Map units

River gravel (III)

Alluvial-fan silt (V)

Muck VII

Peat muck VIII

Distribution and thickness

Exposed on hilltops and steep slopes where

weathered layer layer 1-3 ft thick on upper

slopes; more than 75 ft thick on lower slopes

Placer-mine dredge tailings on Gold Hill, Ester

Creek, and Cripple Creek. Thickness, 3 to

Covers most of southern half of the quadrangle

Surface layer of silt 1-15 ft thick. Total

thickness of alluvium adjacent to bedrock

hills 1-200 ft; thickness as much as 400 ft near

Widespread on middle and upper slopes and on

lower hilltops. Thickness ranges from 3 ft

on upper slopes to a maximum of more than

Tanana and Chena Rivers. Thickness 1 to

Widely distributed in a complex drainage

network on flood plain in southern half of the

quadrangle as broad basinlike areas and

elongate, sinuous, meander scars. Thickness

generally less than 15 ft, maximum probably

Widespread on lower slopes and valley bot-

Occurs in broad, oval-shaped areas in valley

Windblown upland silt

Windblown upland silt

Windblown upland silt

Windblown upland silt

Reworked valley-bottom silt

Reworked valley-bottom silt

River slough and top silt

River slough and top silt

Weathered schist

Weathered schist

less than 3 ft thick

more than 50 ft

more than 30 ft

than 300 ft

SAMPLE

LOCATION

A IS IW 6 NW SW Loess

B IS 2W I NE SW Loess

C 1S 2W 16 NE NW Loess

D 1S 2W 33 NE NW Loess

1N IW 31 NE NW Muck

J IN 2W 35 SE NW Muck

K IS 2W 8 NW NE Muck

L 1S 1W 7 SW SW River silt

O IS IW 5 NE SE River gravel

T 1S 2W 28 SE SW Bedrock

II IS 2W 33 NW NW Bedrock

V 1S 2W 29 NE SW Bedrock

X 1S 2W 16 SW NE Bedrock

Y IS 2W 16 SW NE Bedrock

Z 1S 2W 11 SW SW Bedrock

W 1S 2W 20 NW SE Bedrock

M IS IW 5 NE SE River silt

N IN IW 32 SW SE Peat

E 1S 2W 11 SE SE Alluv.-fan silt Reworked silt over river grave

F 1S 2W 12 NE NW Alluv.-fan silt Reworked silt over river grave

G 1S 2W 1 SW SW Alluv.-fan silt Reworked silt over river grave

H 1S 2W 1 SE NW Alluv.-fan silt Reworked silt over river grave

P 1S 2W 13 NW NW River gravel River sand and gravel (before crush)

O IS 2W 14 SW SE River gravel River silty, sandy gravel (before crus

R 1S 2W 23 SW SW River gravel River sandy gravel (before crush)

S 1S 2W 28 SW NE River gravel River sandy gravel (before crush

200 ft on middle slopes. Not mapped where

Alluvial fan extending onto flood plain of Gently sloping alluvial fan emanating from

more than 75 ft

Terrain and natural slopes

Rounded, gently rolling topography. Steep

Steep, imbricate, parabolic, symmetrical gravel

drained depressions. Leveled in places

Flat plain with meandering streams and com-

Gently rolling terrain with low rounded hills.

Old, slightly subdued, parallel gullies and

ridges at right angles to contours; charac

Elongate, sinuous, flat-floored, meander and

slough scars and wide shallow basinlike

areas. Some intermittent streams present

Very gently sloping alluvial fans and colluvial

Flat fans with small steep-sided cave-in lakes

DESCRIPTION OF MATERIAL

River gravel: quartz, 50 percent; gneiss, 25 percent; schist, 6 percent; chert, 6 percent; slate, 5 percent; diorite, 3 percent; other, 5 percent (before crush)

Weathered brown micaceous schist with 15-20 percent siliceous lense

Hard siliceous and micaceous schist with weathered micaceous schist

ft wide in polygonal network

and a pattern of trenches 1-4 ft deep and 2-5

with small lakes

plex network of shallow swales

piles forming rough terrain with some un-

slopes adjacent to river flood plain

Drainage and permeability

Surface drainage good to excellent. Joints,

ered layer has low permeability

faults, fracture cleavage, and foliation result

in poor to fair permeability. Upper weath-

pacted. Excellent drainage and permeability

Drainage excellent and permeability high ex-

cept locally in silt or where perennially fro-

zen. Drainage improves with land clearing

and lowering of permafrost table. Subject to

Good surface drainage. Lateral permeability

Surface and subsurface drainage generally fair

to good, especially after land clearing and

lowering of permafrost table. Permeability

mpermeable substratum of permafrost and or-

ganic silt in broad basinlike depressions

creates poor drainage; marshy and undrained

in summer. Drainage slightly better in linear

scars. Drainage in both types improves

slightly to moderately with land clearing and

lowering of permafrost table. Subject to

mpermeable substratum of permafrost, espe-

cially in valley bottoms, creates poor drain-

age; marshy and undrained in summer. Land

clearing and lowering of permafrost table im-

proves drainage near contact with loess; pro

duces quagmire in valley bottoms. Permea-

permeable substratum of permafrost and or-

ganic material creates very poor drainage;

marshy and undrained in summer. Land

clearing produces summer quagmire. Per-

ganic silt creates very poor drainage; marshy

bility low to moderate

except where locally perennially frozen

Permafrost

Locally perennially frozen under muck and tail-

ings in creek valley bottoms and on north-

facing slopes. Depth to permafrost on north-

facing slopes 1-4 ft; locally 1-100 ft. Low ice

content as interstitial ice in unweathered

bedrock: low to moderate ice content as

seams and interstitial ice in weathered bed-

Locally perennially frozen; low ice content,

flood plain and more than 4 ft on inside of

meander curves near river. Depth to perma-

frost 25-40 ft in some cleared areas. Perma

frost absent or deep beneath lakes, rivers,

and creeks. Seasonal frost layer 2–9 ft thick. Permafrost 2–275 ft thick. Permafrost dis-

continuous; unfrozen lenses, layers, and ver-

tical zones. Low ground-ice content and

mostly interstitial in sand and gravel; ice con-

tent low to moderate in top silt layer. Water table 10-15 ft where permafrost absent or

Generally permafrost free. Permafrost with lit-

tle or no ice content may be present on north-facing slopes. Water table deep

ft. Permafrost 2-155 ft thick and in contact

with underlying river sand and gravel. Dis-

continuous. Moderate to low ice content,

primarily as pore ice, but may contain ice

seams and lenses. No large ice masses.

Water table 15-30 ft where permafrost absent

11/2-4 ft. Permafrost 5-30 ft thick; continuo

in broad basins; discontinuous in meander

scars, generally absent in young sloughs.

May be in contact with underlying perma-

frost of river sand and gravel. Moderate to

high ice content as thin seams and lenses.

Water table 10-15 ft where permafrost absent

and valley bottoms, 5-20 ft near the contact

Seasonal frost layer 11/2-3 ft thick. Perma-

except under lakes and near contact with the

loess. Ice content high as seams and lenses in

upper 3-30 ft, high in lower part (unit VIII) as

seams, lenses, and large foliated ice masses

arranged in polygonal pattern. Water table

below permafrost. Permafrost temperature averages 31°-32°F. Pingos occur locally

Depth to permafrost 11/2-3 ft. Seasonal frost High

layer 11/2-3 ft. Permafrost 11/2-140 ft thick;

continuous except under lakes. Ground-ice

content high as seams, lenses, and large

foliated ice masses 11/2-10 ft below the sur-

face. Water table below permafrost. Pingos

layer 1½-3 ft. Permafrost more than 20 ft

content high as seams and lenses; large

ANALYSES OF SAMPLES FROM FAIRBANKS D-2 SW QUADRANGLE

occur locally

table below permafrost

MECHANICAL ANALYSES

Percentage of sample smaller than grain size listed

(Grain size in millimetres; U.S. Standard sieve size or inches given in parentheses)

93.2 82.0 44.5 19.0

Grain 0.833 0.417 0.175 0.074 0.050 0.022 0.003

97.4

97.0

95.6

92.73

99 97 90 73 60 42.8 38

100 98 96 77 65 41.5 32

99 94 83 59 44 29.2 26

92 88 83 76 71 55.2 46

Grain 38.10 25.40 19.05 12.70 9.39 4.76 2.0 1.65 0.417 0.175 0.074

77 | 63 | 54 | 33.2 | 24

100 97 93 75.8 47

100 | 98 | 96 | 85.0 | 65 |

99 96 91 88 78.6 71 56

91.1 84.9 74.0 60.2 46.8 35.2 30.0 24.0 7.5 6.6 A-1-a

(#40)

99

100

100

99

100

100 100 100 90

Impermeable substratum of permafrost and or- Depth to permafrost 1½-3 ft. Seasonal frost High

with the loess, 10-25 ft under cleared areas

Depth to permafrost 11/2-3 ft on lower slopes | High

Depth to permafrost 11/2-4 ft. Active layer | High

Depth to permafrost 3–25 ft. Active layer 3–4 | Moderate to high

Depth to permafrost 2-4 ft in older parts of Silt, moderate to high; sand and gravel, unsus-

rock. Water table generally deep

Susceptibility to frost action

Moderately susceptible in weathered bedrock

Moderate to unsusceptible; locally high if

Bearing strength and slope stability

High bearing strength in fresh bedrock; gener-

ally high in weathered bedrock if ice content

low or absent. Highest bearing strength on

cleavage, and foliation planes, especially

High bearing strength. Slopes generally stable

High bearing strength when frozen; sand and

gravel high when thawed; silt moderate to

high when thawed and well drained, low

when poorly drained. Slopes may stand at 1:1

position; very low when wet. Will stand in

when wet or thawed unless well drained.

Subject to sloughing and sliding when thawed

to 1:1. Susceptible to gullying

and undrained; when drained, stable at 2/3:1

High bearing strength when frozen; very low

and sliding upon thawing until well or moder-

High bearing strength when frozen or dry; very

low when wet or thawed. May stand in near-

vertical shallow cuts near contact with the

loess. Subject to sloughing and sliding upon thawing; when drained, stable at 2/3:1. Very

High bearing strength when frozen; Very low

sloughing and sliding upon thawing

sloughing and sliding upon thawing

LABORATORY TESTS 1

A.A.S.H.O.2

CLASSIFI-CATION

A-4(8)

5.1 A-1-a

7.7 A-1-b

4.7 A-1-a

6.7 A-1-a

10.0 A-1-a

23.3 A-2-4

0.6 A-1-a 2.63

18.9 A-2-4 2.76

13.5 A-1-b 2.80

18.2 A-2-4 2.76

30.1 A-2-4 2.79

A-4(8) 2.81 105.9 120.0 8.78

2.50 | 89.8 | 101.2 | 8.87

ND ND ND

PROPERTIE:

(lb/ft³)

123.6 | 128.8

120.0 126.8

ND ND

ND ND

ND ND

97.6 109.6

91.6 100.0

ND ND

when thawed. Slopes in cuts subject to

when thawed. Slopes subject to sloughing

near-vertical slopes. Extremely susceptible

tible to wind erosion

ately well drained

susceptible to gullying

High bearing strength when dry and in original Easily excavated with hand tools except where

High bearing strength when frozen or dry; low | Can be excavated with hand tools or light

to 2/3:1 except in unfrozen sand

horizontal or vertically slumping along joint,

mica-laden planes

Excavation and compaction

Weathered bedrock easily excavated with hand

or power tools except where frozen. Un-

weathered schist generally is easily exca-

vated with power tools with only little to

moderate blasting; some varieties, especially

the quartzite facies and vein quartz, may re-

quire additional blasting. Resistant where

interbedded with schistose rocks. Difficult to

moderately difficult to compact both weath-

Easily excavated by power tools except where

Easily excavated with power equipment except

frozen. Difficult to compact

dence when thawed

dence when thawed

sidence when thawed

where frozen. Difficult to compact, Slight

subsidence in silt when thawed; very little or

no subsidence in sand and gravel when

power equipment except where frozen. Dif-

ficult to compact. Little to moderate subsi-

Very difficult to excavate unless thawed; when

thawed, viscous sediment slides into excava-

tion; difficult to compact. Moderate subsi-

Very difficult to excavate unless thawed; blast-

ing moderately successful. When thawed,

cept near contact with loess or on low hills.

Difficult to compact. Great differential sub-

Very difficult to excavate unless thawed; blast-

subsidence when thawed

dry weight sample

27.5 | 22.6 | 4.9 | 18.0 | 2 ft | No permafrost

24.1 19.4 4.7 25.90 3 ft 6 in.

29.7 | 23.0 | 6.7 | 17.0 | 2 ft 6 in.

ND ND ND 641.00 1 ft 5 in.

Heavy-mineral analysis of sample A7

Separation made with acetylene tetra-

bromide; permanent mount made in

canada balsam; 415 grains counted

percent magnetite and ilmenite. All iso

ND NV tropic grains listed as garnet

24.0 16.7 7.3

ND ND ND

23.2 NP NP

34.6 34.0 0.6

12.9 11.0 1.9

29.3 25.3 4.0

ND ND ND

27.2 21.2 6.0

28 NV Zoisite

29 NV Augite

ND NV Zircon

ND 21.6 Tremolite

ND NV

ND NV Unknown fragments

25.6 NP NP ND

ing only moderately successful. When

tion. Difficult to compact. Great differential

thawed, viscous sediment slides into excava-

High bearing strength when frozen: very low Very difficult to excavate unless thawed; blast- Very poor foundation for construction of any

when thawed. Slopes in cuts subject to ing only moderately successful. When sort. Good source of raw peat in thawed

thawed, viscous sediment slides into excava-

MOISTURE CONTENT

Percent by dry Depth Percent by Depth Date

ND

40 ft 6

4 ft 5 in.

ND

2 ft 1 in. 1176.0

ND

Fairbanks District of the Alaska Road Com-

² American Association of State Highway

⁴ Analysis by Frost Effects Laboratory,

5 Analysis by Permafrost Division, St. Paul

6 Moisture content by Dr. E. B. Rice, Uni-

versity of Alaska. Samples collected by

7 Analysis by T. L. Péwé.

Interior-Geological Survey, Reston, Va.-1976-G74251

NV = Not viscou

NP = Not plastic

ND = No data

Corps of Engineers, U.S. Army, Fairbanks,

mission Department of Interior, and its succe

sor, the Alaska Department of Highways.

³ Moisture content by R.A. Paige.

50.7

ND

82.60

in percent

weight of sample dry weight of sample collected

17.29 1 ft 1–24–56

30.81 1 ft 1-24-56

36.24 1 ft 1–24–56

ND

1 ft 1-24-56

April 1969

frozen. Relatively easily compacted

ered and unweathered bedrock

Possible use

Schist varieties good for unclassified embank

ment fill; fair for selected use such as base

repeated traffic and frost action. Harder va

rieties, such as the quartzite facies and vein

quartz, good for riprap and ballast, and

coarse aggregate; if processed, good for base

course and road metal; All varieties, espe-

cially marble facies, are good as decorative

Good foundation for any structure if tailing

piles leveled. Good for subgrade, ballast, rip-

rap, pervious fill, and, if crushed and

screened, for base course and aggregate

should be removed to prevent frost heaving

if structure is unheated. Gravel good for sub

grade, base course, and if crushed and

screened, for road metal and concrete aggre

gate. Source of tremendous quantities o

ground water. Surface silt fair to good for

satisfactory for sanitary landfill site because

agricultural soil if fertilized. Generally un-

Source of fine-grained sediment, possible

bankment fill. Good foundation for heated

structures if protection is provided against

gullying. Unsurfaced roads unstable; powdery when dry, plastic and sticky when wet

Good agricultural soil if fertilized. Possible

Good foundation for heated buildings. Unfro-

zen silt possible source of unclassified em

faced roads unstable; powdery when dry

plastic and sticky when wet. Good agricul

tural soil if fertilized. Unfrozen and well

drained areas are possible sanitary landfill

Poor for construction foundation or fill; should

be removed prior to construction. Possible

source of clayey silt. Unsatisfactory for

sanitary landfill sites because of high water

Poor foundation for construction. Upon thaw

ing of permafrost, thermokarst mounds

0-50 ft in diameter and 1-10 ft high and pits

3-30 ft in diameter and 5-20 ft deep form on

surface. Condition may improve near con-

tact with the loess where permafrost table is

lower and permafrost sporadic. Can serve as

solid foundation if permafrost is prevented

from thawing and structures are designed to

absorb frost-heaving effects. Source of

fine-grained sediment; possible source of impervious fill. Poor to fair for agriculture it ertilized. Unsatisfactory for sanitary landfill site unless permafrost is prevented from

Very poor foundation for construction of any

sort. Thawing of permafrost results in forma-

tion of thermokarst mounds 1-10 ft high and

10-50 ft in diameter and pits 3-30 ft in diame

ter and 5-20 ft deep. Can serve as solid foun-

dation only if permafrost is prevented from thawing and the structure is designed to ab-

sorb frost-heaving effects. Poor for agricul-

ture. Poor for sanitary landfill sites. Good for

ture. Poor for sanitary landfill sites

thawing or landfill is frozen

of high water table

sites for sanitary landfill

table and permafrost

Possible sites for sanitary landfill

course if processed; breaks down to silt with

geologic features that may prove hazardous; only then can proper and economical land usage be assured. To provide a background for people concerned with the land, basic data from the geologic map of the Fairbanks D-2 SW quadrangle (Péwé and others, 1976), the map showing distribution of permafrost in the Fairbanks D-2 SW quadrangle (Péwé and Bell, 1974) and the map showing ground-water conditions in the Fairbanks D-2 SW quadrangle (Péwé and Bell, 1976a) have been recast into this foundation map. The description of units outlines in simple and basic terms the

chitects, financial institutions, and educators, must be aware of recognizable

major problems and the various foundation conditions found in the quadrangle. Not only do conventional foundation and constructional problems occur, but unique problems related to permafrost and seasonal frost action complicate otherwise normal land use. The bedrock is, in general, a solid foundation that presents no major problem. Most of the unconsolidated sediments would provide fair to good foundation in more temperate latitudes. In the Fairbanks area, however, the widespread blanket of silt is very susceptible to intense seasonal frost action, especially where poorly drained. Theoretical frost-heaving forces are given below. To prevent frost heaving, special precautions must be taken in the construction of roads, airfields, bridges, unheated buildings, and structures on piers or pilings. At some places, the silt can be removed; in others, drainage must be improved. It is also possible to anchor structures in the underlying permafrost to eliminate the

effects of frost heaving. Permafrost is critical in evaluating land use. Permafrost, or perennially frozen ground, is defined as soil or bedrock that remains at or below 32°F for 2 or more years. In this area, as well as in other parts of the North, many types of structures have been extensively damaged because the existence and nature of the frozen

FOLIO OF THE

FAIRBANKS D-2 SW QUADRANGLE

MAP I-829-E (SHEET 2 OF 2)

ground were little understood The first step in preparing the land for construction or farming is usually the stripping of the vegetative cover, an operation that disturbs the natural thermal equilibrium and causes thawing of nearby permafrost. As the ground thaws, the ground surface and anything on it settle differentially, sometimes producing severe damage. The type and extent of permafrost vary, and the consequences of building on ice-rich ground vary as well.

The foundation map presents as much data as possible on engineering problems that would be found in any particular area. Information is presented on frost heaving and permafrost and on general ground stability and soil properties. Nine foundation units are defined: I, bedrock; II, tailings; III, river gravel; IV, loess; V, alluvial-fan silt; VI, river silt; VII, muck; VIII, peat muck; IX, peat. Each unit poses different foundation problems, depending upon the presence and type of permafrost, the mechanical properties of the material, whether or not it is consolidated, and its characteristics upon thawing. The conditions within a unit are

generalized and may vary locally, especially near contacts. The most critical foundation problem is the existence of large, massive groundice masses in the reworked valley-bottom silts (units VII, VIII, and IX). Small ice wedges occur locally in some broad river-silt deposits (unit VI) of the flood plain.

SELECTED BIBLIOGRAPHY

Crory, F. E., 1968, Bridge foundations in permafrost areas, Goldstream Creek, Fairbanks, Alaska: U.S. Army Corps Engineers Cold Regions Research and Eng. Lab. Tech. Rept. 180, 28 p.

Ferrians, O. J., Jr., Kachadoorian, Reuben, and Greene, G. W., 1969, Permafrost and related engineering problems in Alaska: U.S. Geol. Survey Prof. Paper

Highway Research Board, 1952, Frost action in soils—a symposium: Washington, Highway Research Board Spec. Rept. 2, Nat. Acad. Sci. Pub. 213, 385 p. Holmes, G. W., Hopkins, D. M., and Foster, H. L., 1968, Pingos in central Alaska: U.S. Geol, Survey Bull, 1241-H. p. H1-H40. Johnson, A. W., 1952, Frost action in roads and airfields: a review of the literature:

Washington, Highway Research Board Spec. Rept. 1, Nat. Acad. Sci. Pub. 211, 287 p. Lachenbruch, A. H., 1959, Periodic heat flow in a stratified medium with applica-

tion to permafrost problems: U.S. Geol. Survey Bull. 1083-A, p. 1-36. 1968, Permafrost, in Fairbridge, R. W., ed., The encyclopedia of geomorphology: New York, Reinhold Publishing Corp., p. 833-839. ------1970, Some estimates of the thermal effects of a heated pipeline in perma-

frost: U.S. Geol. Survey Circ. 632, 23 p. Legget, R. F., 1967, Soil—its geology and use: Geol. Soc. America Bull., v. 78, p.

Muller, S. W., 1945, Permafrost or permanently frozen ground and related engineering problems: U.S. Engineers Off., Strategic Eng. Study Spec. Rept. 62 (2d ed.), also printed by Edwards Brothers, Ann Arbor, Mich., 1947, 231 p. National Research Council, 1966, Proceedings, First International Permafrost Conference: Washington, Nat. Research Council Pub. 1287, 563 p. -----1973, North American papers, Second International Permafrost Confer-

ence: Washington, Nat. Research Council Pub., 783 p. Péwé, T. L., 1954, Effect of permafrost on cultivated fields, Fairbanks, Alaska; U.S. Geol. Survey Bull. 989-F, p. 315-351.

———1958, Geologic map of the Fairbanks D-2 quadrangle, Alaska: U.S. Geol. Survey Geol. Quad. Map GQ-110.

-1966, Permafrost and its effect on life in the north: Corvallis, Oreg; Oregon

Péwé, T. L., and Bell, J. W., 1974, Map showing distribution of permafrost in the Fairbanks D-2 SW quadrangle, Alaska: U.S. Geol. Survey Misc. Inv. Series

Map I-829-B [1975] ———1976a, Map showing ground water conditions in the Fairbanks D-2 SW quadrangle, Alaska: U.S. Geol. Survey Misc. Inv. Series Map I-829-C.

———1976 b, Map showing construction materials in the Fairbanks D-2 SW quadrangle, Alaska: U.S. Geol. Survey Misc. Inv. Series Map I-829-D. Péwé, T. L., Bell, J. W., Forbes, R. B., and Weber, F. R., 1976, Geologic map of the Fairbanks D-2 SW quadrangle, Alaska: U.S. Geol. Survey Misc. Inv.

Series Map I-829-A. Péwé, T. L., and Paige, R. A., 1963, Frost heaving of piles with an example from Fairbanks, Alaska: U.S. Geol. Survey Bull. 1111-I, p. 327-407.

Rieger, S., Dement, J. A. and Dupree, S., 1963, Soil survey, Fairbanks area, Alaska: U.S. Dept. Agriculture, Soil Conserv. Service, series 1959, no. 25, 41

Scott, R. F., 1956, Freezing of slurry around wood and concrete piles: Boston, Mass., U.S. Army Corps Engineers Arctic Construction and Frost Effect Laboratory, 6 p.

Straughn, R. O., 1972, The sanitary landfill in the subarctic: Arctic, v. 25, no. 1, p.

U.S. Army Corps Engineers, 1956, Engineering problems and construction in permafrost regions, in The dynamic north: [U.S. Office] Chief Naval Operations Polar Proj. OP-03A3, v. 2, no. 3, 53 p.

POSSIBLE EFFECTS OF FROST HEAVING Maximum force pushing penetration, in feet upward, in pounds 21,600 November 1. 43,200 January 64,800 February 1. April Hypothetical example of seasonal frost penetration into silt in central

Alaska and possible upward push on 40-inch-perimeter pile (ground

temperature constant). (Péwé and Paige, 1963, table 6.)

Relation of plasticity and compressibility to plasticity index and liquid limit for samples (indicated by letters) in the Fairbanks D-2 SW quadrangle. Although none of the samples fall into groups 4, 6, or 7, it does not necessarily mean that these groups are absent from the area. After Legget (1967, fig. 5)

GRAIN SIZE AND DEGREE OF SORTING OF REPRESENTATIVE SAMPLES 90 70 60 50 **EXPLANATION** Sample B. loess Sample F, alluvial-fan silt 30 -Sample I, muck — – — Sample O, river gravel —··— Sample S, river gravel Sample U, weathered bedrock 20 Sample Z, weathered bedrock 10 0.1 0.01 0.005 PARTICLE DIAMETER, IN MILLIMETRES The graph shows the frequency of occurrence of particles of various sizes in several types of foundation

materials from the Fairbanks D-2 SW quadrangle. The slope of a curve indicates the degree of sorting of the

materials; the steeper the slope, the higher the degree of sorting

DATA SHEET FOR MAP SHOWING FOUNDATION CONDITIONS IN THE FAIRBANKS D-2 SW QUADRANGLE, ALASKA