THE DETEBMHNAON OF MMAWUM IN TYANHEROUS MAGNEITRE ORES EY ATOMH ASSORPTOM SPECTIOMHOTOMETRY

P. Dhama Rioo
Minerni linlustry Research laboratory Vnuersuy ol Muska
Conlege, Mis hno9701

HNTRODUCTON

Amos and Willis (1) first investigated the ws of nitiryes oxide for the determination of titaninm. They loune that the presence of IIf and imon enhance the alunopition of titanum. They recommended "much mone extonsive investigation before a prackicing chemical andy st can deermine this element in a roatine fashion ley wiovic alsoyl. tion." Various authors $(2,3,4,5,6)$ have investiguted titanium by atomic absorption and have reconnmenchd a number of dilferent procedures to remove intsfierent:

Th attempting to unalyze lithinm metebverate lusions $(7,8)$ of tifaniferous magnetite ores of Alask lay atmmic absorption, it was found that the interferences urs nol comepletely removed by any eindle appraach suswetied in the hiterature. Silicon, iron and daminum mald vary widely between samples and us approach was needed that woull

Fig. I. Ethect of various baterterence suppessing vgewis on the elsearlo. ance of $50 \mu \mathrm{~g} / \mathrm{mm}$ th solustion
A. Vorimble 480_{2}
B. Voriable Whys

D. Variable $5 . \mathrm{O}_{2}$

completely eliminate interference effects of all these elemens, without having to mateh the gross matrix composiGion of samples and standards.

EXPEBMERTAL

The effects of varione reagents that would suppress the interferences and a combination of heso were first investigated. The eflects of LiBO, , MH, It and SiO, are shown in Figure 1. In studying the eflects of olise reagents, the 7. WOO, coneentration is kepl constant at 2%, since that is the concentration that resulte when fusions axe dissolved as per the recommended analytical procedure.

For maximum sensitivity, it is uecessary io have 2% $4.12 O_{2}, 0.8 \% \mathrm{NH}_{4} 4$, and $0.05 \mathrm{w} .0 .2 \%$ SiO, corresponding to 12.5 to 50% Si0, in samples when processed as per the recommended aualytical procedure. Addition of SiO2, Ta364. and NHIF to ctandards will compensate for interforence eaused by enhancement of sigual due to the prescnce of SiO_{4} in samples.

TABCE:
Ghects of A, Ca, Fe, ond Mg on Titemium Aksorpion

Mariv:		Absorbanee
$50 \mathrm{mg} / \mathrm{ml} / \mathrm{Standard}$ (0.117
$50 \mu \mathrm{~g} / \mathrm{ml}$ Ti Siandard*	$+1000 \mu \mathrm{~g} / \mathrm{mi} \mathrm{Fe}$	0.114
,	+ $1000 \mathrm{pg} / \mathrm{ml}$ A	0.117
n	$+1000 \mu \mathrm{~g} / \mathrm{ml} \mathrm{Ca}$	0.102
"	$\pm 7000 \mathrm{\mu g} / \mathrm{mi} \mathrm{Mg}$	0.104
n	$\begin{aligned} & +500 \mu \mathrm{~g} / \mathrm{miCa}+ \\ & 500 \mu \mathrm{~g} / \mathrm{milfe} \end{aligned}$	0.102
\%	I $500 \mathrm{\mu g} / \mathrm{mling}+$ $500 \mathrm{\mu rg} / \mathrm{mile}$	0.104
n	$\begin{gathered} +500 \mu g / n l C a t \\ 500 \mu g / n l A l \end{gathered}$	0.114
88	$\begin{aligned} & +500 \mu \mathrm{~g} / \mathrm{ml} / \mathrm{Mg}+ \\ & 500 \mu \mathrm{~g} / \mathrm{ml} / \mathrm{Al} \end{aligned}$	0.177

[^0]Wffects of interference of major elements normally encoontered in iron ores (Ca, Fe, AI, and Ms) were studied. Standard solutions of $50 \mathrm{phy} / \mathrm{m} / \mathrm{T}$ containing 2% LibO, $0.1 \% \mathrm{SiO}_{2}$, and 0.8% NH F were spiked with these elements to obtain concentrations of $1000 \mu \mathrm{~m} / \mathrm{ml}$ (equal to 25% in the original sample when processed as per recommended annlytical procedure). The results are shown in Table I. Iron and Al did not couse any sigmificant interference while Ca and Mg depressed the signal. Addition of aluminum to the samples however restored the signal. The concentration of A shonld excsed the comatired concen. trations of Ca and Mg. In most iron ores, Alpresent in the samples will he sufficient to suppress the interferences due to Ca ant Mg. For samples numsually high in Ca and Mg and low in $\mathrm{A}_{\text {, }}$ AClg shonld be added to the sample solution. A $1000 \mu \mathrm{~g}$ moll concentration of A1 should De adequate for most samples. No addicion of Al bo standar ds is necessary, since the purpose of the addition of $A l$ is only to restore the signal depression, caused by Ca and Mg.

ANALVTRAH PRGCRDUSE

Mix 0.2 g of sample and 1 g of hithiom metaborate and Guse in a preignited graphite crucible for 15 mimutes. Magnetie concentrates and TiOs resist fusion and the melt will adhere to the crucible In this case, the use of 0.1 g of sample and 0.1 g of finely pulverized filica and a longer fusion time will allow cormplete fusion of the sample. Let the crucible cool and using forceps drop the globule wito a $50-\mathrm{ml}$ fest tube containing exantly 50 ml of 10% MCl. It it is necessary to add almminum to the samples, AlCl can be addorl to the dilute acid. Drop a magher into the test tube and stir on a magnetie stirres hot plates tring an almminum block drilled to hold he test ubos. The glotule will dissolve in a fow minutes. Tet the test tube cool and add 9.4 g of ammonium fuoride. Shake and analyze by atomic absorption.

We have found a contimaons shift in ibe standard carve, even within a few minates time. For beet grecision we tion a $50 \mathrm{\mu g} / \mathrm{ml}$ reference standard between samples and average the absorbance of the referenco standurds preceding and following a sample. This werage is used to correct the absorbance values of ciandards and samples to a common basis, e.g., the frret ahsorbance reading of the $50 \mathrm{pm} / \mathrm{ml}$ refercnce standurd. This will eliminute erross due to short term huctuations of the slope of the staradard curve.

『REPANATOROE STARCBARS

Standards may le prepared either by (1) dissolution of titanmm metal in HCl or ME and oxidation by dropwise addition of HNO_{3} or (2) fusion of $\mathrm{THO}_{2}+$ added SiO_{2} in $\mathrm{Li}_{\mathrm{i}} \mathrm{O}_{2}$ as decribed under analytical procedtare, or (3) use of U.S.G.S. analyzed rocks, BCH-L, ACV-L, GSP-I and G-2. Method 3 was foumd to be most convenient. For cxample, three or four fusions are made of BCR- 1 and processed exactly as the samples, and combined for use as a standard. A slandard curve drawn trom E.S.G.S. rocks G-2, GSP-1, AGV-1 and BCRED gave a perfect straight lime and covered a range up to $2.23 \% \mathrm{TOq}$. Since these rocks contain silica and alumina, anyy interferences duce to silica and alkaline earth metals is eliminated. Thus they sure ideal standards for the determination of Ti in iron ores or rocks. All stavdards should contain $2 \% \mathrm{~K} \mathrm{ABO}_{2}, 0.1 \%$ SiO_{2} and 0.8% NHAT, The solution of SiO_{2} is grapared by fusion and dissolation of finely ground silica using the same prow cedure as for the samples. This solurion is used as needed in making standard solutions. The ammonitum fluoride
should be added to samples or standards on the day of analysis; otherwise a gelatinous precipate results on standing for at few days.

PRECSION AND ACCUMACY

During the anlysis of low grade magnetic iron ores, one sample was analyzed repeatedly over a period of two months. Table IT gives the results. The precision, as shown by the coefficient of variation is very good. The mean value agrees very well with the anaysis done by a spectrophotometric method lyy an independent laboratory.

Precision ched Acervery of the A Acilyticol Procedure

Atomic Absorphions Anclysis \% Ti	\% 7 Asears	S.D.	$\begin{aligned} & \% \\ & c . V . \end{aligned}$	Spectrophotometric Analysis \% 7i
1.87, $1.74,1.82,8.76$				
$1.76,1.77,1.83$	1.78	0.06	3.3	1.78
$1.84,7.76,1.85$				1.80
1.85, 1.75, 1.66, 7.76				
$1.84,1.68,7.72$				

Table IUL shows a comparison of the average analysis of U.S.G.S. Standard rook samples as reported by Flanagan (9) and analysis by atomic absorption. The agreement is considered very good. The standards in this case were prepared by method 1 described ahove. The analytical procedure as outlined is sufficiently free from interference for use on a routine basis for the determination of TiO_{2} in iron ores.

TAB

Sample	\% TiO_{2}		
	Average Flanagon (9)	Atomic Absorption	
¢-2	0.53	0.50	0.53
CSP-1	0.69	0.65	0.69
ACV-1	1.08	1.08	1.06
BCR-1	2.23	2.27	2.25

The author wishes to thank Dr. Earl H. Beistline, Dean, College of Earth Sciences and Mineral Industry, and Dr. Ernest N. Wolf, Associate Director, Mineral Industry Kesearch Laboratory, for their encouragenent and interest in the project.

Received December 20, 1971

REERENGES

1. M. T. Anves and J. Il. Willis, Spectrochim. Acta 22. 1325 (1966).
2. J. B. Headridge and D. H. Trabbard, Anal. Chim. Actar 37. 151 (1967).
3. R. A. Mostyn and A. F. Gumingham, Atomic Absorption Newsletter $\boldsymbol{\epsilon}_{8} 86$ (1967).
4. I. Capacho-Delgado and D. C. Manning, Analyst 82, 553 (1967).
5. Y. Findo, '1. Mata, und Y. Nakahara, Bunseki Kagaku 18, 833 (1969).
6. A. M. Bond, Anal. Chem, 42, 982 (1970).
7. N. H. Suhr and C. O. Ingamells, Anal. Chem 38, 730 (1966).
8. I. A. Medlin, N. H. Suhr, and J. B. Bodkin, Atomic Absorption Newsletter 8,25 (1969).
9. T'J. Flanagan, Geochim. Cosmochin Acta 33, 81 (1969).

[^0]: * $50 \mu \mathrm{~g} / \mathrm{ml}$ Ti Sianderd conraining $2 \% \quad \mathrm{LiBO}_{2}, 0.1 \% \mathrm{SiO}_{2}$ $0.8 \% \mathrm{NH}_{4} \mathrm{~F}$ and $10 \% \mathrm{HCl}$.

