CATALOG OF EARTHQUAKES IN SOUTHERN ALASKA OCTOBER-DECEMBER 1977

K. Fogleman, C. Stephens, J. C. Lahr S. Helton, and M. Allan

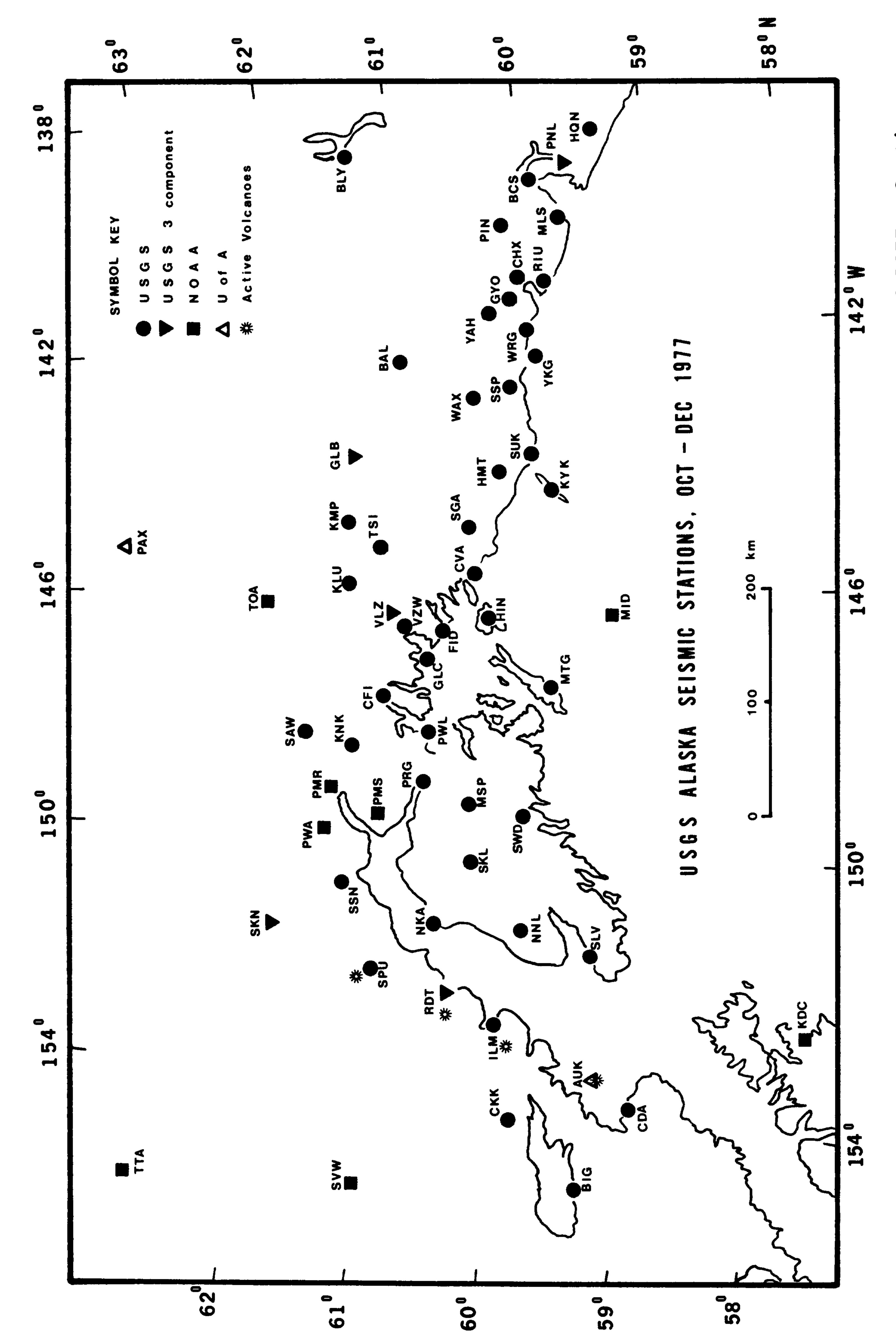
CONTENTS

Data Proce Discussion Acknowled	iontationessing and Analysisn of Cataloggments	12
	ILLUSTRATIONS	
Figure 1	Map showing principal seismograph	
	stations used in locating earthquakes	3
2	Block diagram of the USGS telemetered seismograph system	5
3	System response of a typical	
4	USGS telemetered seismograph station	7
	seismograph station installation	8
5	Map showing earthquake	
~	epicenters reported in the appendix	
7	Map showing location of cross sections	14
	of earthquake hypocenters listed in the appendix	15
	TABLES	
Table 1	Station data	4
	APPENDIX	
Southern /	Alaska earthquakes, fourth quarter 1977	19

INTRODUCTION

The National Center for Earthquake Research of the U.S. Geological Survey (USGS) began a program of telemetered seismic recording in south-central Alaska in 1971. The principal objectives of this program have been to use data recorded by this network to precisely locate earthquakes in the active seismic zones of southern Alaska, to delineate seismically active faults, to assess seismic risk, to document potential premonitory earthquake phenomena, to investigate current tectonic deformation, and to study the structure and physical properties of the crust and upper mantle. A task fundamental to all of these goals is the routine cataloging of earthquake parameters for earthquakes located within and adjacent to the seismograph network.

The initial network of 10 stations, 7 around Cook Inlet and 3 near Valdez, was installed in 1971. Each summer since then additions or modifications to the network have been made. By the Fall of 1973, 26 stations extended from western Cook Inlet to eastern Prince William Sound, and 4 stations were located between Cordova and Yakutat. A year later 20 additional stations were installed. Thirteen of these were placed along the eastern Gulf of Alaska with support from the National Oceanic and Atmospheric Administration (NOAA) under the Outer Continental Shelf Environmental Program to investigate the seismicity of the outer continental shelf (OCS) region of interest for oil exploration. During the subsequent years the region covered by the network has remained relatively fixed while effort has been made to improve the instrumentation and installation of the stations in order to make them more reliable.

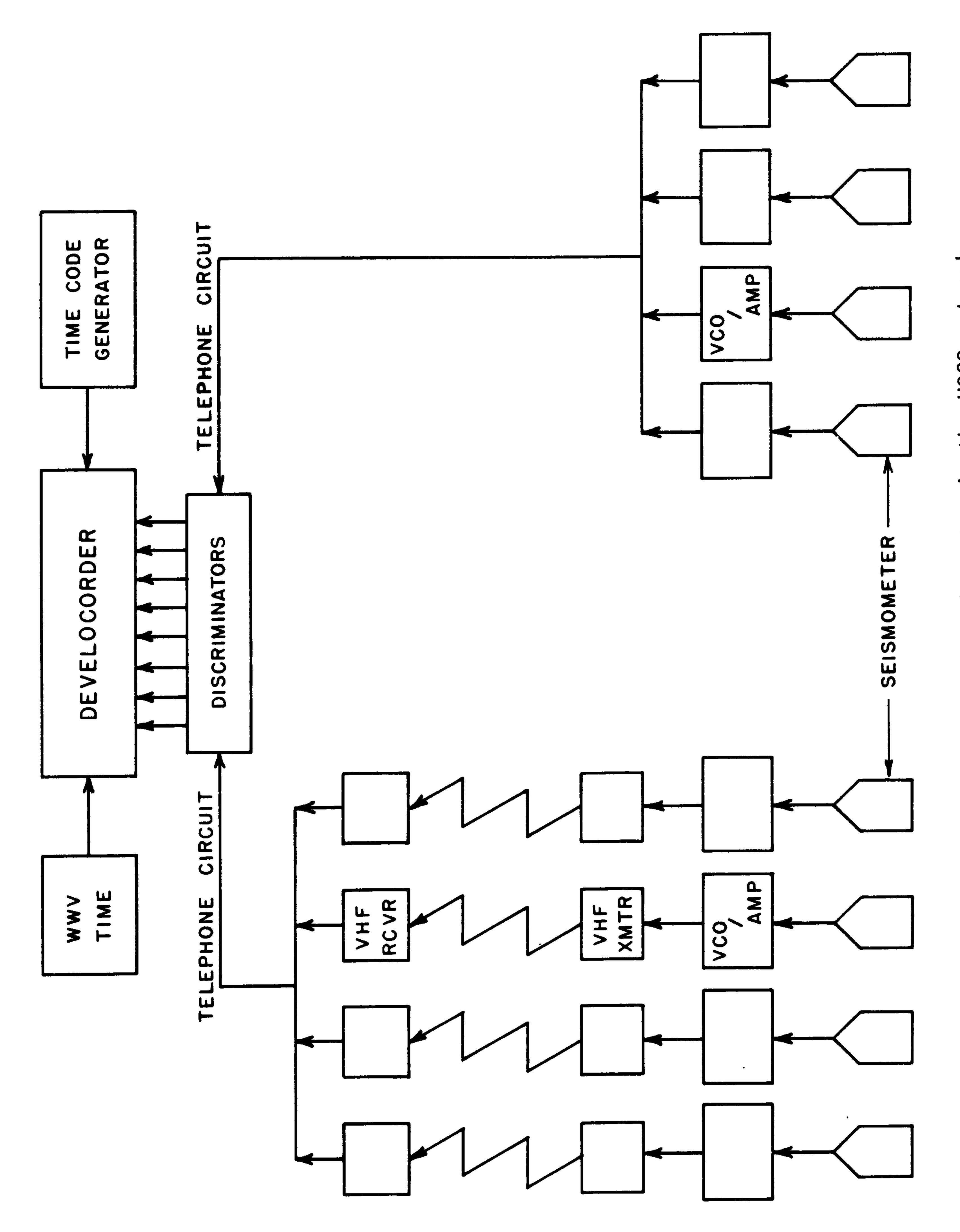

This earthquake catalog presents origin times, focal coordinates and magnitudes for 331 shocks occurring in the fourth quarter of 1977. Readings from a total of 65 stations were used to locate the shocks, including 8 stations operated by the NOAA Alaska Tsunami Warning Center (formerly Palmer Observatory), and 6 stations operated by the Geophysical Institute of the University of Alaska (U. of A.).

Earthquakes in south-central Alaska as small as magnitude 3.0 have been routinely located by the National Earthquake Information Service of USGS and its predecessor since the great Alaska earthquake of 1964 and published in the reports "Preliminary Determination of Epicenters" (PDE). In contrast the shocks included in this catalog are as small as magnitude 1.0 and most are smaller than magnitude 3.0. Data for the larger historic earthquakes in south-central Alaska have been tabulated by Davis and Echols (1962) and U.S. Coast and Geodetic Survey (1966).

The locations of the stations of the USGS seismograph network are plotted in Figure 1 and listed in Table 1 along with the additional stations from which readings were obtained. The USGS stations have single, vertical-component seismometers except for GLB, PNL, RDT, SKN, and VLZ which also have two horizontal seismometers.

INSTRUMENTATION

The instrumentation in the USGS seismograph network as operated during the fourth quarter of 1977 is illustrated in the block diagram in Figure 2. Data from each seismometer are telemetered to a central recording point at the NOAA Alaska Tsunami Warning Center. The standard equipment at each field



S network for ned are also USGS Alaska seismic ner readings were obtained showing the hadditional -E

Table 1. Station Data SEISMIC STATIONS UTILIZED DURING OCTOBER - DECEMBER 1977

STA	STATION NAME	LAT N DEG MIN	LONG W DEG MIN	ELEV	D K M	DELAY	TDLY	MAG a 1HZ	INST
A 116	**************************************	50 20 40	167 26 44	207	0 04	0 00	0 00		
AUK Bal	AUGUSTINE IS. BALDY	_	153 25.66 142 20.67			0.00 0.00	0.00	0 117000	UOF A USGS
BCS	BANCAS POINT	_	139 37.00		0.00	_	0.30	29700	USGS
	BIG MOUNTAIN		155 13.02	_	0.01		0.00	117000	USGS
BLR	BLACK RAPIDS	63 30.10	145 50.70	809	0.01	0.00	0.00	0	NOAA
CDA	CAPE DOUGLAS	58 57.32	153 31.77	386	0.01	0.00	0.00	0	USGS
	COLLEGE FIORD		147 45.99		_	-	0.00	117000	USGS
	CHAIX HILLS	_	141 7.10		-	0.00	0.30	59400	USGS
	CHEKOK	_	154 13.99			0.00	0.00	7400	USGS
	COLLEGE		147 47.60 145 44.96	_		0.00	0.00	50/00	US6S
	CORDOVA FIDALGO	-	146 35.79		-	0.00	0.30	59400 234000	USGS USGS
	GILMORE	_ _	147 29.70			0.00	0.00	000	NOAA
	GILAHINA BUTTE		143 48.63		_	0.00	0.00	234000	USGS
	GLACIER IS.		147 4.35	_	0.01		0.30	117000	USGS
GLM	GILMORE DOME	-	147 23.33	820	0.01	0.00	0.00	0	UOFA
GYO			141 28.29			0.00	0.30	117000	USGS
	HINCHINBROOK	_	146 30.10		0.01	_	0.30	234000	USGS
	MT. HAMILTON	•	144 15.64		0.01	<u>-</u>	0.30	117000	USGS
	HARLEQUIN LAKE ILIAMNA	_	138 52.62 152 48.97		-	0.00 0.44	0.30	117000 117000	USGS USGS
	INDIAN MOUNTAIN	•	153 40.72		-	0.00	0.00	0	NOAA
KDC	KODIAK	_	152 29.50				0.00	Ö	NOAA
	KLUTINA		145 55.21				0.00	234000	USGS
KMP	KIMBALL PASS	61 30.78	145 1.09	1143	0.00	0.00	0.30	117000	USGS
KNK	KNIK	_ _	148 27.34			-	0.00	234000	USGS
	KAYAK IS.		144 31.39		_	_	0.30	59400	USGS
	MCKINLEY PARK	_	148 56.10		_	0.00	0.00	0	UOFA
	MIDDLETON IS.		146 20.34	_	0.01		0.30	0	NOAA
	MALASPINA MAACE BACC		140 9.00 149 21.64		_	0.00	0.30	14700 117000	USGS
	MOOSE PASS Montague IS.		147 29.82			0.00	0.00	59400	US G S US G S
	NIKISHKA	-	151 14.28	_		1.36	0.00	7400	USGS
	NINILCHIK		151 17.78		4.00	• -	0.00	59400	USGS
PAX	PAXSON	62 58.25	145 28.11	1130	0.01	0.00	0.00	0	UOFA
PIN	PINNACLE	60 5.80	140 15.40	975	0.01	0.00	0.30	59400	USGS
	PALMER OBSERVATORY	_	149 7.85		_		0.00	0	NOAA
	ARCTIC VALLEY		149 33.63	_	0.01		0.00	50400	NOAA
PNL PRG	PENINSULA Portage	•	139 23.82 149 1.42	579 55	0.01	0.00	0.30	59400 117000	USGS USGS
PWA	HOUSTON		149 52.72	_	0.01		0.00	0.000	NOAA
PWL	PORT WELLS		148 20.09		0.01		0.00	117000	USGS
	REDOUBT		152 24.37		_		0.00	14700	USGS
RIU	RIOU	59 52.70	141 13.70	15	0.00	0.00	0.30	7400	USGS
SAW	SAWMILL	61 48.49	148 19.98	740	0.01	0.00	0.00	234000	USGS
	SHERMAN GLACIER	_	145 12.42		0.00	_	0.30	59400	USGS
	SKILAK	-	150 12.91		0.01	_	0.00	117000	USGS
	SKWENTNA		151 31.78	_		0.00	0.00	234000	
SLV	SELDOVIA	59 28.28 61 10.90	151 34.83 152 3.26	91 800	0.01	0.00 0.39	0.00	29700 234000	USGS USGS
S P U S S N	SPURR SUSITNA	61 27.83	150 44.60	1297	0.01	0.67	0.00	234000	USGS
SSP	SUNSHINE POINT	60 10.80	142 50.30	732	0.01	0.00	0.30	117900	USGS
SUK	SUCKLING HILLS	60 4.60	143 47.00	427	0.01	0.00	0.30	117000	USGS
SVW	SPARREVOHN	- -	155 37.30	762	0.01	0.00	0.00	0	NOAA
SWD	SEWARD	60 6.22	149 26.96	55	0.01	0.00	0.00	29700	USGS
TNN	TANANA		151 54.70	504			0.00)	UOFA
TOA	TOLSONA	62 6.29	146 10.34	909	0.01	-	0.00	0	NOAA
TSI		61 13.57	• -		0.00		0.30	117000	USGS
	TATALINA		156 1.32			_	0.00	7400	NOAA
	VALDEZ VALDEZ WEST	_	146 19.92 146 33.24		_		0.30 0.30	7400 234900	USGS USGS
	WAXELL RIDGE	_	142 51.10		-	_	0.30	0 000	U\$ G \$
	WHITE RIVER GLCR		142 1.90			0.00	0.30	29700	USGS
	YAHTSE		141 44.70	_			0.30	59400	USGS
YKG	YAKATAGA	60 4.20	142 25.33	60	0.01	0.00	0.30	7400	USGS
									_

This table lists geographical coordinates and other pertinent information for stations used in the preparation of this catalog. D is the thickness of the low-velocity surficial sedimentary layer in kilometers assigned in the calculation of travel-times to a given station. DELAY is the station P-phase travel-time delay in seconds. TDLY is the telephone line delay in seconds. The magnification (MAG) of the vertical seismograph component is given at 1 Hz. The institutions (INST) operating the stations are the NOAA Alaska Tsunami Warning Center, and the Geophysical Institute of the University of Alaska (UOFA).

netwo USGS emeter

station includes a vertical seismometer with a natural frequency of 1.0 Hz (Mark Products, Model L-4), a package consisting of a pre-amplifier and a voltage-controlled oscillator (VCO model NCER 202) and air-cell storage batteries (McGraw-Edison, Model ST-2-1000). Data are telemetered via a leased telephone circuit or a VHF (162-174 MHz) radio link feeding a telephone circuit. The radio link is provided by a low-power transmitter (100 mw) and receiver adapted from a HT-200 Motorola handie-talkie transceiver and two Yagi antennae with 9 db directional gain (Scala, Model CAS-150). The central recording facility incorporates a bank of discriminators (NCER J101 or Develco Model 6203), a 16 mm-film multi-channel oscillograph (Teledyne Geotech Develocorder, Model 4000D), a time-code generator (Datum, Model 9100) and a radio receiver for WWV time signals (Specific Products SR7R).

The principle of operation is as follows: The seismometer translates movement of the ground into an electrical voltage that is fed into the amplifier/VCO unit where the amplified voltage causes the frequency of an audio-band oscillator to fluctuate about its center frequency. The frequency-modulated (FM) tone from the amplifier/VCO unit is carried directly by voice-grade telephone circuit to the recording site or alternately is fed through a VHF radio link onto a telephone circuit. At the recording site, the FM seismic signal is demodulated by a discriminator. The demodulated signal, which is simply an amplified form of the initial signal from the seismometer, is recorded photographically on a multichannel oscillograph, together with time marks from a crystal-controlled chronometer. Each day is recorded on a single 142-foot roll of film.

Signals from more than one seismograph can be transmitted on a single telephone circuit by employing VCO units with different center frequencies. In the standard configuration there is a 340 Hz separation between center frequencies and a fixed bandwidth of 250 Hz. Up to eight seismic channels with center frequencies ranging from 680 to 3060 Hz may be placed on a single voice-grade telephone circuit.

Figure 3 illustrates the response characteristics of the entire seismic system from seismometer to film viewer. The response level at each station is adjusted in steps of 6 decibels so that the ambient seismic noise produces a small deflection of the trace on the film. As a result, the actual response for an individual station may differ from that of the typical station by a factor of 2, 4, 8, etc. The magnification of the typical station is about 6 x 10^4 at 1 Hz and 10^6 at 10 Hz.

The installation of a typical radio-linked station is shown in Figure 4. Degradation or interruption of data transmission due to inclement weather conditions is a major problem during the winter months.

DATA PROCESSING

The 16 mm films (four per day) are mailed weekly to Menlo Park where the seismic data are processed by the following multistep routine:

- 1. <u>Scanning</u>. The scan film, which has 18 stations distributed throughout the network is scanned to identify and note times of all seismic events whether of local, regional, or teleseismic origin.
 - 2. Timing. For the "well-recorded" local earthquakes identified in the

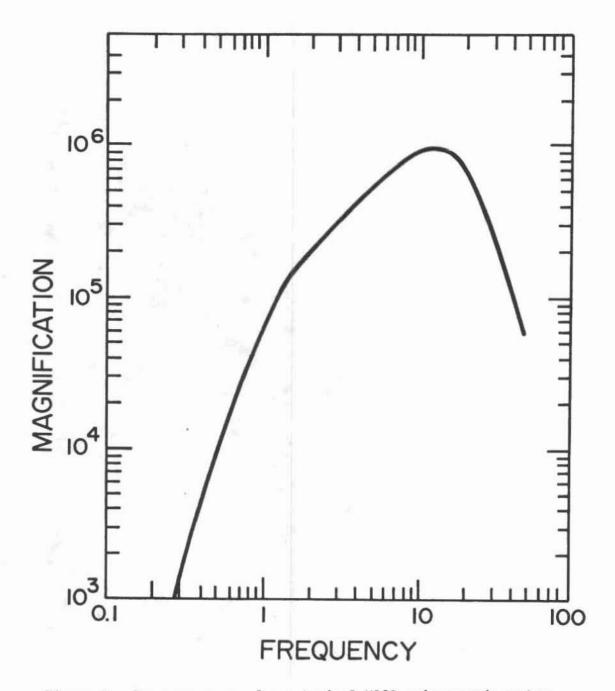


Figure 3. Response curve for a typical USGS seismograph system.

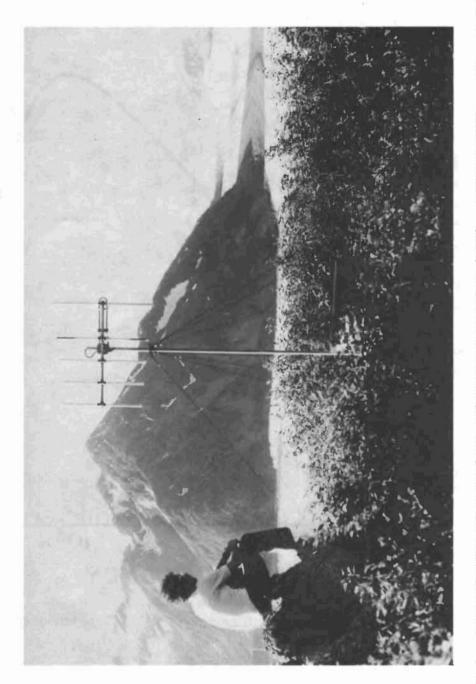


Figure 4. Installation of a typical seismograph station (HQN). VCO/amplifier unit, radio transmitter and batteries are housed in a 30-inch diameter culvert partially set in ground at base of antenna. Seismometer is buried in ground about 30 meters from culvert.

scanning process, the following data are read from each station: P- and S-wave arrival times, direction of first motion, duration of signal in excess of a given threshold amplitude, and period and amplitude of maximum recorded signal. The criterion for choosing earthquakes to be timed is the duration of the signal, which is related to the magnitude. The network is divided into three regions, western, central and eastern, bounded approximately by 156° to 150°W, 150° to 145°W and 145° to 138°W, respectively. In the western and central regions, only events with signal durations longer than 80 sec and 20 sec respectively, are timed. In the eastern region, all earthquakes which are recorded by at least three stations and for which at least four clear arrivals can be read are timed. This criterion was established to facilitate processing the large number of earthquakes which are recorded by the network while taking into account a relative decrease from west to east in the total number of earthquakes that have magnitudes within a given range.

The actual timing is done on a digitizing table. The output from the digitizer, in the form of x-y data pairs on punched computer cards, is converted into phase data by computer using the program DIGIT3 (written by P. Ward for use within the U.S. Geological Survey).

- 3. <u>Initial computer processing</u>. The phase data from the films is batch processed by computer using the program HYPOELLIPSE (Lahr, Klein, and Ward, in preparation) to obtain origin times, hypocenters, magnitudes and, if desired, first-motion plots for fault-plane solutions.
- 4. Analysis of initial computer results. Each hypocentral solution is checked for large travel-time residuals and for a poor spatial distribution of stations. Arrival times identified with large residuals are re-read. For shocks with a poor distribution of stations, readings from additional stations outside the USGS network are sought.
- 5. Final computer processing. The poor hypocentral solutions are rerun with corrections and the new solutions are checked for large residuals that might be due to remaining errors. Corrections are made as required before the final computer run is made.

The earthquake locations are based on P and S arrivals. S arrivals are important for determining depths of events in the Benioff zone beneath Cook Inlet. Unfortunately for some large events, S cannot be read at any station because the traces on the film overlap each other or are too faint to follow.

The HYPOELLIPSE computer program determines hypocenters by minimizing differences between observed and computed travel-times through an iterative least-squares scheme. In many respects the program is similar to HYPO71 (Lee and Lahr, 1972), which has been used in the preparation of catalogs of central California earthquakes from January 1969 through December 1973. An important new feature available in HYPOELLIPSE is the calculation of confidence ellipsoids for each hypocenter. The ellipsoids provide valuable insight into the effect of network geometry on possible hypocentral errors.

All earthquakes are located using a horizontally layered velocity model. It is recognized that any model comprised of uniform horizontal layers is a poor representation of the actual velocity structure in the vicinity of a subduction zone (Mitronovas and Isacks, 1971; Jacob, 1972). Although such a

model does have the advantage of simplifying the computation of travel-times. In order to determine any bias that might result from this approximation, a set of events in the Benioff zone below Cook Inlet was relocated, using both a ray-tracing program of E. R. Engdahl and a more realistic, three-dimensional velocity model (Lahr, 1975). Hypocenter shifts, apparently due to the oversimplified flat-layer model, ranged from near zero at a depth of 60 km to as great as 25 km at the 160 km depth. The offsets were oriented in such a way that the dip of the Benioff zone would appear to be too great in the flat-layered model.

Two different P-wave velocity models are used to locate the earthquakes. West of 1490W the velocity model used is based on Model A of Matumoto and Page (1969) derived for the eastern Kenai Peninsula-Prince William Sound region. The velocity model is specified as follows:

Layer	Depth (km)	P velocity (km/sec)
1	0 - D	2.75
2	D - 4	5.3
3	4 - 10	5.6
4	10 - 15	6.2
5	15 - 20	6.9
6	20 - 25	7.4
7	25 - 33	7.7
8	33 - 47	7.9
9	47 - 65	8.1
10	below 64	8.3

The thickness of the first layer is allowed to vary between stations to account for the presence of thick sections of low-velocity sediments beneath the stations NKA and NNL, which are located in the Cook Inlet basin. For these stations D is 4 km. For all other stations D is 0.01 km. For earthquakes that occurred east of 1490, the velocity model used to locate the events is one that was developed by minimizing the travel-time residuals for a group of earthquakes near Valdez. The model is specified by:

Layer	Depth (km)	P velocity (km/sec)
1	0	2.75
2	0.01	6.0
3	20	7.0
4	below 32	8.2

A value of 1.78 for the velocity ratio between P and S is assumed for both models. The initial trial depth for earthquakes which occur west of $149^{\circ}W$ is 75 km. East of $149^{\circ}W$ this value is 15 km because the seismicity in this part of the net occurs at shallow depths.

Travel-time delays were applied to stations in the network that had consistent and large residuals for the locations of a large group of earthquakes. Additional delays were applied at several stations to correct for a satellite link in the relay of the signal. The P-phase delays are listed in Table 1 and are added to the P-phase travel-times at each station. For S-phases the delay is multiplied by 1.78, the P to S velocity ratio.

Magnitudes are determined from either the signal duration or the maximum trace amplitude. Eaton and others (1970) approximate the Richter local

magnitude, whose definition is tied to maximum trace amplitudes recorded on standard horizontal Wood-Anderson torsion seismographs, by an amplitude magnitude based on maximum trace amplitudes recorded on high-gain, high-frequency vertical seismographs such as those operated in the Alaskan network. The amplitude magnitude XMAG used in this catalog is based on the work of Eaton and his co-workers and is given by the expression (Lee and Lahr, 1972)

$$XMAG = log_{10} A - B_1 + B_2 log_{10} D^2$$
 (1)

where A is the equivalent maximum trace amplitude in millimeters on a standard Wood-Anderson seismograph, D is the hypocentral distance in kilometers, and B1 and B2 are constants. Differences in the frequency response of the two seismograph systems are accounted for in A; however, it is assumed that there is no systematic difference between the maximum horizontal ground motion and the maximum vertical motion. The terms $-B_1 + B_2 \log_{10} D$ approximate Richter's $-\log_{10} A_0$ function (Richter, 1958, p. 342), which expresses the trace amplitude for an earthquake of magnitude zero as a function of epicentral distance. For small local earthquakes in central California, $B_1 = 3.38$ and $B_2 = 1.50$ for $\Delta = 200$ to 600 km.

For small, shallow earthquakes in central California, Lee and others (1972) express the duration magnitude FMAG at a given station by the relation

FMAG =
$$-0.87 + 2.00 \log_{10} \tau + 0.0035\Delta$$
 (2)

where τ is the signal duration in seconds from the P-wave onset to the point where the peak-to-peak trace amplitude on the Geotech Model 6585 film viewer falls below 1 cm and Δ is the epicentral distance in kilometers.

Comparison of XMAG and FMAG estimates from equations (1) and (2) for 77 Alaskan shocks in the depth range 0 to 150 km and in the magnitude range 1.5 to 3.5 reveals a systematic linear decrease of FMAG relative to XMAG with increasing focal depth. To remove this discrepancy, a linear dependence on depth is added to the expression for FMAG as follows:

FMAG =
$$-1.15 + 2.00 \log_{10} \tau + 0.007z + 0.0035\Delta$$
 (3)

where z is the focal depth in kilometers.

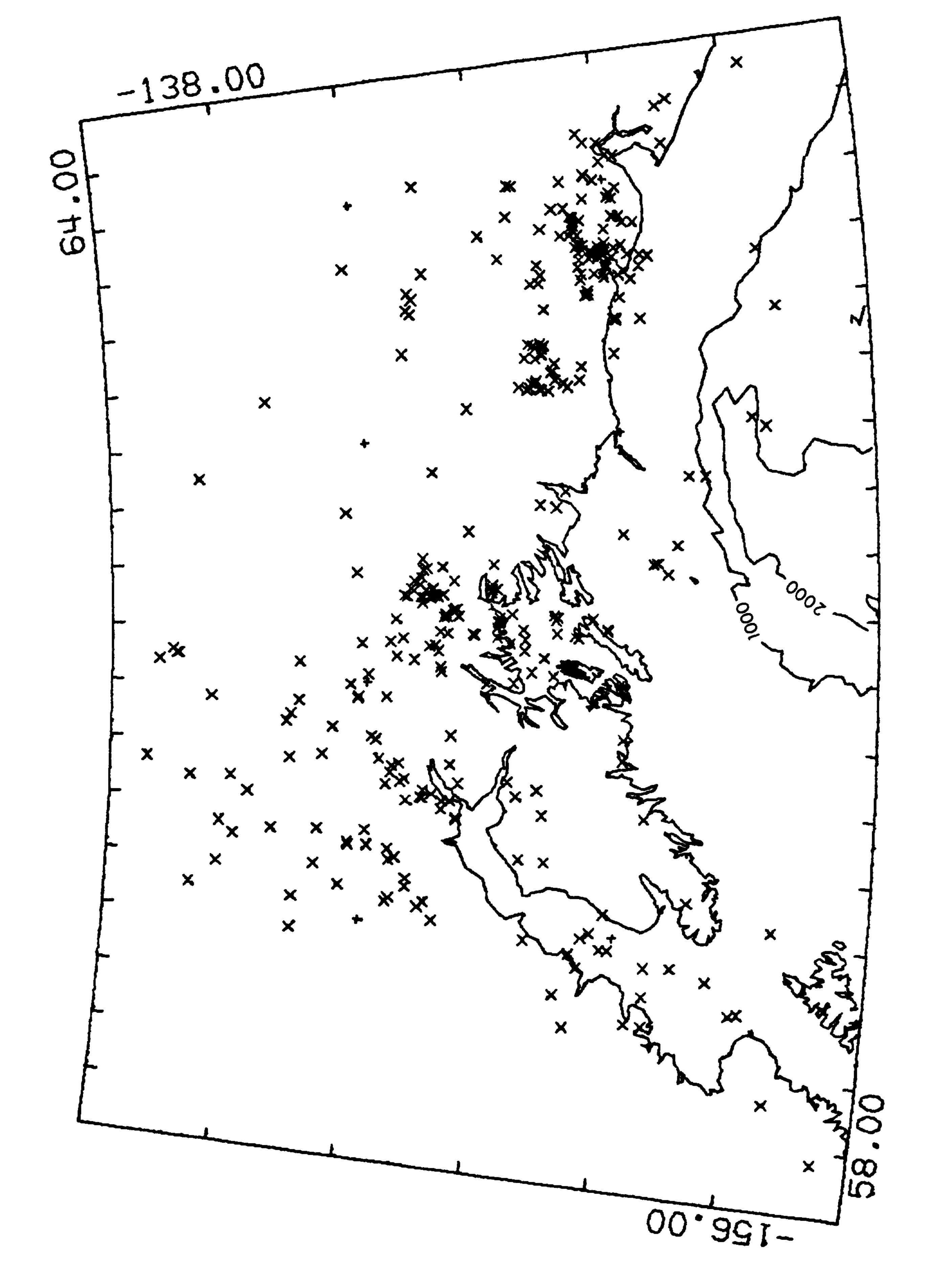
For earthquakes larger than magnitude 3.0, FMAG values may be compared to m_b magnitudes listed in the PDE reports. The average and standard deviations for 47 events in the magnitude range 3.0 to 5.5 are 0.02 and 0.44 respectively; hence the two measures are compatible.

The magnitude preferentially assigned to each earthquake in this catalog is the FMAG estimate. The XMAG value is used only where no FMAG can be determined.

ANALYSIS OF QUALITY

Two types of errors enter into the determination of hypocenters: systematic errors limiting the accuracy of hypocenters and random errors

limiting the precision. Systematic errors arise from an incorrect velocity model, misidentification of phases, or systematic timing errors and can be evaluated through controlled experiments such as locating the coordinates of a known explosion. Random errors result from random timing errors and are estimated for each earthquake through the use of standard statistical techniques.


For each earthquake, HYPOELLIPSE calculates the lengths and orientations of the principal axes of the joint confidence ellipsoid. The one-standarddeviation confidence ellipsoid describes the region of space within which one is 68 percent confident that the hypocenter lies, assuming that the only source of error is random reading error. The ellipsoid is a function of the station geometry for each individual event, the velocity model assumed and the standard deviation of the random reading error. The standard deviation determined from repeated readings of the same phases by four seismologists is as small as 0.01 to 0.02 sec. for the most impulsive arrivals and as large as 0.10 to 0.20 for emergent arrivals. The confidence ellipsoids are computed for a standard deviation of 0.16 sec. and therefore likely overestimate the 68% confidence regions. The standard deviation of the residuals for an individual solution is not used to calculate the confidence ellipsoid because it contains information not only about random reading errors but also about the incompatibility of the velocity model to the data. Thus, the confidence ellipsoid is a measure of the precision of the hypocentral solution. In a few extreme cases the value calculated for one of the ellipsoid axes becomes very large corresponding to a spatial direction with very great uncertainty. In these cases an upperbound length of 25 km is tabulated.

To fully evaluate the quality of a hypocenter one must consider both the confidence ellipsoid and the root mean square (RMS) residual for the solution. The RMS residual reflects both systematic and random errors, but the random errors are typically much smaller. Hence the RMS residual is primarily a measure of the incompatibility of the velocity model, misinterpretation of phases and systematic timing errors. Interpretation of the RMS residual may depend upon the location of the earthquake. In areas where the velocity model is incompatible with the real earth, RMS residuals could be large and betray the incompatibility; alternatively, the RMS residuals could be small and not reflect the error in a bad hypocenter. Where the velocity model is compatible, however, a large RMS residual would indicate probable misreadings of phases.

Other parameters provided by HYPOELLIPSE that are useful in evaluating the quality of a hypocentral solution are: GAP, the largest azimuthal separation between stations measured from the epicenter; D3, the epicentral distance of the third closest station; NP, the number of P arrivals used in the solution; and NS, the number of S arrivals used in the solution. If GAP exceeds 180° , the earthquake lies outside the network of available stations and the solution is generally less reliable than for events occurring inside the network.

DISCUSSION OF CATALOG

The Appendix lists origin times, focal coordinates, magnitudes and related parameters for 331 earthquakes from October, November and December 1977. Epicenters for these shocks are plotted in Figure 5. Vertical sections showing the depth distribution of the shocks are presented in Figures 6 and 7.

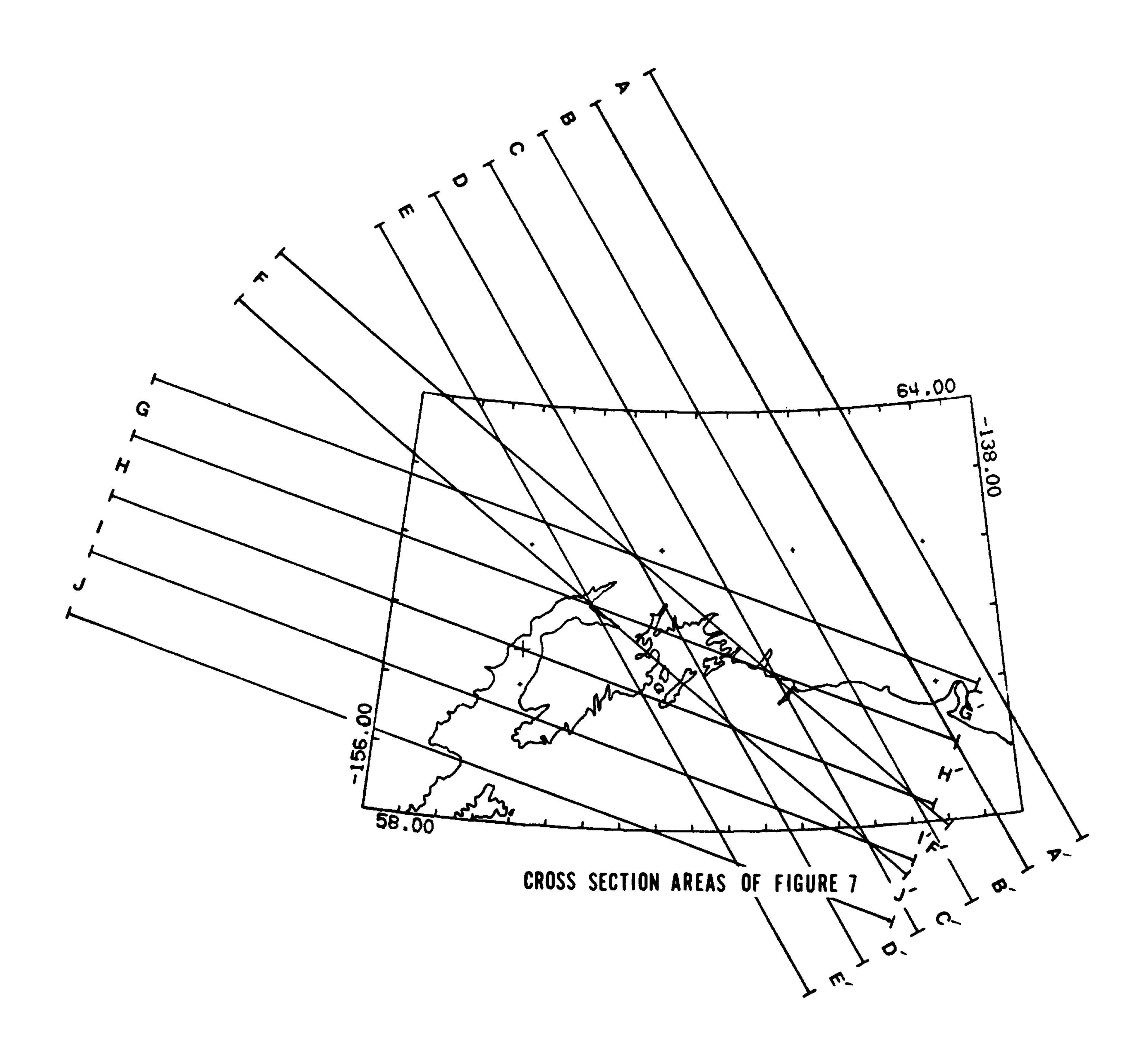


Figure 6. Map showing the area included in each of the cross sections of Figure 7. Direction of view for sections A-E is N 60° E, section F is N 40° E, and sections G-J is N 20° E.

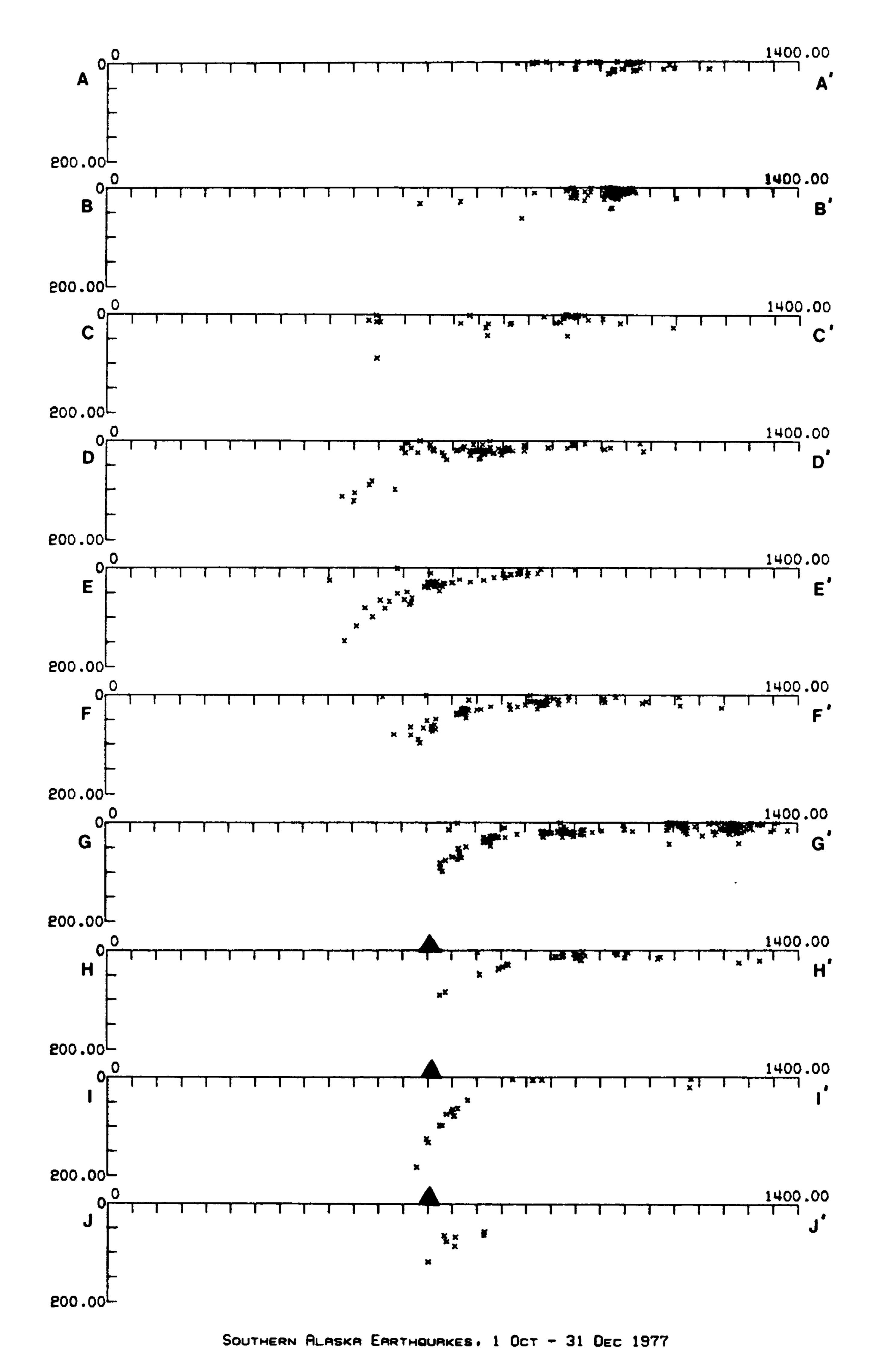


Figure 7. Vertical cross sections of hypocenters for the areas indicated in Figure 6. Active volcanoes are plotted as triangles at zero depth. All distances and depths are in kilometers.

We estimate that this catalog is reasonably complete for shocks larger than magnitude 3.5 in the western, 2.5 in the central, and 2.0 in the eastern regions of the area covered by the network. The minimum magnitude of the listed earthquakes ranges from 0.6 for shallow shocks to 2.6 for the deeper shocks.

The precision of the hypocenters or the relative accuracy of the locations of neighboring events is represented by the confidence ellipsoids. The precision of epicenters, expressed in terms of the maximum axes of the projected one-standard-deviation confidence ellipsoids (ERH), averages 5.8, 2.5, and 3.3 km, respectively, in the eastern, central, and western parts of the network. Similarly, the precision of focal depth (ERZ) averages about 6.5, 3.6, and 5.8 km, respectively. The variation in the precision of hypocenter determination across the network is strongly influenced by differences in the station coverage in the different regions.

The absolute accuracy of the earthquake locations is difficult to evaluate in the absence of known explosions. Hypocenter biases equal to and larger than the dimensions of the confidence ellipsoids are not unlikely from the oversimplified velocity model assumed in the preparation of this catalog.

In the Cook Inlet region there is a well-defined Benioff zone which dips to the northwest from a depth of about 50 km beneath the western Kenai Peninsula, to about 70 km beneath Cook Inlet, to about 115 km beneath the active volcanoes west of Cook Inlet (Figure 7, sections G-J). The direction of view (N 200 E) for sections G-J is approximately along the strike of the Benioff zone. A similar distribution of hypocenters was found for an earlier data set in this same region (Lahr, et al., 1974). There is some evidence in the sections presented here that the average dip of the Benioff zone decreases to the northeast beneath the Cook Inlet. This is especially evident in comparing sections G and I. Despite this apparent variation in the geometry of the Benioff zone, the depth to the seismic zone beneath the active volcanoes - Augustine, Iliamna, Redoubt and Spurr--remains approximately constant at about 115 km (sections H-J). In the northern Cook Inlet region and northward into the Susitna River lowlands numerous shocks occur above the principle dipping seismic zone at focal depths of less than 30 km (Figure 7, sections D-G).

East of about 1460 all of the earthquakes were located at depths less than 50 km (Figure 7, sections A-D). Most of the seismic activity in the eastern part of the network for the period October-December 1977 appears to be concentrated northeast of Icy Bay and about 50 km northeast of Kayak Island.

The contents of the Appendix may be obtained in forms amenable to computer input (punched cards or magnetic tape) by contacting the authors.

ACKNOWLEDGEMENTS

We thank Robert Eppley, Wayne Jorgensen and the entire staff of the NOAA Tsunami Warning Center for their assistance in maintaining our recording equipment in Palmer, Alaska, as well as making their seismic data available to us.

We also wish to thank Jurgen Kienle of the Geophysical Institute of the University of Alaska for a cooperative operation of southern Cook Inlet

seismograph stations.

We are indebted to all of those who have spent time fabricating, installing, and maintaining the seismograph network in Alaska, particularly John Roger, Marion Salsman, Michael Blackford and Edward Criley.

Betty McIntire and the staff of the USGS Anchorage office has been of great assistance in solving logistic problems, both in the field and in the office.

This catalog is patterned after those prepared for central California and we gratefully acknowledge Drs. W. H. K. Lee and R. L. Wesson for development of many of the procedures and techniques used herein.

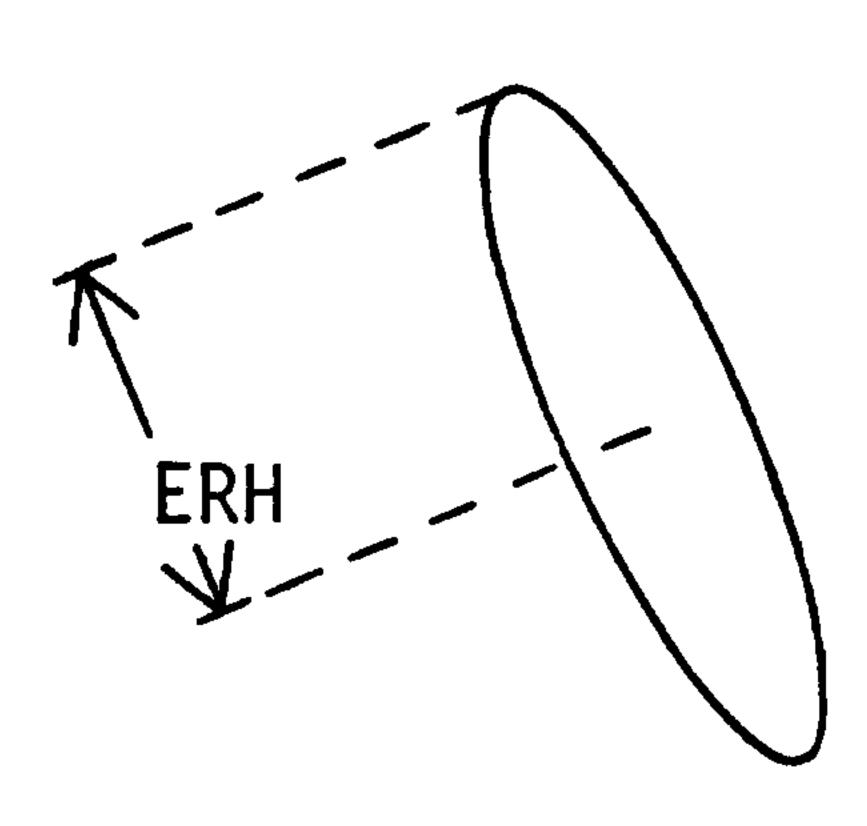
This study was supported jointly by the U.S. Geological Survey and by the National Oceanic and Atmospheric Administration, under which a multi-year program responding to needs of petroleum development of the Alaskan continental shelf is managed by the Outer Continental Shelf Environmental Assessment Program (OCSEAP) Office.

REFERENCES

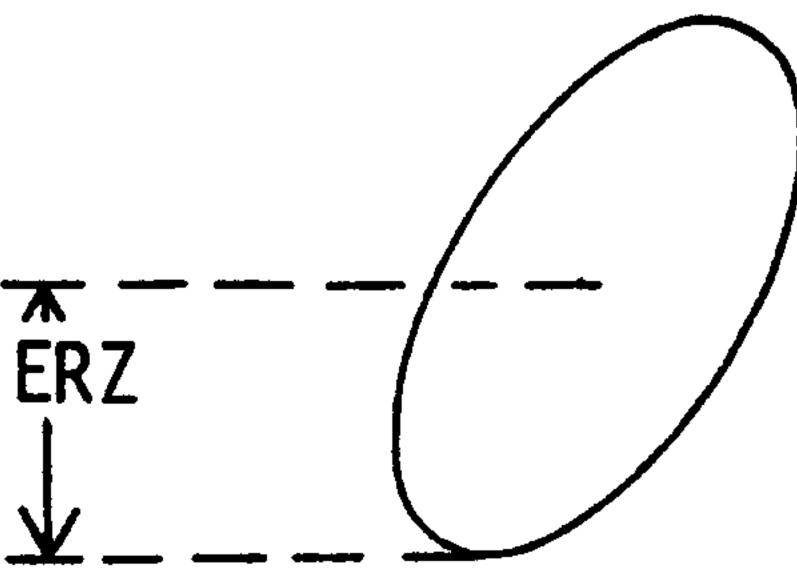
- Davis, T. N., and C. Echols (1962). A table of Alaskan earthquakes, 1788-1961, Geophys. Inst. Res. Rept. 8, 44 pp. University of Alaska, College, Alaska.
- Eaton, J. P., M. E. O'Neill, and J. N. Murdock (1970). Aftershocks of the 1966 Parkfield-Cholame, California, earthquake: a detailed study, <u>Bull</u>. <u>Seism. Soc. Am.</u> <u>60</u>, 1151-1197.
- Jacob, K. H. (1972). Global tectonic implications of anomalous seismic P traveltimes from the nuclear explosion Longshot, <u>J. Geophys. Res. 77</u>, 2556-2573.
- Lahr, J. C. (1975). Detailed seismic investigation of Pacific-North American plate interaction in southern Alaska, Ph.D. dissertation, Columbia University, 141 p.
- Lahr, J. C., E. R. Engdahl, and R. A. Page (1974). Locations and focal mechanisms of intermediate depth earthquakes below Cook Inlet, Alaska, <u>EOS</u> <u>55</u>, 349.
- Lahr, J. C., Klein, F., and P. Ward (In preparation). HYPOELLIPSE: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern.
- Lahr, J. C., R. A. Page, and J. A. Thomas (1974). <u>Catalog of earthquakes in south central Alaska, April-June 1972, U.S. Geological Survey, Open-File Report, 35 p.</u>
- Lee, W. H. K., and J. C. Lahr (1972). HYPO71: a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, U.S. Geological Survey, Open-File Report, 100 p.
- Lee, W. H. K., R. E. Bennett, and K. L. Meagher (1972). A method of estimating magnitude of local earthquakes from signal duration, U.S. Geological Survey, Open-File Report, 28 p.
- Matumoto, T., and R. A. Page (1969). Microaftershocks following the Alaska earthquake of 28 March 1964: "Determination of hypocenters and crustal velocities in the Kenai Peninsula-Prince William Sound area", The Prince William Sound, Alaska, Earthquake of 1964 and Aftershocks, vol. 2B & C, U. S. Coast and Geodetic Survey Publication 10-3, U.S. Govt. Printing Office, Washington, 157-173.
- Mitronovas, W., and B. L. Isacks (1971). Seismic velocity anomalies in the upper mantle beneath the Tonga-Kermadec island arc. <u>J. Geophys. Res. 76</u>, 7154-7180.
- Richter, C. F. (1958). <u>Elementary Seismology</u>, W. H. Freeman and Co., 768 pp. U. S. Coast and Geodetic Survey (1966). "Seismicity of Alaska" in <u>The Prince William Sound</u>, Alaska, earthquake of 1964 and aftershocks, F. J. Wood, (editor), vol. 1, 11-73, Washington, 263 p.

APPENDIX

Catalog of Earthquakes (October-December, 1977)


Earthquakes from southern Alaska for October 1 through December 31, 1977 are listed in chronological order. The following data are given for each event:

- (1) Origin time in Universal Time (UT): date, hour (HR), minute (MN), and second (SEC). To convert to Alaska Standard Time (AST) subtract ten hours.
- (2) Epicenter in degrees and minutes of north latitute (LAT N) and west longitude (LONG W).
- (3) DEPTH, depth of focus in kilometers. "*" next to the depth indicates that the depth control in the determination of the hypocenter was poor. "&" next to the depth indicates that the geophysicist constrained the initial trial location for the earthquake.
- (4) MAG, duration magnitude (FMAG) of the earthquake, if available, otherwise amplitude magnitude (XMAG).
- (5) NP, number of P arrivals used in locating earthquake.
- (6) NS, number of S arrivals used in locating earthquake.
- (7) GAP, largest azimuthal separation in degrees between stations.
- (8) D3, epicentral distance in kilometers to the third closest station to the epicenter.
- (9) RMS, root-mean-square error in seconds of the travel-time residuals:


RMS =
$$\frac{\Sigma}{i} (R_{P_i}^2 + R_{S_i}^2) / (N_P + N_S)$$

where R_{p} and R_{S} are the observed minus the computed arrival times of ^{i}P and S waves respectively at the i-th station.

(10) ERH, largest horizontal deviation in kilometers from the hypocenter within the one-standard-deviation confidence ellipsoid. This quantity is a measure of the epicentral precision for an event. Projection of ellipsoid onto horizontal plane:

(11) ERZ, largest vertical deviation in kilometers from the hypocenter within the one-standard-deviation confidence ellipsoid. This quantity is a measure of the depth precision for an event. Projection of ellipsoid onto vertical plane:

(12) Q, quality of the hypocenter. This index is a measure of the precision of the hypocenter (see section Analysis of Quality, p.11) and is calculated from ERH and ERZ as follows:

<u>Q</u>	ERH	ERZ
Α	≤ 2.5	≤ 2.5
В	5.0	< 5.0
C	≤ 5.0 ≤ 10.0	≤ 10.0
D	$\frac{1}{5}$ 10.0	$\frac{1}{5}$ 10.0

	REMARKS						T (V) AT HOMER, ALSO FELT DIAMOND RIDGE	T (II) AT KENAI, ALSO FEL	2	
								FEL		
	ERZ D	2.5 A 2.2 A 2.0 A 4.1 C	2.8 3.6 3.0 5.9 6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 - M % N	2.4 A 3.1 B 4.5 B 4.5 B A 2.1	0.000	0 M O N N	2.7 B 10.4 D 18.7 D 3.0 B	2.5 3.3 B 1.9 A 3.2 B
	M A A X		6.0 6.0 7.0 7.0 7.0			1.0 2.0 3.0		4.5 5.4 5.6 6.4 7.5 7.5 7.5		
	S M S	~ 40 M M	0.27	6 W W &	-	V V V 4 V	_	N M N 4 00	0.45	0.73
	M X	151 135 135	マ S S D S	192 196 116 118	80 4 V 40	× × × × × × × × × × × × × × × × × × ×	145 209 129 129	60 4 60 4 60		20 20 20 20 20 20
Ģ	GAPDEG	108 114 184 259		1 4 9 1 4 3 1 4 3 1 7 1	251 144 97 100 86	1 1 9 1 1 9 1 2 4 1 3 8			· · · · · · · · · · · · · · · · · ·	8 4 0 7 7
TALO	S	~ ~ ~ ∞	4 ~ W	5	2 C D S S	10 4	~ ~ O ~	W 6 4 6 4	0-0-2	4 C 4 C 8
E CA	<u>ک</u>	2 1 1 2 1 2	2 4 2 8 3 4 5 8	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 2 2 2 4	-	_	22 22 17 27 27 27 27 27 27 27 27 27 27 27 27 27		23 23 23 23 23 23 23 23 23 23 23 23 23 2
HQUAK	MAG		2. % . % . % . % . % . % . % . % . % . %		3.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		2.0 3.0 3.4 3.4 4.4	2.0 2.0 2.0 2.0 3.0 4.0	2.2 3.0 3.0 3.0
SKA EART	DEPTH	10.4 21.8 14.6 20.08 76.0	15.1	3.3 19.8 15.0	24.4 19.8 46.8 146.98	45.0 132.1 13.8	77.7 29.1 80.2 69.9	N - 80 4	49.5 98.5 29.8 29.8	4.1 97.7 7.1 20.7 98.2
N ALA	S E	32.4 34.7 23.1 29.0	24.1 13.0 23.7 15.2 6.0	12.9 33.0 35.6 50.2	32.8 32.7 33.7 8.3	11.8 36.6 58.0 52.4	29.5 40.0 26.1 4.2	26.0 52.7 24.8 27.5 50.4	52.1 30.8 21.5 51.3	53.5 54.1 30.8
œ	ZU	~ ~ ~ M			-			150 150 150 150	N N 4 4 N	150 152 146 152
SOS	ZZ	35.5 39.0 19.5 58.6	19.5 20.8 29.0 57.7	31.8 42.7 46.4 29.1	38.8 38.8 38.8 38.8	38.5 26.0 32.8	14.8 48.6 31.8 2.6	34.0 34.0 10.3 46.4	34.2 43.3 2.4 59.3	48.2 43.8 418.6
	E A	_	60 60 60 50 50 50 50	60 60 60 60 60	60 60 60 63	60 60 60 60 60 60 60 60 60 60 60 60 60 6	60 64 59 59 59	63 61 61 60	62 62 63 64	59 61 61
	TIME	29.4 20.6 43.8 10.3	12.1 24.6 49.6 48.2	23.1 23.5 18.3	56.8 54.1 59.5 52.7	53.3 17.7 0.4 22.6	58.7 54.3 41.2 6.4	16.8 46.7 30.8 35.5	39.9 4.1 4.2.8 7.7	10.6 25.8 37.9 40.8
	I G I N	36 24 26 26 27	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	N N 4	15 46 50 50 50	SMSTO	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	N 4 N 4	2 54 2 16 2 51 4 16 4 12	0 30 4 35 5 12 9 33 9 28
	1977 HR	~		4- 4- 4-	~	~ ~ ~ ~ ~	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	16 22 17 18 17 23 18 10	80000	20 20 20 20 20 20 20 20 20 20 20 20 20 2

	REMARKS			FELT (I) AT ANCHORAGE					FELT (II) IN ANCHORAGE	
	•	0 < < <	< B U < < B <	® 	< 6 0 <	C ~ < @	∞ ∞ < ∞ <	∞ < ∞ <	8 8 8 8 9 9	49 49 49
	E X X		1.0 2.4 4.4 7.2 7.2		• • •					
	E X	2.6 1.6 1.6			• • •			4.4.4.5.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5		
FD)	SEC	0.63		0.60		* * * * * * * * * * * * * * * * * * *	~ m w m v	W 4 W 4 4	0.49	0.28
NTINU	M M	8		41 83 240 25 25	_	_		_		52 105 71
9 (CON	GAPDEG	1 46 1 08 2 03 1 24	_ 	1 64 1 87 1 53 2 74 2 54	∞	00480	0 0 0 M		アアるるご	136 152 254 162 64
TALO	S	12111111111	50 C C C C C C C C C C C C C C C C C C C	~ 4 W ~ ~ ~ ~	- m	· ~ ~ ~ ~ ~	6 ~ ~ ~	7 7 7	9 r r 4 0	2 ~ ~ ~ ~ ~ ~ ~ ~
W	2		_	2			10 20 10 10 10	18 18 18 18 18 18		22 22 22 22
THQUAK	MAG	-	• • • • • •		• • •					8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
SKA EAR		73.4 18.3 18.7 6.5	oonoo mm	28.0 19.8 11.4	800		000.00	• • • •	~ ~ m & &	85.1 97.4 13.68 37.6
ALA	3 =	7.0 4.0 4.1 5.1		× × × × × × × × × × × × × × × × × × ×	• •					2.0 2.0 2.0 2.0 2.0
E R	ON EG	0 × × × × × × × × × × × × × × × × × × ×	~ ~ ~	-080 0V+	N N		4 W W - W	← M		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
OUTH	→	7 4 4 4		3 4 4 4 4 4 F				-		4 4 4 V
Š	AT N G MIN		0.5 mm		w. ~	ろってこ	N & - 0 M	7.00%		41.6 32.5 0.8 50.5
	L DE	61 61 62 59		61 63 63 63				61 60 60 60 60 60		61 61 60 61
	TIME	19.1 56.1 38.4	- W W 4 0 W 60	34.9 34.9 36.6 58.7	. 6		0 + 4 0 M	~ 4 M 0	- 0 8 4 - 0 8 7	29.1 2.8 13.0 39.0 52.0
	N S I	₩ # W # W # W # W # W # W # W # W # W #		- X X + X X X X X X X X X X X X X X X X		4 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	-		2 4 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	a c a c	7 - 7 - 7 - 7 - 7		- 2		20 20 20 20 30 40 40 40 40 40 40 40 40 40 40 40 40 40	9000	- -	200	2 0 S
	1977	0CT 23 24 24 24 25 25		2				m m m m	N M M 4	444WW

•

	(CONTINUED)
•	CATALOG
1	EARTHQUAKE
•	ALASKA
	SOUTHERN

							2 2 3 5 5 5 5 5 5 5 5 5 5
			ALLEN				EAGLE
	××						
	REMAR		AT G				
			FELT				
	Œ	- 60 60 60					
	ER2 KM	25.0				30.4 30.4 30.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4
	E E	2.0 2.0 2.0 2.0 3.0				4 - + + + + + + + + + + + + + + + + + +	
<u>^</u>	RMS	0.20	40+W0	0.22 0.23 0.25 0.25 0.25 0.27	64.6 VW	0.40 0.45 0.42 0.42 0.45 0.45 0.45	0.33 0.43 0.43 0.63 0.54 0.54
	M X	223 53 53 54 54	041400	140 100 100 100 100 100 100 100 100 100		2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
9	GAPDEG	105 167 162 155	44050	2 4 7 2 2 3 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	N O + + N	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	200 121 162 163 164 108 108 74
-	S	~ ~ ~ ~	99M94 N	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 4 5 5 6 7	4 1 2 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	~ C - E ~ 4 ∞ C ∘ ~
ш	2	2 2 3 8 2 4 5 3 6 8 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9		2		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	24 24 24 24 24 24 24 24 24 24 24 24 24 2
THQUAK	MAG						20.20 20.20
¥ E	DEPTH	112.6 125.1 28.8 51.8 64.0		4.5.3 4.5.3 4.0.5 30.5 90.7	7 4 4 0 %	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	23.4 20.1 11.9 19.4 28.6 38.4
	3 2	9.0	9 K V 8 V W	51.0 57.6 32.6 30.6 38.3 55.6	+ 0 N N O	22.0 34.2 29.7 20.2 15.4 52.2	35.4 35.4 37.6 37.5 38.5 38.2
THER	LONG	149 2 153 1 150 4 150 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	120 120 120 120 120 120 120 120 120 120	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	144 144 144 144 144 144 144 144 144 144	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
SOU	ATA	\$ 42.5 \$ 51.2 \$ 7.4 \$ 8.0	4 % % % % % % % % % % % % % % % % % % %	37. 10. 37. 42. 5.	31.	WWWW- NU 4N	2 16.0 0 59.3 0 51.3 0 46.9 1 28.9 1 28.9 1 33.1 0 5.0
		62 63 64			2000		
	TIME	21.5 18.4 34.4 30.0	ントマット	0 0 0 0 4 0	20.1 11.7 56.4 48.2	43.85 43.75 43.85 43.65	45.6 45.6 45.6 45.6 45.6 33.3
		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 K W W W W W W W W W W W W W W W W W W	_	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	30 30 30 30 30 30 30 30 30 30 30 30 30 3
	OR I	9229	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25-9 2-20	5 T 2 T 4		10 10 10 10 10 10 10 10 10 10 10 10 10 1
	1977	N N N N	∞ ~ ~ ∞ ∞				2 4 4 5 4 7 7 7 7 8

	REMARKS	FELT (V) AT SUTTON, (IV) AT CANTWELL And talkeetna, and (III) at Palmer								
	ERZ Q KR Q	90.9N	80 M 80 -		~ 90 ~ -	4 W W W W	0.4004	~~0.		4.3 7.4.0 7.5 7.5 7.5 7.5 7.5 7.5
	E E	4.7 7.0 3.0 8.0		0. t.		7.5 7.5 7.5 7.5 7.5		6.0 4.0 7.0 7.0 7.0	25.0 9.4 2.0 1.5	2.8 10.1 1.1
E 0	RAS	0.42 0.35 0.34 0.56	ろ S 4 M N		0.32 0.33 0.39 0.07		-	·	0.22 0.05 0.15 0.35	0.24 0.35 0.35 0.35
UNIINO	M X	62 87 54 52 52	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		49 169 207 117	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	59 103 146	· ·	105 127 211 66 54	130 130 121 54 106
J	GAP DEG	107 103 103 86	- v 600	78 1 15 1 18 1 34	116 88 255 97 169	V-00M	109 200 200 256	253 136 206 91 245	180 225 318 171 70	145 174 174 117
ITALO	SN	123	10 + 20 + 20 + 20 + 20 + 20 + 20 + 20 +	4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	∞ m m •	○ ∞ ∞ ~ ∞	4 - 2 2 5	M ∞ 0 ~ ~	~ m m m	4 V 4 W 5
(E C/	2	23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	20 1 30 1 30 1 30 1 30	10 10 10 10	1 20 4 4 4	- M O T 00	# 5 5 5 5 S		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	32 4 40
THQUAK	MAG		4.2 2.4 2.4 2.0		4.5 3.5 3.5 3.5 5					2.4 W CO W C
SKA		75.9 35.1 7.7	85.1 14.2 30.0 10.2 0.6	20.3 21.3 2.4 7.7	1.4 88.1 4.4 25.3	0.6 2.6 16.3	20.0 19.6 2.18 1.2	1.7 11.8 117.5 37.1	15.0* 24.0 32.0 12.7 35.5	70.5 19.6 26.9 3.2
NALA	2 3 ¥	37.9 38.5 29.7 54.9	35.4 23.4 14.5 56.6 42.1	48.0 59.0 19.2	7.5 7.8 7.0 9.0 9.0	w & ~ 0 o	5.6	0 % % N	1.1 3.7 4.0	2.00 - 2.
OUTHERI	0 W	143 153 150 156	~ ~ ~ ~	1 4 6 6 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	141 147 143 151 140 4	147 147 143 145 3	146 3 146 1 139 4 150 4 141 3		141 140 144 147 150	150 145 146 147 147 147
S 0 1	Z	~		8.6 3.2 3.5 3.5						
	LAT DEG	0	0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61 60 60 60 61 61 61 61 61 61 61 61 61 61 61 61 61	- N M M	+ 0 0 + 0 3 + 2		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	00 M O +	-00-0 45-0
	س ب	0.3 5.5 0.6	3.8 3.8 4.0 4.0	14.3 26.2 49.7 25.7	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2.0 2.0 3.0 3.0 3.0	v, ~- ∞ ∞	~ · · · · · · · · · · · · · · · · · · ·	~ m - 60 0	8. 4. 8 8. 4. 8 8. 5. 4 8. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
	Z Z Z Z	5.4.5	4404	2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9m~-0		60 to 0 to 3		2	4 C C C C C C C C C C C C C C C C C C C
	-			2 4 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7		00470		00000		
	1977	NOV 10 10 10 10 10 10 10 10 10 10 10 10 10	22 23 23	2 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			9	27 27 27 27	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

ONTINUED)	
ATALOG (C	
RTHQUAKE C	
ALASKA EA	
UTHERN	

	×							-
	E							2
	~							←
								F. F.
	Œ	∪ < 	< < 0 < 0 < 0 < <				8866 UG66	
	E R X	2.8 2.9 2.9	40-4M 40-4M		25.0 25.0 25.0 7.8		3.0 2.3 2.2 2.6 2.6 2.6 3.6	
	E E	2.5 2.5 2.6 1.6	10.7 2.3 3.3 3.3 3.4 5.4		25.0 25.0 25.0 3.9		20.0 20.0 20.0 20.0 2.0 2.0 2.0	
0	RES	0.08	0.35 0.35 0.37 0.33 0.33	W 6 4 4 W	0.50 0.18 0.37 0.35	SSMSS	0.48 0.25 0.26 0.36 0.46	W W W W
IT I NUE	M X	135 40 70 70	54 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	173 173 82 64	1 5 0 1 5 0 4 0 4 0		47 460 168 169 159 159	
S (CON	G AP D EG	2 5 3 1 8 1 9 7 2 3 0 8 4	2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4	80 4 F 80 M	269 221 156 156	109 184 140	233 192 192 280 278 278 259 259 158	- 640 0
ALO	S	~ ~ ~ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	60 4 4 ← W 60 4 4 M 60	v ∨ v ∞	™ ← ™ ™	∞	42-9F W-09F	m ~ ~ ~
CAT	å Z	12 21 24	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 20 27 4	2 2 4 4 4	10 10 10	0 9 M C 0	
HQUAKE	M A G	1.5 1.6 2.6	20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7		2.4 3.4 3.4 1.6		2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	
SKA EART	E X	4.4 2.3 0.0 1.9 23.6	24.4 20.1 28.3 1.9 25.3 20.4 20.4		15.0* 48.7 25.8		20.2 21.4 21.6 28.0 12.9	7005
ALA	S E	~ · · · · ·	19.2 28.4 26.1 34.5 12.7 38.6 3.1 58.6	37.5 37.5 21.9	58.6 16.8 28.7 11.6 39.4		25.3 19.0 17.4 17.3 14.0 35.2 35.6	SSSS
OUTHER	OW	140 142 142 146	1 4 6 1	1 4 6 1 4 8 1 4 9 1 4 5 1 4 5	139 140 150 139	146 141 141 143	139 140 140 140 140 147	4 4 4 4 V
80	Z	52.6 59.0 37.6 28.4	19.6 26.8 30.3 47.4 5.0 5.0 5.0 6.5	50.6 30.8 38.4	20.4 10.3 59.2 54.0 54.0	27.5 34.8 41.7 50.7 40.3	56.8 56.8 56.5 56.5 56.5 56.5	₩ 4.6
	LADEG		61 60 60 60 60 60 60	63 63 60 60 60	60 60 58 59	61 59 60 60 60	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	TIME	47.6 51.6 12.6 22.6	36.3 36.3 36.3 56.3 56.5 57.6 5.6		32.3 40.2 43.8 58.9	0-0	52.6 23.6 24.5 27.1 39.8	4 N W 4 V
	N N M	2 2 3 3 3 3 5 5	27 7 8 2 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 % % % % % % % % % % % % % % % % % % %	2 2 2 3 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4	2 4 2 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	24 25 27 27 27 27 27 27 27 27 27 27 27 27 27	
	0 0 H		2 2 2 3 4 4 5 5 6 7 7 7 8 7 8 7 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 7 8 7	25 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 20 20 20 20	0 0 M 4	20 20 20 20 20 20 20 20 20 20 20 20 20 2	222
	~	00000			~ m m m 4	~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~ ~ ∞ ∞
	197	> 0 X		9 E C				

	REMARKS			FELT (III) AT ANCHORAGE	FELT (I) AT PALMER	
	Ø E	0 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				
	# X			20.4		
N ALASKA EARTHQUAKE CATALOG (CONTINUED)	A A A A A A A A A A A A A A A A A A A	20.00 30.00 4.00 4.00 7.00 7.00 7.00				
	SEC	0.37 0.37 0.53 0.54 0.54 0.64 0.64 0.32	4 0 4 4 M 4 M	0.23 0.35 0.35 0.35 0.13	NO NN44N	0.12 0.27 0.26 0.35 0.59 0.63
	M X	10 62 53 54 55 55 55 55 55		45 45 45 47 47 47 47 47		64 64 64 64 64 64 64 64 64 64 64 64 64 6
	GAPDEG	1 47 1 80 1 98 1 63 1 63 1 58 1 58 1 58 1 58	0		6 M ← 80 M 4	185 126 136 138 117 217 217 217 217
	S	www. 40000 000	2 T T D 2 2	4 1 1 4 M	ww ===================================	- 5 m w 5 4 w 8 5 5
	2	-225- -255-		30 4 20 4 20 4 30 4	2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	MAG	W W W W W W W W W W W W W W W W W W W		W. W. C.	• • • • •	
	DEPTH	30.0 11.4 21.8 11.0 12.9 15.7	4- NONON	32.0 16.1 3.6 3.8 3.3 22.6	~ ® 0 0 m - 4	16.4 16.6 10.0 13.6
	S E E	27.7 27.2 23.2 23.4 24.5 25.4 25.4 25.4 25.4	4 - 4 - 4	55.9 16.0 13.4 8.0 11.4 20.9	-6.00.4	58.1 57.2 57.0 53.6 53.6 53.7
OUTHER	LON	1	44444	148 148 143 143 141	N4 W444	1
SC	ZZ	31.5 34.5 34.6 34.6 34.6 34.6	N. 00 4 N. 0	20.1 4.5 31.6 37.5 38.1 2.8	• • • • •	31.5 38.0 38.0 55.6 56.6 37.0
	A H G	60 60 60 60 60 60 60 60 60 60 60 60 60 6	000-0	61 3 60 3 60 3 60 3	00 00 m	59 60 60 60 60 60 60 60 60 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80
	TIME	5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4	~007	23.2 3.3 25.4 51.0 51.0 55.6	M 0 4 0 80 N F	58.0 52.0 52.0 12.0 59.6 59.6
	U X	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		20 20 11 12 12 12 13		50 51 52 53 53 53 53
	M W H	22		14 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	1977	DEC 138				

REMARKS																																		(IV) IN SEWARD-1	VALDEZ, FELT (II							
																																		FELT								
ER2 Q	Σ ¥	1.9 A 2.2 B	~	^ ®	•	- 00	m	-	·	0	9.	~;	7 4	•	~,	•	<u>،</u> د) ~	+			•		•	• •		- 7	•	5	∞,	₩.	∞	~	^	- •	× •	• 5	•	0, 4	۲. « ۲. «	• M	· ~
H	ϫ	0. 4 0. 8	•	• •	ı		•	•	1.5	•	•	•	•	•	•	•	•	• •		•	•	•			•	•	• (•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •
ED)	S	0.42	M	? ~	•		~	•		0.	M	Ţ.	0.48	•	~	? *	? ٢	0.36		, N	7	† -	0.18	•	•	? `	M	0.17	•	0.		M	• 2	~	4	7	0.32	•		~ ~	7	_
T I NU		137	S	-		00			∞ ✓		_) () ()		-			67					. 7		-			7 7			%	-	-				110	•	186	0 0		
G A P	ũ	76 245	0		•	V 60	M	- -	_		∞ (∼ 1	- 6	•	0	1	·	196		0 4	* ^	J O	166	1	~	Ď Č	3 N	181	M	4	174	4	_	00	0	~	110	•	270	2	- 0	0
T ALOG NS		1 ~	S	^ →	r	~ ~	M	_	•	4	~	4	∞ ~	•	~	> <	0 V	~		o ∢	D ^	J ~	, M	(~ •	- -	۰ ۸	4	~	œ	c	o ;	-	-	~	^ •	۲٥	•	.	x 0	▶ }~ ↑	۰ 👁
E CA																																										· ~
HQUAK		2.3	2.0	1.7		· · · · · · · · · · · · · · · · · · ·	2.4	3.2	2.1	1.8	% ~ .	~	7.4	•	2.6		7 • 7	2.5		~ · ·) a	• • • • • • • • • • • • • • • • • • •	1.5	•	7.6	- r	2.1	1.3	1.2	3.3	1.6	6.	6	5.1	2.2	7 · ·	\$ ° °	•	3.1	•	• •	• •
SKA EART	Σ	• •	•	• •	u	•	0	5.	•	5.	~ 1	M I	5.0	•	0.	•	•	• •		• v	• ~	• 7 ~	• •	,	9	• • •		6	•	•	•	?	•	2	00	• •	3.70	•	15.0*	- <	• M	. 6
<	Σ	54.3	•	- 6	•	16.5	-	2.	•	M	S •	.	51. 13.9)	× .	• > N	•	55.0	ı	∞ ∨	•	• ~	23.3	(, ,	* *	. 6	23.6	4	4	•	•	•	7	\$	•	15.0	•	16.0	, , ,	· ~	5.
THER	DEG	146	17	0 4		0 M	41	39	7	43	67	- (271	;	9 7	0 0	0 +	39		9 7	7	- +		•	25	3 + 5 <	- O	141	4.1	4.1	8 7	6 3	9 7	53	97	ر ا ا	146	•	148	4	* *	7
Z	E S	17.3	32.	54.	•		13.	30.	2	46.	41.	11.			34.		• a		· · · · · · · · · · · · · · · · · · ·	34.	• •	• ~ ~		(30.	• 0	45.		46.	5.	23.	25.	-	19.	30.	× ,			4	22.	26.	43.
	0		9	0 V		o •o	•	S	•	9	•	•	0 •0)	•	0 4	0 4	•		~	O) <i>U</i>	•	•	.	n «	•	•	~	•	•	•	•	•	••	0 1	4 *	•	7 6	o v	'	.
TIME	SE	15.3	- (· ~	•		M	~	~	0	_ 	• 0		•	- 6	• • •	• V 0		(٠ ١	• •	•	· ~	,	- ^	• V a	• •	4	•	~	9	•	•	0	∞ u	· •	• •	•		× ×	- ~	4
9	_	55																																			7 7		7 (12
	œ I				•	~~	•		_	_	— (~	~				4	- ~	ı	~			•	•	~			~				•	_	-	_		4	•			-	•
	1977	DEC 19	_			7	22	22	25	22	22	2 2	77		23	\ \ \ \ \ \	C	↑ ~		2 2 3 6	7 0	7 6	77		4 V	7 2	2 S	5 2	9 2	9 2	26	5	7.7	2.2	~~	200	20 60 7		60	۲ ۲ ۲	· ~	62

ETNA AREA AND N KODIAK IS.

LKE!

....

					Z													
					(11)													
	REMARKS				> AT VALDEZ A	ALMER-WASILL												
					FELT													
	Œ				⋖						6 0				æ		-	•
	ER Z	¥	•	•	1.7	•			•	•	•	2.6	•	•	2.6	•	•	~
	E E	¥	•	•	0.9	•		•	•	•		3.0	•	•	3.9	•	•	•
2	SES	ш	-	• 2	.5	7.	•	4-	-	•	~	0.27	.2	4.	0.34		-	V
TINUE	03				29		69	00	0		5	22	_		38		_	S
LODY	GAP	W	~	•	96	4	M	5	Ø	•	M	188	₩.	5	210	00	~	175
TALOG	SZ		4	\$	~	14	M	^	^	~	M	~	~	œ	4	14	~	Q
ב כא <u>ו</u>	Q		^	0	31	92	4	90	0 0	∞	M	0	M	∞	•	22	0	0
M CO M	MAG		•	•	3.6	•			•	•	•	•		•	9.0	•	•	~
SKA EART	DEPTH	X X	•	•	20.8	∞	2.	7	•	•	∞	5.1	•	-	13.6	0	*	7
V V	3	Σ.	•	∞	_	•	•	~	•	•	m	0	M	•	7.7	*	®	0
Z Z Z	LONG	EG.	-	0	46 2	~	M	M	4	-	41 1	0	-	M	39 3	~	-	V
100			_	•	•	•	-		—	—	•-	-	•	-	•-	•	•	•
S	Z	Σ	~	\$	39.7	•	6	7	-	~	•	9.4	*	~	57.5	%	3.	17 5
	L A	ننا			61							9		_	89			40
	TIME	S	∞	\$	18.5	•	\$	•	•	\$	4	22.4	•	~	10.6	∞	7	7 22
	G I N	Z		_	8 7				_		_	30		58	M	4	37	C C
	OR I	œ			21			M	M	4	₩.	10		20	m	•	10	17
	•	1977		~	50							30			31			~