.9 6 1.8 9 2.9 8 3.9 10	3 171 2 226 4 196 1 290 2 162	55 82 33 149 42	77 0.20 217 2.18 45 0.35 186 0.18 67 0.31	15.4 1.1 8.2	3.8 C 9.7 D 1.4 D 26.1 D 3 6 C
22 6 45 22 9 47 22 12 23 22 13 10 22 14 43 22 16 10	43.7 20.0 18.2 59.7 64.7 47.5	64 52.3 58 54.8 59 36 9 63 0.1 60 8.1 64 48.1	148 32.8 153 56 7 152 41.5 149 37.9 152 48.5 147 18.0	25.0 97.3 84.0 87.6 101.4 2.7	0.8 5 2.3 6 2.2 6 3.7 17 2.5 9 0.5 5	4 218 3 215 4 181 0 111 6 127 1 171	20 17 52 89 32 21	43 0.46 56 0.26 83 0.30 150 0.27 83 0.26 40 0.21	3.9 1.6 2.1 1.8	2.2 D 2 6 D 3.5 C 6.1 C 2.3 8 21.3 C
22 18 17 22 18 34 22 22 3 23 1 15 23 23 10	30.4 14.1 46.6 42.8 38.9	62 7.6 60 6.4 61 57.1 59 57.1 62 23.3	148 39.6 152 28 1 150 54 8 152 10.6 150 59.7	44.2 109.9 73.1 73.1 104.4	1.5 7 2.9 9 2.2 13 1.4 7 2.1 8	2 151 4 162 3 164 5 164 1 172	77 35 33 44 53	180 0.41 71 0.35 189 0.26 68 0.33 262 0.13	2.2	13.3 D 2.4 C 2.2 C 2.8 C 21.0 D
23 23 16 24 2 14 24 7 0 24 7 4 24 10 27	1.1 40 8 45 9 31.7 51.1	64 10.4 59 38.2 64 11.6 63 18.2 64 40.9	147 30 9 132 56.2 148 2.5 151 0 0 149 3.8	17.5 88.8 9.9 41.8 13.2	1.0 8 2.7 9 1.7 10 1.8 8 1.1 9	3 189 6 82 2 85 6 202 8 236	20 17 6 113	43 0.55 73 0.32 52 0.45 150 0.55 52 0.30	1.3 0.9 3.7	1 3 D 1 8 B 1 3 B 49 5 D 0.7 C
24 10 42 24 11 30 23 0 31 25 8 50 25 16 58	27.0 38.1 50.5 0.0	59 59.5 62 45.3 64 36 7 58 19.5 64 30.0	153 24.7 143 25.5 147 14.8 154 5.8	0.2 13.9 27.8	3.5 9 PALKER ML 2.5 8 2.3 11 4.5 5 NEIS MB - 2.1 12	3 154 - 3.4 1 178 0 158 0 254 4.3 1 198	39 90 27 72 39	59 0.31 148 0.23 43 0.46 124 0.36	3.5 3 1 3 3 89 5	2.4 C 3.5 C 1.4 C 13.5 D
25 19 53	26.4	63 58.6	148 55.6	1.1	1.3 10	0 153	33	56 0 37	1.4	3 1 C
26 1 42 26 2 41	14 8	62 56.8 62 56.0	190 33.7	25.7 98.8	3.0 16 PALHER HL 3.3 15	0 181 - 3.7 0 175	116	198 1 15		3.8 D 3.6 D
26 6 13	10 0	59 37.7	132 55.9	109.5	PALHER HL 2.9 8	2 81	17	73 0.3	2.4	5 4 8
26 18 26	39.4	63 50.9	149 2.7	18.4	PALHER HL	6 189	14	66 0.59	2.0	1.5 D
27 ! 21 27 5 3 27 11 57 27 12 35 27 13 59	27.6 59.8 32.3 5.2 39.2	64 51.5 60 9.1 83 1.8 83 11.0 63 1.8	147 21.9 152 54.5 149 27 2 149 40.4 149 57.1	9.5 120.0 87.1 85.7 84.7	1 6 8 2.5 5 2.3 15 1.7 8 2.2 13	6 163 4 175 5 108 5 165 2 158	14 31 83 71 93	37 0.20 82 0.23 149 0.30 163 0.30 163 0.30	2.0 1.1 3 1.6	1 2 C 2.5 C 3 6 C 2 7 D 3.1 D
28	48.1 34.9 38.5 21.1 46.3 24.2	58 59 5 62 35.2 63 58.0 62 12.0 59 31.9 63 51.2	152 40.0 148 8 3 148 50 2 147 17 8 152 39 5 149 10 4	80.2 98.5 0 9 63.6 71 9 12.5	3.9 9 2.3 12 1.8 12 2.0 5 2.0 5 1.4 8	4 122 8 105 0 114 3 156 3 160 5 216	57 94 23 41 35 18	80 0 3 134 0 32 52 0 42 190 0 39 81 0 37 71 0 50	1.2	2.7 C 5 4 C 1.1 C 5-4 C 2 7 C 1.2 D
29 6 29 29 8 0 29 13 8 29 22 36 30 1 0	17.9 38.2 3.0 25.7 21 3	64 23.0 63 22.8 59 7 6 60 12.8 63 55.9	147 17 6 151 22 0 151 30 6 153 8 2 149 5 2	10.6 1.5 4.0 131.0	1.4 9 2.1 9 2.3 6 2.8 7 1.4 10	3 121 4 216 3 266 3 94 3 164	17 127 47 31 23	39 0.44 156 0.33 114 0.30 76 0.27 63 0.4	3.4 8.3 2.7	1 6 C 1 3 D 6 4 D 2 9 C 3 6 D

1984 NOV 30 30 30 DEC 01 01	XR 1 8 15 4	HN 19 48 46	TIME SEC 37.4 21.8 21.5 12.6 29.1	08 64 62 64 59	AT N G MIN 5.2 25.4 42.1 34.1 42.6	148 150 147 153	NG W G HIM 11.4 19.3 25.5 3.7	100 62 2 95	PTH KM .0 .1 .4 .3	MAG 3.6° 1.8 1.0 1.8 2.4	NP 4 9 7 5 7	N5 0 3 9 2	GAP DEG 179 149 184 113	D1 EM 93 80 19 13	D3 KH 285 162 37 78 72	RHS SEC 0.81 0.53 0.32 0.17 0.28	ERH 40.2 1.9 1.0 2.1 2.0	ERZ Q KM 76 2 D 6.3 D 16.7 D 5.7 C 2.4 B
. 01	1 5 8	58 25	30.3 22.8 53.4	50	30.3 41.0	150	7.4 58.7 25.5	17	. 8		ΙI	AT A	NCHOR	AGE A		LDOTTRA		4.7 C 99.0 D 11.3 D
03 03		44 42	51.2 43.7		24.2 34.0		7.1		.9	l.5 l.9	9 1 i	6 8	108 247	21 22	34 90	0.23 0.39	0 8	1.6 C 0.8 D
02 02 02 03	4 5 5	22 5 \ 9 26 50	27.1 51.2 26.5 51.4 0.2	61 63 63		150	4.4 2.9 41.8 50.2 30.0	88 71	.5	2.8 2.8 2.0 2.7 1.8	7 12 10 14 9	2 5 3 7	211 237 134 191 266	25 47 74 117 23	90 198 143 145 67	0.17 0.39 0.37 0.46 0.40	2.7 4.8 1.7 2.6 1.4	2.6 D 2.3 D 2.6 D 4.8 D 0.7 D
02 02		56 43	52.1 5.4		23.8 47.2	147 153	2.4 26.6	15 123	.6	3.3 3.0	8	3 4	258 135	51 19	194	0.44 0.29	2.8 2.1	1 8 0 2.5 B
02 03 03		4 3 12	22.6 39.3 44.4	59	23.0 41.8 32.4	152	28.1 56.5 50.6	105	.9	PALK) 2.2 2.1 1.4	89 H 14 5 5	9 3 2	3.7 131 118 214	47 17 97	117 71 170	0.47 0.30 0.09	1.2 1.7 7.1	2.0 C 2 9 C 4.2 D
03 03 03	14 17 17 22 22 8	22 23 40 16 81	53.0 43.3 34.5 20.1 56.8 31.0 21.3	85 64 60 63	39.2 14.2 2.5 89.2 46.3 29.5 59.7	148 148 148	20.1 23.3 41.3 45.4 59.5 53.3 2.7	35 16 24 20	. 1 . 8 . 4 . 2 . 5 . 8	1.2 1.6 1.6 1.1 3.0 4.0°	5 9 5 6 16	6 7 4 1 0 4	295 329 270 263 231 104 180	41 42 35 34 105 27 40	75 69 55 48 139 90 72	0.36 0.45 0.31 0.20 0.28 0.24 0.33	1.7 2.8 1.5 2.0 13.9 1.9 2.2	10 1 0 3 7 D 0.7 D 72.4 D 45.4 D 3.8 B ;2.2 C
04	11 15 19	7	2.7 26.6 28.7		31.0 56.9 4.2		0.3 36.7 33.3	31	. 8	1.4 2.5 3.6 PALM	7 10 13 88 8	5 5 2	209 159 321 3.4	105 73 220	151 155 345	0.43 0.38 0.38	1.9 1.8 10.8	1.1 D 2.0 D 22.8 D
05 05	3	9 52	21.5 39.9		27.6 35.5		21.8 12.5		. 2 . 2	2.0 2.4	6	3 2	262 278	8 8 111	175 250	0.51	2.5 8.5	1.9 D 14.7 D
05 08 06 06 06	9 13 0 0 3	58 3 44	35.1 55.0 39.3 45.3 18.9	61 62 62	46.0 41.4 42.0 20.6 53.9	149 148 148	10.3 37.9 51.4 4.9 54.8	13 51 74 26 113	. 8 . 9	0.9 3.0° 1.7 2.4 2.4	8 14 10 14 5	6 4 3 3 3	249 177 112 114 107	22 29 115 69 33	61 123 160 161 65	0.27 0.34 0.83 0.46 0.27	1.6 2.2 1.3 2.0 2.2	3.0 C 2.7 C 3.8 C 4.8 D 3.6 B
06	19	8 34	8.8 18.8 36.9 49.5 42.3	81 59 64	46.3 47.2 41.3 83.9 57.7) 46) 52) 48	23.2 87.7 20.9 44.8 58.3	15	. 1	2.5 1.5 2.5 0.8 2.5	8 5 7 5	3 3 6 1	110 256 116 237 320	20 40 30 426	45 200 65 53 544	0.24 0.09 0.34 0.36 0.19	2.2 7.6 1.8 1.3 99.0	3.2 B 3.4 D 5 3 C 1.1 D 99.0 D
07 07 07	12 15 16 22 23	40 22 53	3.6 23.7 28.4 43.3 3.7	62 59 64	20.6 7.4 8.0 46.4 23.5	149 151 147	20.6 19.0 6.6 46.9 1.3	60	.5	2,0 1.8 3.2 0.4 2.6	9 8 9	4 3 2 5 1	215 98 217 147 210	25 60 44 14 142	92 117 134 30 177	0.17 0.31 0.28 0.31 0.34	2.1 2.9 3.4 0.9 3.5	2.6 C 5.8 C 5 1 D 1.8 C 13.6 D
	5 9 9 13 14	11 27 14	8.1 12.1 52.5 17.9 40.0	64 64 62	44.0 2.9 26.1 45.9 28.6	147 147 149	59.3 35.6 11.2 51.6 29.2	75	. 6	1.4 1.2 2.3 2.0 0.8	9 13 9 9	8 6 2 3 8	235 205 101 145 91	18 22 13 117 19	92 83 44 136 38	0.48 0.29 0.39 0.77 0.39	1.1 1.2 0.9 1.4 0.5	0 8 D 0.7 C 1.4 C 8 0 D 2.8 C
08	15 15 21	43	18.1 4.4 48.7	64	34.7 26.0 38.0	147	54 4 43.4 38.4	89 11 28	. 5	2.5 0.7 4.6 NEIS		4 8 0 - 4.	271 105 139 6. Fg	58 18 85 LT F	121 30 130 18848	0.26 0.33 0.37	2.7 0.8 2.2	3.5 D 2 1 C 4.3 D
OA		2 25 23	43 6 19.0 40 7 19 3 27 6	63 63 63	37.7 39.0 46.2 38.7 39.2	150 149 150	47.9 41 3 38 2 36 2 26 2	3 74 34 70	2	1.6 2.1 2.4 4.3 2.5	9 8 11 17 14	6 3 7 0 6	206 203 139 138 204	93 87 113 83 75	135 130 134 128 174	0 41 0 47 0 33 0 43 0 64	2.3 3 1 1 1 2.1 2.0	1 4 0 1 5 0 2 7 D 2 7 D 2 4 D
09 09			4 2 44 7		7.1 38.1		50 4 53 9	113	4 4	1.9	9	3 7	191 297	117 98	184 138	0 25 0 40	2 3 1.5	3.1 D 0.9 D

ORIGI) 1984 HR HM DEC 09 9 11 09 10 49 09 11 46	TIME SEC 40.3 8.3 45.5	LAT N DEG MIN 64 21.1 64 46.6 60 14.2	LONG W DEG HIN 146 32.9 147 25.8 193 18.6	DEPTH KH 14.5 12.9 140.1	HAG 0.9 1.0 2.5	NP 9 7 9	NS 7 7 3	GAP DEG 73 148 226	D1 XH 26 23 36	D3 RH 36 34 113	8M8 S8C 0.42 0.32 0.11	ERH C.6 O.6 3.9	ERZ Q KH 2.8 C 2.4 C 2.5 D
09 15 7 09 16 54 10 2 48 10 3 7 10 5 37	23.3 50.9 23.1 21.0 17.8	61 28.1 99 52.8 63 13.6 64 11.5 63 8.4	149 38.4 132 58.3 150 12.0 148 1.8 131 30.3	39.4 103.6 92.8 9.0 91.2	2.3 2.9 1.8 1.0 2.1	8 6 12 9	3 5 4 8 3	230 181 173 114 215	30 29 85 5 129	129 61 154 52 164	0.28 0.29 0.36 0.40 0.50	4.5 1.5 2.5 0.7 2.9	1.8 D 2.4 C 2.6 D 1.4 C 6.6 D
10 18 50	20.5	62 30.4	149 26.0	86 - 4	2.5 Palm	9 Er al	3	122	103	133	0.46	2.9	7 9 C
11 1 49 11 3 21 11 5 3 11 6 49	46.1 35.2 38.5 13.2	65 11.1 63 42.1 61 53.3 63 58.0	148 39.9 131 1.3 149 30.8 150 18.8	13.0 3.3 42.8 24.6	1.9 1.9 1.8	7 10 11 7	8 6 3 5	273 299 128 323	47 103 39 91	70 138 115 122	0.34 0.41 0.43 0.54	1.3 2.4 2.6 2.6	0.9 D 1.3 D 4.7 C 99.0 D
11 7 24 11 9 42 11 13 27 11 16 44 11 23 9	22.9 40.9 0.7 15.4 58.0	64 29.3 63 38.9 64 44.7 64 46.4 59 23.1	146 45.8 150 40.9 150 84.0 151 27.5 152 26.9	9.1 4.8 21.7 44.5 68.4	1.6 1.5 1.9 1.8 2.0	10 7 8 7 8	5 6 5 3	188 203 300 322 187	13 87 89 116 53	63 130 131 158 71	0.22 0.38 0.37 0.67 0.21	0.9 1.5 9.8 3.9 1.5	1.3 C 1.6 D 11.8 D 32.5 D 5 O C
12 2 50 12 3 21 12 4 50 12 6 20 12 8 1	17.9 57.0 53.6 56.0 32.6	63 29.5 60 18.1 61 32.3 58 55.8 63 17.2	150 29.2 153 5.3 151 3.3 163 14.2 150 24 8	0.9 126.3 82.5 77.4 118.1	1.9 4.0 3.7° 2.4 2.0	10 9 14 5 12	8 3 0 3 4	191 80 247 268 182	82 22 55 24 89	139 84 102 75 156	0.49 0.23 0.24 0.28 0.37	1.8 2.6 38.0 3.0 1.6	0.8 D 3.1 B 34.2 D 3.1 D 2.6 D
12 10 57 12 15 50	55.9 33.7	64 45.2 66 54.8	147 26.1 157 8 2	80 6 10 3	1.7	11 12	4 1	144	21 181	35 471	0.32	1.1 14.5	1 3 C 9:1 D
12 16 3 12 19 11 13 0 26 13 4 52 13 7 51 13 15 28	51.0 46.5 3.4 25.3 46.9 9.8	62 57.2 63 40.3 62 59.8 61 54.1 64 55 5 58 44 7	150 51.0 150 50 0 148 39.3 149 28 4 147 34 7 152 52 2	121 9 8.9 74.2 57.7 13.4 69.2	2.0 1.9 2.0 2.0 1.9 2.4	ER ME 13 11 13 13 11 5	3 8 4 5 3	3.3 187 209 196 123 141 249	114 94 83 39 11	162 132 139 113 33 128	0.32 0.45 0.50 0.38 0.49 0.24	2.0 2.3 2.6 2.0 1.1 2.3	3.7 D 1.2 D 4.7 D 5.6 C 0.9 C 3 4 D
13 16 37 14 1 27 14 1 38 14 8 23 14 9 8	40.3 22.6 52.9 54.4 2.0	63 34.8 60 10.1 64 49.3 61 35.3 64 46.0	150 33 7 153 5 9 147 31.6 149 48.2 147 29 1	8.7 129.0 15.6 39.2 21.7	1.5 3.1 0.9 1.8 0.7	8 7 7 9 7	6 3 3 7	196 157 130 207 138	82 33 20 33 21	133 74 29 131 32	0 27 0.21 0.36 0 31 0.37	1.6 3.1 0.6 4.9 0.7	1.3 C 3.0 C 3.0 C 3.0 D 0.7 C
14 10 50 14 15 43 14 18 27 15 1 44 15 3 7	49.0 25.5 23.1 33.2 31.0	59 26.5 62 32.7 59 62.2 59 50.5 64 40.0	153 6.6 149 36.0 152 2.5 151 45.3 147 35.1	110.9 107.0 187.4 59.3	3.0 2.3 3.1 2.7 1.0	7 14 5 7	l 7 ! 3 5	124 126 183 181 119	31 39 109 20	65 143 96 86 33	0.18 0.63 0.29 0.23 0.36	2.8 1.2 4.6 2.3 0.8	3.8 C 3.7 C 6.0 D 2.4 C 3 3 C
15 3 10 15 4 48 15 7 45 15 13 58 15 15 47	25.1 34.3 2.0 23.4 45.1	63 0.5 62 7.0 64 26.6 62 46.6 64 28.8	150 38.0 147 28.8 147 59.3 151 31.9 146 46.5	98.4 41.8 11.9 19.9	2.0 2.4 1.3 1.9	15 10 11 10	4 6 5 3	181 103 89 210 184	117 32 6 89 12	151 139 30 197 63	0.21 0.48 0.30 0.48 0.44	2.3 1.9 0.7 3.7 1.0	3 ! C 3 3 C 1 4 B 5 8 D 14 2 D
15 20 45 15 22 39 16 1 24 16 1 37 16 2 54	52 3 49.2 50.2 54.5 31.8	64 44.7 64 41.4 60 19.4 63 33.8 56 48.0	147 23.6 150 24.6 152 8.0 150 49.7 153 57.5	15.1 22.7 93.8 6.1 76.8	0.7 2.2 2.0 1.5 2.6	6 9 6 6	5 4 5 4	190 171 223 205 292	22 55 37 96 23	37 109 97 142 104	0.36 0.48 0.38 0.42 0.30	0.7 1.7 2.2 2.0 3.0	2.4 C 3 4 D 2.5 D 1.5 D 3.1 D
16 8 18 16 18 33 16 16 38 16 21 37 17 0 49	38.5 10.6 3.6 48.8 3.1	60 7.3 59 15.8 63 37.2 59 49.2 63 13.1	150 8.2 153 35.5 150 36.5 151 46.9 150 2.9	36.9 108.4 4.7 62.9 89.3	3 1 2.9 1.2 2.8 2.0	6 7 6 13	4 4 8 2 7	321 146 199 176 167	91 18 84 45 80	181 48 130 87 180	0.44 0.24 0.45 0.23 0.42	11.1 1.9 1.6 1.8 1.6	41.9 0 2.5 C 1.3 D 4.1 C 2.6 D
17 6 45 17 9 12 17 12 1 17 13 58 17 16 19	11.9 47.1 34.0 14.3 19.5	62 26.5 62 15.2 62 53.6 59 31.3 64 52.8	150 22.3 147 13 9 148 46.4 152 0.4 147 18.9	71.0 58.3 1.0 78.0 4.8	2 2 1.7 1.6 2.0 0.6	8 7 6	7 4 4 3 5	148 138 150 146 178	79 47 94 44 12	206 156 150 82 40	0.40 0.59 0.36 0.26 0.24	1.5 3.1 1.3 1.7 1.1	5.5 D 5 6 D 1,2 D 2 8 C 5.4 C
17 17 12 17 17 51 17 18 36	20.2 44.2 24.7	65 29.6 63 35.9 59 30.8	132 41.1 149 44.3 152 24 0	40.9 116.6 78.7	2.3 1.7 3.8 Palm	7 9 10 Er mi	5 3 2	189 171 94 3-8	79 43 48	225 126 56	0 46 0.42 0 35	4.2 1.8	66.9 D 4.6 C 2 2 C

ORIGIN 1984 HR HN DEC 17 20 19 17 21 31	TIME SEC 40.4 26.0	LAT N DEG MIN 64 35.9 61 23.6	LONG W DEG HIN 149 31.4 131 38.1	DEPTH ዜዝ 17.1 100.0	HAG 1.7 3.2	ир 9 5	NS 6	GAP DEG 274 289	DI KM 37 66	D3 KH 86 337	RKS SEC 0.42 0.19	ERH KM 1.8 99.0	ERZ Q KH 0.8 D 99.0 D
18 4 2 18 4 51 (8 7 19 18 16 40 18 17 13	37.5 4.9 3.1 34.7 23.0	62 51.3 64 50.6 63 7.9 59 39.2 63 35.1	149 30.1 147 23.1 151 49.4 152 0.6 149 55.7	95.9 8.6 45.0 62.3 97.4	1.0 2.0 2.9 1.5	8 7 8 7 3	7 5 4 4 3	143 158 226 122 180	102 16 129 21 82	193 38 176 69 197	0 25 0.32 0.77 0.14 0.13	1.6 1.0 3.9 1.4 5.4	3.2 C 5.4 C 25.6 D 2.3 8 5.0 D
18 18 35 19 0 51	5.6 80.7	58 57 8 66 17 5	152 4.8 154 27.6	54.8 19.1	2.4 3.8* FELT		3 1 AT H	231 217	79 43	90 334	0.14 0.31	3.0 13.2	3 2 D 2 9 D
19 1 8 19 23 29 20 0 43	27.7 35.5 39.4	64 42.6 62 37.0 61 50.5	149 6.4 149 40.3 147 21.1	14.2 75.2 40.5	2.0	9	9 8	241 132 130	15 118 2	35 150 159	0 · 48 0 · 48 0 · 36	3 · 3 1 · 1 1 · 1	0.7 D 2.4 C 1 6 C
20 2 59 20 3 48	35.8 38.7	64 34.9 36 8.4	146 59.4 153 28.9	10 2 51.4	1.7 4.5* NEIS		5 0 - 4.	177 233	20 188	49 391	0.35 0.39	0.9 l4.9	1.0 C 21 6 D
20 11 45 20 14 3 20 14 11	23.7 37.3 34.0	63 45.2 64 27.3 59 3.9	149 17.6 147 21.8 152 55.4	28.8 4.0 74.4	1.1	9 5 6	6 3	265 168 189	18 21 44	82 35 68	0.61 0.24 0.26	5.7 0.7 2.1	3.8 D 8.3 C 3.8 C
20 22 28	13.1	63 19.9	149 49.0	113.4	2.5 PALE			163 3 l	63	133	0.33	2.0	3.4 0
20 23 65 21 1 45 21 7 51 21 8 15	12.2 5.0 15.8 35.0	59 59.9 64 49.0 63 39.6 63 35.7	193 30.3 147 16.6 150 56.2 150 43.2	157.4 9.4 0.2 2.3	2.7 0.3 2.1 1.5	5 10 8	3 5 4 5	224 177 211 202	41 20 99 90	82 41 137 136	0.31 0.16 0.43 0.38	4.5 0.9 2.2 1.6	3.0 D 4.3 C 1.3 D 1.2 D
21 11 11 21 12 33 21 15 0 21 17 38 21 21 17	9.0 3.3 16.0 29.1 5.5	64 41.7 64 37.2 59 58.4 60 14.7 63 7.3	146 47.7 148 43.9 150 58.1 152 51.4 153 25.9	0.7 16.9 44.5 115.6 43.2	0.9 0.9 2.9 2.4 2.5	8 8 4 7	8 4 3 4	234 156 260 137 269	33 17 52 20 160	49 36 112 90 240	0.14 0.36 0.20 0.18 0.93	1.1 0.8 2.4 3.4 10.6	67 2 D 0 9 C 3 3 D 4 2 C
21 22 53 22 2 23 22 2 50 22 6 12 22 7 19 22 10 7	36.1 51.3 19.9 2.5 3.8 8.7	60 4.3 63 17.2 60 16.9 64 42.9 63 8.8 58 31 1	153 23.6 149 29.4 152 38.6 149 7.7 150 48 0 154 29.4	132 4 102.3 107.8 15.5 127.1 128.2	2.5 1.7 2.1 1.6 1.7 2.5	6 10 5 9 6 5	2 5 5 6 1 2	186 150 161 243 196 309	48 57 17 16 114 50	99 126 89 56 142 115	0.16 0.42 0.26 0.42 0.14 0.29	3.2 1.5 2.0 1.2 5.5 7.4	3 3 C 2 3 D 2 3 C 0 8 D 6 9 D 6 1 D
22 10 27	40.8	61 4.7	148 24.8	9 9	3.2 PALM	13 ER N	1	280	97	217	0 31	3 4	2 3 D
22 13 47 22 15 2 22 23 58 23 1 58	23.6 10 1 1 4 41.0	63 53.0 62 82.9 63 85.2 63 31.2	149 47.9 149 35.7 148 64.7 149 16.3	9.2 83.4 0.4 98.7	1.4 2.1 1.8 2.6	8 12 12 14	5 6 0 3	273 141 121 146	46 101 21 29	85 146 56 99	0 46 0 36 0 33 0 36	2.2 1.2 1.2 2.1	1.1 D 3.0 D 1.4 C 3 6 C
23 3 6 23 4 0 23 5 50 23 22 2 23 23 25	8.3 57.8 19.0 1.3 23.0	63 18.6 63 18.6 63 38.8 62 18.2 64 58.3	150 26.6 152 38.6 150 43.2 150 50.8 148 30.8	117.5 68.6 1.7 55.9 16.4	1.8 2.3 1.7 3.7	10 10 14 9	3 8 0 4	162 251 293 193 230	92 155 89 51 22	153 197 134 191 48	0.29 0.83 0.31 0.27 0.33	2.3 3.7 2.3 2.7 2.1	2 8 C 19.8 D 0 9 D 7 4 D 1 0 D
24 5 42 24 6 10 24 7 13 24 10 26 24 12 45	21.7 14.0 45.9 20.2 29.3	61 45.0 61 30.6 58 11.8 59 21.6 64 41.2	148 51.7 150 5.4 153 12.9 153 31.4 149 10.6	17.1 44.8 44.5 97.2 15.1	2.8 2.4 3.6 2.0	10 7 7 6 9	4 2 1 3 8	137 226 204 134 244	23 52 66 6 13	143 131 133 49 53	0.33 0 48 0 31 0 22 0 49	3.3 4.6 6.3 2.3	3.0 C 3.5 D 5.5 D 2.8 C 0.7 D
24 13 29 24 15 44 24 18 15 24 17 40 24 20 25	34.6 36.3 39.7 3.3 33.8	58 40.8 62 13 7 59 35.0 63 11.0 63 0.8	154 19 6 150 35 8 153 26 7 150 38.8 150 47.2	1.2 73.9 109 7 125 8 112.0	3.4° 2.0 2.8 1.5 2.0	7 11 7 7	0 3 5 1 3	230 138 110 187 186	48 56 14 105 121	124 188 48 142 154	0.67 0.33 0.38 0.28 0.35	6.4 2.5 2.4 5.0	9.1 D 2.8 D 3.4 C 7.2 D 4.8 D
24 20 38 25 0 21 25 2 39 25 8 52 25 16 53	14.3 2.3 48.0 42.0 13.1	62 54.3 59 31.1 63 4 3 64 21.8 64 43.2	150 9 9 153 1 3 149 49.8 149 45.9 149 9 1	87 3 24.6 81 8 18.5 18.8	1.8 1.9 1.9 1.1	6 4 13 5 9	2 2 4 6 7	174 206 156 264 244	125 19 86 30 16	226 101 150 81 36	0.25 0.29 0.29 0.66 0.41	3.4 1.8 1.7 1.6 1.4	12.4 D 2.3 C 2 8 C 0.9 D 0 6 D
25 17 10 25 20 11 25 21 15 25 22 6	13.9 8.6 24.4 8.7	63 10 0 60 0 4 65 35 0 65 27 9	148 9 6 152 51 0 145 2.6 149 43.1	31 5 96 6 57 1 24.7	1.5 2.6 2.7 1.7	13 6 8 8	6 1 6	95 114 220 304	113 45 110 103	129 77 159 121	0.64 0.21 0.23 0.81	1 1 1.9 7.9 1 7	2 3 D 2 5 B 26.1 D 99.0 D

APPENDIX B (con.)

26	0 55 8 28 14 32 15 58	SEC 57.5 50.7 24.7 51.3	LAT N DEG MIN 63 13.7 63 53.4 61 56.4 63 5.7	LONG W DEG HIN 147 9.8 149 20.1 149 12.7 150 58.8	DEPTH EM 18.5 119.7 53.4 132.0	1.8 1.2 1.8 2.1	8 8 8 5	NS 0 1 3 0	GAP DEG 299 257 100 201	01 84 105 26 39 124	D3 KH 132 89 122 152	RHS SEC 0.50 0.20 0.21 0.18 0.27	ERR 16.5 6.6 2.0 6.4	ERZ Q KM 99.0 D 3.6 D 6.7 C 11.5 D
27 27 27 27	9 5	25.9 12.0 30.7 23.9 41.1	64 46.1 63 38.5 64 7.3 59 33.0 61 41.3	153 3.9 149 9.1 147 31.0 148 43.3 153 10.5 181 0 6	18.9 73.3 19.5 102.3 78.2	3.1 1.3 0.9 2.0 1.9	8 10 8 8	7 5 7 5 1	126 248 154 113 111 225	52 71 26 24 43	81 89 45 74 251	0.38 0.31 0.30 0.32 0.24	2.0 1.3 1.4 0.7 1.6 6.8	2.6 B 0.8 0 2.8 D 0.8 C 3 1 C 5.6 D
27 28 28 28 28	1 4 2 19	56.6 10.0 21.8 37.6 92.5	58 50.3 59 13.5 64 39.6 68 17.3 59 24.0	154 23.5 154 34.4 149 13.4 145 23.4 160 56.5	113.0 8.9 17.0 100.0 53.1	2.5 2.8 1.1 2.3 3.1	6 7 9 10 8	3 9 0 3	229 224 245 320 248	44 63 12 379 22	106 67 55 439 133	0.34 1.07 0.34 0.38 0.31	4.8 2.8 1.1 99.0 3.1	2.6 D 3.6 D 0 8 D 99 O D 4 O D
28	13 23 17 28 20 58	13.9 2.2 24.2 46.2 55.7	80 10.2 63 37.3 63 12.1 64 36.9 63 55.3	152 43.9 150 41.5 151 57.0 150 24.4 149 49 6	109.4 11.2 95.7 25.0 12.1	3.0 1.5 2.0 1.6 1.2	6 6 8 7 7	4 4 3 4 6	134 202 233 293 271	28 88 138 64 43	83 133 175 110 82	0.30 0.26 0.92 0.50 0.40	2.1 2.0 5.9 3.1 1.5	2.3 B 1 6 C 20.2 D 99.0 D 1.0 D
29 29 29	3 28 4 32	14.8 38.4 56.4 10.7 57.7	80 7.0 84 31.1 61 18.3 62 37.6 64 40.1	163 27.4 147 43.5 146 86.5 149 36.1 146 47.2	151.4 18.7 19.7 75.3 4.2	3.8 0.7 2.0 2.2 1.3	9 6 10 13 9	4 6 4 6	88 91 264 130 199	81 15 62 118 30	55 39 201 128 49	0.30 0.31 0.58 0.39 0.46	2.5 0.8 2.5 1.3	2.7 8 1 7 C 1 6 D 2.0 C 2.3 D
	6 34	44.1 58.5 59.1 47.4 31.4	62 37 8 64 40.9 62 11.2 62 6.7 62 54.1	151 15 8 146 56 6 151 19.9 149 34 0 150 55.8	77.9 7.3 92.4 45.8 76.4	2.4 1.6 2.6 2.5 1.9	11 9 13 14 13	3 3 3 1	195 189 178 105 188	74 31 25 62 107	203 41 211 121 169	0.30 0.30 0.37 0.39 0.29	3.2 1.2 2.4 2.0	6.1 D 2.2 D 4 2 C 7.4 C 9.1 D
30 30	8 15 11 42 12 5 12 43 16 33	38.2 46.9 19.6 4.2 57.4	59 25.4 61 48.8 64 68.4 84 53 4 83 33.2	151 40.4 149 26.4 147 54.7 147 17.8 147 12.3	67.8 33.0 6.0 10.9 9.6	2.4 2.2 0.8 1.8	8 13 7 8 11	3 3 8 6	160 134 214 188 102	26 30 20 12 68	92 112 37 41 68	0.17 0.47 0.28 0.44 0.32	2 · 1 1 · 8 1 · 1 1 · 0 1 · 0	4 4 C 1.9 C 3.7 C 1 2 D 1 1 D
30	18 18 21 13 0 44	37 2 41,3 46.7	58 51.6 63 33 4 64 46.7	154 18 8 150 36.0 150 1 3	128 1 1.7 12 3	3.0 1.6 1.1	6 6 6	3 3 4	247 197 283	39 83 50	108 148 107	0.28 0.31 0.32	3.8 2.2 2.5	2.7 D 1 4 D 1 5 D

5.5

Explanation for Appendix B

Earthquakes are listed in chronological order. The following data are given for each earthquake.

- 1. ORIGIN TIME in Universal Time (UT): date, hour (HR), minute (MN), and second (SEC). To convert to Alaska Standard Time (AST), subtract 9 hr.
- 2. LAT N, LONG W: epicenter in degrees and minutes of north latitude and west longitude.
- 3. DEPTH: depth of focus (measured in kilometers).
- 4. MAG: local magnitude from maximum trace amplitude. An asterisk that follows an entry means that the value determined by the Alaska Tsumani Warning System (Palmer) was used.
- 5. NP: number of P arrivals used to locate earthquake.
- 6. NS: number of S arrivals used to locate earthquake.
- 7. GAP: largest azimuthal separation between stations (measured in degrees).
- 8. D1: distance from the closest station to the epicenter (measured in kilometers).
- 9. D3: distance from the third closest station to the epicenter (measured in kilometers).
- 10. RMS: root-mean-square error of the travel-time residuals (measured in seconds).
- 11. ERH: largest horizontal deviation (measured in kilometers), from the hypocenter within the one-standard-deviation confidence ellipsoid. The quantity measures the epicentral precision for an earthquake. Values of ERH >99 km are tabulated as 99 km.
- 12. ERZ: largest vertical deviation (measured in kilometers), from the hypocenter within the one-standard deviation confidence ellipsoid. This quantity measures the precision of the hypocentral depth. Values of ERZ that >99 km are listed as 99 km.
- 13. Q: reliability of the hypocenter. This index measures precision of the hypocenter location and also reflects the quality of the data used to derive the hypocenter parameters.