SOLVENE EXTRACTON PROCEDURE FOR THE DETERMINATHON OF TUNGSTRN M ORES

P. Thama Rao
Mineral Industry Research Laboraiory
Uniwersily of Ulaska
College, Ilasha 99707

RTRODUCTION

Atomic absorption methods have not been widely used for the determination of tungsten in ores liae to its low sensitivity in aqueous solutions (1), A method hus now been developed for solvent extraction of tungten, muking rapid determination of tungsten at low conecntrations possible.

It was found that tungstates, when converted to phospho. tungstates, can be effectively extracted into disishiryt ketone (2.6 dimethyl - 4 - heptanone) (DMK) equtaining Aliquat 336 (methyl tricapryl ammonium chloride from General Mills). This system was effectively used tor the extraction of gold from cyanide solutions: 21 . Fien in aqueous solutions, phospho-tungstates give greater sensitivity $137 \mu \mathrm{~g} / \mathrm{ml}$ for 1% absorption) compared $\%$ simple tungstates $(63 \mu \mathrm{~g} / \mathrm{m} /$ for 1% absorption). Standard lung. sten solutions for extraction studies were prepared ly eonverting aqueous solutions of sodium tungetate to sodinm phosphotungstate by boiling with ortho phospherice acid.
A Perkin Flmer Model 303 atomic alsorption syectrophotometer was used with a nitrous oxideacetyleno flame at a wavelength of 4002.75 A .

PROCEDURE

Weigh 0.2 g of sample and 1 g anhydrous lithium netaborate, mix thoroughly and fuse in preignited sraphite fusion crucibles 13 . Pour the melt into a 50 wh test tube containing approximately 10 ml of $5 \cdot 10$ \% phosphoric acid. Bring the solution to boil on a magnetic stirree hot plate using aluminum bloeks drilled to hold the test tules. With a prehented hot plate, complete dissolution can be made in a few minules. Any precipitates formed will not interfere
with the analysis. When cool, add 10 ml di-isobutyl ketone containing 3!: Aliguat 336. Shake vigorously for three minutes, centrifuge and read the atomic absorption against sturdards prepared from tungstio acid fusions as described above, extracted similarly with difisohutyl ketone containiny.3\% Alquat. The concentration of phosphoric acid and lilhum metaborate should be the same for the aqueous sample and standard solutions. The procedure is adequate lor ores containing more than 0.5% tangsten, which will give 16% absorption at ix seale expansion. A sacrifice of precision will permit analysis of samples containing lower lungsten.

ANALYSIS OF TUNGSTEM ORES

Samples of silicate tungsten ores were analyzed by this technique. Table I shows a eomparison of chemical and the solvent extraction techniques. The resulle are in grod agreement showing the effectiveness of the suggested techiviue.

TABLE:

Sample No.	$\begin{aligned} & \text { U.S.B.M. } \\ & \text { No. } \end{aligned}$	$\% \mathrm{WO}_{3}$ Chemicol byU.S.8.M.	Solve	WO_{3} i Exira	
1	6.10	5.3	5.3	3.4	5.5
2	6.95	2.0	2.1	2.0	2.1
3	5-2742	0.42	0.45	0.44	0.44

EXPERMENTAB

Table II shows the effect of Aliquat concentration in

* - DIBK on the extraction of tungsien. One jercent Aliquat concentration is adequate for extraction of aqueous solutions, however, with tungsten ores, 3% Mhquat was found to be necessary for complete extraction. lnerease in. Mliquas concentration, however, reduces sensitivity due to increased viscosity of the organic layer.

TABES II
Effect of Alligurat 336 Concentretion On Exincection of Tungstien

$\%$ Aliquot 336 in DIBK	$\begin{aligned} & \text { Absorbones } \\ & (1000 \mathrm{ug} / \mathrm{ml} / \mathrm{y}) \end{aligned}$
1	0.39
2	0.38
3	0.38
5	0.36

Table 11 shows the effect of phosphoric acid coneentra tion. The extraction efficiency was improved up to 5%

TABLE 䀠
Effect of phospheric Acid Congentremion On Extroction of Tungsten

$\begin{gathered} H_{3} P O_{4} \\ (v / v) \end{gathered}$	$\begin{aligned} & \text { Absorbance, } \\ & (1000 \text { mg/mi W) } \end{aligned}$
0.5	0.15
1	0.21
3	0.15
5	0.36
10	0.36
20	0.33

phosphoric acid after which further increase did not have ams aypreciable effect.

To les lie efficiency of extraction, 25 ml of $10,000 \mathrm{gg} / \mathrm{ml}$ wheilen windard was extracted with 25 ml of DIBK contaming. I: Miquat 336 . Ten ml of the organic layer was evaproutd in a weished platinum crucible and ignited at 750 S. The WO. residue was weighed and recovery of tungsten in the organic layer was calonlated. Extraction was ilse determined for other systems and Table IV summaries the results. The best extraction of 91% was ohtaned with the DIBK-Aliguit $3: 36$ system.

TABLEIV
Recovery of Tungstem

Exiraction System	Recovery, \%
DIBK alone	76
Oink + 1% Aliquor 336	91
Mibk alone	30
MBEK + \% \% Aliquat	50

ACKNOMBDGMENT

The author wishes to thank Dean Earl M. Beistline for his encouragement and interest in the projeet and Mr. Thomas 1. Pitman of U.S. Bureau of Mines, Juneau, Alaska, for furnishing samples and analysis presented in Table I.

Recelved September 8.1970

REFRENGES

1. D. C. Manning, Atomic Absorption Newsletter 5, 127 (1966).
2. T. Groenewald. AnI. Chem 40, 863 (1968).
3. J. H. Medlin, N. H. Suhr, and J. B. Bodkin, Atomic Absorption Newsletter 8, 25, (1969).
