SURFACE WATER Peters Creek ## MINIMUM DISCHARGE Streamflow in the Cook Inlet basin generally is at its annual minimum at the end of winter, from mid-February to mid-April. The greater the distance from the Gulf of Alaska and (or) the higher the elevation, the later the minimum discharge period. Some of the streams draining the lowlands on the west side of the Kenai Peninsula, on the Anchorage flats, and probably also in the lower Susitna valley have summer minimum discharges that are nearly as low as the winter minimum. The summer minimum discharge usually occurs in late July or August. During an extremely dry summer the summer minimum discharge can be less than the winter minimum dis- At the time of minimum discharge, the yield from a basin comes entirely from ground-water storage. The indiscriminate use of all minimum discharge data in developing regional relationships may yield erroneous results. Three examples follow. In the first instance the gaging station is located downstream from a reach in which the stream is losing water to the ground-water system. (Measurements made at such a location indicate less discharge than the basin is yielding.) Two Anchorage area gaging stations, South Fork Campbell Creek near Anchorage and Campbell Creek near Spenard, were excluded from the low-flow regional analysis because of this type of water loss. In the second situation a stream may have a significant portion of its winter discharge continuously stored as ice upstream from the gaging location. The measured discharge at the gage is again significantly less than the basin yield. Caribou Creek near Sutton exemplifies this condition and was excluded from the low-flow regional analysis. In the third condition, man's influence has altered the low-flow pattern. For example, the lowered water table resulting from urban development in the Chester Creek basin in Anchorage has significantly decreased low flows. The gaging stations on Chester Creek were excluded from the low-flow regional analysis for this reason. In the Cook Inlet basin 30 gaging stations have 10 or more years of low-flow record through the 1976 water year. Ten years was selected as the minimum period of record needed for a frequency analysis of low flows. However, five of the gaging stations could not be used in a low-flow regional analysis because of conditions described above. The minimum discharges for each gaging station for each year for both 7-day and 30-day consecutive periods were tabulated for the frequency analysis. Low-flow frequency curves were obtained for the 25 gaging stations by standard techniques assuming a log-Pearson III distribution and using station skew. For each station six low-flow characteristics were obtained from the frequency analysis. Minimum flows for 7-day and 30-day consecutive periods for 2-, 10-, and 20-year recurrence intervals are tabulated in table 4. Low-flow frequency curves for representative gaging stations are shown in figures 11 and 12. There is only a slight difference between 7-day and 30-day lowflow characteristics of streams in the study area. Since annual low flow usually occurs near the end of the winter period after a 4- to 6-month recession, the discharge is nearly steady for at least one month. For instance, for the 25 gaging stations used in the regional analysis the 7-day low-flow frequency values are from 0 to 10 percent less than the corresponding 30-day low-flow frequency values, the Regional low-flow equations were obtained through regression analysis using the gaging station low-flow characteristics and the basin characteristics described in "Annual Discharge". The final regression equations take the form: $M_{d,ri} = aA^b(LP + 1)^c(J + 10)^d$ M = dependent variable, the minimum flow average being 4 percent less. d = number of consecutive days of the minimum flow ri = recurrence interval, the average number of years between minimum flows less than M. The reciprocal of the recurrence interval is the probablity in any given year that a d-day low flow will occur that is less than the discharge given. The remaining items in this equation are the same as those described under "Monthly Discharge". The results of the regression analysis, including the standard error of estimate, are given below. Only the independent variables (basin characteristics) that were statistically significant were used in the final equations. | Dependent | Regression | Regressi | on Coeff | Standard | d Error | | | |--------------------|---------------|----------|----------|----------|-------------|----|--| | Variable | Constant
a | | | | of Estimate | | | | M _{d,ri} | | b | С | d | + | - | | | M _{7,2} | 0.135 | 0.98 | 0.21 | 0.29 | 26 | 21 | | | M _{7,10} | .0861 | .98 | .16 | .36 | 36 | 26 | | | M _{7,20} | .0671 | .99 | .16 | .41 | 42 | 29 | | | M _{30,2} | .132 | .98 | .20 | .31 | 27 | 21 | | | M _{30,10} | .0839 | .98 | .16 | .38 | 36 | 26 | | | M _{30,20} | .0656 | .99 | .15 | .43 | 41 | 29 | | These low-flow characteristics are almost directly proportional to drainage area. The minimum January air temperature is significant, and indicates that minimum unit yield decreases with distance from the Gulf of Alaska and with elevation. The storage in lakes and ponds is also significant because increased storage augments streamflow during low-flow periods. The generalized variation in M_{7.10} for the Cook Inlet basin is shown on the minimum discharge map. There is a 10 percent probability in any year that the minimum unit yield for 7 consecutive days will be less than the map value. The map was drawn assuming that there was no storage effect from lakes and ponds. A coefficient can be obtained from a graph (fig. 13) to adjust the M_{7.10} discharge values to account for lake and pond storage. The map was based on M_{7.10} values from 25 gaging stations, the low-flow regression relations, and fragmentary low-flow data collected by the U.S. Geological Survey. Low flow is poorly defined on the west side of Cook Inlet, in the Susitna and Matanuska River drainages, and the upper elevations of the mountainous areas. ## TABLE 4.—MINIMUM DISCHARGE CHARACTERISTICS (DATA THROUGH 1976 WATER YEAR). | | | Annual low flow, in ft ³ /s | | | | | Annual low flow, in (ft ³ /s)/mi ² | | | | | | | |--|---|--|-------------------------------------|-------------------------------------|---|-------------------------------------|--|---------------------------|----------------------------------|----------------------------------|---|---------------------------------|----------------------------------| | Station
number | Station name | 7 consecutive days
Recurrence
interval, in years | | | 30 consecutive days
Recurrence
interval, in years | | | Recurrence | | | 30 consecutive days
Recurrence
interval, in years | | | | | | 2 | 10 | 20 | 2 | 10 | 20 | 2 | 10 | 20 | 2 | 10 | 20 | | 15239000
15240000
15241600
15242000
15244000 | Bradley Ronr Homer
Anchor R at Anchor Point
Ninilchik R at Ninilchik
Kasilof R nr Kasilof
Ptarmigan C at Lawing | 28.7
78.5
43.6
460
12.4 | 19.3
54.5
35.5
275
9.10 | 17.7
47.6
33.7
260
8.35 | 28.8
88.7
46.1
480
13.1 | 19.4
57.6
37.0
280
9.79 | 17.9
48.9
35.0
265
9.01 | 0.53
.35
.33
.62 | 0.36
.24
.27
.37
.28 | 0.33
.21
.26
.35
.26 | 0.53
.39
.35
.65 | 0.36
.25
.28
.38 | 0.33
.22
.27
.36
.28 | | 15246000
15248000
15254000
15258000
15260000 | Grant C nr Moose Pass
Trail R nr Lawing
Crescent C nr Cooper Landing
Kenai R at Cooper Landing
Cooper C nr Cooper Landing | 16.7
70.1
15.6
315
14.5 | 11.9
55.0
11.8
227
9.39 | 10.9
52.8
10.8
213
8.13 | 17.6
76.2
16.4
332
15.0 | 12.9
60.8
12.4
244
9.72 | 12.0
58.7
11.4
231
8.52 | .38
.39
.49
.50 | .27
.30
.37
.36 | .25
.29
.34
.34 | .40
.42
.52
.52
.47 | .29
.34
.39
.38
.31 | .27
.32
.36
.36 | | 15266300
15272550
15273900 | Kenai R at Soldotna
Glacier C at Girdwood
SF Campbell C at canyon mouth | 968
18.1 | 754
13.1 | 713
12.5 | 998
19.1 | 763
13.8 | 719
13.3 | .48 | .38 | .35 | .50
.31 | .38 | .36 | | 15274000
15274600 | nr Anchorage
SF Campbell C nr Anchorage
Campbell C nr Spenard | 9.64
5.72
9.42 | 8.93
3.31
3.45 | 8.76
2.78
2.46 | 10.1
6.54
10.8 | 9.12
4.01
5.78 | 8.83
3.41
4.77 | .38
.19
.14 | .35
.11
.05 | .35 | .40
.22
.15 | .36
.13
.08 | .35
.11
.07 | | 15275000
15275100 | Chester C at Anchorage
Chester C at Arctic Blvd at | 8.33 | 3.05 | 2.07 | 9.85 | 3.98
4.10 | 2.78 | .42 | .15 | .10 | .49 | .20 | .14 | | 15277100
15281000
15282000 | Anchorage
Eagle R at Eagle Piver
Knik R nr Palmer
Caribou C nr Sutton | 7.00
42.5
411
12.0 | 2.65
28.0
298
0.3 | 1.87
24.8
271
0.0 | 42.6
428
12.1 | 29.2
310
1.20 | 26.4
281
0.49 | .22 | .15 | .13 | .36 | .15
.26
.00 | .14 | | 15284000
15290000
15291000
15291200
15291500 | Matanuska R at Palmer
Little Susitna R nr Palmer
Susitna R nr Denali
Maclaren R nr Paxson
Susitna R nr Cantwell | 439
19.0
182
66.8
608 | 354
16.4
81.2
44.9
403 | 327
15.7
57.7
40.0
364 | 455
19.8
183
67.5
612 | 380
16.8
81.7
45.1
411 | 358
16.2
58.4
40.1
373 | .21
.31
.19
.24 | .17
.26
.09
.16 | .16
.25
.06
.14 | .22
.32
.19
.24
.15 | .18
.27
.09
.16 | .17
.26
.06
.14 | | 15292000
15292400
15292700
15294300
15294500 | Susitna R at Gold Creek
Chulitna R nr Talkeetna
Talkeetna R nr Talkeetna
Skwentna R nr Skwentna
Chakachatna R nr Tyonek | 969
906
439
713
395 | 692
710
383
592
285 | 636
664
376
570
257 | 973
928
448
719
407 | 704
740
387
592
300 | 651
695
379
570
272 | .16
.35
.22
.32 | .11
.28
.19
.26 | .10
.26
.19
.25 | .16
.36
.22
.32 | .11
.29
.19
.26 | .11
.27
.19
.25 | RECURRENCE INTERVAL, IN YEARS FIGURE 11. - Annual 7-day low-flow frequency curves. RECURRENCE INTERVAL, IN YEARS FIGURE 12.—Annual 7-day low-flow frequency curves, expressed as FIGURE 13.—Coefficient used to multiply the M_{7,1} discharge (7-day minimum discharge with a 10-year recurrence interval) from the map to adjust for storage effect of lakes and ponds. ISLAND MAXIMUM DISCHARGE Floods in the Cook Inlet basin generally result from snow and ice melt or from rains. However, they also can result from a combination of these or from rarer causes such as glacier-dam breakouts (Post and Mayo, 1971). Discharge due to snow and ice melt is dependent on the water equivalent and areal extent of the snowpack, solar radiation to the snowpack, and air temperature. Snowmelt high flows may occur as early as late March on the Kenai lowlands or as late as mid-July in the upper elevations of glacial streams in the Susitna lRiver drainage. A second type of high flow is associated with frontal rainstorms, which generally occur between August and October but in certain years may extend throughout the winter on the Kenai Peninsula. The year-toyear variation in maximum snowmelt peaks is smaller than that caused by rainstorms. As a general rule, the greatest floodflows are due to rainstorms in late summer or early fall. Smaller streams and streams near the Gulf of Alaska tend to have their annual maximum flow caused by summer or fall rainstorms, whereas annual maximum flow on large streams and streams in the upper Susitna River and Matanuska River TALKEETN MOUNTAINS drainages are generally caused by snow and ice melt. There are 50 gaging stations in Cook Inlet basin that have 10 or more years of annual maximum discharge record through the 1977 water year. The peak discharges for recurrence intervals of 2-, 5-, 10-25-, and 50-years were computed for the 50 stations (U.S. Water Resources Council, 1977) and are shown in table 5. Curves of the peak discharges for recurrence intervals from 2 to 50 years for representative gaging stations area shown in figure 14. The largest flows are associated with the larger drainage systems. However, peak unit runoff (peak discharge divided by drainage area) is greatest on smaller streams in the Kenai Mountains and the windward side of the Chugach Mountains. Records show that the expected unit runoff for a peak flow with a recurrence interval of 50 years generally exceeds 100 (ft³/s)/mi² in these areas. In contrast, for small streams in the lowlands on the west side of the Kenai Peninsula, in the Anchorage lowlands, and in the low-lying areas of the Matanuska and Susitna valleys, the peak unit runoff which has a 50-year recurrence interval ranges from less than 10 to about 30 (ft³/s)/mi². - 63° To estimate floodflows in ungaged basins, a regression analysis was made using the peak discharges for recurrence intervals of 2-, 5-, 10-, 25-, and 50-years for the 50 Cook Inlet gaging stations and the basin and climatic characteristics as described in "Annual Discharge". The final regression equation takes the form: $Q_{+} = aA^{D}(LP + 1)^{C}P^{D}$ Q = dependent variable, the annual peak discharge in ft3/s t = recuirence interval, the average number of years between peak flows greater than Q. The remaining items in the equation are the same as those described in Only the independent variables that were statistically significant were used in the final equations. The results are given below. | ependent | Regression | Reg | ression C | Standard Error | | | | |-----------------|------------|------|-----------|----------------|-------------|----|--| | Variable | Constant | | | | of Estimate | | | | Qt | | b | С | d | + | - | | | Q_2 | 0.154 | 0.97 | -0.31 | 1.28 | 56 | 36 | | | Q ₅ | .275 | .93 | 31 | 1.27 | 51 | 34 | | | 210 | .385 | .90 | 32 | 1.26 | 52 | 34 | | | 25 | .565 | .88 | 32 | 1.26 | 56 | 36 | | | ² 50 | .737 | .86 | 33 | 1.25 | 61 | 38 | | | | | | | | | | | ## TABLE 5.-FLOOD FREQUENCY (DATA THROUGH 1977 WATER YEAR). Annual flood discharge, in ft³/s | number | Station name | Recurrence interval, in years | | | | | | | | |--|---|---|--|--|--|--|----------------------------|--|--| | - Tumber | | 2 | 5 | 10 | 25 | 50 | of
record | | | | 15239000
15239500
15239800
15239900
15240000 | Fritz C nr Homer | 2,730
86.5
58.6
1,240
1,870 | 4,010
197
88.9
1,590
2,350 | 5,010
318
113
1,840
2,680 | 6,470
549
150
2,170
3,130 | 7,700
798
181
2,440
3,470 | 20
15
15
10
13 | | | | 15240500
15241600
15242000
15243950
15244000 | Cook Inlet tr nr Ninilchik
Ninilchik R at Ninilchik
Kasilof R nr Kasilof
Porcupine C nr Primrose
Ptarmigan C at Lawing | 51.3
598
7,980
720
519 | 76.7
899
9,850
1,110
701 | 96.8
1,140
11,100
1,420
835 | 126
1,490
12,800
1,890
1,020 | 152
1,800
14,100
2,300
1,170 | 12
15
26
15 | | | | 15246000
15248000
15250000
15254000
15258000 | Falls C nr Lawing | 960
3,560
261
327
10,800 | 1,350
4,620
474
510
14,600 | 1,650
5,390
669
660
17,400 | 2,080
6,420
994
888
21,300 | 2,430
7,230
1,300
1,090
24,400 | 10
26
10
29
31 | | | | 15260000
15266300
15266500
15267900
15269500 | Cooper C nr Cooper Landing
Kenai R at Soldotna
Beaver C nr Kenai
Resurrection C nr Hope
Granite C nr Portage | 293
20,000
130
1,250
928 | 406
26,300
272
1,970
1,500 | 491
30,800
418
2,560
1,970 | 610
37,000
684
3,460
2,710 | 707
41,900
959
4,260
3,370 | 11
13
10
10 | | | | 15270400
15271900
15272530
15272550
15273900 | Donaldson C nr Wibel
Cub C nr Sunrise
California C at Girdwood
Glacier C at Girdwood
SF Campbell C at canyon mouth | 68.1
27.6
210
2,410 | 104
36.1
410
4,640 | 133
42.2
605
6,790 | 176
50.4
944
10,500 | 213
56.9
1,280
14,100 | 10
13
11
13 | | | | 15274000
15274300
15274600
15274800
15275000 | nr Anchorage SF Campbell C nr Anchorage NF Campbell C nr Anchorage Campbell C nr Spenard SB SF Chester C nr Anchorage Chester C at Anchorage | 214
214
62.5
250
23.1
58.5 | 299
325
85.4
344
38.1
79.9 | 362
414
102
414
50.9
95.6 | 452
547
126
513
71.0
118 | 526
662
145
593
89.1
135 | 25
11
12
10
18 | | | | 15275100
15276000
15277100
15277200
15281000 | Chester C at Arctic Blvd at
Anchorage
Ship C nr Anchorage
Eagle R at Eagle River
Meadow C at Eagle River
Knik R nr Palmer | 34.2
834
3,240
21.5
32,500 | 110
1,120
4,180
49.9
38,400 | 129
1,330
4,850
81.2
42,300 | 154
1,610
5,750
142
47,200 | 175
1,840
6,460
208
50,900 | 12
31
12
10 | | | | 15282000
15282400
15284000
15290000
15291000 | Caribou C nr Sutton
Puritan C nr Sutton
Matanuska R at Palmer
Little Susitna R nr Palmer
Susitna R nr Denali | 4,620
24.6
23,900
1,970
17,000 | 6,010
49.5
29,000
3,030
21,700 | 6,990
74.3
32,500
3,890
24,900 | 8,330
118
36,900
5,190
29,300 | 9,380
162
40,300
6,320
32,800 | 23
14
25
29
18 | | | | 15291100
15291200
15291500
15292000
15292400 | Raft C nr Denali
Maclaren R nr Paxson
Susitna R at Cantwell
Susitna R at Gold Creek
Chulitna R nr Talkeetna | 110
5,600
31,800
48,500
38,200 | 126
6,960
43,700
64,200
45,900 | 136
7,900
52,500
75,600
51,100 | 148
9,130
64,900
91,000
57,800 | 158
10,100
74,900
103,000
62,900 | 15
20
12
28
18 | | | | 15292700
15292800
15293000
15294300
15294500 | Talkeetna R nr Talkeetna
Montana C nr Montana
Caswell C nr Caswell
Skwentna R nr Skwentna
Chakachatna R nr Tyonek | 28,500
3,160
89.0
31,900
15,200 | 40,000
4,440
143
39,100
18,300 | 48,800
5,400
188
44,000
20,400 | 61,200
6,770
258
50,400
23,100 | 71,500
7,890
321
55,200
25,100 | 14
10
15
18
11 | | | Drainage area and annual precipitation are the most important factors in describing the expected peak discharges. The negative coefficient for lake and pond storage indicates the attenuating effect this storage has on the magnitude of flood discharge. The annual precipitation coefficient remains about constant in the five equations, but the drainage area coefficient decreases for the larger recurrence interval floods. Since the drainage area coefficients are less than 1.0, the peak unit runoff will decrease with an increase in the size of the drainage The results of the regression equations were compared to flood frequency curves for each gaging station. The values of peak discharges from the frequency analysis for most gaging stations in the Anchorage area were significantly less than those obtained from the regression equation. For streams in the Anchorage area from Campbell Creek to Eagle River, for which there are records of at least 10 annual maximums, individual station frequency curves are more accurate than the results from the regression equations. The annual maximum flows on the Knik River resulting from the outbreak of Lake George were not included in this study. Similarly, the August 1971 maximum discharge on the Matanuska River at Palmer which resulted from a breach of a lake outlet in the Granite Creek basin was not included. The August 1971 maximum discharge on the Chakachatna River near Tyonek which resulted from sudden release of water stored in Chakachamna Lake when a portion of the terminus of Barrier Glacier was eroded away was also not included in this study. MINIMUM DISCHARGE, M7 10 (7-DAY MINIMUM DISCHARGE WITH A 10-YEAR RECURRENCE INTERVAL), IN CUBIC FEET PER SECOND PER SQUARE MILE. (Based on $M_{7.10}$ for 25 gaging stations).