UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Element concentrations in rehabilitation species from thirteen coal-stripmines in five western states and Alaska

L. P. Gough and R. C. Severson

U.S. Geological Survey Open-file Report 81-182

CONTENTS

	Page
Introduction	1
Acknowledgments	7
Methods	8
Field	8
Laboratory	13
Statistical	14
Results and discussion	17
Mine- and control-site comparisonsAppendix	17
Comparison of mine-sampled wheatgrasses	46
Between-mine multiple-mean comparisons	68
Crested wheatgrass	68
Intermediate wheatgrass	68
Slender wheatgrass	69
Alfalfa	70
Fourwing saltbush	72
Rehabilitation species summary data	73
References cited	75
Appendix table	78

ILLUSTRATIONS

			Page
FIGURE	1.	Map showing general locations of the coal-stripmines	
		sampled in this study	3
	2.	Diagram showing the method used for sampling soils,	
		wheatgrasses, and smooth brome at various coal-stripmines	11
	3.	Diagram showing the method used for sampling soils and shrubs	
		or shrubby forbs at various coal-stripmines	11
	4.	Diagram showing the method used for sampling soils, willow,	
		and alder at the Usibelli Mine, Alaska	11
	5.	Charts of the geometric means and their confidence intervals	
		for the element content of wheatgrasses at ten coal-stripmines.	47
		5 <u>A</u> . Ash yield	48
		5B. Aluminum	49
		5 <u>C</u> . Arsenic	50
		5D. Boron	51
		5 <u>E</u> . Cadmium	52
		5F. Chromium	53
		5 <u>G</u> . Copper	54
		<u>5</u> H. Fluorine	55
		<u>51</u> . Iron	56
		5 <u>J</u> . Lead	57
		5K. Manganese	58
		5 <u>L</u> . Mercury	59
		5M. Molybdenum	60
		5 <u>N</u> . Nickel	61
		50. Selenium	62

5 <u>P</u> .	Sodium	63
5 <u>Q</u> .	Sulfur	64
5 <u>R</u> .	Uranium	65
55.	Zinc	66

TABLES

			Page
TABLE	l.	Notes on plant rehabilitation species from 11 western	
		coal-stripmines and two additional mines	10
	2.	Analytical methods for plant materials sampled	15
	3.	Multiple-mean comparison of the element concentrations in	
		crested wheatgrass at two Wyoming coal-stripmines	18
	4.	Multiple-mean comparison of the element concentrations in	
		intermediate wheatgrass at five coal-stripmines in Colorado	
		and North Dakota	19
	5.	Multiple-mean comparison of the element concentrations in	
		slender wheatgrass at three Montana coal-stripmines	20
	6.	Multiple-mean comparison of the element concentrations in	
		alfalfa at six coal-stripmines in Colorado, Montana and	
		North Dakota	21
	7.	Multiple-mean comparison of the element concentrations in	
		fourwing saltbush at three coal-stripmines in New Mexico,	
		Montana, and Wyoming	22
	8.	Silver concentrations in alder and willow, Usibelli Mine, Alaska	23
	9.	Summary statistics for the element content of smooth brome,	
		Dave Johnston mine, Wyoming	24
1	10.	Summary statistics for the element content of crested wheatgrass	,
		Dave Johnston mine, Wyoming	25
1	11.	Summary statistics for the element content of crested wheatgrass	,
		Seminoe Number 2 mine, Wyoming	26
1	12.	Summary statistics for the element content of intermediate	
		wheatgrass, Energy Fuels mine, Colorado	27

13.	Summary statistics for the element content of intermediate	
	wheatgrass, Seneca Number 2 mine, Colorado	28
14.	Summary statistics for the element content of intermediate	
	wheatgrass, Husky mine, North Dakota	29
15.	Summary statistics for the element content of intermediate	
	wheatgrass, South Beulah mine, North Dakota	30
16.	Summary statistics for the element content of intermediate	
	wheatgrass, Velva mine, North Dakota	31
17.	Summary statistics for the element content of slender wheatgrass,	ı
	Absaloka mine, Montana	32
18.	Summary statistics for the element content of slender wheatgrass,	,
	Big Sky mine, Montana	33
19.	Summary statistics for the element content of slender wheatgrass,	,
	Decker mine, Montana	34
. 20.	Summary statistics for the element content of alfalfa, Energy	
	Fuels mine, Colorado	35
21.	Summary statistics for the element content of alfalfa, Seneca	
	Number 2 mine, Colorado	36
22.	Summary statistics for the element content of alfalfa, Husky	
	mine, North Dakota	37
23.	Summary statistics for the element content of alfalfa, South	
	Beulah mine, North Dakota	38
24.	Summary statistics for the element content of alfalfa, Velva	
	mine, North Dakota	39
25.	Summary statistics for the element content of alfalfa, Big Sky	
	mine, Montana	40

.. _ ----

26.	Summary statistics for the element content of sandfain,	
	Absaloka mine, Montana	41
27.	Summary statistics for the element content of fourwing saltbush,	
	Jim Bridger mine, Wyoming	42
28.	Summary statistics for the element content of fourwing saltbush,	
	Decker mine, Montana	43

APPENDIX TABLE

	Page
Concentrations of elements in rehabilitation species from 13	
coal-stripmines in five western states and Alaska	78

Element concentrations in rehabilitation species from thirteen coal-stripmines in five western states and Alaska

Ъy

L. P. Gough and R. C. Severson

INTRODUCTION

The effects of the burning of coal on the mobilization and concentration in the environment of many of the potentially toxic trace elements has been extensively studied over the past 5 years. A question that has not been adequately investigated, however, is the effect that the surface mining of coal may have on the mobilization of elements in spoils and replaced topsoil and their absorption by rehabilitation species. In areas where overburden contains higher than normal levels of potentially toxic elements, it can be assumed that rehabilitation species will, in general, concentrate many elements in their tissues (Wallace and Berry, 1979). Whether or not such levels will prove to be toxic (either through frank intoxication or the production of subtle, chronic chemical imbalances, Erdman, 1978) needs to be examined.

This study was prompted by the preliminary results of earlier work by Erdman and Ebens (1975) who sampled sweetclover and associated spoils at eight coal-stripmines in the northern Great Plains. They found that the element content of sweetclover differed among mines and, in a strong way, represented the local (or mine-area) environment. Except for their report, there has not been any work that has examined the variability in the element content of

rehabilitation species among mines over a broad geographic region. This kind of background information is critical to the formulation of regulations that set maximum allowable element concentrations in rehabilitation materials.

Our main objective was to obtain element-concentration data of commonly used species from a number of western coal-mine rehabilitated areas and to assess whether or not altered substrate chemistry was reflected in these species. Secondary objectives were: (1) to assess the variability in the concentration of elements in similar rehabilitation species among mines; and (2) to assess the variability in the element concentration of rehabilitation species within a mine. Because of the possible mobilization of environmentally important and potentially toxic elements by surface-mining methods, a knowledge of the chemistry of rehabilitation species is a useful estimate of soil or spoil element availability.

The mines studied were: Dave Johnston, Seminoe No. 2, and Jim Bridger (Wyoming); Seneca No. 2 and Energy Fuels (Colorado); South Beulah, Husky, and Velva (North Dakota); and Big Sky, Decker, and Absaloka (Sarpy Creek) (Montana) (fig. 1). All samples at these ll mines were collected within a relatively short time by one individual, they received the same preparation, they were analyzed by one laboratory using consistent methods, and they were prepared and analyzed in a randomized sequence so that any systematic error in preparation and analysis would be converted to random error. Therefore, these data are useful for evaluating differences in the chemical composition of rehabilitation species among states (which are the basic regulatory units) and among mines, and should also indicate the amount of variability to be expected when small rehabilitated areas are sampled within a single mine. Similar information exists for the variability in the element content of native plants (Gough, Severson, and McNeal, 1979) and of cultivated wheat (Erdman and Gough,

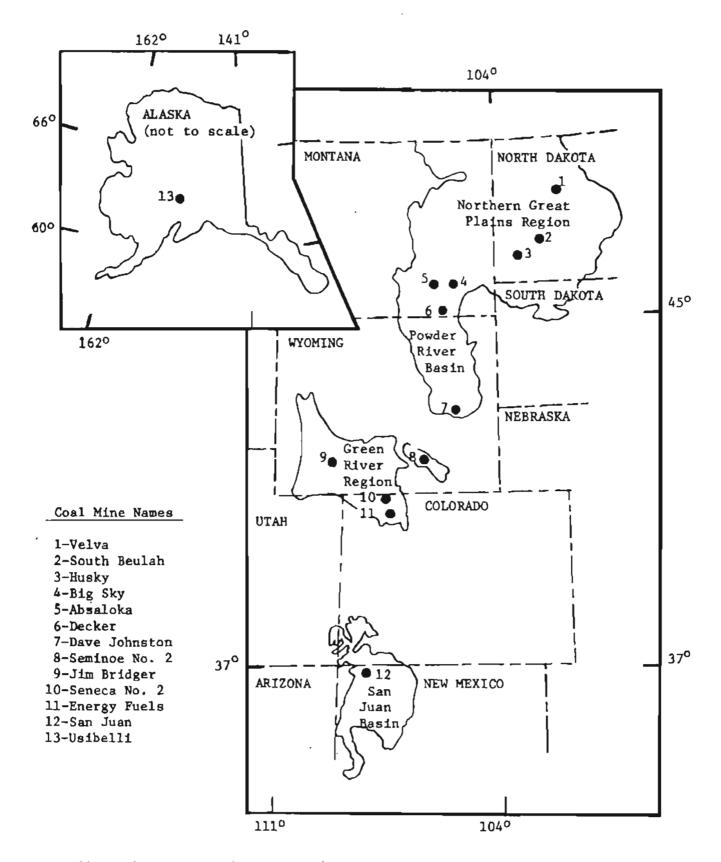


Figure 1. General locations of the coal strip mines sampled in this study.

1979) in the northern Great Plains.

In addition to the mines listed above, rehabilitation species were collected at the San Juan mine, New Mexico and at the Usibelli mine, Alaska (fig. 1). Even though these samples were collected by the same individual and prepared and analyzed by the same laboratory using the same methods as for the other 11 mines, continuity among all samples is lacking because they were collected with different objectives and at different seasons of the year. Therefore, comparisons of the chemistry of the plant materials at the San Juan mine, the Usibelli mine, and the 11 western mines should be made only with these qualifications in mind.

The selection and utilization of appropriate rehabilitation plant species at the various mine sites has not been standardized. Seed mixtures and their rates of application varied greatly from year to year and from mine to mine. This was true partly because inter-mine communication of ideas, successes, and failures usually was lacking (except among mines owned by the same company) and also because the laws governing rehabilitation are changing continually. This state of flux was of direct concern to us because we wanted to sample species that would most likely be used for some years in the future.

Increasing legislative pressure is causing the mines to utilize more and more of the so-called native species in their seed mixtures. Native is usually arbitrarily defined as anything that was not introduced from foreign sources with the expansion of the railroads and the cattle industry. Commonly used native species of semiarid regions include: bluebunch wheatgrass (Agropyron spicatum (Pursh) Scribn. & Smith), slender wheatgrass (A. trachycaulum (Link) Malte), thickspike wheatgrass (A. dasystachyum (Hook.) Scribn.), green needlegrass (Stipa viridula Trin.) blue grama (Bouteloua gracilis (H.B.K.) Lag.), prairie sandreed (Calamovilfa longifolia (Hook.)

Scribn.), and skunkbush (Rhus trilobata Nutt.). Many introduced species have qualities that lend themselves well to use in reclamation, however, and a total elimination of them is probably not practical. Examples of some of the introduced species still in use include: alfalfa (Medicago sativa L.), sweetclover (Melilotus alba Desr. and M. officinalis (L.) Lam.), smooth brome (Bromus inermis Leys.), sandfain (Onobrychis viciaefolia Scop.), pubescent wheatgrass (Agropyron trichophorum (Link) Richt.), crested wheatgrass (A. cristatum (L.) Gaertn. or A. desertorum Fisch.) Schult), and intermediate wheatgrass (A. intermedium (Host) Beauv.).

The composition of the seeding mixture and the ability to pick and choose from many different rehabilitation species are luxuries enjoyed by mine managers only in the less arid areas. Thus, in general, the mines in North Dakota, Montana, and Colorado have rehabilitated sites that are relatively diverse in the species found. Mines in the arid areas of Wyoming and New Mexico, however, usually rely on the establishment of only a few species.

Both fall and spring planting schedules are being used by the various mines visited, and the different reseeding methods include broadcasting, hydroseeding, and drilling. The use of fertilizers and mulches also varies; however, mulch is rather universally used in the drier areas. Mines in the less arid areas commonly include an annual cereal grain in the seed mixture to serve as initial cover—in the more arid areas the rapid natural invasion of halogeton (Halogeton glomeratus Meyer) performs the same function. Halogeton, however, is highly undesireable because it is toxic to grazing sheep and once established it is hard to eradicate.

Comparisons of the element composition of plant species found on rehabilitation sites to those same species on native sites have revealed differences (Erdman and Ebens, 1975 and 1979; Munshower and others, 1979;

Erdman and Gough, 1979; and Gough and Severson, 1980). Where ever possible, therefore, we also collected 'control' samples from adjacent non-mine areas. Table 1 lists those mines and species for which control collections were made.

ACKNOWLEDGMENTS

The following persons were most cooperative either in granting us permission to collect samples of plant, soil, and spoil materials or in spending time in the field showing and explaining their rehabilitation efforts: D. Elberg and D. Bennick (Husky mine, Husky Industries, Inc.); G. Bierei, G. Herold, and T. Forney (Seminoe No. 2 mine, Arch Minerals Corp.); H. P. Meuret (Jim Bridger mine, Northern Energy Resources Co.); D. G. Deveraux, G. Peters, and J. R. Phillips (Dave Johnston mine, Northern Energy Resources Co.); A. F. Grandt and R. Karo (Seneca No. 2 mine, Peabody Coal Co.); W. L. Noud and K. A. Crofts (Energy Fuels mine, Energy Fuels Corp.); C. L. Blohm and D. Morman (South Beulah mine, Knife River Coal Mining Co.); G. M. L. Robinson and R. Hoff (Big Sky mine, Peabody Coal Co.); E. G. Robbins and D. Layton (Decker Coal mine, Peter Kiewit Sons' Co.); D. W. Simpson and W. Sullivan (Absaloka mine, Westmoreland Resources Inc.); R. W. Allen (San Juan mine, Western Coal Co.); C. P. Boddy (Usibelli mine, Usibelli Coal Mine Inc.); and Stan Weston (Usibelli mine, Weston Agricultural Consultants Limited). drawings by J. M. Bowles. Preparation and analyses of all samples were done in the U.S. Geological Survey Laboratories in Denver by T. F. Harms, R. Hope, K. King, J. G. McDade, C. S. E. Papp, K. C. Stewart, and M. L. Tuttle.

METHODS

Field

Major Mine Comparison Study. -- This study was designed to evaluate differences in: (1) the variability in the element composition of species among 11 mines; (2) the element composition of species within mines; and (3) the relations between plant element concentrations and extractable element concentrations in minesoils. Results of the last objective will be discussed separately. Of interest (but not part of the design) was a comparison of the composition of like species on both mine and non-mine (control) sites.

Based on the tabular information provided by Evans, Uhleman, and Eby (1978) for surface—mined lands, we selected a set of mines in Colorado, North Dakota, Montana, and Wyoming, that they judged as having successful rehabilitation according to current regulations. From these mines we selected three per state according to the following additional criteria: (1) the area had been rehabilitated in the past 3 to 5 years, (2) topsoil had been used in the rehabilitation process, and (3) a wheatgrass and a legume had been included in the seeding mixture. By limiting our sampling using these criteria we provided a basis for making comparisons among rehabilitated areas.

In practice, it was not possible to locate rehabilitated areas within the targeted mines that met all three criteria mentioned above. Mine-site differences required that we use some flexibility in the selection of suitable plant materials to be sampled. For example, we were unable to sample a legume at the Dave Johnston mine so we sampled instead two grasses; and, at the Jim Bridger mine, neither a grass nor a legume was available so we sampled the woody shrub fourwing saltbrush. At most mines, however, a non-rhyzomatous wheatgrass and either alfalfa or sandfain were collected (the latter are both legumes).

At each mine, the rehabilitation specialist was most cooperative in

helping select a suitable site of about 5 to 10 hectares. Once a site had been selected, plants and soils were collected as follows: A random traverse across the site was made and at ten localities topsoil, spoil, and plant samples were collected. The actual sampling localities were dictated by the presence of acceptable plant material.

Table 1 lists the plant parts included in each sample and Figures 2 and 3 diagram the collection method. The grass samples were composed of the culms, leaves, and inflorescences clipped at about 10 cm above the ground. The collections consisted of one or two clonal clumps (for the bunchgrasses); however, the smooth brome collections were of numerous individuals (which may or may not have been clonal). The alfalfa collections consisted of the stems, leaves, and fruits from one or two individual plants. At the Husky and Big Sky mines, the occurrence of frost had hastened leaf-drop and the alfalfa samples consisted mostly of stems and fruits. Frost had also caused leaf-drop for sandfain collected at the Absaloka mine, and these collections consisted of dormant stem and fruit tissue from two plants (with bunch habits) per site. Fourwing saltbush samples consisted of all the leaf and woody stem material clipped at about 10 cm above the ground from one or two shrubs per site.

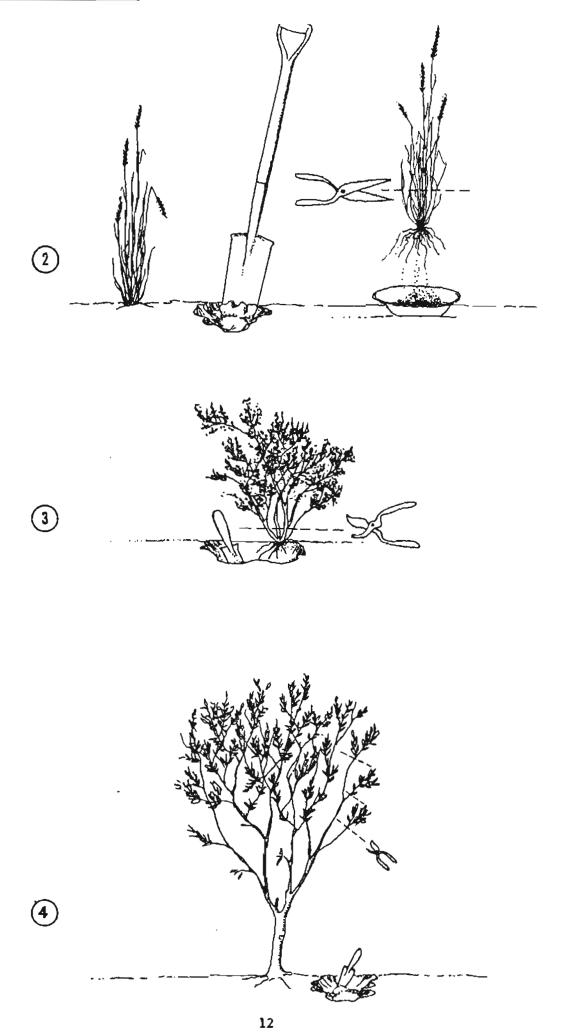

In addition, three samples of hard red winter wheat grain were obtained at the Big Sky and Dave Johnston mines. This material was not collected as part of the formal study, and therefore only concentrations of selected elements were obtained (Appendix table). The Big Sky material was from a rehabilitation area with 25-60 cm of replaced topsoil that was seeded in the fall of 1977. The Dave Johnston material was also planted in 1977 as a cover for an area whose topsoil (to a depth of about 15 cm) had been removed for placement over spoil elsewhere. The area with wheat, therefore, had not been

Table 1 .- Specific collection notes for plant rehabilitation species collected at 11 western cost surface mines (major study) and two additional mines

[Stages of maturity are those defined in Sational Research Council, U.S., and Department of Agriculture, Canada (1971); e-culus, 1-leaves, i-inflorescences, s-atems, and f-fruits; root penetration into spoil was subjectively classified as good, fair, or poor; control-site column refers to presence (+) or absence (+) of sampled material; n.a. in column means not applicable, (--) indicates no data]

		_~			·					
					Number of					
					wites/number					Control
					of clumps or			Range	begree of	site
		Date	Plant name		individuals	Stege of	Plant	in depth of	root penetration	comparison
Mine	State	collected	Scientific	Соннор	per alte 1/	asturity	parte	topsoil (cm)	into spoil	material
				Major Mine Comparis	on Study					
Dave Johnston	Wyoming	9/8-9/78	Bromus inermis	smooth brome	10/15	meture	e,1,1	0-30	good	-
			Agropyton cristatum	created wheatgrass2/	10/1	do.	do.	do.	do.	+
Seminos No. 2		9/11/78	do.	۵o.	10/2	overripe	do.	noue	good	-
Jim Bridger		9/12-13/78	Atriplex cenescens	fourwing selfbush	10/1	0.0.	4,1	10-25	do.	-
Seneca No. 2	Cólorado	9/14/78	Agropyron intermedium	intermediate wheatgran	s 10/2	peture	c,1,1	B00 6	do.	-
			Medicago <u>mativa</u>	alfalfe	10/1	dough	0,1,f	do.	do.	-
Energy Fuels		9/15-16/78	Astopyron intermedium	intermediate wheatgran	s do.	mature-	a, i, i	20-40	poor	-
			Hedicago sativa	elfalfa	do.	overripe dough-	s,1,f	do.	fair	-
South Beulah	North Dakota	9/25/78	Agropyron intermedium	intermediate wheatgra	s 10/2	meture overripe	c,1,i	10-20	good .	-
			Hedicago sativa	alfalfa	do.	mature	a,1,f	do.	do.	+
Velva		9/26/78	Agropyron intermedium	intermediate Wheatswar	ø do.	overripe	c,1,i	5-25	good	-
			Medicago sativa	alfalfa	do.	mature	s,1,f	do.	do.	+
Husky		9/27/78	Agropyron intermedium	intermediate Wheatgra	a do.	mature-	6,1,1	15-50	fair	_
			Hedicago sativa	alfalfa	ģo.	overripe-	z , f	do.	good	+
Bis, Sky	Hontana	10/9/78	Agropyron trachycaulum	slender wheatgrass	10/1	dormant mature-	c,1,i	10-30	good	-
			Hedicago sativa	alfalfa	10/2	overripe	s,t	do.	g00d	+
Decker West		10/10/78	Agropyron trachycaulum	Siender wheatgrass	10/1	mature-	e,1,1	>90		-
			Atriplex canescens	fourwing saltbush	10/2	overgipe o.a.	*,1	do.		•
Absaloks		10/12/78	Agropyron trachycaulum	slender wheatgrass	10/1	mature	0,1,1	25-40	good	-
			Onobrychia vicisziolia	sandfs in	10/2	dormant	a,f	do.	8000	-
		- -		Addit Lonal M	241					
San Juan	New Hexico	8/11/77	Sporobolus airoides	elkali secaton	6/4	mature	c,1,1	~20	8004	•
			Atriplex canescens	foorwing saltbush	6/1	B-0.	4,1	do.	500d	+
Valbelli	Aleska	6/7/79	Alous crisps	Americam green sider	3/5	D.E.	do.	920g	good	+
			Salix pulchra	dismondlesf willow	3/3	п.а.	do.	0084	good	+

- FIGURE 2. The method used in the sampling of soils, wheatgrasses and smooth brome at various coal-surface mine rehabilitation sites. The grass samples were composed of the culms (stems), leaves, and inflorescences clipped from one or two clonal clumps at about 10 cm above the ground. Topsoil samples were composed of the material (topsoil where present, present, spoil, or a combination of both) that adhered to the root mat. Spoil samples consisted of the material collected between 20 and 30 cm directly below where the plant clump and topsoil had been removed.
- FIGURE 3. The method used in the sampling of soils and shrubs or shrubby forbs at various coal-surface mine rehabilitation sites. Samples of alfalfa, sandfain, and fourwing saltbush consisted of all the material, from one or two individual plants, clipped at 10 cm above the ground. Topsoil samples were composed of the material (topsoil where present, spoil, or a combustion of both), to a depth of 10 cm, that was located within 20 cm of the plant sampled. Spoil samples consisted of the material collected between 20 and 30 cm directly below where the topsoil sample was taken.
- FIGUIRE 4. The method used in the sampling of soil, willow, and alder at the Usibelli Mine, Alaska. The terminal 10-20 cm of willow and alder branches with leaves and inflorescences were collected at both native and rehabilitated sites. Topsoil samples were collected at a depth of 15-20 cm on the native sites (below a mat of organic material), and, because the rehabilitated sites were without replaced topsoil, consisted of surficial material to a depth of 15-20 cm.

mined of coal.

Additional Mines. -- Table I lists the collection details for plant material from the San Juan and Usibelli mines (New Mexico and Alaska, respectively). These two mines were sampled at different times and were not part of the major mine comparison study. Results of the element content of plants collected at the San Juan mine are given in Gough and Severson (1980a and 1980b).

Alkali sacaton and fourwing saltbush were sampled in the same manner as was described for the wheatgrasses and fourwing saltbush in the major mine comparison study. For alder and willow at the Usibelli mine, the terminal 15-20 cm of stems, with leaves and inflorescences were clipped as shown in Figure 4. Representative material from all species collected is housed, as voucher specimens, in the U.S. Geological Survey Herbarium in Denver, Colorado.

Laboratory

The sample preparation of the plant material from all 13 mines was the same. The samples were dried in a forced-air oven at 35°C, ground in a Wiley mill 1 to pass a 1.3-mm screen, and the homogenized ground material was either asked by dry ignition at 500°C for 24 hours or by wet digestion (Harms, 1976). Because of excessive soil and dust contamination, samples of alfalfa, alkali sacaton, the wheatgrasses, and smooth brome, were washed prior to being dried and ground. (Samples of alder, fourwing saltbush, sandfain, and willow were not excessively contaminated and were not washed.) This process consisted of numerous tap-water rinses (until the rinse water was free of visible suspended and settled material) followed by a single distilled-water rinse. Ten percent of the samples from the major mine comparison study were

¹Use of trade names in this report is for the convenience of the reader and does not constitute endorsement by the U.S. Geological Survey.

selected at random for splitting of the ground material and the analytical sequence of the entire suite of samples (plus splits), was randomized. Table 2 details the analytical method used for the determination of the concentration of each element in plant material. Samples from the San Juan and Usibelli mines were analyzed at a time different from the material from the ll mines but the analytical methods were the same for all samples from all mines.

Statistical

For those elements analyzed in ash, the dry-weight-equivalent concentrations were calculated. This conversion was done because of the interest in dry-weight data by agronomists and others involved with reclamation studies.

Plant-element concentrations tend to exhibit positively skewed frequency distributions. Therefore, a logarithmic transformation of the data prior to statistical analysis improves the estimates of central tendency because the frequency distribution of the log-transformed data is more nearly normal. Some elements were approximately normally distributed; however, statistical tests for these elements, using both the transformed and original data, were similar. In order to simplify the discussion, therefore, all statistical results are based on log-transformed data.

The analysis of element concentrations usually found in trace amounts may result in values at or less than the lower limit of determination (LLD) of the method used. Elements with more than one-third of their values below the LLD were not included in the statistical tests. Elements with fewer than one-third LLD values were handled differently, depending on the statistical test as follows: (1) Because completely numeric data sets are required for the multiple-mean comparison test (Natrella, 1966), and for the calculation of

Table 2.--Analytical methods and their approximate lower limits of determination for the plant materials sampled

[All values are reported on an ash-weight basis, except where noted; LLD, lower limit of determination; ES, plate-reader emission spectrography; AA, flame atomic-absorption spectroscopy; SIE, selective ion electrode; FL-AA, flameless atomic-absorption spectroscopy; COLR, colorimetric; FLUR, fluorometric; TURB, turbidimetric]

	Analytical	Approximate		Analytical	Approximate
Element	method	LLD (ppm)	Element	method	LLD (ppm)
Aluminum		200	Molybdenum	- ES	2
Arsenic1	- AA	.05	Nickel		2
Barium		4.4	Niobium	- ES	9.2
Beryllium-	- ES	2	Phosphorus	COLR	100
Boron		10	Potassium	AA	100
Cadmium	- AA	.4	Selenium ¹	FLUR	.01
Calcium	- AA	100	Silver	- ES	.92
Cerium	- ES	93	Sod 1um	- AA	25
Chromium	- AA	1	Strontium	- ES	1
Cobalt	• AA	1	Strontium	- ES	² 4,000
Copper	- AA	1	Sulfur (total)1	TUKB	100
Fluorine1	- SIE	1	Titanium	- ES	90
Germanium-	- ES	2	Uran ium	FLUR	.4
Iron	• ES	200	Vanadium	ES	2 2
Lanthanum-	· ES	9.2	Yttrium	ES	2
Lead	· ES	4.4	Zinc	- AA	1
Lithium	- AA	4	Zirconium	ES	4.4
Magnesium	- AA	20			
Manganese	- ES	2			
Mercury1		.01			

Analyses determined on dry material not ash.

Upper limit of determination.

confidence intervals about the mean, a substitution of 0.7 times the LLD (ashweight basis) was made for all censored values. The sequence of calculations was: (a) substitution of censored values; (b) dry-weight conversion of those element concentrations reported basis; (c) ٥n an ash~weight log transformation; and (d) statistical tests. (2) The estimation of the geometric mean (CM) and geometric deviation (CD), for those elements with censored values, was performed using the technique of Cohen (1959) as detailed by Miesch (1967). This technique, however, requires a single LLD per element and the dry-weight conversion calculation often results in variable LLD values (due to differences in the ash yield of individual samples). Following dryweight conversion, therefore, if variable LLD values were generated, a substitution was made that replaced the variable LLD values with a single LLD value equal to an average of the variable LLD values. The sequence of calculations was: (a) dry-weight conversion of those elements reported on an ash-weight basis; (b) calculation of an average LLD for those elements with censoring; (c) substitution of the variable LLD values (per element) with the average LLD value; (d) log-transformation; (e) calculation of the GM and GD. The analysis of the data was performed on a computer using the U.S. Geological Survey's STATPAC library (VanTrump and Miesch, 1977).

RESULTS AND DISCUSSION

Figure 1 shows the location of the thirteen coal-stripmines studied. Table 1 details the characteristics of the mine sites visited with emphasis on the rehabilitation species sampled. Additional mine-site details (time since rehabilitation was initiated, rehabilitation scheme, topsoil and spoil characteristics, unique features of the area studied, and type of mining operations) are reported in Severson and Gough (1981) and will not be repeated here.

The data that follow are discussed and summarized in four basic ways:

(1) A listing, with no statistical interpretation, of the elementconcentration data for each sample of rehabilitation plant material is given
by mine and by state in the Appendix. (2) Several different species of
wheatgrass were collected; figure 5 diagrams the geometric mean and confidence
interval about the mean for the concentration of eighteen elements and plantash yield at the ten mines where they were sampled. (3) Tables 3-7 compare
the geometric means of element concentrations in similar plant material
collected at different mines. (4) Tables 9-28 give the summary statistics, by
individual mines, for the concentration of elements in particular
rehabilitation species.

Mine- and Control-Site Comparisons--Appendix

The element concentration data for each sample at the individual mines are given in the Appendix table. No summarization or statistical interpretation is presented. Concentrations of arsenic, fluorine, mercury, selenium, and total sulfur were reported by the analyst on a dry-weight basis and are listed as received. Concentrations of all other elements were reported by the analyst on an ash-weight basis; however, in the Appendix table we list the dry-weight converted values. As discussed under the Statistical

Table 3.--Multiple-mean comparison test for concentrations of 34 elements (and ash) in dry material of crested wheatgrass collected at two surface-coal mines in Wyoming.

[Mean values followed by the same small letter are not significantly different at the 0.05 probability level; ppm, parts per million; %, percent; leaders (---) mean no date]

Element or ash	Dave Johnst	on	Semino Number		
Ash, %	4.9	a	5.1	а	
A1, ppm	410	a	500	а	
As, ppm	.46	а	.37	a	
B, ppm	14	а	6.8	Ь	
8a, ppm	5.1	a	5.8	а	
8e, ppm	.11	a	.10	a	
Ca, %	.19	Ъ	.27	a	
Cd, ppm	.052	а	.027	Ъ	
Co, ppm	.062	a	.066	а	
Cr, ppm	.41	a	.45	a	
Cu, ppm	1.3	ь	3.4	a	
F, ppm	6.5	ъ	8.0	a	
Fe, ppm	120	Ъ	180	а	
Ge, ppm	.10	a	.11	а	
Hg, ppm	.019	a	.017	а	
K, %	.64	ь	1.1	a	
La, ppm			1.8		
L1, ppm	.71	a	.47	a	
Mg, %	.073	а	-088	a	
Mn, ppm	19	а	22	а	
Мо,ррш	.22	a	.23	а	
Na, ppm	26	Ъ	34	ā	
Nb, ppm	.42				
N1, ppm	.19	Ъ	.24	а	
P, %	.063	а	.064	8	
Pb, ppm	.86	a	.71	a	
S, ppm	1,000	Ъ	1,200	a	
Se, ppm	.21	a	.054	Ъ	
Sr, ppm	7.2	a	6.6	а	
Ti, ppm	9.7	a	9.0	а	
U, ppm	.056	a	.057	а	
V, ppm	.55	a	.60	a	
Y, ppm	.28	a	.26	a	
Zn, ppm	15	а	9.5	ъ	
Zr, ppm	.78	а	. 70	а	

Table 4.—Mulitple-mean comparison test for concentrations of 34 elements (and ash) in the dry material of intermediate wheatgrass collected at five surface-coal mines in Colorado and North Dakots.

[Mean values followed by the same small letter are not significantly different at the 0.05 probability level; ppm, parts per million; %, percent; leaders (---) mean no data]

		ملم	rado	_			North (akota		
Element	Energy Seneca		ı			Sout	h		_	
or ash	Fuels		Number	. 2	Rusk	(y	Be u l	ah	Vel	VA
Ash, 1	5.6	c	6.8	b	4.6	c	5.4	c	7.5	A
Al, ppm	360	bc	270	С	660	a	480	ь	130	d
As, ppm	.16	c	.33	ъ	.38	ъ	.66	a	.21	c
B, ppm	6.4	c	5-1	c	13	а	7.7	ъс	9.2	ь
Ba, ppm	9.0	¢	6.7	d	38	8	15	ъ	11	рс
Be, ppm-	.13	Ъ	.15	ъ	.18	Ъ	.13	Ъ	.25	a
Ca, %	.19	A	.18	8	.20	a	.18	8	.18	8
Cd, ppm	-060	8.	٠٥36	Ъ	.039	ь	-030	ъ	039ء	ъ
Co, ppm	-048	Ъ	.051	аb	.059	ab	.076	æ		
Cr, ppm	.55	Ъ	.47	Ъ	.70	â	.49	ь	.30	c
Cu, ppm	1.0	ъ	I.I	ь	1.1	ь	1.0	ъ	1.5	4
F, ppm	6.2	Ъ	7.5	A	5.7	ь	6.3	Ъ	4.8	c
Fe, ppm	150	c	100	d	280	æ	200	ь	54	•
Ge, ppm	.14	р	.13	Ъ	-11	Ъ	.12	ь	.18	8
Hg, ppm	-013	ъ	-010	Ъ	.019	2	.013	Ъ	.016	a
K, 7	.56	Ъ	1-2	a	.33	c	-21	g	.22	đ
La, ppm				_	.66	Ъ	1.4	a	1.1	4
Li, ppm	.30	A .	-27	ab	-21	þ				
Mg, %	.073	ь	.10	a .	.072	Ъ	.055	c	.044	đ
Mu, ppm	19	Ъ	16	Ъ	39	8	30	4	44	a
Mo, ppm	.25	a	.36	a	.31	a	.27	a	.36	a
Na, ppm	23	c	40	Ъ	59	a	30	C	24	C
Nb, ppm	.52	a			-65	æ			-63	a
MI, ppm	. 24	ab	-14	Ъ	-36	a ,	.25	a	.13	ъ
P, 2	- 064	a	.051	Ъ	.023	d	.039	c	.045	bc
Pb, ppm	.76	c	.84	bc	1.2	ab	1.0	ъ	1.5	a
S, ppm	810	a	890	8	620	Ъ	440	c	440	c
Se, ppu		. 8	.19	8	.054	c	.088	ь	.098	b
Sr, ppm	6 .9	d	5.0	. €	19	8	15	Ъ	10	¢
Ti, ppm	7.4	Ъ	6.4	Ъ	16	8	9.2	Ъ		
U. ppm	.022	. d	.030	c	-038	Ъс	- 047	ab	.058	A
V, ppm	-37	bс	.25	C	.76	а	.43	Ъ	•21	С
Y, ppms	. 24	c	.21	c	.46	a	- 30	Ъ	.22	c
Zn, ppm—-	10	C	11	bc	9.6	c	12	ь	15	a
2r, ppm	.70	b	.63	Ъ	1.2	8	. 76	Ъ	- 64	ь

Table 5.--Multiple-mean comparison test for concentrations of 34 elements (and ash) in the dry material of slender wheatgrass collected at three surface-coal mines in Montana.

[Mean values followed by the same small letter are not significantly different at the 0.05 probability level; ppm, parts per million; %, percent; leaders (---) mean no data]

Element							
or ash	Absaloka		Big S	ky	Decker		
Ash, %	3.7	Ъ	3.5	Ъ	5.5	а	
A1, ppm	260	ь	510	a	440	а	
As, ppm	.26	a	.29	a	-23	а	
B, ppm	5.5	Ъ	14	a	3.6		
Ва, ррш	8.4	р	8.7	Ъ	18	а	
Be, ppm	.075	С	.11	b	.17	а	
Ca, %	.17	a	.19	8	.18	a	
Cd, ppm	-017	Ъ	.027	a	.019	ab	
Co, ppm	.040	Ъ	.057	a	.052	а	
Cr, ppm	.32	Ъ	.48	a	.41	ab	
Cu, ppm	.78	ъ	1.1	a	.87	ь	
F, ppm	5.1	Ъ	6.6	8	5.6	b	
Fe, ppm	95	Ъ	180	а	170	а	
Ge, ppm	.075	C	.10	ъ	.22	а	
Hg, ppm	.022	a	.021	a	.014	ь	
к, %	.26	ь	.36	a	.22	ъ	
La, ppm	.50	a	. 56	а	.40	а	
Li, ppm			.21	b	.34	a	
1g, %	.055	ь	.070	a	.079	а	
Mn, ppm	22	ъ	26	b	61	a	
Mo, ppm	.20	С	.60	a	.33	ъ	
Na, ppm	23	c	32	ъ	72	a	
Nb, ppm	-~-		.37	8	.43	a	
N1, ppm	.14	Ъ	.27	8	.32	а	
P, %	.021	ъ	.021	Ъ	.027	а	
Pb, ppm	.72	ъ	1.1	Ъ	.74	a	
S, ppm	490	a	470	ab	440	Ъ	
Se, ppm	025	c	.13	a	.057	b	
Sr, ppm	6.1	c	8.2	b	24	а	
ri, ppm	5.0	Ъ	9.9	a	7.9	ab	
U, ppm~	.024	c	.050	b	-061	а	
V, ppm	.15	ъ	.43	a	.45	a	
Y, ppm	.16	Ъ	.29	a	.27	a	
Zn, ppm	12	ь	14	a	8.7		
Zr, ppm	.52	ь	.81	а	.80	а	

(Mean values followed by the same small letter are not significantly different at the 0.05 probability level; ppm, parts per million; %, percent; leaders (---) mean no data)

			orado		Montan	<u>a</u>			North Dakot	ta		
Element or ash	Energy Seneca Puels Number 2		2	Big Sky	Husk	Husky		South Beulah		Velva		
										_		
Ash, 7	9.0 560	A	5.8 440	ь	5.2 660	c	4.8 460	c	6.4 540	b	6.7 150	Ъ
Al, ppm	.31	a. .c	.56	b b	.31	a C	.22	ь	.95	a	.53	c b
As, ppm	54	ab	52	ab	48	b	27	c	48	a. b	66	_
8, ppm	15	a v	8.2	a d	10	ď	38	в	22	Ъ	10	A .
•		_		_		-				_		
Ca, %	2.6	а	1.7	ъ	1.2	c	.94	đ	_	ь	1.6	ь
Cd, ppm~~-	.12	Ь	.10	ь	.040	đ	.064	Ç	.20	а	.075	c
Co, ppm~	.084	bc	-061	c	.11	ъ .	.081	bc	.28	8.		
Cr. ppm	. 56	a	-45	å	.55	8	.48	8.	.56	a	.27	ъ
Си, ррш~	5.6	ъ	5.3	b	7.6	ab	5.3	b	6.3	ь	8.7	a
F, ppm	6.6	a	6.6	а	7.2	8.	6.3	a	6.3	а	5.0	ъ
Fe, ppm	179	ь	120	c	230	a	200	ab	240	A	75	
Hg, ppm	.015	ъ	.011	ь	.022	a	.011	Ъ	.018	4	.014	ь
К, ррп	.82	ь	.70	Ь	- 50	c	.80	b	.78	ъ	1.0	a
La, ppm	1.8	a	1.2	ab	1.0	b	.75	b	.71	ь	1.0	Ъ
L1, ppm	.76	c	.54	cd	.52	đ	1.2	ь	1,2	ъ	5.8	a
Mg, %	.38	ь	.42	a	.47	а	.26	c	.30	bc	.25	_ c
Mn, ppm	24	ab	17	ь	28	ab	13	ь	31	а	26	ab
No, ppm	2.0	ь	1.2	ė	4.3	8	1.5	bc	1.6	bc	4.2	a
Na, ррш	40	c	96	ъ	80	ъ	250	8	240	a	93	ъ
Nb, ρpm	.74	a	.49	ь	.50	ъ			. 58	ь	.48	ь
Ni, ppm	.69	вb	.50	ь	.82	ab	.52	ъ	1.0	ā	.63	ъ
P, X	.089	a	.067	b	.052	c	.060	bc	-060	ъс	.088	a
Pb, ppm	.97	a	.82	ab	.78	bc	.73	c	1.0	A	1.0	ā
S, ppa	2,600	ß	1,700	b	1,300	c	1,200	bc	1,700		,700	ъ
Se, ppm	+39	a	.32		.10	ъ	.17	bc	.12	c	.37	a
Sr, ppm	78	- c	37	- d	42	ď	62	c	170	a	100	bc
Ti, ppm	9.8	ъ_	7.8	٠.	12	a .	9.2	ь	8.9	bc	100 	DC.
U, ppas	.029	ь	.048	ษ	.048	ъ	,098	a	.041	ъ	.085	a
V, ppm	.64	a	.34	ab	.49	ab	.41	ab	-51	аb	.18	ъ
V	**	_	45		.,			_				
Y, ppm	. 59	8.	.35	ъ	.44	æb	.32	ь	.37	ь	.17	. c
Zn, ρpm	18	bc	21	ь	27	a	15	, c	20	ь	22	ab
Zτ, ppm	1.5	Æ	.97	ь	1.4		.98	b	1.1	ab	• 59	c

Table 7.--Nultiple-mean comparison test for concentrations of 33 elements (and ash) in the dry material of fourwing saltbush collected at three surface-coal mines in three western states

[Mean values followed by the same small letter are not significantly different at the 0.05 probability level; ppm, parts per million; %, percent; n, number of samples collected; leaders (---) mean no data]

	New Mex	ico	Monta	13	Wyoming Jim		
Element	San Jua	an	Decka	er	Bridger		
or ash	(n=6)		(n=1)		(n=10)		
•			·				
Ash, %	13	a	9.9	Ъ	10	ь	
A1, ppm	1,200	a	440	Ъ	460	Ь	
As, ppm	.24	a	.26	a	.24	а	
B, ppm	5 7	Ь	30	С	220	a	
Ba, ppm	26	a	8.1	Ъ	4.4	С	
Ca, %	1.0	a	.96	a	.94	a	
Cd, ppm	.17	81	.081	Ъ	.099	ъ	
Ce, ppm			~		9.1		
Co, ppm	. 47	a	.27	Ъ	.18	Ъ	
Cr, ppm	2.1	а	.47	ь	.49	Ъ	
Cu, ppm	9.7	a	4.5	ъ	4.9	ъ	
F, ppm	20	3.	7.6	ъ	18.2	Ъ	
Fe, ppm	780	а	140	ь	140	Ъ	
Hg, ppm	.13	а	.009	ъ	.010	Ь	
K, %	2.6	Ъ	3.1	a	2.8	ab	
La, ppm	1.1	а	1.5	a	1.5	a	
Li, ppm	1.7	а	1.8	a	-97	Ъ	
Mg, %	.72	a	.48	ь	.82	а	
Nn, ppm	160	а	110	ab	68	Ъ	
Mo, ppm	.73	а	.46	а	.72	a	
Na, ppm	7,400	а	420	c	2,600	ь	
Nb, ppm	1.3				~ ~~		
N1, ppm	1.9	а	2.5	а	.79	Ъ	
P, %	.084	Ъ	.074	Ъ	-11	a	
Pb, ppm	1.2	a	•90	ь	1.0	ab	
S, ppm	4,500	a	3,600	ь	3,500	ь	
Se, ppm	.22	ь	. 32	ь	. 70	a	
Sr, ppm	48	ь	88	а	21	c	
Ti, ppm	43	4	9.3	Ъ	10	ь	
U, ppm	.11	a			.038	ь	
V, ppm	1.9	a	.30	b	.35	ь	
Y, ppm	.81	3	.29	c	.43	ь	
Zn, ppm	56	a	34	ь	66	a	
Zr, ppm~~-	5.1	a a	.95	c	1.2	Ъ	
- * FE***		_		-			

Table 8.--Silver concentrations (ash-weight basis) in alder and willow,

Usibelli mine, Alaska

[ppm, parts per million; <, less than the
analytical limit of determination; GM,
geometric mean; ≈, approximately equal to?</pre>

Sample Silver, ppm American green alder, mine USLAS <0.92	e
USIAS <0.92	e
US1AS <0.92	_
2.5	
US2AS 2.5	
US3AS 1.0 $GM \approx 3$	1.2
American green alder, con	tro1
USIAN 3.6	
USZAN 2.1	
US $3AN$ 3.2 $GM = 3$	2.9
Diamondleaf willow, mine	
US1WS < .92	
US2WS 1.5	
US3WS 1.4 GM ≈ 3	1.1
Diamondleaf willow, contro	01
US1WN .94	
US2WN 1.3	
US3WN 1.4 $GM = 1$	1.2

Table 9. -- Summary statistics for the element content of dry material of smooth brome from the Dave Johnston mine, Hyoming

[ppm, parts per million; <, less than; leaders (--), mean no data; ratio is the proportion of the number of analyses having values above the lower limit of determination to the total number of analyses; variable lower limits of determination are obtained when converting concentrations on an ash-weight basis to a dry-weight basis, however only the largest value is reported]

Element or		Geometric	Geometric	Observed
#sh	Ratio	mean	devistion	range
Ash (percent)	10:10	5.8	1.06	5.3-6.4
Aluminum (ppm)	10:10	290 .	1.86	160 - 960
Arsenic (ppm)	10:10	.46	1.82	.20-1.0
Barium (ppm)	9:10	¹ 3.4	¹ 1.90	<2.3-13
Beryllium (ppm)	5:10	1.11	12.01	<.1236
Boron (ppm)	10:10	24	1.47	14-36
Cadmium (ppm)	8:10	1.038	11.68	<.022-,064
Celcium (percent)	10:10	.23	1.21	.1734
Cerium (ppm)	0:10			<6.0
Chromium (ppm)	9:10	1.30	11.96	<.1296
Cobalt (ppm)	6:10	1.054	¹ 1.36	<.06011
Copper (ppm)	10:10	1.1	1.47	.53 - 2.4
Pluorine (ppm)	10:10	6.5	1.29	4-9
Germanium (ppm)	6:10	1.12	1,42	<.1323
Iron (ppm)	10:10	80	1.80	40-280
Lanthanum (ppm)	1:10		·	<.56 -4.1
Lead (ppm)	10:10	. 74	1.52	.50-1.9
Lithium (ppm)	10:10	1.8	2.25	.54-5.3
Magnesium (percent)	10:10	.082	1.32	.042 11
Manganese (ppm)	10,10	59	1.68	29-170
Mercury (ррш)	10:10	.016	1.69	.0104
Molybdenum (ppm)	10:10	.24	1.75	.1372
Nickel (ppm)	3:10			<.1277
Niobium (ppm)	2:10			<.56-2.1
Phosphorus (percent)	10:10	.053	1.64	.03011
Potassium (percent)	10:10	. 89	1.22	.60-1.2
Selenium (ppm)	10:10	-14	1.82	.0650
Sodium (ppm)	10:10	30	1.83	18-110
Strontium (ppm)	10:10	9.6	1.85	3.8-24
Sulfur (total) (ppm)	10:10	830	1.36	650-1,200
Titanium (ppm)	4:10	14.2	12.61	<5.6-21
Branium (ppm)	10:10	.047	1.62	.022094
Vanadium (ppm)	8:10	1.24	¹ 3.24	<.11-1.8
Yttrium (ppm)	10:10	.24	1.71	.1377
2inc (ppm)	10:10	8.6	1.45	4.8-17
Zirconium (ppm)	10:10	.67	1.81	.34-2-7

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 10 -- Summary statistics for the element content of dry material of crested wheatgrass from the Dave Johnston mine, Wyoming

[ppm, parts per million; <, less than; leaders (--), mean no data; ratio is the proportion of the number of analyses having values above the lower limit of determination to the total number of analyses; variable lower limits of determination are obtained when converting concentrations on an ash-weight basis to a dry-weight basis, however only the largest value is reported]

Element or		Geometric	Geometric	Observed
ash ·	Ratio	mean	deviation	range
Ash (percent)	10:10	4.9	1.16	4.1-6.6
Aluminum (ppm)	10:10	410	2.26	110-1,20
Arsenic (ppm)	10:10	.46	1.41	.20 6 5
Barium (ppm)	10:10	5.1	1.42	3.3-8.1
Beryllium (ppm)	8:10	1.11	11.37	<.1321
Вотов (ррт)	10:10	14	1.48	8.1-24
Cadmium (ppm)	10:10	.052	1.74	.02513
Calcium (percent)	10:10	.19	1.30	.1029
Cerium (ppm)	0:10			<6.1
Chromium (ppm)	10:10	.41	1.74	.1686
Cobalt (pgm)	7:10	1.062	¹ 1.74	<.04913
Copper (ppm)	10:10	1.3	1.35	.88-2.2
Fluorine (ppm)	10:10	6.5	1.28	5-9
Gerшацию (bbш)	7:10	1.10	11.46	<.1120
Iron (ppm)	10:10	120	2.03	34-350
Lanthanum (ppm)	2:10			<.6160
Lead (ppm)	10:10	. 86	1.49	.54-1.5
Lithium (ppm)	10:10	.71	1.84	.29-2.2
Magnesium (percent)	10:10	.066	1.37	.04513
Manganese (ppm)	10:10	19	2.16	7.0-79
Mercury (ppm)	10:10	.019	1.64	.0104
Molybdenum (ppm)	10:10	.22	1.79	.1388
Nickel (ppm)	8:10	1.19	12.38	<.1072
Niobium (ppm)	4:10	1.42	11.47	<.6192
Phosphorus (percent)	10:10	.063	1.40	.034086
Potassium (percent)	10:10	. 64	1.31	.44-1.0
Sølenium (ppm)	10:10	.21	1.78	.1045
Sodium (ppm)	10:10	26	1.29	16-35
Strontium (ppm)	10:10	7.2	1.66	4.1-18
Sulfur (total)(ppm)	10:10	1,000	1.16	850-1,400
Titanium (ppm)	8:10	19.7	¹ 1.88	<4.6-23
Uranium (ppm)	10:10	.056	1.88	.01716
Vanadium (ppm)	10:10	.55	2.52	.090-1,6
Yttrium (ppm)	10:10	.28	1.70	
Zinc (ppm)	10:10	15	1.50	.1160 9.2-26
Zirconium (ppm)	10:10	.78	1.65	,39-1.6

The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table II. -- Summary Statistics for the element content of dry material of created wheatgrass from the Seminoe Number 2 mine, Wyoming

[ppm, parts per million; <, less than; lesders (--), mean no data; ratio is the proportion of the number of analyses having values above the lower limit of determination to the total number of analyses; variable lower limits of determination are obtained when converting concentrations on an ash-weight basis to a dry-weight basis, however only the largest value is reported]

Element or		Geometric	Geometric	Observed
ash	Ratio	mean	deviation	TARRE
Ash (percent)	10:10	5.1	1.08	4.6-6.3
Aluminum (ppm)	10:10	500	1.41	280-740
Arsenic (ppm)	10:10	.37	1.67	.1570
Barium (ppm)	10:10	5.8	1.59	2.9-12
Beryllium (ppm)	6:10	1.10	¹ 1.46	<.1123
Boron (ppm)	10:10	6.8	1.44	3.1-10
Cadmium (ppm)	6:10	¹.027	¹ 2.01	<.021083
Calcium (percent)	10:10	.27	1.13	.2233
Cerium (ppm)	1:10			<5.9-5.0
Chromium (ppm)	9:10	1.45	11.90	<.1088
Cobalt (ppm)	9:10	1,066	¹1.52	<.04611
Copper (ppm)	10:10	3.4	1.35	1.5-3.8
Pluorine (ppm)	10:10	8.0	1.36	5-14
Germanium (ppm)	8:10	1.11	11.37	<.1121
Iton (ppm)	10:10	180	1.26	140-260
Lenthanum (ppm)	5 :10	11.8	11.67	<.49-1.5
Lead (ppm)	10:10	.71	1.24	.58-1.2
Lithium (ppm)	10:10	.47	2.16	.21-1.5
Magnesium (percent)	10:10	.088	1,20	.06811
Manganese (ppm)	10:10	22	1.60	12-63
Mercury (ppm)	10:10	.017	1.66	.0104
Molybdenum (ppm)	10:10	.23	1.35	.1540
Nickel (ppm)	10:10	.24	1.43	.1550
Niobium (ppm)	3:10			<.4982
Phosphorus (percent)	10:10	.064	1.16	.048080
Potasalum (percent)	10:10	1.1	1.14	,95~1,4
Selenium (ppm)	10:10	.054	1.45	.0410
Sodium (ppm)	10:10	34	1.22	25-45
Strontium (ppm)	10:10	6.6	1.60	4.0-22
Sulfur (total) (ppm)	10:10	1,200	1.18	900-1,500
Titanium (ppm)	10:10	9.0	1.40	5.4-15
Uranium (ppm)	10:10	.057	1.21	.039~.076
Vanedium (ppm)	10:10	,60	1.47	.34-1.2
Yttrium (ppm)	10:10	.26	1.47	.1548
Zinc (ppm)	10:10	9.5	1.14	7.8-11
Zirconium (ppm)	10:10	,60	1.38	.3695

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 12 -- Summary statistics for the element content of dry material of intermediate wheatgrass from the Energy Fuels mine, Colorado

Element or		Geometric	Geometric	Observed
ash	Ratio	mean	devistion	range
Ash (percent)	10:10	5.6	1.13	4.7-7.1
Aluminum (ppm)	10:10	360	1.66	160 <i>-</i> 640
Areenic (ppm)	10:10	.16	1.72	-1040
Barium (ppm)	10:10	9.0	1.56	4.5-18
Beryllium (ppm)	6:10	1.13	11.70	<.1435
Boron (ppm)	10:10	6.4	1.92	1.6-18
Cadmium (ppm)	9:10	1.060	¹ 2.56	<.01939
Calcium (percent)	10:10	.19	1.17	.1526
Cerium (ppm)	0:10			<6. 6-
Chromium (ppm)	10:10	.55	1.42	.33-1.0
Cobalt (ppm)	4:10	1.048	¹ 1.43	<.07111
Copper (ppm)	10:10	1.0	. 1.16	.76-1.3
Fluorine (ppm)	10:10	6.2	1.13	6-8
Germanium (ppm)	7:10	¹ .14	¹1.70	<.1332
Iron (ppm)	10:10	150	1.51	91-260
Lanthanum (ppm)	2:10		·	<.66-1.6
Lead (ppm)	10:10	.76	1.48	.43-1.6
Lithium (ppm)	8:10	¹.30	11.73	<.2668
Magnesium (percent)	10;10	.073	1.28	.04711
Manganesc (ppm)	10:10	19	2.14	7.0-55
Mercury (ppm)	9:10	1,013	11.59	<.0103
Molybdenum (ppm)	10:10	,25	2.10	.12-1.7
Nickel (ppm)	9:10	1.24	11.97	<.1064
Niobium (ppm)	5:10	1.52	11.55	<.66-1.1
Phosphorus (percent)	10:10	.064	1.38	.029087
Potassium (percent)	10:10	.56	1.38	.2680
Selenium (ppm)	10:10	.17	1.45	.1025
Sodium (ppm)	10:10	23	1.34	16-37
Strontium (ppm)	10:10	6.9	2.05	3.3-24
Sulfur (total) (ppm)	10:10	810	1.32	550-1,30
Titanium (ppm)	7:10	17.4	¹ 1.74	<6.0-14
Uranium (ppm)	6:10	i .022	11.54	<.028068
Vanadium (ppm)	9:10	1.37	12.08	<.10-1.1
Yttrium (ppm)	9:10	1.24	11.66	<.1049
2inc (ppm)	10:10	10	1.43	5.2-16
Zirconium (ppm)	10:10	.70	1.65	.39-1.8

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 11 -- Summary statistics for the element content of dry material of intermediate wheatgrass from the Seneca Number 2 mine, Colorado

Element or		Geometric	Geometric	Observed
ash ·	Ratio	me an	deviation	range
Ash (percent)	10:10	6.8	1.16	5.8-9.9
Aluminum (ppm)	10:10	270	1.64	130-480
Arsenic (ppm)	10:10	.33	2.00	.15-1.0
Barium (ppm)	10:10	6.7	1.64	3.0-20
Beryllium (ppm)	7:10	1.15	11.44	<.2026
Boron (ppm)	10:10	5.1	1.26	3.5-7.3
Cadmium (ppm)	8:10	i .036	¹ 1.86	<.04011
Calcium (percent)	10:10	-18	1.22	.14-,24
Cerium (ppm)	0:10	••		<9.2
Chromium (ppm)	10:10	.47	1.39	.3077
Cobalt (ppm)	4:10	1.051	11.61	<.09913
Copper (ppm)	10:10	1.1	1.62	.69-3.5
Fluorine (ppm)	10:10	7.5	1.22	6-10
Germanium (ppm)	5:10	i.13	11.61	<.2025
Iron (ppm)	10:10	100	1.52	57-190
Lanthanum (ppm)	3:10		,	<.92-2.0
Lead (ppm)	10:10	. 84	1.23	.69-1.3
Lithium (ppm)	6:10	1,27	11.23	<.4038
Magnesium (percent)	10:10	.10	1.27	.07516
Manganese (ppm)	10:10	16	1.51	8.0-37
Manganese (ppm)	10,10	10	1.7	210-37
Mercury (ppm)	8:10	1,010	11.33	<.0102
Molybdenum (ppm)	10:10	. 36 · 1 .14	1.76	.19-1.2
Nickel (ppm)	6:10	· 1.14	11.61	<.20-30
Niobium (ppm)	2:10	r=	= 4	<.9277
Phosphorus (percent)	10:10	.051	1.20	.041~.069
Potassium (percent)	10:10	1.2	1.36	.64-2.0
Selenium (ppm)	10:10	.19	1.77	.0645
Sodium (ppm)	10:10	40	1.22	29-59
Strontium (ppm)	10:10	5.0	1.47	3.1-9.0
Sulfur (total)(ppm)	10:10	890	1.42	500-2,000
Titanium (ppm)	6:10	16.4	11.50	<9.2-11
Uranium (ppm)	9:10	1,030	11.52	<.023086
Vanadium (ppm)	9:10	1.25	. 1,60	<.2050
Yttrium (ppm)	10:10	,21	1.44	.12 36
Zinc (ppm)	10:10	11	1.34	7.9-18
Zirconium (ppm)	10;10	.63	1.37	.38~.90

The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 14 -- Summary statistics for the clement content of dry material of intermediate wheaterass from the Husky mine, North Dakota

Element or		Geometric	Geometric	Observed
ash	Ratio	mean	deviation	range
Ash (percent)	10:10	4.6	1.10	4.0-5.3
Aluminum (ppm)	10:10	660	1.60	320-1,20
Armenic (ppm)	10:10	. 38	1.38	.2565
Berium (ppm)	10:10	38	1.68	16-87
Beryllium (ppm)	9:10	1,18	11.46	<.09431
Boron (ppm)	10:10	13	1.26	9.0-18
Cadmium (ppm)	10:10	.039	1.68	.01810
Calcium (percent)	10:10	.20	1.15	.1523
Cerium (ppm)	5:10	¹ 4.0	¹ 1.35	<4.9-6.2
Chromium (ppm)	10:10	.70	1.41	.48-1.3
Cobalt (ppm)	9:10	1.059	11.50	<.05111
Copper (bbu)	10:10	1.1	1.44	.51-1.7
Fluorine (ppm)	10:10	5.7	1.18	5-8
Germanium (ppm)	6:10	1.11	¹ 1.58	<.1021
fron (ppm)	10:10	280	1.61	120-510
Lanthanum (ppm)	6:10	1.66	12.14	<.48-2.3
Lead (ppm)	10:10	1.2	1.47	.61-2.4
Lithium (ppm)	8:10	1.21	¹ 1.38	<.2138
Magnesium (percent)	10:10	.072	1.14	.057091
Manganese (ppm)	10:10	39	1.77	12-69
Mercury (ppm)	10:10	.019	1.30	.0103
Molybdenum (ppm)	10:10	.31	1.48	.1458
Nickel (ppm)	10:10	. 36	2.02	.09083
Niobium (ppm)	8:10	1.65	11.65	<.47-1.4
Phosphorus (percent)	10:10	.023	1.12	.020027
Potassium (percent)	10:10	.33	1.37	.2258
Selenium (ppm)	10:10	.054	1.51	- 041 5
Sodium (ppm)	10:10	59	1.91	36-310
Strontium (ppm)	10:10	19	1.52	9.9-32
Sulfur (total) (ppm)	10:10	620	1.24	. 450-800
Titanium (ppm)	10:10	16	2.07	5.2-44
Uranium (ppm)	10:10	.038	1.34	.018053
Vanadium (ppm)	10:10	.76	2.06	.24-1.8
Yttrium (ppm)	10:10	.46	1.54	.2378
Zinc (ppm)	10:10	9.6	1.18	7.3-12
Zirconium (ppm)	10:10	1.2	1.69	.56-2.6

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 15. -- Summary statistics for the element content of dry material of intermediate wireatgrass from the South Beulah mine, North Dakora

Element or		Geometric	Geometric	Observed
ash .	Ratio	mean	deviation	range
Ash (percent)	10:10	5.4	1.13	4.6-6.8
(mqq) mualmulA	10:10	480	1.42	280-840
Arsenic (ppm)	10:10	.66	2.25	.25-2.5
Barium (ppm)	10:10	15	1.43	11-35
Beryllium (ppm)	7:10	1.13	11.75	<.1140
Boron (ppm)	10:10	7.7	1.50	4.0-16
Cadmium (ppm)	9:10	¹ .030	11.55	<.02106
Calcium (percent)	10:10	.18	1.08	.1621
Cerium (ppm)	1:10			<6.3 -6 .6
Chromium (ppm)	10:10	.49	1.30	.3884
Cobalt (ppm)	10:10	.076	1.41	.04612
Copper (ppm)	10:10	1.0	1.26	-69-1.5
Fluorine (ppm)	10:10	6.3	1.17	5-8
Sermanium (ppm)	8:10	1.12	¹ 1.38	<.1220
Iron (ppm)	10:10	200	1.40	130-480
Lanthanum (ppm)	6:10	11.4	¹ 1.68	<.63-1.5
Lead (ppm)	10:10	1.0	1.37	.75-2.2
Lithium (ppm)	3:10		~~	<.2434
Magnesium (percent)	10:10	.055	1.09	.04906
Manganese (ppm)	10:10	30	1.58	18-90
Mercury (ppm)	10:10	.013	1.43	.0102
Molybdenum (ppm)	10:10	.27	1.46	.1866
Nickel (ppm)	10:10	25	1.71	.1478
Riobium (ppm)	3:10	~ •		<.52-1.5
Phosphorus (percent)	10:10	.039	1.26	.02305
Potassium (percent)	10:10	.21	1.20	.1731
Salenium (ppm)	10:10	.088	1.31	.0615
Sodium (ppm)	10:10	30	1.17	25-40
Strontium (ppm)	10:10	15	1.36	9.5-32
Sulfur (total) (ppm)	10:10	440	1.10	400-500
Titanium (ppm)	10:10	9.2	1.35	5.4-20
Vrantum (ppm)	10:10	.047	1.19	.0370.06
Vanadium (ppm)	10:10	.43	1.86	.18-1.6
Yttrium (ppm)	10:10	. 30	1.52	.1766
2 inc (ppm)	10:10	12	1,12	9.7-15
Zirconium (ppm)	10:10	.76	1.46	.52-1.7

The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 16 -- Summary statistics for the element content of dry material of intermediate wheatgrass from the Velva mine, North Dakota

Element or		Geometric	Geometric	Observed
#sh ·	Ratio	mean.	deviation	Tange
Ash (percent)	10:10	7.5	1.10	6.6-8.9
Aluminum (ppm)	10:10	130	1.54	86-220
Arsenic (ppm)	10:10	.21	2.35	.05080
Barium (ppm)	10:10	11	1.67	4.1-22
Beryllium (ppm)	9:10	1.25	¹1.59	<.1846
Boron (ppm)	10:10	9.2	1.58	4,4-20
Cadmium (ppm)	6:10	¹.039	¹ 1.80	<.036090
Calcium (percent)	10:10	.18	1.11	.1621
Cerium (ppm)	2:10			<8.3-8.7
Chromina (bbm)	10:10	.30	1.56	.1853
Cobalt (ppm)	3:10			<.08120
Copper (ppm)	10:10	1.5	1.24	1.2-2.2
Fluorine (ppm)	10:10	4.8	1.30	4-8
Germanium (ppm)	7:10	1.18	11.79	<.1741
Iron (ppm)	10:10	54	1.50	31-98
Lanthanum (ppm)	5:10	11.1	¹ 2.42	<.83-3.8
Lead (ppm)	10:10	1.5	1.38	.98-2.4
Lithium (ppm)	1:10		••	<.3632
Magnesium (percent)	10:10	.044	1.13	.03605
Manganese (ppm)	10:10	44	2.06	13-100
Mercury (ppm)	10:10	.016	1.60	.0104
Molybdenum (ppm)	10:10	. 36	2.25	.19-2.4
Nickel (ppm)	4:10	1.13	12.74	<.1848
Niobium (ppm)	5:10	1,63	12.30	<.83-1.7
Phosphorus (percent)	10:10	.045	1.21	.03805
Potassium (percent)	10:10	.22	1.11	.1927
Selenium (ppm)	10:10	.098	1.50	.0620
Sodium (ppm)	10:10	24	1.25	18-39
Strontium (ppm)	10:10	10	1.53	5.6-26
Sulfur (total) (ppm)	10:10	440	1.14	400-680
Titanium (ppm)	2:10			<8.3-8.3
Uranium (ppm)	10:10	.058	1.32	.02808
Vanadium (ppm)	7:10	1.21	11.77	<.1883
Yttrium (ppm)	7:10	1.22	11.74	<.1848
Zinc (ppm)	10:10	15	1.11	12-28
Zirconium (ppm)	10:10	.64	1.32	.3695

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 17. -- Summary statistics for the element content of dry material of slender wheatgrass from the Absaloka mine, Montana

Element or		Geometric	Geometric	Observed
weh	Ratio	mest	deviation	range
Ash (percent)	10:10	3.7	1.26	2.7-5.1
Aluminum (ppm)	10:10	260	1.93	100-920
Arsenic (ppm)	10:10	.26	1.91	.15-1.2
Barium (ppm)	10:10	8.4	1.49	5.2-22
Beryllium (ppm)	5:10	¹.075	11.86	<.1032
Boron (ppm)	10:10	5.5	1.73	2.3-16
Cadmium (ppm)	7:10	1.017	12.04	<.01609
Calcium (percent)	10:10	.17	1.12	.1320
Cerium (ppm)	1:10			<4.7-5.6
Chromium (ppm)	10:10	- 32	1.30	.2256
Cobalt (ppm)	6:10	¹.040	¹ 1.55	<.051080
Copper (ppm)	10:10	.78	1.22	.58-1.0
Pluorine (ppm)	10:10	5.1	1.22	4-7
Germanium (ppm)	7:10	1.075	¹ 1.30	<.1011
Iron (ppm)	10:10	95	1.73	38-260
Lanthanum (ppm)	6:10	1.50	11.85	<.45-1.2
Lead (ppm)	10:10	.72	1.44	.55-1.8
Lithium (ppm)	3:10		^-	<.2016
Magnesium (percent)	10:10	.055	1.25	.04908
Hanganese (ppm)	10;10	22	1.73	13-87
Mercury (ppm)	10:10	.022	1.46	.0104
Molybdenum (ppm)	10:10	20	1.65	.1061
Nickel (ppm)	9:10	1.14	¹ 1.75	<.1051
Niobium (ppm)	1:10	~-		<.46-1.4
Phosphorus (percent)	10:10	.021	1.40	.010030
Potassium (percent)	10:10	.26	1,37	.1742
Selenium (ppm)	10:10	.025	1.40	.0204
Sodium (ppm)	10:10	23	1.22	19-32
Scrontium (ppm)	10:10	6.1	1.47	3.5-11
Sulfur (total)(ppm)	10:10	490	1.17	400-650
fitanium (ppm)	& 10	15.0	¹ 1.65	<4.7-14
Uranium (ppm)	10:10	.024	1.44	.014046
Vanadium (ppm)	9:10	1.15	11.54	<.10-1.0
Yetrium (ppm)	10:10	.16	1,63	.0743
Zinc (ppm)	10:10	12	1.38	7.0-21
Zirconium (ppm)	10:10	.52	1.68	.25-1.5

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 18 -- Summary statistics for the element content of dry material of slender wheatyrass from the Big Sky mine, Montana

Element or		Geometric	Geometric	Observed
nen	Ratio	mean	deviation	Tange
Ash (percent)	10:10	3.7	1.17	3.2-5.0
Aluminum (ppm)	10:10	510	1.37	280-740
Arsenic (ppm)'	10:10	.29	1.55	.1570
Barium (ppm)	10:10	8.7	1.42	5.8-17
Beryllium (ppm)	9:10	1.11	11.51	<.07220
Boron (ppm)	10:10	14	1.73	6.0-36
Cadmium (ppm)	9:10	1.027	¹ 1.53	<.020044
Calcium (percent)	10:10	.19	1.09	.1722
Cerium (ppm)	3:10			<4.7 -5.2
Chromium (ppm)	10:10	.48	1.55	.20~.78
Cobalt (ppm)	10:10	.057	1.43	.033096
Copper (ppm)	10:10	1.1	1.36	.70-2.0
Fluorine (ppm)	10:10	6.6	1.21	5-9
German tom (ppm)	7:10	¹.10	¹ 1.62	<.09620
Iron (ppm)	10:10	180	1.31	110-270
Lanthanum (ppm)	8;10	¹.56	12.21	<.33-1.9
Lead (ppm)	10:10	.74	1.31	.46-1.1
Lithium (ppm)	9:10	1.21	¹ 1.51	<.2043
Magnesium (percent)	10:10	.079	1.27	.05611
Manganese (ppm)	10:10	26	1.77	16-110
Mercury (ppm)	10:10	.021	1.38	.0103
Molybdeaum (ppm)	10:10	.60	2.25	.19-1.5
Nickel (ppm)	10:10	.27	1.46	.1438
Niobium (ppm)	5:10	1.37	¹ 1.80	<.4588
Phosphorus (percent)	10:10	.021	1.19	.017~.031
Potessium (percent)	10:10	. 36	1.34	.2258
Selenium (ppm)	10:10	.13	1.71	.0425
Sodium (ppm)	10:10	32	1.27	21-48
Strontium (ppm)	10:10	8.2	1.48	4.9-15
Sulfur (total)(ppm)	10:10	470	1.22	. 400-700
Titanium (ppm)	10:10	9.9	1.49	5.0-15
Branium (ppm)	10:10	.050	1.33	.026079
Vanadium (ppm)	10:10	.43	1.76	.1885
Yttrium (ppm)	10:10	.29	1.53	.1545
Zinc (ppm)	10:10	14	1.41	8.1-26
Zirconium (ppm)	101 10	.81	1.70	.39-1.7

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 19. -- Summary statistics for the element content of dry material of alender wheatyrass from the Docker mine, Montana

Element or		Geometric	Geometric	Observed
ash .	Ratio	7.8.9to	deviation	range
Ash (percent)	10:10	5.5	1.22	4.0-8.2
Aluminum (ppm)	10:10	440	1.36	290-810
Arsenic (ppm)	10:10	.23	1.52	.1545
Barium (ppm)	10:10	18	1.53	7.2-33
Beryllium (ppm)	9:10	1.17	11-55	<.1130
Вогоп (ррш)	10:10	3.6	1.60	1.4-5.8
Cadmium (ppm)	5:10	1.019	¹ 2.13	<.02405
Calcium (percent)	10:10	.18	1.18	.1322
Cerium (ppm)	3:10			<7.6-7.5
Chromium (ppm)	9:10	1.41	11.77	<.1287
Cobalt (ppm)	6:10	¹.052	11.53	<.06018
Copper (ppm)	10:10	.87	1.35	.40-1.2
Pluorine (ppm)	10:10	5 . 6	1.34	3-8
Germanium (ppm)	10:10	.22	1.45	.12-,41
Iron (ppm)	10:10	170	1.45	110-350
Lanthanum (ppm)	5 :10	1.40	12.86	<.76-2.2
Lead (ppm)	10:10	1.1	1.47	.64-1.9
Lithium (ppm)	8:10	1.34	12.11	<.23-1.3
Magnesium (percent)	10:10	.070	1.32	.04812
Manganese (ppm)	10:10	61	1.73	31-160
Mercury (ppm)	10:10	.014	1.44	.0102
Molybdenum (ppm)	10:10	.33	2.32	.12-2.2
Nickel (ppm)	10:10	. 32	1.72	.1870
Niobium (ppm)	5:10	1.43	12.10	<.76-1.1
Phosphorus (percent)	10:10	.027	1.27	.01904
Potassium (percent)	10:10	.22	1.36	.1636
Selenium (ppm)	10:10	. 057	1.41	.0410
Sodium (ppm)	10:10	72	2.01	37-240
Strontium (ppm)	10:10	24	1.58	13-44
Sulfur (total)(ppm)	10:10	440	1.12	400-500
Titanium (ppm)	9:10	17.9	11.48	<7.6-17
Dranium (bbw)	10:10	.061	1.30	.03308
Vanadium (ppm)	10:10	.45	1.81	.20-1.2
Yttrium (ppm)	10:10	.27	1.50	.1351
Zinc (ppm)	10:10	8.7	1.28	6.6-14
Zirconium (ppm)	10:10	.80	1.41	.48-1.3

The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 20. -- Summary statistics for the element content of dry material of

alfalfa from the Energy Fuels mine, Colorado

Element or		Geometric	Geometric	Observed
ash ,	Ratio	me 4 n	deviation	range
Ash (percent)	10:10	9.0	1.20	6,7-13
Aluminum (ppm)	10:10	560	1.29	400-950
Arsenic (ppm)	10:10	.31	1.39	.1545
Barium (ppm)	10:10	15	1.30	10-28
Beryllium (ppm)	0:10		~ =	<.26
Boron (ppm)	10:10	54	1.49	29-92
Cadmium (ppm)	10:10	.12	1.71	.06026
Calcium (percent)	10:10	2.6	1.21	2.0-4.0
Cerium (ppm)	2:10		••	< 10- 13
Chromium (ppm)	10:10	.56	1.26	.46-1.0
Cobalt (ppm)	6:10	1.084	11.78	<.09319
Copper (ppm)	10:10	5.6	1.22	3.9-7.2
Fluorine (ppm)	10:10	6.6	1.25	5-9
Garmanium (ppm)	1:10			<.2621
Iron (ppm)	10:10	170	1.24	120-220
Lanthanum (ppm)	10:10	1.8	1.86	.87-4.2
Lead (ppm)	10:10	.97	1.21	.74-1.3
Lithium (ppm)	10:10	.76	2.01	.46-3.8
Magnesium (percent)	10:10	.38	1.81	.1686
Manganese (ppm)	10:10	24	1.48	15-56
Mercury (ppm)	10:10	.015	1.53	.0103
Molybdenum (ppm)	10:10	2.0	1.81	.54-4.3
Nickel (ppm)	10:10	69	2.00	.36-3.1
Niobium (ppm)	6:10	1.74	11.66	<1.0-1.4
Phosphorus (percent)	10:10	.089	1.38	.05414
Potassium (percent)	10:10	.82	1.25	.59-1.0
Selenium (ppm)	10:10	.39	1.81	.20~1.4
Sodium (ppm)	10:10	40	1.56	22-70
Strontium (ppm)	10:10	78	1.52	48-190
Sulfur (total) (ppm)	10:10	2,600	1.46	1,600-4,700
Titanium (ppm)	9:10	19.8	¹1.30	<10-14
Uranium (ppm)	8:10	1.029	11.32	<.052~.069
Vanad tum (ppm)	10:10	.64	1.31	.49-1.0
Yttrium (ppm)	10:10	.59	1.54	.34-1.6
Zinc (ppm)	10:10	18	1.46	11-40
Zirconium (ppm)	10:10	1.5	1.28	1.0-2.0

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 21. -- Summary statistics for the element content of dry material of slfalfa from the Seneca Number 2 mine, Colorado

Element or		Geometric	Geometric	Observed
ash	Ratio	mean	deviation	range
Ash (percent)	10:10	6.8	1.26	4.4-10
Aluminum (ppm)	10:10	440	1.71	170-1,100
Arsenic (ppm)	10:10	.56	2.26	.25-3.0
Barium (ppm)	10:10	8.2	2.13	3.3-47
Beryllium (ppm)	0:10		-	<.20
Boron (ppm)	10:10	52	1.46	29-84
Cadmium (ppm)	9:10	1.10	¹ 2.22	<.04043
Calcium (percent)	10:10	1.7	1.44	.88-2.9
Cerium (ppm)	2:10	~=		<9.3-7.2
Chromium (ppm)	10:10	.45	1.46	.2572
Cobalt (ppm)	5:10	1.061	11.46	<.1011
Copper (ppm)	10:10	5.3	1.78	1.1-8.0
Fluorine (ppm)	10:10	6.6	1.25	4-8
Germanium (ppm)	1:10	₩.₩		<.2019
Iton (ppm)	10:10	120	1.42	79-250
Lanthanum (ppm)	9:10	11.2	11.91	<.59-3.4
Lead (ppm)	10:10	. 82	1.38	.54-1.4
Lithium (ppm)	9:10	1.54	11.72	<.18-1.1
Magnesium (percent)	10:10	.42	1.51	.2164
Manganesa (ppm)	10:10	17	1.65	9.0-33
	9110	1.011	¹1.37 ·	<.0102
Mercury (ppm)	10:10	1.2	1.48	.50-1.9
Molybdenum (ppm)	10:10	.50	1.56	.22-1.1
Nickel (ppm)	4:10	1.49	11.87	<.83-1.3
Phosphorus (percent)	10:10	.067	1.25	.063088
Potassium (percent)	10:10	. 70	1.30	.4697
Selenium (ppm)	10:10	.32	2.06	.1090
Sodium (ppm)	10:10	96	2.77	35-630
Strontium (ppm)	10:10	37	1.46	20-72
Sulfur (total) (ppm)	10:10	1,700	1.38	. 950-2, 800
Titanium (ppm)	7:10	17.8	¹ 1.66	<7.1-20
Uranium (ppm)	10:10	.048	1.68	.023~.12
Vanadium (ppm)	10:10	.34	1.95	.13-1.3
Yttrium (ppm)	10:10	.35	1.52	.19~.66
Zinc (ppm)	10:10	21	1.43	12-35
Zirconium (ppm)	10:10	.97	1,74	.47-2.8

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 22. -- Summary statistics for the element content of dry material of alfalfa from the Husky mine, North Dakota

Element or		Geometric	Geometric	Observed
a sh	Ratio	to€ #11.	deviation	range
Ash (percent)	10:10	4.8	1.10	4.3-5.6
Aluminum (ppm)	10:10	460	1.53	230-990
Arsenic (ppm)	10:10	.22	1.28	.1530
Bartum (ppm)	10:10	38	1.49	20-85
Beryllium (ppm)	1:10			<.1113
Borom (ppm)	10:10	27	1.36	19-47
Cadmium (ppm)	10:10	.064	1.26	.04410
Calcium (percent)	10:10	.94	1.14	.83-1.2
Cerium (ppm)	1:10			<5.1-5.1
Chromium (ppm)	10:10	-48	1.35	.3385
Cobalt (ppm)	10:10	.081	1.43	.04613
Copper (ppm)	10:10	5.3	1.18	4.2-7.2
Fluorine (ppm)	10:10	6.3	1.19	5-8
Germanium (ppm)	0:10		**	<.11
Iron (ppm)	10:10	200	1.47	120-450
Lenthagum (ppm)	9:10	¹.75	¹1.87	<.49-2.4
Lead (ppm)	10:10	.73	1.45	.44-1.6
Lithium (ppm)	10:10	1.2	1.66	.58-2-4
Magnesium (percent)	10:10	.26	1.19	.2135
Manganese (ppm)	10:10	13	1.76	7.0-44
Mercury (ppm)	10:10	.011	1.34	.0102
Molybdenum (ppm)	10:10	1.5	1.93	.88-5-5
Nickel (ppm)	10:10	.52	1.58	.35-1.2
Miobium (ppm)	3:10			<.5171
Phosphorus (percent)	10:10	.060	1.24	.047088
Potassium (percent)	10:10	. 80	1.15	.66-1.0
Selenium (ppm)	10:10	.17	1.70	.1045
Sodium (ppm)	10:10	250	1.82	120-700
Strontium (ppm)	10:10	62	1.63	38-160
Sulfur (total) (ppm)	10:10	1,200	1,20	850-1,400
Titanium (ppm)	10:10	9.2	1.64	5.3-26
Uranium (ppm)	10:10	.098	1.44	.06220
Vanadium (ppm)	10:10	.41	2.08	.12-1.8
Yttrium (ppm)	10:10	. 32	1.54	.1570
Zinc (ppm)	10:10	15	1.17	12-18
Zirconium (ppm)	10:10	.98	1.63	.44-2.8

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 23. -- Summary statistics for the element content of dry material of alfalfa from the South Beulah mine, North Dakota

Element or		Geometric	Geometric	Observed
#sh ·	Ratio	mean.	deviation	range
Ash (percent)	10:10	6.4	1.16	4.8-7.7
Aluminum (ppm)	10:10	540	1.63	260-1,400
Arsenic (ppm)	10:10	-95	1.78	.40-2.5
Barium (ppm)	10:10	22	1.41	12 - 35
Beryllium (ppm)	2:10			<.1521
Boron (ppm)	10:10	48	1.60	31-120
Cadmium (ppm)	10:10	. 20 .	1.98	.08788
Calcium (percent)	10:10	1.6	1.24	1.1-2.2
Cerium (ppm)	3:10			<6.9-12
Chromium (ppm)	10:10	.56	1.44	.38-1.2
Cobalt (ppm)	9:10	¹.28	¹3.82	<.060-2.0
Copper (ppm)	10:10	6.3	1.21	4.9-9.0
Fluorine (ppm)	10:10	6.3	1.12	5-7
Germanium (ppm)	0:10		4#	<.15
Iron (ppm)	10:10	240	1.55	140-560
Lanthanum (ppm)	6:10	¹.71	12 ₋₉₄	<.69-4.3
Lead (ppm)	10:10	1.0	1.47	.60-2.2
Lithium (ppm)	10:10	1.2	2.32	48-4.5
Magnesium (percent)	10:10	.30	1.19	.22~.38
Magnesium (percent)	10:10	31	2.34	11-160
Manganese (ppm)	10:10	34	2 2 34	11-100
Mercury (ppm)	10:10	.018	1.53	.0103
Molybdenum (ppm)	10:10	1.6	2.02	.43-5.8
Nickel (ppm)	10:10	1.0	3.04	.30-6.6
Niobium (ppm)	5:10	1.58	12.24	<.6 9-2.3
Phosphorus (percent)	10:10	.060	1.11	.053074
Potassium (percent)	10:10	.78	1.13	.6092
Selenium (ppm)	10:10	.12	1.37	.08-,20
Sodium (ppm)	10:10	240	1.62	110-390
Strontium (ppm)	² 7:10	170	1.76	77-> 220
Sulfur (total) (ppm)	10:10	1,700	1.32	1,300-2,800
Titanium (ppm)	9:10	18.9	¹ 1.66	6.7-25
Uranium (ppm)	10:10	.041	1.70	.02211
Vanadium (ppm)	10:10	.51	1.97	.23-2.3
Yttrium (ppm)	10:10	.37	1,80	.14-1.4
Zinc (ppm)	10:10	20	1.52	12-57
Zirconium (ppm)	10:10	1.1	1.60	.66-3.6

The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Ratios for the number of values below the upper limit of determination to the number of samples analyzed.

Table 2. -- Summary statistics for the element content of dry material of alfalfa from the Velva mine, North Dakota

Element or		Geometric	Geometric	Observed
ash .	Ratio	mean	deviation	
Ash (percent)	10:10	6.7	1.10	5.9-7.8
Aluminum (ppm)	10:10	150	1.85	72 - 380
Arsenic (ppm)	10:10	.53	1.74	.30-1.1
Barium (ppm)	10:10	10	1.81	3.9-20
Beryllium (ppm)	4:10	1.12	11.67	<.1427
Boron (ppm)	10:10	66	1.65	28-130
Cadmium (ppm)	10:10	.075	1.57	.04618
Calcium (percent)	10:10	1.6	1.20	1.2-2.3
Cerium (ppm)	3:10			<7.3-11
Chrowium (ppm)	10:10	.27	1.71	.1258
Cobalt (ppm)	2:10		••	<.07716
Copper (ppm)	10:10	8.7	1.29	6.1-12
Fluorine (ppm)	10:10	5.0	1.19	4-6
Germanium (ppm)	2:10		••	<.1621
Iron (ppm)	10:10	75	1.72	33-170
Lanthanum (ppm)	7:10	11.0	13.54	<.58-4.6
Lead (ppm)	10:10	1.0	1.64	.48-2.6
Lithium (ppm)	10:10	5.8	1.33	3.9-9.4
Magnesium (percent)	10:10	.25	1.26	.1937
Manganese (ppm)	10:10	26	1.82	13-77
Mercury (ppm)	10:10	-014	1.62	.01-,03
Molybdenum (ppm)	10:10	4.2	1.75	1.9-9.0
Nickel (ppm)	10:10	.63	1.70	.23-1.3
Niobium (ppm)	4:10	1.48	12.93	<.66-2.2
Phosphorus (percent)	10:10	.088	1.26	.05912
Potassium (percent)	10:10	1.0	1.16	.78-1.3
Selenium (ppm)	10:10	. 37	1.34	.2555
Sodium (ppm)	10:10	93	1.93	38-270
Strontium (ppm)	10:10	100	1.67	54 - 210
Sulfur (cotal) (ppm)	10:10	1,700	1.28	1,200-2,700
Titanium (ppm)	2:10	•-		<7.3-7.7
Uranium (ppm)	10:10	.085	2.00	.05023
Vanadium (ppm)	6:10	1.18	13.70	<.16-1.2
Yttrium (ppm)	8:10	1.17	11.71:	<.1345
Zinc (ppm)	10:10	22 .	1.32	15-33
Zirconium (ppm)	10:10	159	1.60	.42-1.6

¹The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 25. -- Summary statistics for the element content of dry material of

alfalfa from the Big Sky mine, Montana

Element or		Geometric	Geometric	Observed
ash		mean	deviation	
Ash (percent)	10:10	5.2	1,12	4.6-6.3
Aluminum (ppm)	10:10	660	1.61	290-1,400
Arsenic (ppm)	10:10	.31	1.66	.2085
Barium (ppm)	10:10	10	1.74	3.5-20 -
Beryllium (ppm)	1:10		-	<.1312
Boron (ppm)	10:10	48	1.58	26-90
Cadmium (ppm)	9:10	¹ .040	¹ 1.53	<.02562
Calcium (percent)	10:10	1.2	1.14	.99-1.4
Cerium (ppm)	4:10	14.2	¹ 1.36	<5.9~8.4
Chromium (ppm)	10:10	.55	1.42	.3595
Cobalt (ppm)	10:10	.11	1.48	.05618
Copper (ppm)	10:10	7.6	1.25	4.7-10
Fluorine (pom)	10:10	7.2	1.16	5~8
Germanium (ppm)	1:10			<.1313
Iron (ppm)	10:10	2 30	1.41	160-430
Lanthanum (ppm)	10:10	1.0	1.72	.50-3.0
Lead (ppm)	10:10	.78	1.41	.46-1.3
Lithium (ppm)	10:10	.52	1.34	.3073
Magnesium (percent)	10:10	.47	1.32	.2869
Manganese (ppm)	10:10	28	2.69	8.0-97
Mercury (ppm)	10:10	.022	2.06	.0109
Molybdenum (ppm)	10:10	4.3	1.66	2.3-12
Nickel (ppm)	10:10	. 82	1.91	.37-2.0
Niobium (ppm)	5:10	1.50	11.61	<.59-1.2
Phosphorus (percent)	10:10	.052	1.45	.023095
Potassium (percent)	10:10	•50	1.32	.3473
Selenium (ppm)	10:10	.20	1.61	.1045
Sodium (ppm)	10:10	80	1.66	38-150
Strontlum (ppm)	10:10	42	1.52	25-100
Sulfur (total) (ppm)	10:10	1,300	1.18	950-1,500
Titanium (ppm)	10:10	12	1.61	5.1-22
Uranium (ppm)	10:10	.048	1.42	.021067
Vanadium (ppm)	10:10	.49	2.03	.14-1.4
Yttrium (ppm)	10:10	.44	1.56	.1875
Zinc (ppm)	10:10	27	1.38	14-40
Zirconium (ppm)	10:10	1.4	1.58	.60-3.1

The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 26 -- Summary statistics for the element content of dry material of sandfain from the Absaloka mine, Montana

Element or		Geometric	Geometric	Observed
ash	Ratio	mean	deviation	range
Ash (percent)	10:10	3.4	1.16	2.6-3.8
Aluminum (ppm)	10:10	230	1.98	65 - 580
Arsenic (ppm)	10:10	.59	2.24	.10-1.2
Barium (ppm)	10:10	24	1.59	15+56
Beryllium (ppm)	3:10			<.08411
Boron (ppm)	10:10	20	1.59	11-43
Cadmium (ppm)	10:10	.081	1.71	.03117
Calcium (percent)	10:10	.78	1.18	.5994
Certum (ppm)	3:10			<3.9-5.8
Chromium (ppm)	10:10	.25	1.51	.1143
Cobalt (ppm)	10:10	.064	1.30	.039099
Copper (ppm)	10:10	2.0	1.22	1.5-2.9
Fluorine (ppm)	10:10	5,2	1.13	4-6
Germanium (ppm)	2:10			<.084086
Iron (ppm)	10:10	76	1.72	24-140
Lanthanum (ppm)	8:10	1.61	12.53	<.35-2.3
Land (ppm)	10:10	.64	1,56	.29-1.3
Lithium (ppm)	5:10	1,12	11.33	<.1620
Magnesium (percent)	10:10	.26	1.28	.1537
Manganese (ppm)	10:10	47	1.79	18-100
Mercury (ppm)	10:10	.016	1.51	.0103
Molybdenum (ppm)	10:10	1.6	2.35	.36-5.5
Nickel (ppm)	9:10	1.19	12.02	<.06043
Niobium (ppm)	6:10	1.35	11.67	<.3686
Phosphorus (percent)	10:10	.017	1.16	.015~.023
Potassium (percent)	10:10	. 39	1.60	.1865
Selenium (ppm)	10:10	.029	1.53	.0206
Sodium (ppm)	10:10	41	1.53	22-79
Strontium (ppm)	10:10	40	1.67	19-86
Sulfur (total) (ppm)	10:10	1,000	1.87	400-3,60
Titanium (ppm)	7:10	14.1	11.70	<3.6-8.4
Urenium (ppm)	10:10	.030	1.58	.010050
Vanadium (ppm)	9:10	1.20	12.44	<.06068
Yttrium (ppm)	10:10	.19	1.78	.07040
Zinc (ppm)	10:10	8.9	1.68	4.5-23
Zirconium (ppm)	10:10	. 70	1.89	.30-2.0

The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 27. -- Summary statistics for the element content of dry material of fourwing seltbush from the Jim Bridger mine, Wyoming

Element or		Geometric	Geometric	Observed
ash	Ratio	mean	deviation	range
Ash (percent)	10:10	10	1.12	8.1-12
Aluminum (ppm)	10:10	460	1.46	240-910
Arsenic (ppm)	10:10	.24	1.61	.1040
Berium (ppm)	10:10	4.4	1.57	2.3-12
Beryllium (ppm)	0:10		4-	<.24
Boron (ppm)	10:10	220	1.72	110-610
Cadmium (ppm)	10:10	.09.9	2.21	.03230
Calcium (percent)	10:10	.94	1.28	.57-1.4
Carium (ppm)	4:10	19.1	¹ 1.23	<11-12
Chromium (ppm)	10:10	-49	1.45	.2286
Cobalt (ppm)	10:10	.18	1.77	.08144
Copper (ppm)	10:10	4.9	1.22	4.4-7.0
Fluorine (ppm)	10:10	8.2	1.21	6-10
Germanium (ppm)	1:10			<.2430
Ixon (bbw)	10:10	140	1.48	63-290
Lanthanum (ppm)	6:10	¹ I.5	12.00	<2.2-4.1
Lead (ppm)	10:10	1.0	1.48	.51-1.8
Lithium (ppm)	10:10	-97	1.59	.32-1.5
Magnesium (percent)	10:10	. 82	1.25	.63-1.0
Manganese (ppm)	10:10	68	2.82	10-330
Mercury (ppm)	7:10	1,010	¹ 1.36	<.0102
Molybdenum (ppm)	10:10	.72	2.46	.23-5.1
Nickel (ppm)	9:10	¹ .79	12.12	<.16-1.8
Niobium (ppm)	3:10	~~	**	<1.1-1.4
Phosphorus (percent)	10:10	.11	1.20	.08114
Potassium (percent)	10:10	2.8	1.19	1.9-3.6
Selenium (ppm)	10:10	.70	1.63	.25-1.2
Sodium (ppm)	10:10	2,600	3.80	230-7,700
Strontium (ppm)	10:10	21	1.47	9.0-41
Sulfur (total) (ppm)	10;10	3,500	1.17	2,600-4,400
Titanium (ppm)	7:10	¹ 10	11.50	<10-20
Uranium (ppm)	7:10	1,038	11.25	<.048048
Vanadium (ppm)	8:10	1.35	12.14	<.22-1.3
Yttrium (ppm)	10:10	.43	1.48	.2484
Zinc (ppm)	10:10	66	1.33	52-110
Zirconium (ppm)	10:10	1.2	1.43	.66-2.3

The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Table 28. -- Summary statistics for the element content of dry material of

fourwing saltbush from the Decker mine, Montana

Element or		Geometric	Geometric	Observed
ash	Ratio	сели	deviation	range
Ash (percent)	10:10	9.9	1.24	6.1-13
Aluminum (ppm)	10:10	440	1.53	200-910
Arsenic (ppm)	10:10	.26	1.70	.1050
Barium (ppm)	10:10	8.1	1.51	3.7-14
Beryllium (ppm)	2:10			<.2625
Boron (ppm)	10:10	30	1.36	18-53
Cadmium (ppm)	9:10	¹.081	11.76	<.04818
Calcium (percent)	10:10	.96	1.43	.55-1.2
Cerium (ppm)	0:10			<12
Chromium (ppm)	10:10	.47	1.33	.2861
Cobalt (ppm)	10:10	.27	1.58	.1252
Copper (ppm)	10:10	4.5	1.33	3.0-6.6
Pluorine (ppm)	10:10	7.6	1.18	6-9
Germanium (ppm)	1:10			<.2619
Iron (ppm)	10:10	140	1.30	98-220
Lanthanum (ppm)	9:10	¹1.5	11.77	<1.1-3.8
Lead (ppm)	10:10	.90	1.20	.80-1.3
Lithium (ppm)	10:10	1.8	1.53	.82-3.8
Magnesium (percent)	10:10	.48	1.46	.3094
Manganese (ppm)	10:10	110	1.47	65-210
Mercury (ppm)	6:10	1.009	¹1.38	<.0102
Molybdenum (ppm)	10:10	.46	1.47	.29-1.0
Nickel (ppm)	10:10	2.5	1.48	1.4-4.7
Miobium (ppm)	3:10			<1.2-1.3
Phosphorus (percent)	10:10	.074	1.38	.05216
Potassium (percent)	10:10	3.1	1.20	2.2-3.8
Selenium (ppm)	10:10	. 32	1.75	.1590
Sodium (pom)	10:10	420	2.70	130-2,500
Strontium (ppm)	10:10	. 88	1.49	51-210
Sulfur (total) (ppm)	10:10	3,600	1.25	2,400-4,700
Titanium (ppm)	6:10	¹ 9.3	11.38	<12-16
Uranium (ppm)	2:10			<.052039
Vanadium (ppm)	9:10	1.30	11.41	<.1947
Yttrium (ppm)	9:10	. 1 . 29	11.27	<.19-,41
Zinc (ppm)	10:10	34	1.57	19-86
Zirconium (ppm)	10:10	.95	1.25	.67-1.2

The technique of Cohen (1959) was used to calculate the mean and deviation because there were one or more concentration values outside of the limits of determination of the analytical method used.

Methods section, the dry-weight conversion results in some variable LLD values.

For many of the mines, control samples of alfalfa were collected in nearby hay fields. Three samples of the control material are presented for comparison with the mine material. Where available, therefore, these data follow one another in the Appendix. Observations concerning these sets of data follow: (1) The alfalfa collected in a field 2 km east of the Big Sky mine has lower concentrations of aluminum, calcium, cobalt, copper, manganese, molybdenum, nickel, selenium, sulfur, titanium, uranium, zinc, and zirconium, and higher concentrations of barium, than did mine samples. (2) Control samples of alfalfa collected 4 km west of the Husky mine were higher in arsenic, boron, and lead than were samples collected at the mine (none of the elements were lower in concentration in the control samples when compared with the mine samples). (3) Alfalfa control samples collected 2 km southeast of the South Beulah mine had a lower concentration of sodium than did mine samples; however, the control samples were higher in barium (order of magnitude), lanthanum, niobium, phosphorus (order of magnitude), selenium. The higher ash yield of the control samples, compared to the mine samples, may be responsible for these differences; however, the reason for such a large discrepancy in ash yield is not apparent. Also, the high mercury value of 0.10 ppm in one of the control samples is also difficult to explain-it may be analytical error. (4) Samples of alfalfa collected in a field 5 km north of the Velva mine showed no concentration of elements lower than what was found in the mine samples. The control samples were higher, however, in aluminum, iron, lithium, sodium, phosphorus, and sulfur.

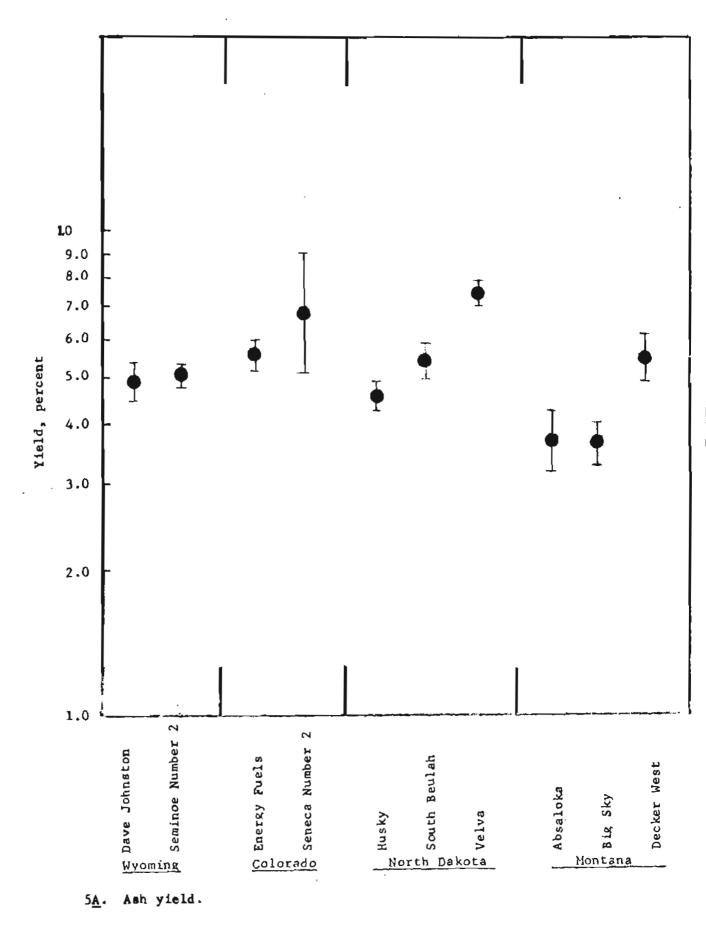
Crested wheatgrass was collected not only on a rehabilitation site at the Dave Johnston mine, but also at an area whose topsoil had been removed to a

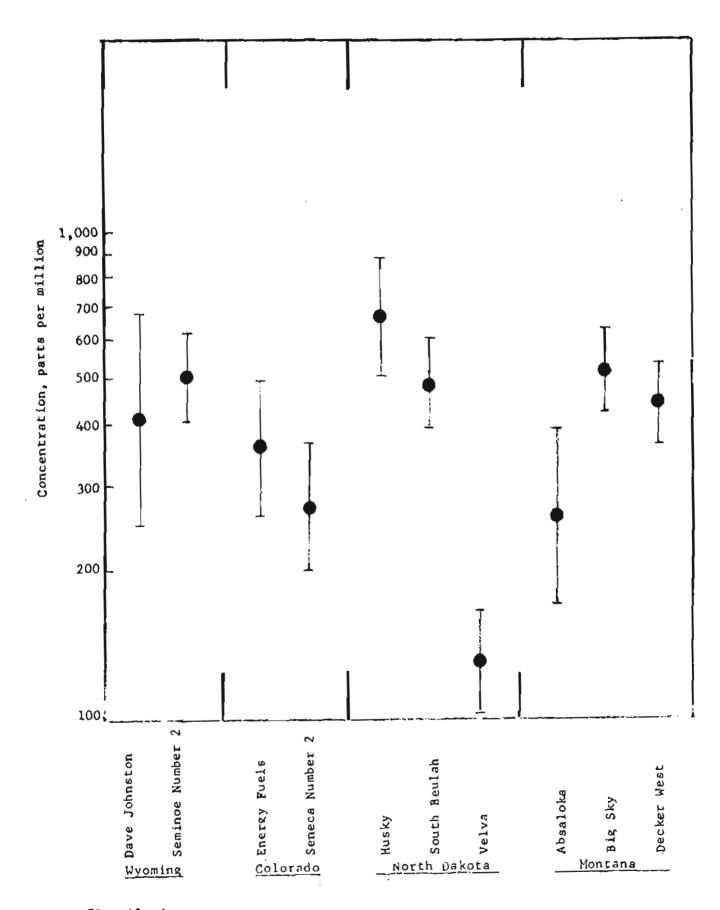
depth of several inches for use elsewhere. Data on the crested wheatgrass samples from this altered topsoil 'borrow' area is presented in the Appendix table as 'control' samples. The control samples and mine samples were similar in their concentrations of most elements; however, the control samples were higher in barium and lower in cadmium, potassium, and manganese. These comparisons, between control— and mine—samples, differ somewhat from element levels in similar materials collected in 1974 (Erdman and Ebens, 1979). Concentrations of cadmium, cobalt, fluorine, manganese, uranium, vanadium, and zinc in wheatgrass from mine sites were found by these authors to be from 3 to 20 times higher than those grown in the 'borrow' areas. Variables such as time since reclamation, degree of topsoil depth (reclamation methods), and minesoil heterogeneity from site—to—site probably contribute to these differences between studies.

Samples of green alder and diamondleaf willow were sampled both on and away from a rehabilitation area at the Usibelli mine, Alaska. The Appendix table lists the analytical results for the six samples of each of these woody species. Essentially no difference was observed in concentration of 34 elements and ash yield in alder between the control- and mine-samples. The willow samples were also similar, except for lanthanum which appeared to be somewhat higher in concentration in mine samples than in control samples. Of particular interest, however, were the concentrations of silver in the two species both on and off the rehabilitation site (table 8). Although silver was analyzed for in all of the samples listed in the Appendix, only the alder and willow samples from the Usibelli mine had detectable amounts (the LLD in ash, by the emission spectrographic method, was 0.92 ppm). Table 8 also shows that about twice as much silver was found in control samples of alder as in mine-sampled alder. Diamondleaf willow samples did not

show this same difference. These levels of silver, although anomalous for this data set, are not unusually high when compared to samples of plants growing in soils that are slightly acidic (Connor and Shacklette, 1975).

Comparison of Mine-Sampled Wheatgrasses


Figure 5 diagrams the geometric mean of ten samples of wheatgrass collected at each of ten different mine rehabilitation sites in four western states. Also shown are the confidence intervals about the mean. The width of the confidence interval defines the specific region within which the population mean $(\underline{\mu})$ occurs with a probability of 95 percent. Because both the geometric mean (GM) and geometric deviation (GD) were used in the calculation, instead of the mean and standard deviation, the following equation defines the confidence limits:


$$\log_{10} \text{ GM} - \frac{1.96 \text{ x } \log_{10} \text{ GD}}{\sqrt{n}} < \mu < \log_{10} \text{ GM} + \frac{1.96 \text{ x } \log_{10} \text{ GD}}{\sqrt{n}}.$$

Following the above calculation, the antilog of the confidence limits was determined and then plotted. A resampling of the same material at the same site would generate new GM and GD values and thus different confidence limits; however, 95 percent of the time the theoretical μ would fall within these limits.

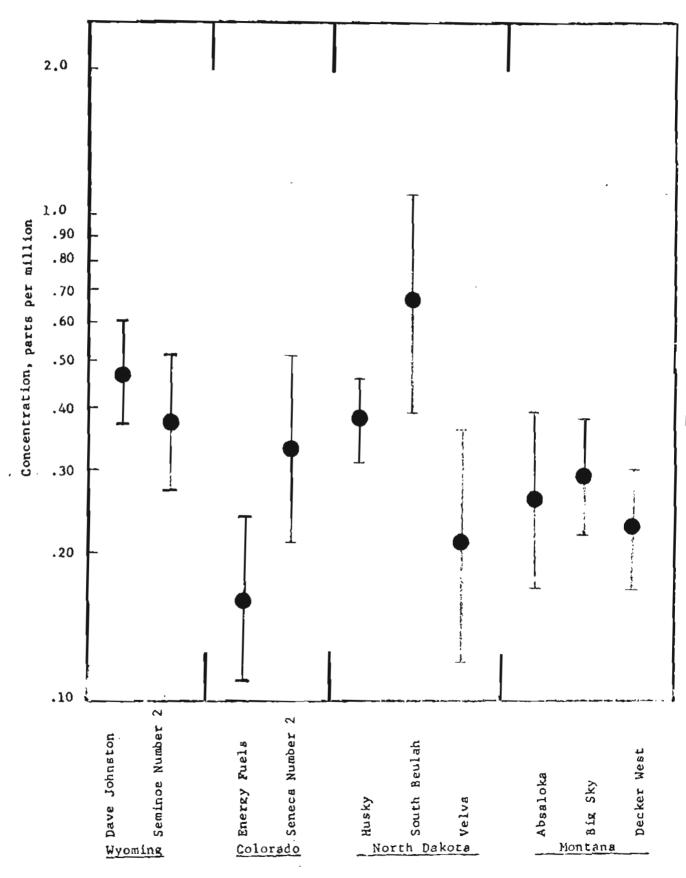
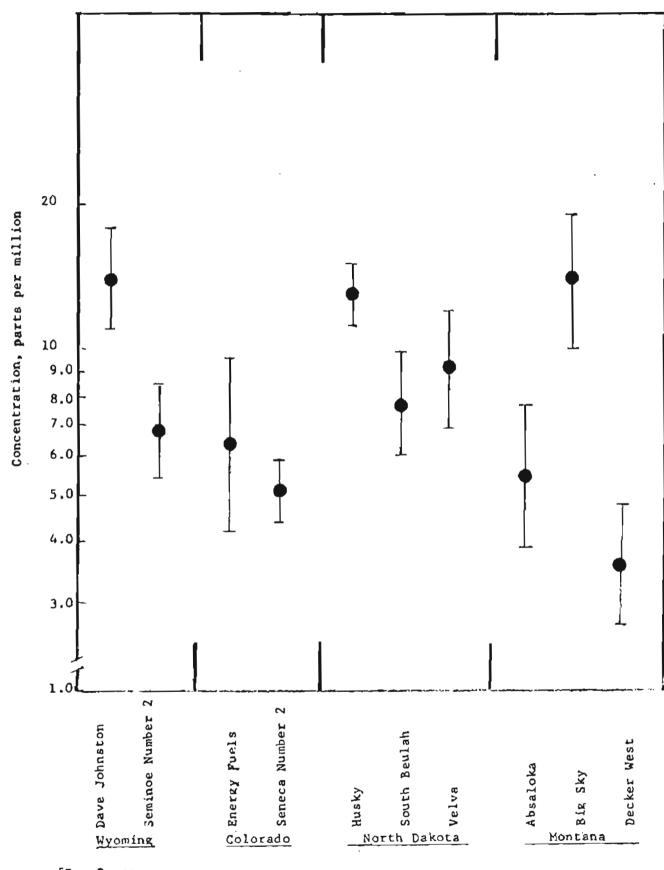
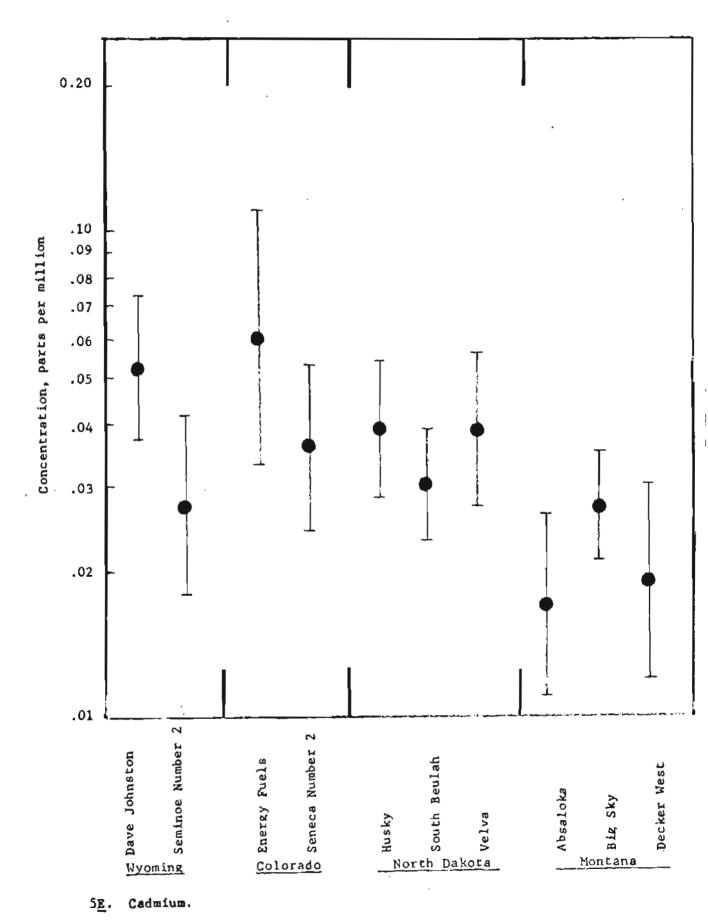
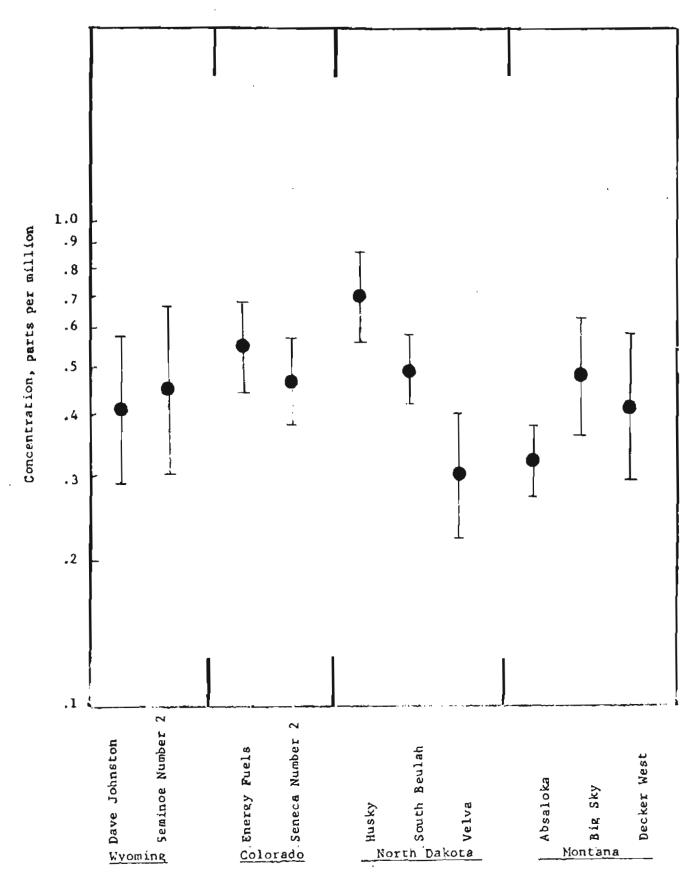

Data for three species of wheatgrasses are plotted together in Figure 5. Crested wheatgrass was sampled at the two Wyoming mines. The five mines in Colorado and North Dakota represent collections of intermediate wheatgrass, whereas slender wheatgrass was sampled at the three mines in Montana. Although interspecific physiological differences in element uptake may occur, Figure 5 shows that for most elements, the effects due to differences among

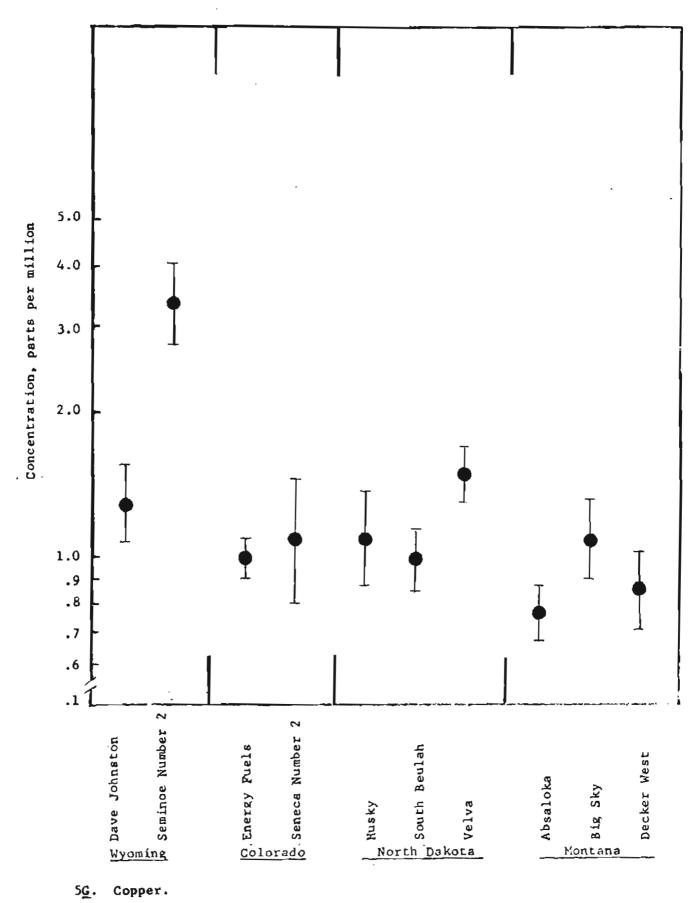
FIGURE 5. Geometric means (solid circles) and their confidence intervals (0.05 probability level) for the element content and ash yield of wheatgrass (dry-weight basis) at 10 western surface-mined coal rehabilitation sites. Ten samples at each site were used in the calculation of the mean and interval. The plants sampled were: Wyoming mines -- crested wheatgrass; Colorado and North Dakota mines -- intermediate wheatgrass; and Montana mines -- slender wheatgrass.

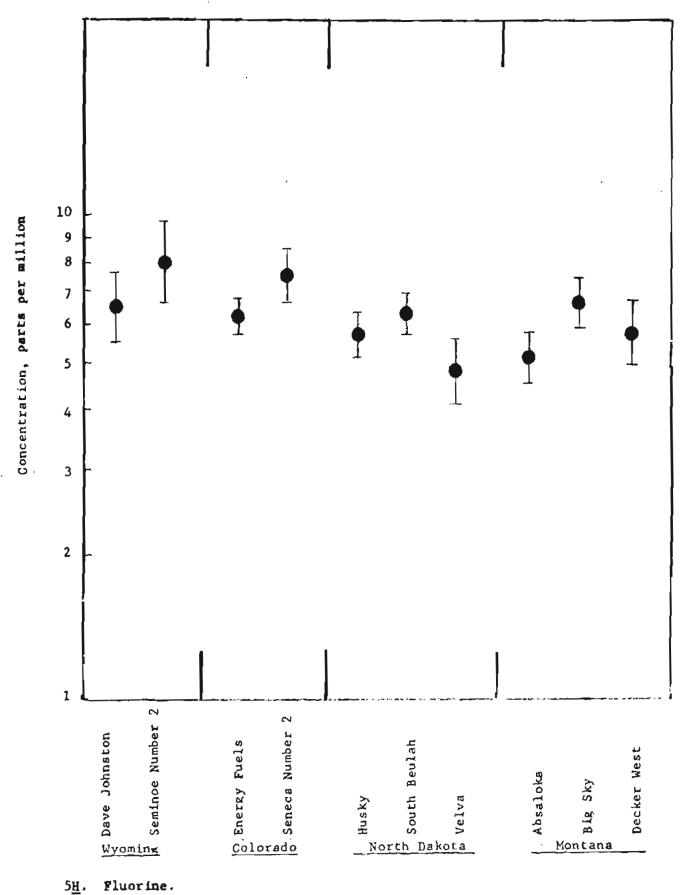



5B. Aluminum.

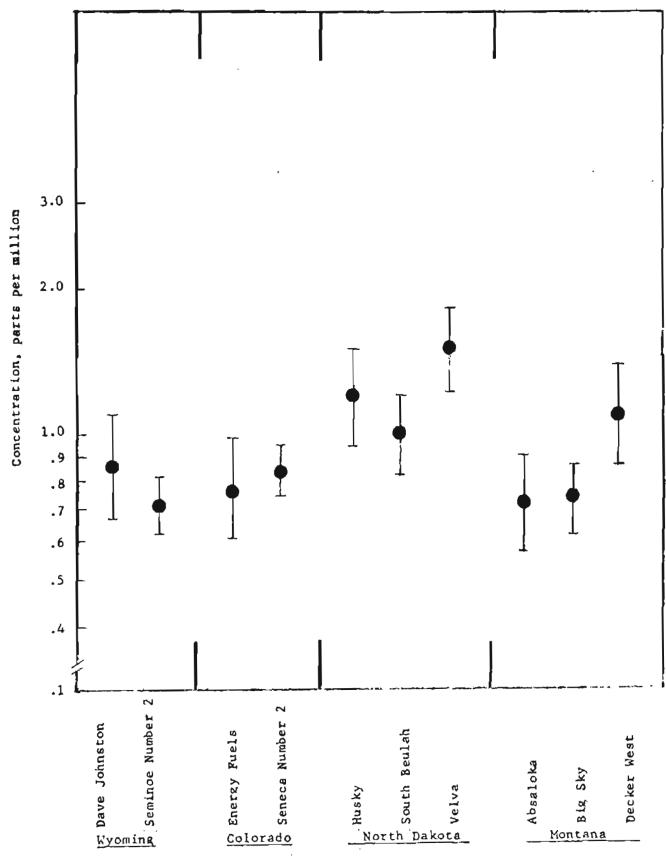


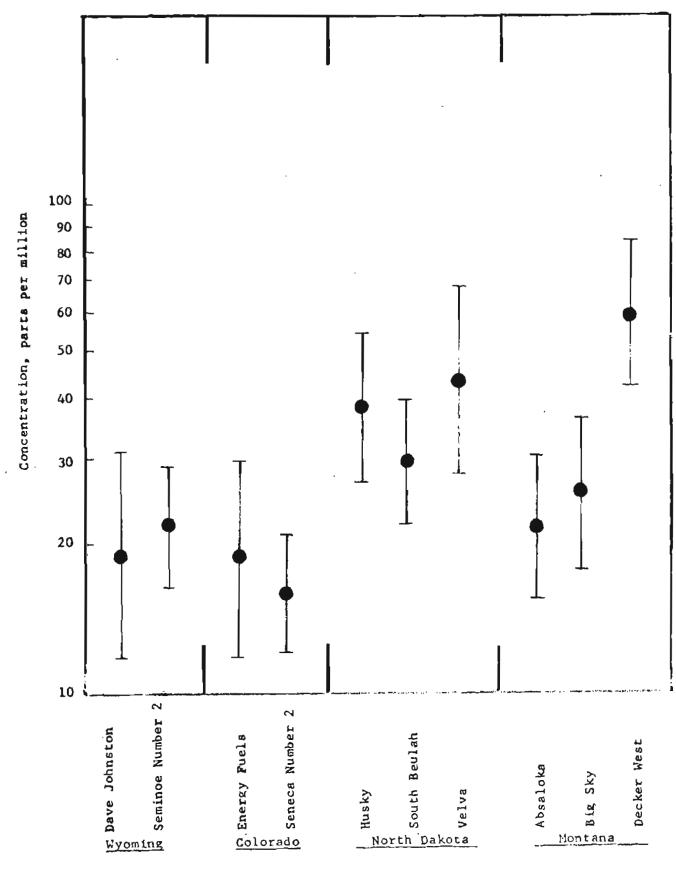
5C. Arsenic.

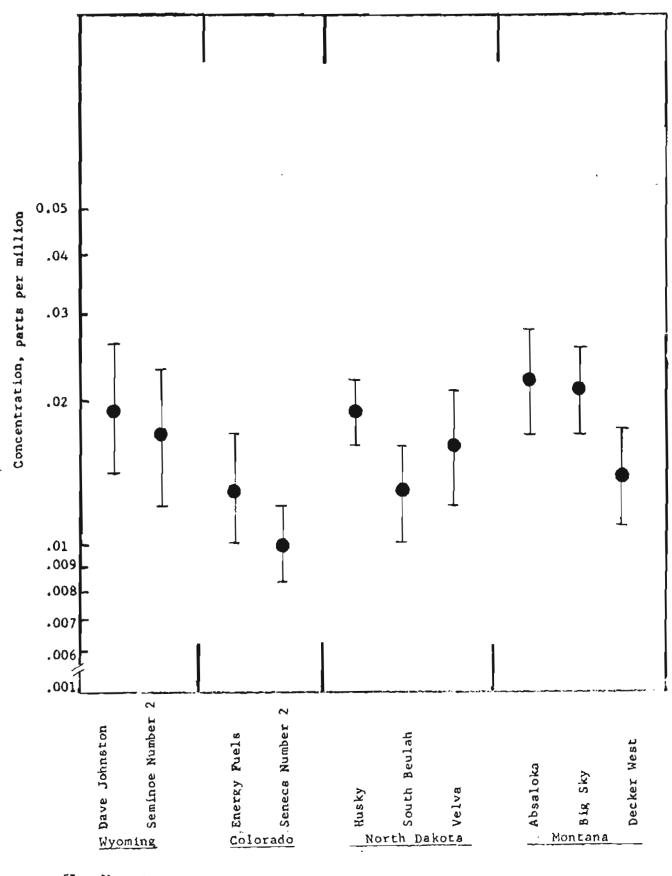


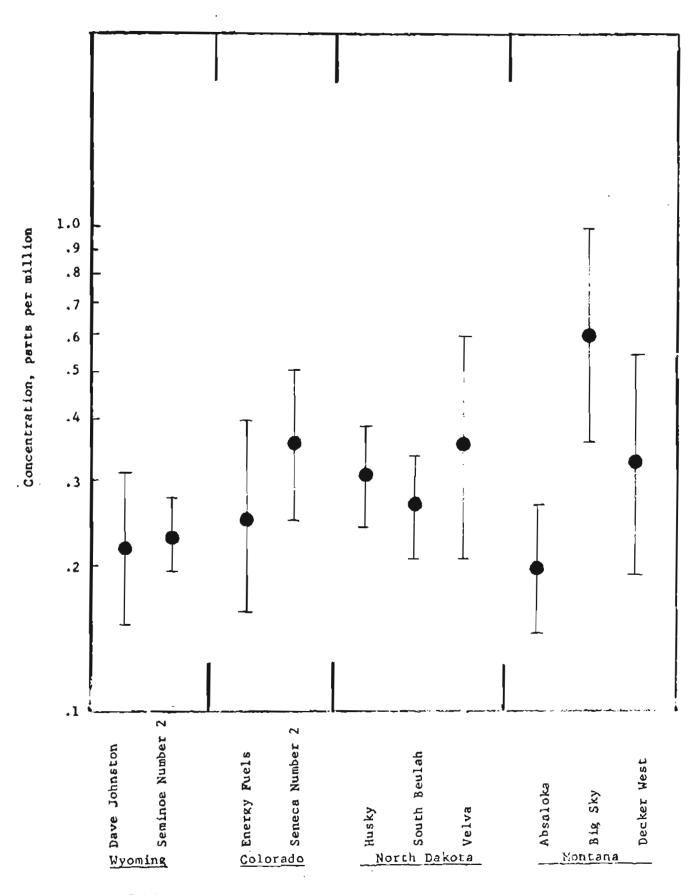

5D. Boron.

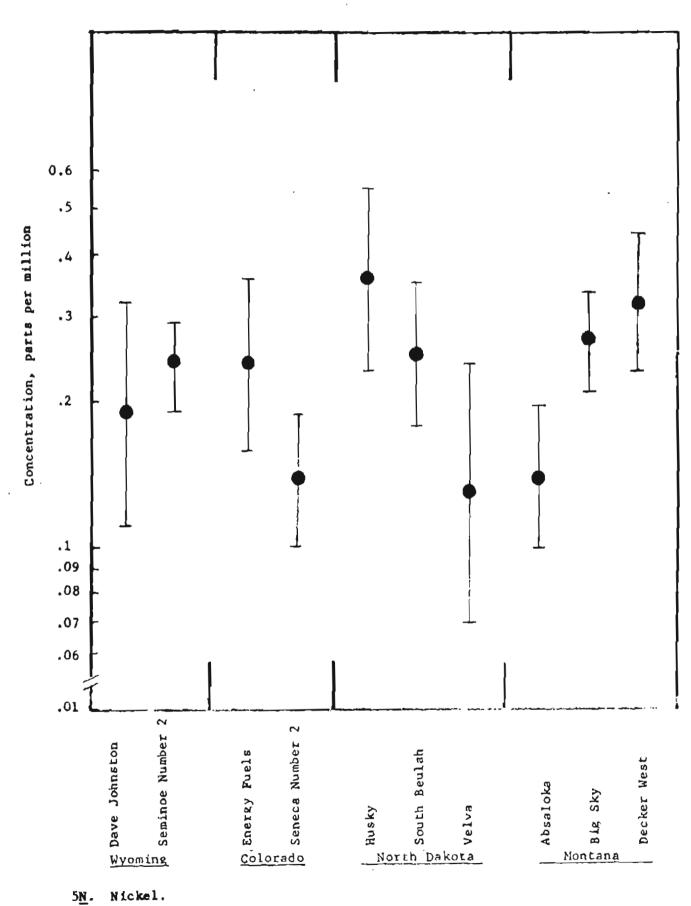


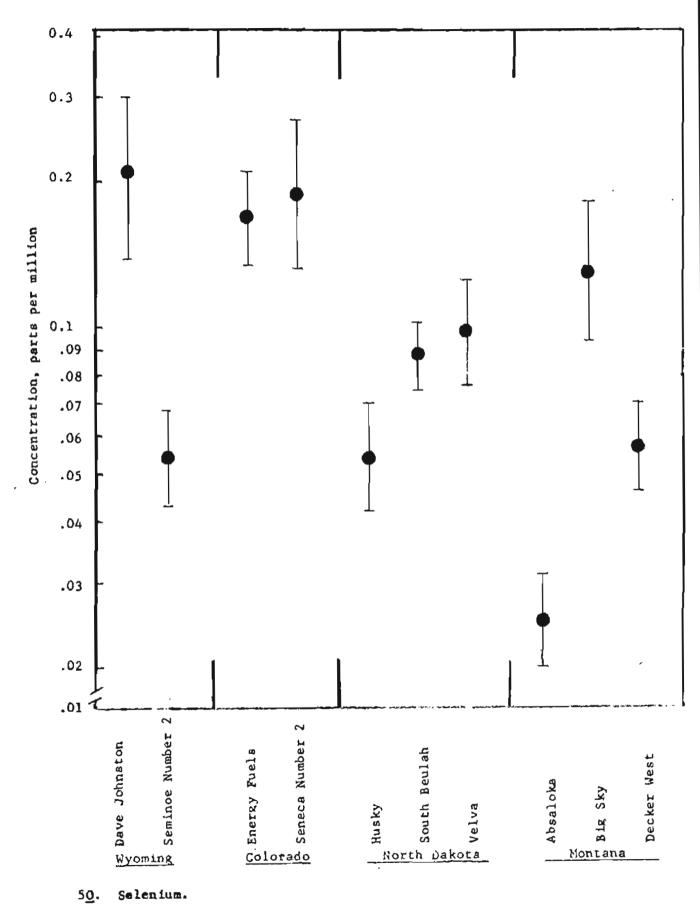

5F. Chromium.

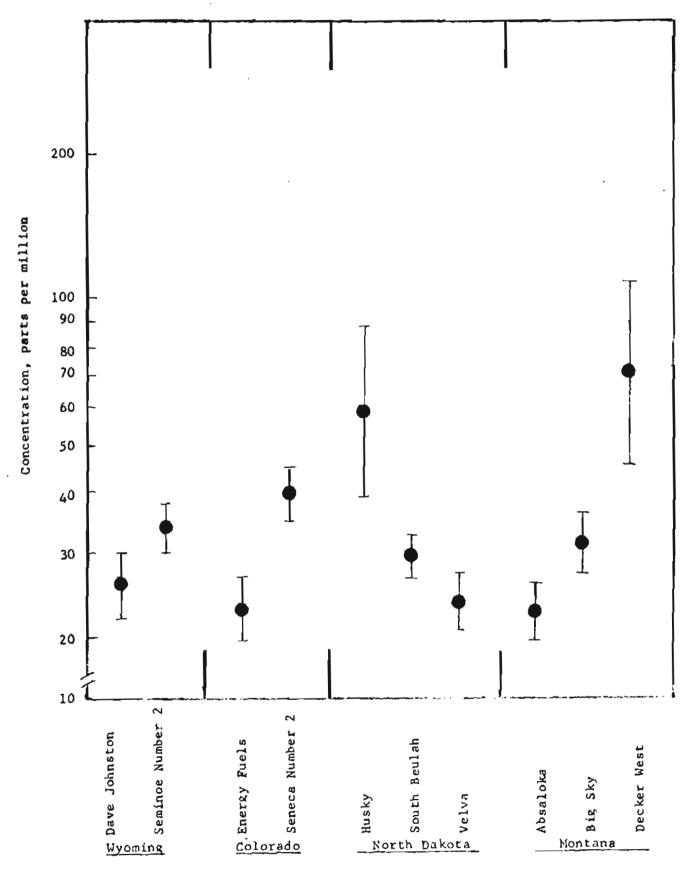



5<u>1</u>. Iron.

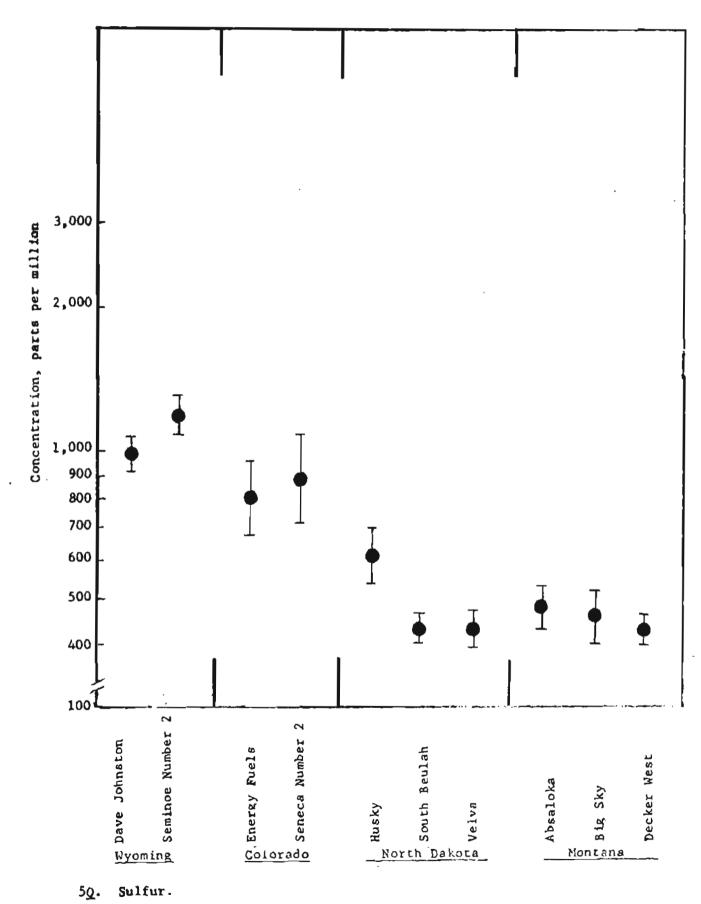

5<u>J</u>. Lead.

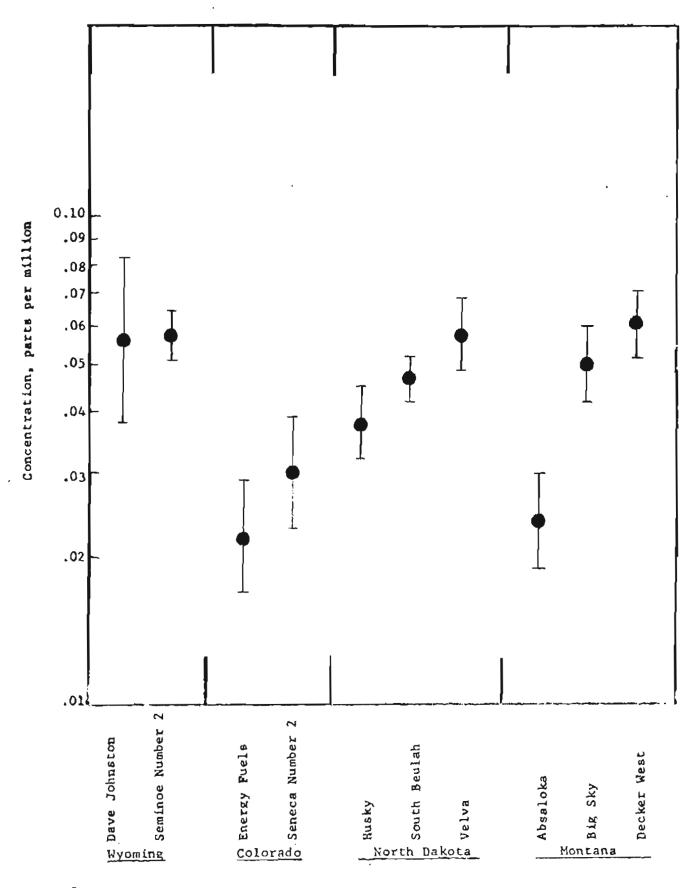

5K. Manganese.

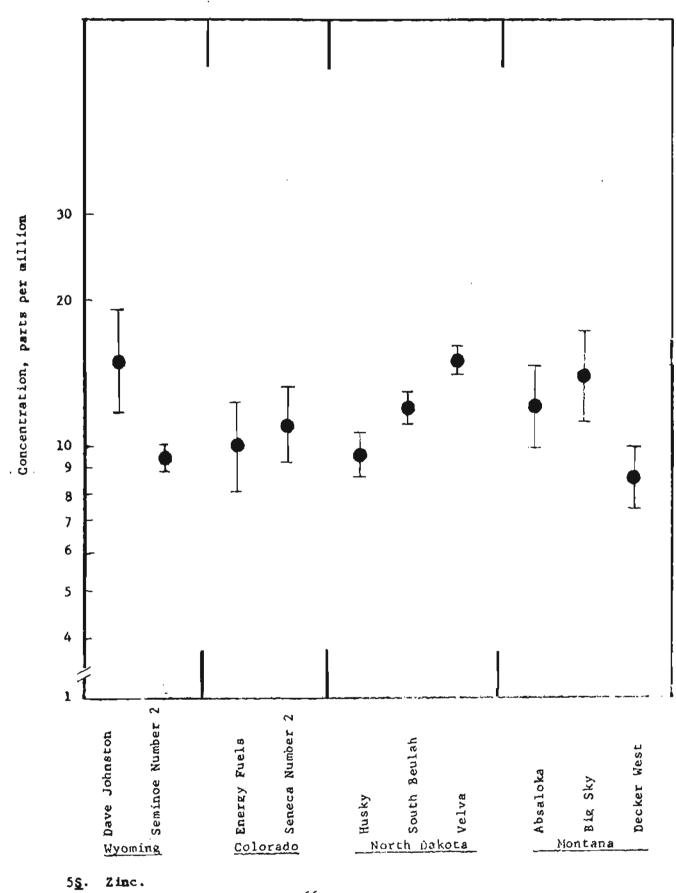

5L. Mercury.



5M. Molybdenum.




5<u>N</u>.



5P. Sodium.

5R. Uranium.

mines apparently overwhelm any differences due to species. Good examples are the plots of boron, selenium, and sodium (fig. $5\underline{D}$, $5\underline{O}$, and $5\underline{P}$) that show little interspecific overlap among mines, whereas intermine differences are pronounced.

Assuming, then, that the local or mine-area environment is more important in determining the element composition of the wheatgrasses than is the inherent uptake characteristics of the three species, an examination of figure 5 reveals major compositional differences among mines. A qualitative assessment of high or low levels (concentrations) of selected elements at each mine (based on intermine comparisons) follows: Dave Johnston--boron, cadmium, selenium, sulfur, and uranium (high); Seminoe No. 2--copper, sulfur, and uranium (high); Energy Fuels--cadmium and selenium (high), arsenic and uranium (low); Seneca No. 2--selenium (high), nickel (low); Husky--boron, iron, lead, manganese, and sodium (high), nickel (low); South Beulah--arsenic and aluminum (high), sulfur (low); Velva--ash yield, lead, manganese, and uranium (high), aluminum, fluorine, iron, and sulfur (low); Absaloka -- ash yield, nickel, selenium, sulfur, and uranium (low); Big Sky-boron, molybdenum, selenium, and uranium (high), ash yield and sulfur (low); Decker--lead, manganese, sodium, and uranium (high), boron and sulfur (low). molybdenum was also found at the Big Sky mine (1.2-1.8 ppm, dry material) in the wheat grain samples (Appendix). This material was from an area that had 25-60 cm of topsoil placed over spoil previously reported to be high in available molybdenum (Erdman and others, 1978). The molybdenum levels in our wheat samples were similar to samples collected in 1974 (Erdman and Gough, 1979) from an area at the same mine but with only 10-15 cm of topsoil. It would appear, therefore, that increasing topsoil depth has not ameliorated the tendency of wheat to assimilate molybdenum.

The following elements showed only small differences among most of the mines: cadmium, chromium, fluorine, mercury, and zinc. There were no obvious element groupings by state, by wheatgrass species, or by mine; however, an analysis of the results of a Q-mode factor analysis, to examine further possible sample-site groupings, is pending.

Between-Mine Multiple-Mean Comparisons

Tables 3-7 list the geometric means for the concentration of 32, 33, or 34 elements (and ash yield) in plant materials sampled at 11 coalstripmines. Each table shows the concentration means that are significantly different from one another for the same rehabilitation species among mines. Differences among mines, using like species, is assumed to reflect differences in the mine environment—specifically, differences in spoil and topsoil (minesoil) mineralogy, lithology, and bioavailability.

Crested Wheatgrass

Table 3 is a comparison of the concentrations of 34 elements in crested wheatgrass collected at two mines in Wyoming. Little difference between mines was noted for most (about 60 percent) of the elements. The wheatgrass at the Dave Johnston mine was highest in the concentration of boron, cadmium, selenium, and zinc, whereas the Seminoe No. 2 mine wheatgrass was highest in calcium, copper, fluorine, iron, nickel, potassium, sodium, and sulfur. The reason for the slight increase in the number of elements found to be at higher concentrations in the wheatgrass from the Seminoe No. 2 mine is unknown; however, the latter mine had no topsoil at the rehabilitation site visited.

Intermediate Wheatgrass

A comparison of the element content of intermediate wheatgrass collected at five mines in Colorado and North Dakota is given in Table 4. Although all the elements, except calcium, molybdenum, and niobium, showed significant

differences in their means between at least two of the mines, these differences were usually only a factor of two or three. For example, although four of the five zinc means were found to be significantly different, the difference between the lowest and highest mean was less than a factor of two. A few elements did show substantial differences in their concentration levels among mines as is demonstrated by the following extreme high and low mine values (ppm dry material): aluminum--660 (Husky), 130 (Velva); potassium--12,000 (Seneca No. 2), 2,100 (South Beulah); iron--280 (Husky), 54 (Velva); magnesium--1,000 (Seneca No. 2), 440 (Velva); and selenium--0.19 (Seneca No. 2), 0.054 (Husky). The concentrations of such environmentally important elements as arsenic, boron, cadmium, cobalt, fluorine, lead, mercury, molybdenum, nickel, and uranium did not vary greatly between mines, and also did not occur in concentrations usually considered to be potentially toxic to plants or grazing animals (Gough, Shacklette, and Case, 1979).

Slender Wheatgrass

Table 5 gives the mean concentration of 34 elements in samples of slender wheatgrass collected at three coal-stripmines in Montana. A comparison of these means shows that over 90 percent of the elements show significant differences between at least two of the mines. The elements boron, beryllium, germanium, molybdenum, sodium, selenium, strontium, and uranium show large enough intermine differences to be segregated into three groups. Intermine differences in the element concentration means were always less than an order-of-magnitude. In general, concentrations of most elements were highest in samples from the Big Sky and Decker mines and lowest in samples from the Absaloka mine. The concentrations of potentially harmful elements in slender wheatgrass all appear to be well within acceptable (non-toxic) ranges.

Nutritional diseases in grazing cattle associated with a low macro-

nutrient content of forage grown on rehabilitated areas is a potential problem in stripmine management (Erdman and Ebens, 1979). These authors report from the literature a minimum critical phosphorus level in dry forage material of about 0.13 percent. In another study Mayland and Grunes (1974) report from the literature a minimum critical level for magnesium in grasses to be about 0.2 percent. The concentrations of both these elements in crested, intermediate, and slender wheatgrass (tables 3, 4, and 5, respectively) are below the critical levels by factors of two to six. These levels should be re-evaluated earlier in the season by a resampling because the amount of phosphorus and magnesium are known to decrease as the plant undergoes senescence (Rittenhouse and Vavra, 1979). In any event, a nutritional supplement for cattle, grazing predominantly over rehabilitated areas, should be a management consideration at all the mines in this study.

Alfalfa

Alfalfa was collected at six mines in three states—Energy Fuels and Seneca No. 2 (Colorado); Big Sky (Montana); and Husky, South Beulah, and Velva (North Dakota). Table 6 gives the results of the multiple-mean comparison test for the concentration of 32 elements and ash yield. The ash yield of alfalfa ranged from a low of 4.8 percent for the Husky mine samples to a high of 9.0 percent for the Energy Fuels mine material. This rather large variability was due to the percentage of low ash-yielding stem to high ash-yielding leaf material in samples from individual mines. Table 1 reflects the fact that the samples from the Big Sky and Husky mines (low ash-yield mines) were composed mostly of stems and fruits (due to early frost-initiated leaf-drop), whereas samples from the other mines included leaf material. Because the Table 6 data are reported on a dry-weight basis, some of the concentration among between mines are due to ash yield-differences which in turn is due to

the plant-material composition of the alfalfa collected.

The multiple-mean test of the six mines produced four or fewer concentration groupings per element -- for most elements, the segregation was accomplished with only two or three groups. About 90 percent of the elements were segregated when the difference between means was less than a factor of The chemistry of alfalfa is fairly uniform among mines; however, differences shown by alfalfa are generally larger than those observed for Large variability among mines was observed for alfalfa in the concentration of aluminum, cadmium, lithium, and sodium. The difference between the largest and smallest means among mines for each of these elements ranged between a factor of about five to ten. For example, samples of alfalfa from the Velva mine were an order-of-magnitude higher in their lithium concentrations than the lowest mean recorded at the Big Sky mine. high lithium values in alfalfa sampled at the Velva mine were also found by J. A. Erdman (U.S. Geological Survey, Denver, unpub. data, 1974). Of interest is the fact that lithium was much higher in samples from all the North Dakota mines when compared to the other mines. Other pronounced intrastate or interstate trends, however, are not common.

The concentration of several of the environmentally important elements were considerably higher in alfalfa when compared to their concentration in wheatgrass. For example, boron and molybdenum were about five and ten times higher, respectively. A mean boron concentration of 66 ppm at the Velva mine may be borderline phytotoxic (Gupta, 1979), especially when one considers that individual values were as high as 130 ppm. Also, whereas molybdenum at concentrations of 1-3 ppm is not particularly unusual for dicots in the northern Great Plains, values of greater than 4 ppm, observed at the Big Sky and Velva mines, are unusual (Appendix table). Similar high molybdenum

concentrations in sweetclover and alfalfa at the Big Sky mine, and their potential health effects on grazing cattle, have already been discussed by Erdman and Ebens (1979) and J. A. Erdman (U.S. Geological Survey, Denver, unpub. data, 1974). A reiteration of these considerations will not be presented here except to emphasize that a similar condition for potential molybdenum problems may exist at the Velva mine.

Fourwing Saltbush

Table 1 shows that whereas samples of fourwing saltbush from the Jim Bridger and Decker mines (Wyoming and Montana, respectively) were collected in September and October 1978, the samples from the San Juan mine, New Mexico, were collected as part of a separate study in August 1977. Some intermine differences, reported in Table 7, therefore, may be due to somewhat different sample handling procedures. Also, the number of samples varied among mines—the multiple—mean test, however, allowed for this difference.

Table 7 gives the results of the multiple-mean test for 33 elements and ash yield in fourwing saltbush. Except for concentrations of boron, phosphorus, selenium, and perhaps zinc (which were highest in samples from the Jim Bridger mine), the majority of the high element means were found in samples from the San Juan mine. For some elements the difference was considerable--for example, the means for barium, iron, mercury, vanadium, and zirconium were five to ten times greater. Of special note were the sodium concentrations in saltbush at the San Juan mine that were nearly twenty times greater than the Decker mine samples. The Jim Bridger samples were also high in sodium. The saline-sodic minesoil conditions of the more arid mine-sites (San Juan and Jim Bridger mines) were undoubtedly responsible for this pronounced difference (Severson and Gough, 1981).

The concentration means for the elements in fourwing saltbush show that

only one potentially phytotoxic condition exists at these mines. The extremely high boron levels found at the Jim Bridger mine are of concern. Although the mean value was 220 ppm, the range of ten samples was from 110-610 ppm (Appendix table). This mean is two times greater than the high boron mean recorded for samples of alfalfa from the Velva mine. We reported (Severson and Gough, 1981) that the hot-water-extractable boron levels in both replaced topsoil and spoil at the Jim Bridger mine were about five times greater than levels at the other mines. Extractable boron in topsoil ranged from 2.5 to 9.5 ppm and in spoil from 8.0 to 26 ppm. These water-soluble boron levels must be considered detrimental to all but the most boron-tolerant species. Further, the unusually high boron levels in fourwing saltbush is evidence that the boron in the minesoils is in an form available for plant assimilation.

Rehabilitation Species Summary Data

Tables 9 through 28 list the summary statistics for the concentration of slements in the rehabilitation species sampled. Only data for the 11 mines that made up the major mine comparison study (table 1) are given. These data are presented to aid those most interested in assessing the individual composition of a given species at a given mine, and basically they summarize the information presented in the Appendix table. For those elements with variable lower limits of analytical determination (see the Appendix table) we took a most conservative approach, and, in Tables 9 through 28, list only the largest less-than values. For example, in Table 9, a lower limit of determination value for cobalt of <0.060 ppm is given even though the Appendix table lists four values that range from 0.054 to 0.060 ppm. In some instances this results in the unusual circumstance (for example, see lanthanum in table 10) where the less-than value is larger than a non-less-than value. Only one instance of variable upper limits of determination is given (strontium in

alfalfa at the South Beulah mine) and only the lowest greater-than value is listed (table 23).

REFERENCES CITED

- Cohen, A. C., Jr., 1959, Simplified estimators for the normal distribution when samples are singly censored or truncated: Technometrics, v. 1, p. 217-237.
- Connor, J. J., and Shacklette, H. T., 1975, Background geochemistry of some rocks, soils, plants, and vegetables in the conterminous United States:
 U.S. Geological Survey Professional Paper 574-F, 168 p.
- Erdman, J. A., 1978, Potential toxicologic problems associated with strip mining, in Fourth biennial veterinary toxicology workshop, June 18-23, 1978: Logan, Utah State University, p. 8.13-8.23.
- Erdman, J. A., and Ebens, R. J., 1975, A variance analysis of the element composition of sweetclover and assoicated spoil materials from selected coal mines in the northern Great Plains, in U.S. Geological Survey, Geochemical survey of the western coal regions, 2nd annual progress report, July, 1975: U.S. Geological Survey Open-file Report 75-436, p. 29-35.
- 1979, Element content of crested wheatgrass grown on reclaimed coal spoils and on soils nearby: Journal of Range Management, v. 32, p. 159-161.
- Erdman, J. A., Ebens, R. J., and Case, A. A., 1978, Molybdenosis: a potential problem in ruminants grazing on coal mine spoils: Journal of Range Management, v. 31, p. 34-36.
- Erdman, J. A., and Gough, L. P., 1979, Mineral composition of wheat from coalmine spoils and farms in the northern Great Plains, USA, <u>in</u> Wali, M. K., ed., Ecology and coal resource development: New York, Pergamon Press, p. 859-869.

- Evans, A. K., Uhleman, E. W., and Eby, P. A., 1978, Atlas of western surface-mined lands: coal, uranium, and phosphate: U.S. Department of Interior, Fish and Wildlife Service, Office of Biological Services Publication No. 78-20, 302 p.
- Gough, L. P., and Severson, R. C., 1980a, Biogeochemical variability of plants at native and altered sites, San Juan Basin, New Mexico: U.S. Geological Survey Professional Paper 1134-D (in press).
- 1980b, Element content of Atriplex canescens under natural conditions in northwest New Mexico, and when grown on mine-reclaimed land at the San Juan Coal mine [abs.]: Abstracts of the 146th National Meeting of the American Association for the Advancement of Science, January 3-8, 1980, San Francisco, CA, p. 119-120.
- Gough, L. P., Severson, R. C., and McNeal, J. M., 1979, Extractable and total-soil element concentrations favorable for native plant growth in the northern Great Plains, in Wali, M. K., ed., Ecology and coal resource development: New York, Pergamon Press, p. 859-869.
- Gough, L. P., Shacklette, H. T., and Case, A. A., 1979, Element concentrations toxic to plants, animals, and man: U.S. Geological Survey Bulletin 1466, 80 p.
- Gupta, U. C., 1979, Boron nutrition of crops, in Brady, N. C., ed., Advances in Agronomy, v. 31: New York, Academic Press, p. 273-307.
- Harms, T. F., 1976, Analysis of plants and plant ashes by methods other than emission spectroscopy, in Miesch, A. T., Geochemical survey of Missouri-methods of sampling, laboratory analysis, and statistical reduction of data: U.S. Geological Survey Professional Paper 954-A, p. 17-18.
- Mayland, H. F., and Grunes, D. L., 1974, Magnesium concentration in Agropyron desertorum fertilized with Mg and N: Agronomy Journal, v. 66, p. 79-82.

- Miesch, A. T., 1967, Methods of computation for estimating geochemical abundance: U.S. Geological Survey Professional Paper 574-B, 15 p.
- Munshower, F. F., and Neuman, D. R., 1979, Trace element concentrations in plants from revegetated stripmined lands and native range in southeastern Montana: in Wali, M. K., ed., Ecology and coal resource development: New York, Pergamon Press, p. 887-891.
- National Research Council, U.S., and Department of Agriculture, Canada, 1971,
 Atlas of nutritional data on United States and Canadian feeds: National
 Academy of Sciences, Washington, D.C., U.S. Government Printing Office, 772
 p.
- Natrella, M. G., 1966, Experimental statistics: Washington, D.C., U.S. Department of Commerce, National Bureau of Standards Handbook 91 (pages not numbered consecutively).
- Rittenhouse, L. R., and Vavra, M., 1979, Nutritional aspects of native and seeded sagebrush range for domestic livestock, in The sagebrush ecosystem-a symposium, April, 1978: Logan, Utah State University, p. 179-191.
- Severson, R. C., and Gough, L. P., 1981, Chemical character of minesoils at one Alaskan and twelve western conterminous U.S. coal-stripmines: U.S. Geological Survey Open-file Report 81-243, 80 p.
- VanTrump, George, Jr., and Miesch, A. T., 1977, The U.S. Geological Survey RASS-STATPAC system for management and statistical reduction of geochemical data: Computers and Geoscience, v. 3, p. 475-488.
- Wallace, A., and Berry, W. L., 1979, Trace elements in the environment—

 Effects and potential toxicity of those associated with coal, <u>in</u> Wali, M.

 K., ed., Ecology and coal resource development: New York, Pergamon Press,
 p. 95-114.

APPENDIX TABLE

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation states and Alaska

Cd ops	0.00 0.00 0.00 0.00 0.00 0.00 0.00		980.000	シママン	. 037 . 024 . 037	. 075 . 060	0033 0033 0033 0033 0033 0033 0033
%	80077777777 80077004467		80. 80. 80. 80. 80. 80.	5 × 4 × 4	. 78 . 60 . 82	111	50000000000000000000000000000000000000
80 e			6.100 6.100 6.100 6.123	111111111111111111111111111111111111111	960°> 080°> 260°>	111	, 189 , 140 , 100 , 189 , 211 , 127 , 110
89 Q BII	6.46 2.46 2.66 2.56 2.56 5.71		60000	8 7 8 7 6	30-4 44-0 44-6	111	000000000 M
B ppm ne. Montana	22.22 24.22 24.22 24.23 25.23 26.23	ntana	7 5 5 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	23. 31. 48.	F. 503	www.44wa4w & & & + + v w & 4 &
As DDM Big Sky Mi	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Sky Mines Mo	20000	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 230 230 230 230 230 230 230 230	Decker Min	
Al ppa Wheatgrass	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	falfa, Big	470 500 500 6476 6436 17,400	6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	143 180 233 er wheat, 8	Uhea 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Ash X Slender		۱۲	70000 70000		8 8 8 E	₽ D	80347470070 V-023-740070
Longitude	106 36 15 106 36 15		106 56 15 106 36 15 106 36 15 106 36 15	006 36 1 006 36 1 006 36 1 006 36 1	106 36 15 106 36 15 106 36 15	106 36 15 106 36 15 :06 36 15	106 49 8 106 49 8 106 49 8 8 106 49 8 8 106 49 8 8 106 49 8 106 49 8 106 49 8 106 49 8 106 49 8 106 49 8
Laritude	25 40 4 15 2 40		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	V V V V V V V V V V V V V V V V V V V	51 67 57 51 67 57 51 67 57	58 67 57 57 69 15 51 67 57	45 2 30 45 5 45 5 45 5 45 6 5 6 6 6 6 6 6 6 6 6
Sample	95001AE 95001AE 95001AE 05001AE 95001AE 95001AE 95001AE		950235 850235 850235 850435 850435	8008 8008 8008 8008 8018	851745 851245 857348	85017A 85027A 85031A	060346 060346 060346 060346 060346 060346 060346 061046

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska

	Sample	Се ррж	Co ppm	Cr ppm	Cu ppm	F ррж	fe ppm	Ge pom	Hg ppm	к х	La ppm
				Sien	der wheatgras	s, Big Sky	Mine, Montana				
	3A1028	<3,1	.033	.63	1.16	8	198	.109	.03	.32	.43
	BSOZAE	<4.7	.050	.34	1.00	7	275	.170	.02	. 32	1.93
	BS03AE	3.6	.066	.66	1.98	9	185	.106	.02	. 28	.46
	6804AE	<3.0	.064	.54	.96	7	189	.099	.01	.35	<.30
	BSOSAE	<3.3	.672	.32	1.44	6	115	<.072	-85	.58	.54
	BSOGAE	<3.2	.068	.41	.85	5.	160	.197	_03	.41	.34
	BS07AE	5.2	.074	.78	1,48	5	233	.185	.02	-44	1.89
	BSOSAE	<3.3	.035	.20	.70	7	119	.098	.03	*55	< . 33
	BSOFAE	4.8	.040	.68	1.00	6	188	<.080	.02	.52	.40
	BS10AE	<4.5	.096	.62	.96	7	211	<.096	.02	.35	1.10
					Alfalfa, Big	Sky Mine,	Montana				
	B 5 0 1 M S	4.4	.094	.47	6.58	8	155	<.094	-01	.61	_61
	9502#S	<4.7	.108	.41	6.50	7	160	<.100	.03	. 55	.50
	248028	5.0	.100	.85	7.75	7	375	<.100	.04	. 34	5,00
86	BSO4MS	5.0	.156	.78	4.68	8	265	<.104	.01	. 73	.83
0	BSOSHS	8.4	.168	.95	10.08	7	431	<.112	.04	.73	3.03
	280028	<4.4	.094	. 47	8.93	8	235	<.094	.02	.42	.70
	eso7Ms	<5.2	.056	.35	7.84	7	174	<.112	.09	.36	1.18
	BS08MS	<4.3	.184	.38	9.20	5	193	<.092	.01	. 42	1.01
	8509MS	<5.7	.122	.57	7.32	8	220	.128	.02	.57	.85
	8 S 1 O N S	<5.9	.063	.61	8.82	8	221	<.126	•05	.48	1.01
				ALf	alfa control	, Big Sky Mi	ne, Hontana				
	8511MS	<4.3	.046	.21	2.76	7	69	<.092	.01	.83	.74
	9512MS	<3.7	<.040	.36	2.40	5	104	<,080	.02	.64	.92
	BS13MS	<4.5	<.048	.40	4.08	8	115	<.096	.01	.72	1,44
				w	inter wheat,	aig Sky Min	e. Montana				
	000171			~ ~							
	8501TA 8502TA		~~	~~							
	BSOSTA			- -							
				Slen	der wheatgra:	ss, Decker M	line, Montana				
		43.4	222	17	9.3		107	410	0.1	.36	<.76
	DECTAE	<7.6	.082	.37	-82	6	107	.410	.01 .02	. 50	<.57
	DEBZAE	<5.7	.185	.45	.92	6	140				
	DEGSAE	. <3.7	<.040	.38	-40	6	124	.176	.02	.16	< . 37
	DEDGAE	5.4	.045	.63	1.13	5	239	.252	.01	.16	. 45
	DEOSAE	<5.0	.103	.53	.81	8	162	.227	.01	.19	1.73
	DEOGAE	5.2	.047	.66	-94	3	216	.249	-01	. 18	2.16
	DEOTAS	< \$. 1	<.055	.36	1.10	7 4	149	-138	.02	- 24 - 34	.51
	DEOSAE	<5.6	<.060	<.12	.98	•	192	.324 .121	.02 .01	.33	<.51
	020946	<5.1	<.055	.36		- 6	116	. 141	. V I	. , ,	`.,

sites in five western states and Alaska

Sample	Łi ppm	Mg X	на ррв	Ма рря̀	Na pom	Nb ppm	Ní ppm	PX	Pb ppm
			Stender	wheatgrass, Bi	ig Sky Mine, Mor	ntana	I		
BSOLAE	.26	.092	16	.73	46	.33	.36	.018	.73
BSOZAE	<.20	.095	25	.37	30	.85	. 34	.023	.85
BSOBAE	.30	.092	22	1.02	28	<.31	.33	.023	.76
8504AE	.13	-058	21	.23	32	.30	.30	.019	.77
BSOSAE	.29	.072	28	.40	31	<.33	.14	.822	.54
8506AE	.14	.068	15	.68	27	<.32	.18	.017	.58
BSOTAE	.19	.104	36	1.48	31	.81	.37	.031	.89
BSOSAE	.14	. 056	19	.19	21	<.33	.15	.019	.46
9209AE	.20	.068	108	2.56	34	.88	.38	.020	1.08
9 2 1 0 A E	.43	.106	24	.53	48	<.45	. 32	-019	.96
			At f	alfa, Big Sky	Mine, Montana				
BS01MS	.56	.282	8	2.26	141	<.44	.75	.061	.70
B \$ O 2 M \$,30	.370	9	11.50	50	<.46	.39	.050	.65
BSO3MS	.45	.455	80	7.00	38	1.15	1.30	.050	1.25
B S O 4 M S	.73	.364	52	3.64	99	.62	_51	.047	1.09
84802B	.56	.538	62	6.72	151	.90	1.96	.095	1.34
8 S O 6 M S	.42	-517	8	3.57	47	.42	1.27	.075	.61
B\$07M\$.62	.672	16	3.36	123	.73	5.05	.056	.67
2 m802 m ⊆	.37	.451	97	2.44	5 \$	<.43	.87	-023	.46
BSOOMS	.67	.512	36	3.42	73	<.57	.46	.043	.67
BSIOMS	.69	.693	38	4.66	120	<.59	.37	.057	.76
			Alfalfa	control, Big	Sky Mine, Monta	ana	•		
BSIIMS	.23	.423	6	-46	21	<.43	<.09	.060	.64
8 S 1 2 M S	. 56	.560	12	3.32	76	.39	.10	.040	.80
851345	-96	.576	9	1.73	38	.53	,13	.067	.77
			Winte	r wheat, Big S	Sky Mine, Montar	n a			
BS01TA				1.3			*-	.249	
A15028	~-			1.2	~~			.192	
BIEOZE				1.8				.204	
			Stender	wheatgrass, De	ecker Mine, Mont	tana			
DECTAE	1.31	.123	31	2.21	37	<.76	.22	.045	.98
DEOSAE	.24	.061	31	.16	40	<.57	.18	.027	1.16
DENSAE	<.16	.048	34	.12	40	<.37	.22	.024	-64
DECLAE	.32	.054	86	.43	171	.59	.59	.027	1.35
DEOSAE	.27	.059	50	.26	162	.70	.33	.027	1.24
DEDGAE	.52	.066	94	.38	248	1.08	.52	.021	1.79
DEUZAE	.61	.066	66	.18	66	<.51	.19	.019	.77
DEOBAE	.48	.090	162	.53	42	.96	-58	.033	1.38
DEOGAE	.39	.088	61	.18	61	€,51	.20	.028	.66
DETOAE	<.23	.070	87	.50	55	.93	.70	.023	1.91

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation states and Alaska

Sample	Se pos	Sr pps	S and Q	T' ppm	E dd a	e a a a	₽	edd v7	27 500
			Stender	wheatgrass, Big	g Sky Hine, Nor	กใสกล			
BS01AE BS02AE	. 20	6.6	550	10.9	.079	. 53	. 31	25.7	
S 0 3 A	02.		0		~		7	1 ~	
S04 A	•	•	9	•	0.5	M 1	2	9	Ś
505A	ο.	•	~ (•	50	~ ~	~ r	'n ć	4 .
2006	~ •	•	~ •	•	2	V 0	v ~	. 0	* "
4 400	- 🤉	, ,	٦ ۵	•	5 6	3 ~	, ~	00	, P.
\$005 \$09A	•	• •	0	, ~	0.4	• •	4	, N	1
S 10 A	2	8	0	•	0.5	9	1	9	~
			ALFA	alfar Big Sky t	Nine, Montana				
S1318	. 30	2	,20		03	~	~	ů	~
S U2 M	. 10	26.	0	ó	90	4	3	7	v.
D S D 3 M	. 30	ö	7.40	•	0,4	М.	~	ŵ	٦.
806H	02.	Š	000	φ.	05	8	Š	æ	٦.
8505M	. 10	. .	07,	_' _	90	2 1	91	6	~ (
S 0 6 M	. 15	'n	\$ 50		0	M 1	M	<u>.</u>	0
205 ×	02.	20 (50	•	90	^ ,	~ ·	,	~ `
SCSA			۷ ر د	^ ^	2	- 7	~ ^	* ^	9 7
BSJOMS	. 45	63.0	1,400	12.0	050.	6 M .	07.	24.6	08.1
				() () () ()	3				
			5	2	3000 33000 34	,			
S 1 1 3	\sim	~	•650	•	5	,16	_		u١
B512MS	.10	30.4	650	7.7	> 016	72.	67.	0.4	80 1
\$13.4	C	*	958	,	0	. 30	\sim	•	•
			Winter	r wheat, Big SI	ky Mine, Montar	e c			
S 0 1 T		;	1,600	1	100			~	ì
8502TA	}	!	1.500	;	- 002	}	;	33.2	;
5031	;	1	1,600		200.	}		Š	ŀ
			Stender	4	cker Mines Mont	808			
גנם	, D4	5			03	1	\sim		5
02 A	70.	۲.	O	•	07	3	\sim	4	ç
03A	70.	× .	0	Š	08	~	~ 1	ώ,	~T (
O4 A	90	·.	0	•	63	· 1	S	. ,	> (
054	90.	<u>.</u>	5	٠,	90	5	~ ^	•	× , -
06 A	83.	, ,	200	•	3 6	~ ^	? •		90
DEGRAE	01.	39.0	2003	2.6	870	22-	0 F1	9	1.02
000	90	4	0	5	90	Ń	_		S
10.4	ac	^	C		(,		

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

ie pom Ca X Cd		. 194 1.37	.122 .55 .0	. 96 96.	.220 1.6% .1	1. 02.1 1.50	1.56 1.56	. 46	. 164 63	.240 1.98 <.	252 7.19 .0			132 -21	119 .21	71. 011	130 .18 .0	0. 91. 101	108 . 22	2. 12. 760	0 - 1			ū. 52. 021	.794 .20 <.	209 ,22 <.3		358 . 24	. 21. 021.	3.> 91. 511.	. 25 01.	25	10.8	.103 .25
8		۲.	> 8°°	8.0	۲.	1.0	7.7	8.5	.7	.0		5 0	۳,	•				•	•	•	, v	•	gutmoy	7"	4	2		•	∞.	8.	٥.	٠.	2,7	~ ~
83 E Q Q	e, Montana		8	ó	~ :	&	ς,	'n	9	7	Ġ.	Mine, Wyomir	۶,	~	40	ó	۲,	×		ά,	0 00		מיים איים היים דע	~		15.1	ne. Wyoming	ζ.	δ,	8		-	36.7	^
EODSA	Decker Min	M	30	\sim	S	-	-	M	$\overline{}$	7	4	ave Johnston	1/	٧	\sim	٠O	٠,	9	m	4 1	0,00		L VAVE JOHRS	S	∞	55"	Johnston Mir	O.	9	0	\sim	M	000	⋖
Al ppm	ng saltbush,	378		Ø	o	^	_	^	0	Ø	7	eatgrass, O	~	Ś	34	4	_	40	0	- (5 6 0 5		מיזהטט פפפר	00		1,008	brome. Dave	•	٠	•	~	9	250	ď
A C	fourui	6.7	٠	o.	•	o,	~	•		•	۶.	Crested wh				4				٠	2.5					7.2	Smooth			- 4	•		7"5	
Longitude		106 49 8	67 90	67 90	67 90	67 90	65 90	67 90	67 90	36 49	67 90		05 50	05 50	05 50	05 50	⊃2 SG	05 50	05 50	0.5 50	105 50 0			05 50	5 50	0.5 5		05 50	05 50	05 50	05 50	95 50	105 50 0	ביי עיני
Lotitude		45 2 30	5 2 3	2 2	5 2	2 2	5 2 3	2 2 3	2 2 3	5 2 3	5 2 3		3 3	5 3	3 3	Mi M	×	r1	м i	ν, ν	0 C 0 M 0 M 0 M 0 M			2	43 3 0	M		8	3	٤ ج	M	2	W 1	
Sample		DEOTES	502F	EUSF	EOLF	60SF	FC6F	1265	€08€	1603	E 10 F		JOIA	1024	いたびか	1044	1058	4000	597A	4 WOO	53.09 A.C.			5112	4	~		JOTE	3029	1039	eror	3500	0.058I	2

Equientrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

r o o	040WWV0WEE	40000000000000000000000000000000000000	65.5	20000000000000000000000000000000000000
×	0.00	\$1.01.00 \$2.024748240 \$1.07748774	6 0 6	20000000000000000000000000000000000000
Hg DD#	2222222	000000000000	000	2662632625
Ge pos	7.122 7.122 7.122 7.122 7.220 7.200 7.000		~ & ~	2
Fe DOW SINGLE	167 110 147 147 198 173 174 120	123 185 130 350 152 147 121	23 16 27 06, Uy	28 40 40 40 40 40 40 40 40 40 40 40 40 40
F DDS	0077000007	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 7 10 10 e Johnston Mi	10000000000000000000000000000000000000
Cu ppa Cu ppa Sa(tbus	**************************************		0 4 8 ,	5
E 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		886 886 886 886 886 886 886 886 886 886	.72 .47 .72 .72 Smoot	\$27.88.88.45.6 \$27.88.86.45.6 \$27.88.86.45.6
Co pp.ii	244 244 244 244 244 244 244 244 244 244	0.088 0.132 0.054 0.056 0.058 0.041 0.041	560°,	2000, 2000,
C & DD4	66.77 66.77 66.77 66.73 66.73 66.77 66.77	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.3	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Samole	0 E C C T S S S S S S S S S S S S S S S S S	074500000000000000000000000000000000000	0411AC 0417AAC 0413AAC	0100101 0100101 0100101 0100101 01000101 01000101

Pb ppm		. 79	• 73	- 76		. 0	6	282	0.00	1,32		•	0	00	~	~	\sim	\$	۲,	3	\$		5	M	1.73		1.86	91	.50	\$9*	• 65	. 70	67.	1.32	. 69.	\$9.	
>ч Д.		.068	05	.073	<u> </u>	50	90	6	90	9		0.7	, C	020	07	08	03	03	70	07	0		70	90	050*		1	60	870"	03	03	30	03	03	05	10	
Ni op		1.75	7.	٠,	•			9	9			10	11	.15	09.	.72	62.	6. 10	0	. 36	•13		.28	. 19	.27		17.	<.12	د.11	<.12	.17	6.11	۲۲,	.32	6.11	<.12	
edd qN	*u*	1.26	Š	٦,	20	``	. ~	_	-		Wyoming	7	•	. 54	•	7	Š	4	~	D 1	~	e. Wyoming	•	80	.62	ing	-	S	<.52	S	Š	5	Š	~	7	~	
E da e N	cker Hine, Monta	310	875		000	273	١.	131	288	264	ohnston Mine, W	~~	13	35	30	72	7.	32	16	19	52	e Johnston Mine,	33	27	32	ton Rine, Wyomin	92	21	95	112	35	38	19	18	72	18	
Mo ppm	saltbush, Deck	• 5 9	v i	. 32	2	, M	^	S	4	5	grass. Dave J	~	1	114	_	M	-	60	•	~	_	is control, Dav	~	M	1.08	me, Dave Johnston	- 3	~	,15	∾	~	-	m	/	•	7	
27 8 9	fourwing	146		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	130	208	63	123	96	59	Crested wheat	12	62	12	23	15	~	~	52	9 7 0	//	rested wheatgras	ac)	m2	æ	Smooth bro	Û	168	23	54	97	0,4	24	7.8	56	24	
7. 10.		207	. 51 (255	007	572	637	.303	.936	. 588		.062	970	.065	070.	190.	870.	.073	500	677	.085	נ	750*	290*	980.		10	Q	.078	08	8	0	\$	08	4	Ò	
Li ppm		1.55	,,	~ ~	, 0	. %	~	€,	7	•		77"	1.06	,54	•	1.44		2.20	62.	50,	(2)		45.2	*2*	• 50		3.71	1.80	1,23	1,77	5.31	5,13	75.	2.58	1,17	65.	
Sample		0 E D 1 F S	E027	E 0.5 F	F 0.5 F	E06 F	£07F	€08 F	E 09 F	£10F		J 0 1 A	102A	DJOJAC	10.4 A	305A	106A	107A	J 08 A	3094	2		DJIIAC	DJ12AC	0313AC		JOIB	JÜZB	DJ0381	304B	J 05B	1068	J078	308B	1098	100	

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

Zr ppa	2001 2001 2001 2001 2001 2001 2001 2001	240000 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 mm	V1-
edd 62	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.6 6.0 13.0	0 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
۶. و مو	, , , , , , , , , , , , , , , , , , ,		6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7.2.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
V ppm Montana	- 22 22 22 22 22 22 22 22 22 22 22 22 22	4 y b b b b b b b b b b b b b b b b b b	Mine, Wyoming 1_14 74 1,44 Wyoming	25. 25. 25. 25. 25. 25. 25.
U ppm cker Hine, Mon	010. 010. 010. 010. 010. 010. 010. 010.	Johnston Mine, 158, 158, 1986, 1900, 1988, 1900,	Dave Johnston M. 107 .986 ohnston Miner Wy	0077
Ti ppm saltbush, be	69.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	201.8 21.8 21.8 21.0 23.0 16.3 16.3 10.1 10.1	15.0 15.0 9.4 19.4 one, bave J	20.5 12.0 6.7 6.7 8.3 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
S DDM Fourtaing	3,400 3,400 3,400 3,900 4,700 3,000 4,700	1,190 1,000 1,000 1,000 1,000 1,000 1,100 1,100	Crested wheatgra 650 650 900 Smooth br	1,000 1,100 1,100 1,200 750 650 650 950
800	57.79 68.66 81.6 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	6.3	4000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Se	\$2.50 \$2.50 \$3.50	0411, 141, 152, 154, 154, 154, 154, 154, 154, 154, 154	. 55 . 30 . 50	50 50 50 51 51 52 51 52 51 51
Sabole	0602FS 0602FS 0604FS 0604FS 0605FS 0607FS 0607FS	44444444444444444444444444444444444444	0311AC 0312AC 0313AC	0.00.00 0.00.00 0.00.00 0.00.00 0.00.00 0.00.0

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

Cd pp	200	0.051 .051 .055 .055 .055 .071	1000 1000 1000 1000 1000 1000 1000 100	000000000000000000000000000000000000000
# *	; ; ;	887-555	2.54 2.64 2.75 3.90 2.76 2.26 2.26	19 20 20 15 15 15 17 18
80 pg	:::		6.172 6.188 6.188 6.188 6.220 6.134 6.156	. 122 . 138 . 138 . 132 . 122
69 60 60	; ; ; ; ope	70 9 1 8 5 0 0 9 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24 24 24 24 24 24 24 24 24 24 24 24 24 2	16.0 22.5 48.4 33.8 30.7 52.0 52.0 72.0
8 ppm	 Hine, Color	10.5 10.5 10.5 5.5 18.4 5.5 11.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.9 13.3 12.8 12.0 9.0 13.9 >16.0 17.0 11.2
As ppm ohnston Mine	nergy Fuels	20 20 115 110 110 10 10 10 10	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	Husky Mine, 65 .30 .30 .30 .45 .40 .40
Al ppm eat, bave J	8	202 260 319 247 605 627 423 490 156 638	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	320 320 350 748 624 624 583 1,104 1,196 1,59
Ash X Winter wh	1.7 2.0 1.9 termediate wh	5.77 5.75 5.75 5.82 8.82 8.82 8.83 8.84 8.84	80000	Intermediate 4.7 4.6 6.4 5.2 5.3 4.8 4.0 4.0
ong i tude	0000			000000000
Long	105 50 105 50 105 50	7001 1007 1007 1007 1007 1007	7,001 7,001 7,000 7,000 7,000 7,000	102 41 102 41 102 41 102 41 102 41 102 41
t itude	000 MMM	00 21 21 21 21 21 21 21 21 21 21 21 21 21	00000000000000000000000000000000000000	0000000000
به 1	M M M 7 C C	44444444 000000000	77777 000000000000000	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Sample	610114 610214 610314	ENOUS AC ENOUS AC ENOUS AC ENOUS AC ENOUS AC ENOUS AC ENOUS AC ENOUS AC ENOUS AC	6 M O O O O O O O O O O O O O O O O O O	HU01AI HU02AI HU02AI HU05AI HU05AI HU05AI HU08AI HU08AI

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-wine reclamation sites in five western states and Alaska--continued

Sample	Ce pom	to pom	Cr ppm	Cu ppm	7 800	Fe ppm	Ge pps	HQ Q BH	×	La ppm
			Winter	wheat, Dav	e Johnston	Mine, Wyoming				
0.101TA		1	}	1		}		;	1	;
A 12020	†	: :	;	:	ł I	1 1	1	í	ļ	;
Y COFA	1		!			i e		,	i i	1
		•	Intermediat	e wheatgrass	, Energy fu	els Mine, Col	orado			
ENO1 AC	7.7>	270.	25.	76.	4) (103	.103	0		7.
FNCCAC	4 V	7 057	4 4	~ a	~ •	701	^;	9	٧ ،	Ş
FND4AC	٠ va	200.	M	00	n ~c	30		> C	ο <	^ <
ENOSAC	'n	\$50.3	1,05		۰ ۵	Ó	319	~0.	77	, v
ENGBAC	\sim	.116	S	٠,	9	0	-	0	Ø	5
ENDTAC	•	c.051	~	2	•9	100	54	0	~	7
ENDSAC	·O	<,071	9	0	∞ :	മാ	9	0	2	9
ENO9AC	3 1	250.	MI	0	•	6	10	0	S	7
8 ENTDAC	Δ	<o58< td=""><td>_</td><td>Ξ.</td><td>9</td><td>~</td><td>30</td><td>0</td><td>Š</td><td>٠.</td></o58<>	_	Ξ.	9	~	30	0	Š	٠.
8			ALS	Alfalfa, Energy	Fuels Mine	. Colorado				
ENDIMS	80	.086	15.	4	и	_	7	.02	0.	~
END2MS	<8.8>	< 003	.51	9	œ	~	8	0	O	0
ENGSMS	O.	٠,	. 56	٣,	v	Ø	83	0	٠,	7
SHYDNB	20	<,091	.63	٠,	œ	0	20	.01	О	7,
25.50NJ	w	184		ζ.	జర	7	18	0	Ø	٥,
ENCONS	21	2.50	00".	•	ም ነ	~	9	0	0	o.
ENO7 MS	۰ د	~ (7.9.	9	ın i	S	2	~	∞ .	٥.
ENDRHS	1 O	190.5	9	٠, c	~ `	л.	2	-0.	~ 1	2
	<7.3	0.00	0 4	0.4	۰ ۵	166	4.1.0	70.		> × ×
1			•	•	•))	3
			Intermedia	ate wheatgra	ss. Husky M	ine, North Da	kota			
HUOTAI	7.7>	250.	.52	٥	S	\sim	0		\sim	3
HUD2AI	5.5	970.	15.	φ.	Ŋ	9	_	0	m	7
HU03A1	6.2	770.	.84	٠.	, \^	∞	18	0	\sim	**
HU04 A I	5.7	₹90.	.83	0		0	10		N	7.
HUOSA I	•	106	.58	83	œŢ	4	.14	0	S	2
HU06 A 1	5,4>	960.	96.	\$	ν'n	M	60	0	S	۲,
HU07AI	M	080		9	^	6	-17	0	M	٠
HU08AI	5.5	260*	1.29	1.61	9	\$0 6	260">	20.	35	1.10
HUDSAI	64.7	<.051	67.	S	•	~	1	0	~1	4.
HU10AI	7.7	070	88.	~	\$	m	20	0	\sim	9

4 00 09	111	133 252 252 254 564 564 564 564	1.03 1.02 1.13 1.03 1.03 1.03 1.03 1.03 1.03 1.03	1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00
o.	.380	087 087 087 082 082 082 082 082	211. 0.065 0.085 0.085 0.085 0.086 0.086	020 020 020 020 020 020 020
M DD	111		2	0.0 2.2 2.8 2.8 2.7 2.8 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
MA ppm	Colorado	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	1.02 1.02 1.03 1.00 1.43 (1.02 2.62 2.62	6.44 6.44 1.14 1.14 7.51 7.51 7.43 7.47
00	Johnston Bines Myoming	28 20 31 26 17 37 37 28 28 20 20 20 20	\$0.45585555555555555555555555555555555555	Ausky Mine. North 38 37 40 49 74 312 36 56
Mo pos	43 .50 .50 .50 .43 .43 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50	24 24 25 10 10 17 24 17 17 17 17 17 17 17 17 17 17 17 17 17	2, 1, 2, 3, 3, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	wheatgrass, Mu . 14 . 26 . 35 . 35 . 36 . 48 . 36 . 51 . 51
# dd c#	Intermediate whe	10 10 12 12 12 12 13 14 14 14	37 24 25 25 26 27 27 27	Intermediate 21 31 62 57 57 12 12 38 58 56 64
# 5x	111	063 0056 0072 0074 0097	200 200 200 200 200 200 200 200 200 200	070 040 040 080 080 080 080 080
Li pp.	111	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	3.76 3.76 3.76 3.76 3.76 3.56 3.56	23 27 27 28 24 26 16
Sample	DJ05TA 0J02TA DJ03TA	EN01AC EN02AC EN03AC EN04AC EN05AC EN05AC EN07AC EN07AC EN09AC	68 ENDSAS ENDSAS ENDSAS ENDSAS ENDSAS ENDSAS ENDSAS ENDSAS ENDSAS ENDSAS	HUD3AI HUD3AI HUD3AI HUD3AI HUD5AI HUD3AI HUD3AI HUD9AI

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

Zr ppm		: : :		83 W 4	ነ ላን ለት	V 80	08°L		7.	~	1.63	3	•	6.0	. 7	٠,		\$2.	. 0	0	٠,	1.92	``	~	٥
Zn ppm		19.5 26.0 29.4		4 4			7,7 9,9 1,5		η.	?	39.5	-	\$, ,	8 , 8	•		∞ +	4 4		4	10.1	, 0		8
add k		111		~ ~ -	~ ~ ~	- M	25° 010° 24°		ĿΫ́	V	. 70		S	\$	~	~		. 23	7 7	7	m	. 72	- 1	. M	•
₩ dd >	gujeo	111	Colorado	3 M V	I M O	mr	.24 <.18 1,10	0	0.	~	92.	. 4	O- 1	~ 4	~	₩.	h bakota	72.	n exp	~	Š		9 4	^	2
U Pam	n Hiner Wy	.003	gy fuels Mine.	000	920	.02	<.028	Mine, Calorado	.06	03	038	.03	0.5	070	03	03	usky Kine, North	.038	2 5	70	70	MX	מי מ	04	70
Ti ppm	at, Dave Johnsto	111	atgrass, Ener	, v, v		0.	9.4 6.8 14.5	Energy fuels	~ .*	~	M. 6		14		•	•	wheatgrass, Hus	2.5	5 4	~	\sim	29.3	, (0	~
mad s	Winter whe	1,100	Intermediate whe	009	900	988	850 900 900	Alfalfa	1,766	1,600	2,700	1,680	002.7	2,400	2,800	3,200	intermediate w	057	0.53	200	800	650	05.6	750	200
add ra		111		M. W. S.	× 9 9	16.8	15.6		M	P7 .	9.69	~	67	~ ·	~	M		6	,	~	3			4	6
Se ppa		111		0. 2.	. 15	15	. 20 . 20 . 25		. 20	\$5.	30	52,	1.40	09.	. 20			90.	70	70.	.15	70,	2 2	90.	90-
Sample		0.301TA 0.302TA 0.303TA		ENDIAC ENDZAC SHOTAC	ENDS AC	ENDGAC ENOTAC	ENDSAC END9AC ER10AC	0	ENGINS	ENDZHS	ENDWR S FROTES	ENUSMS	ENOCHS	いばんことは、	EN09MS	ENTOMS		HUOJAI	HUDSAI	HUDCAE	HU05A1	HUGGAE	2 4 4 (1) 4	HU09AI	HU10AI

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

E od pos	055 066 066 067 067 062 062	050	156 032 0032 0032 006 110 110 110 110 038	250 850 150 100 850 850 850 850 850 850 850 850 850 8
ני		1, 18 1, 18 1, 40	2	25. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20
Be ppa	<pre><.106 <.1086 <.1088 <.1088 <.107 </pre> <.107 <.104 <.104 <.104	<.116 <.124 <.122	220 220 220 220 220 220 220 220 220 220	 110 097 122 098 100 166 177 402 118 211
8 00 0 0 0	30.7 26.2 33.9 41.4 55.0 33.6 139.5	87.0 49.6 52.5	4.7 4.5 4.5 4.5 7.4 7.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11.0 11.3 11.7 11.8 12.3 12.6
B ppm Dakora	22.22 22.23 22.23 22.23 23.23 23.23 23.23 23.23 23.23	63.8 51.5 42.7 ne, Wyoming	187.0 113.4 140.0 192.0 260.0 253.0 418.0 612.0 275.0 114.0	7.7 2.7 2.0 2.0 2.0 2.0 2.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
As ppm Mine, North	25 25 25 25 25 26 27 20 20 20 20 20 20 20 20 20 20 20 20 20	70 .70 .90 .90	.30 .35 .35 .35 .30 .20 .15 .10 .35	25 25 25 25 25 25 25 25 25 25 25 25 25 2
Al ppm Lfa, Husky P	376 340 340 474 474 474 474 474 474 474 474 474 4		385 243 540 696 340 528 429 456 913 352	281 506 355 539 785 782 502 502 536 536
ASh X Alfa		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17.0 8.1 10.0 17.0 11.0 17.0 17.0 17.0 9.5	**************************************
Longitude	102 41 0 102 41 0 102 41 0 102 41 0 102 41 0 102 41 0 102 41 0	102 41 0 102 41 0 102 41 0	108 45 0 108 45 0	101 46 0 101 46 0 101 46 0 101 46 0 101 46 0 101 46 0 101 46 0
Latítude	46 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 15 97 76 51 0 76 51 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	71 C O O C C C C C C C C C C C C C C C C
Sample	HU001MS HU003MS HU005MS HU006MS HU006MS HU008MS HU008MS	4011465 1012885 101385	JB01FS JB02FS JB04FS JB06FS JB06FS JB008FS JB10FS	\$8007A1 \$8007A1 \$8007A1 \$8005A1 \$8005A1 \$8008A1 \$8008A1

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

Sample	Ce ppm	Со рр⊯	Cr ppm	Cu ppm	F ppm	Fe ppm	Ge ppm	mqq pK	ĸ ¥	ta ppm
				Alfalfa, Husi	cy Mine, Nor	th Dakota				
HU01#S	<4.9	.053	.47	5.04	6	217	<,106	.01	.90	<.49
HUOZMS	<4.0	.086	.36	4.51	5	155	<.086	.01	.77	.52
HU03MS	<4.1	.132	_33	5.72	6	176	<.088	.01	.75	.44
HUB4HS	<4.7	.100	_85	6.50	7	445	<.100	.02	.85	1,58
หบ 0 5ms	<4.1	.08B	-43	5.72	8	172	<.088	.01	.75	.44
HUG6M5	5.1	.051	.61	5,10	7	214	<.102	.01	.71	2.45
2M70UH	<5.1	.110	,61	7.15	7	336	<.110	.01	1.05	.72
HU08MS	<4.3	.046	.51	4.60	7	216	<.092	.01	.92	1.33
HU09MS	<4.8	.104	.52	4,16	5	151	<.104	.02	.73	.73
HU10HS	<4.1	.088	.34	4.84	5	123	<.088	.01	.66	.66
			Alfa	lfa control,	Husky Mine,	North Dakota				
HU11AS	<5.4	.058	.35	5.22	4 .	209	<.116	.02	1.04	1,48
HU12MS	<5.8	540.	.50	7.75	7	553	<.124	.01	1.05	1.74
9 HU13MS	<5.7	<.061	.73	6.71	7	525	<.122	.01	.85	<.57
-			Fourwi	ng saltbush,	Jim Bridger	Hine, Wyomin	3			
1801 F S	<10.2	.220	.40	4.40	9	97	<.220	<.01	2.85	<1.02
2150BL	<7.5	.081	.22	4.86	8	63	<.162	.01	2.59	<.75
J803FS	<9.3	.300	.55	7.00	10	130	<.200	.03	3.00	<.93
180415	<11.2	.120	.47	6.60	6	168	<.240	.01	2.52	2.40
J805FS	10.0	.300	.65	5.00	6	150	<.200	.01	2.80	1.80
130613	<10.2	.118	.47	4.40	9	154	< . 558	<.01	2.97	1.65
JB07FS	12.1	.220	.57	4.40	7	165	<.220	.01	1.87	<2.20
1808f5	11.8	.248	.64	3.60	9	156	.300	.01	3.60	3.60
J809FS	11.0	-440	.86	4.95	10	286	6.220	<.01	2.97	4.07
1810FS	<8.8	.095	.38	4.75	9	114	<.190	.01	3.04	2.38
			Intermediat	e wheatgrass	, So. Beulah	Hine, North	Dakota			
1 A 10 G 2	<5.1	.110	.38	1.10	5	127	.121	-02	.24	<.51
\$802A1	<4.3	.046	.51	1.38	5	198	.106	.01	.20	1.10
SB03A1	<4.9	.053	.40	1.06	6	159	.122	.01	.25	<.49
SBO4AI	<4.6	.098	.48	1.22	6	206	.127	.02	.21	<.46
SBOSAI	<4.7	.100	.41	1.00	ž	220	.185	.01	.18	1.10
1A6082	<4.3	.092	.69	.69	7	285	.179	.01	.18	.69
S807A1	<5.5	.118	.50	.89	7	201	_183	-01	.17	1.48
5808A1	. 6.6	.060	.84	1.50	6	396	<.128	.02	.22	.78
\$809AI	<5.2	.056	.38	.84	7	134	<.112	.05	.31	1.18
SB10AI	<6.3	.068	.48	1.02	8	197	.197	.01	.22	<.63
301041	10.5	.000	• -0		Ų	1,71				1103

Concentrations of elements (dry-weight basis) in samples of vegetation from thirleen surface coal-mine reclamation sites in five western states and Alaska--continued

P	\$25.5 \$25.5	1.30	8	2.1.18 2.2.2 2.2.2 3.9.3
œ.	000 000 000 000 000 000 000 000 000 00	, 064 , 780 , 061	0894 130 1108 1108 143	. 041 . 046 . 050 . 044 . 023 . 039 . 039
e a a	68 55 55 55 55 55 55 55 55 55 55 55 55 55	. 58 . 1.12 . 56.	7, 16 1, 10 1, 10	127 227 227 226 317 314 314
N DD	C. 69 C. 40 C. 41 C. 41 C. 43 C. 43 C. 43	< 5, < 5, < 5, < 5, < 5, < 5, < 5, < 5,	C1, 02 C, 75 C, 93 C, 93 C	525 545 545 545 545 555 555 555 555 555
Na ppm , North Dakota	143 120 264 700 207 321 660 253 166 172 Mine, North Dai	267 868 397 idger Mine, Hy	2,750 235 5,300 7,680 2,200 2,200 2,11 7,480 3,840 7,040 7,040 7,040 7,040 8,40	255 255 322 330 336 336 336
Mo ppm lfa, Husky Mine	.95 1.25 5.50 5.50 1.22 4.40 1.93 1.25 1.25 .97	2.61 4.34 2.50 altbush, Jim Br		8 5 5 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8
Mn ppm	15 44 77 77 77 77 14 15 71 71 71	13 12 9 60 70 80	79 150 150 89 66 84 85 95 330 10	26 28 28 28 28 29 27 26 27
)5 Ch 54	212 206 206 251 255 286 316 316 302 302 302 305	,545 ,508 ,403	, 902 , 680 , 816 , 920 , 946 1,008 , 902 , 532	. 053 . 053 . 053 . 055 . 050 . 060
בלם יָן	58 2,14 2,35 1,70 1,61 1,06	2.32 1.86 85	288 200 200 200 200 200 200 200 200 200	22.7 1.2.2 1.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 3
e) dees	HU00AS HU00AS HU03AS HU05AS HU05AS HU08AS HU08AS	4U178S HU128S HU138S	JB01FS JB02FS JB05FS JB06FS JB06FS JB09FS JB09FS	\$801A1 \$002A1 \$003A1 \$80\$A1 \$80\$A1 \$80\$A1 \$808A1 \$809A1

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

mdd 12	200. 200. 200. 200. 200. 200. 200. 200.		, , , , , , , , , , , , , , , , , , ,	1,06 66 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 n pp	15. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18		0.84	55.0 110.0 96.0 89.0 68.7 57.6 57.6 55.0	11,0 11,7 11,7 12,7 13,0 13,0 1,1 1,8
2 0.0 >-	44444444444444444444444444444444444444		52.	0725 775 775 775 775 775 775 775 775 775	
c p p p p p p p p p p p p p p p p p p p		Dakota	.37 .46 .33	21.22.22.22.22.22.22.22.22.22.22.22.22.2	North Dakota .20 .35 .42 .45 .45 .74 .53
U ppm V North bako	. 085 . 120 . 106 . 106 . 110 . 129	Mine, North	.070 .099 .098 .098	9 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Beulah Mine. 037 060 060 060 060 060 060 060
Tipps far Husky Mine	26.6 26.6 26.0 28.4 15.9 17.8 7.8	control, Kusky	8.7 8.7 6.7 altbush, Jim B	2000 2000 2000 2000 2000 8.88	heatgrass
S DDR	1,400 1,100 1,100 1,100 1,400 1,500 1,500 1,850	Alfalfa	1,488 1,600 1,400 Fourwing \$	3,100 3,300 3,200 3,800 3,400 4,100 4,100 3,100 3,100	Intermediate wh 450 450 400 400 400 400 500 500
В	38 2,18 3,18 4,8 4,8 4,0 5,0 5,0 8,2 8,3 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4		98.6 74.4 73.2	20.5 21.2 21.2 21.2 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	. 51 21 52 52 52 52 52 52 52 52 52 52 52 52 52
e co	20022C322		50 50 06	5.5. 5.5. 5.5. 5.5. 5.5. 5.5. 5.5. 5.5	0
Sample	HUDDHS HUDCMS HUDCMS HUDCMS HUDSNS HUDCNS HUDCMS HUDCMS HUDCMS		SWELDH 94	480155 130255 130375 130375 130555 180555 180875 180875 181075	\$601A1 \$602A1 \$603A1 \$604A1 \$605A1 \$606A1 \$608A1 \$807A1 \$809A1

Concentrations of elements (dry-ueight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

ed pp		00	`~	1	***	: -	č	7.7	: '	34	. 232		14	28	120		0	25	60	5	0	0	03	4.016	6	Ö		03	16	70	17	0	90	9	10	870.	œ
Ca %		00	7	٩	7	_	, 7	00	9	2.	1.40		Τ,	5	4.50		-		•	~	~	_	~	.13	•	~		S	6	æ	7	- 72	∞	9	æ	767	76.
Be ppe		~	. 20	12	60	14	12	20	7	11.	•		5.	۲,	<.300		07	ب	0,0	05	10	07	3.1	0.070	• 00	.07		.06	.08	07	.05	-10	, 10	.05	06	6,078	_
Ва ррж		φ.	, ,	8	ď	*	, ,	7	25,2	6	6.		76.	95.	285.0		•	•	•		•	ů,		8.1	•			٧.	6.	ζ,		6	۲.	1.	7.	15.6	ò
8 00 8	Dakota	7	ζ,	7	1	2	6	8	42.2	0	,	orth Dakota	ò	ď	0.03	. Montana	•		•	•	•		•	4.6	•		ıtana	7	8	Ś.	۷.	~3	8	o.	2.	16.4	ó
As pos	Mine, North		2,40		1.20		.75	09	06.	07.	02-	ulah Mines M	~	۰,	2.50	bsaloka Mine	.25	. 25	. 30	.15	.15	.15	.15	07.	. 30	1.20	oka Mine, Mon	œ	\Box	۲,	6	~	ዏ	7.	~	. 25	^
Al ppa	, So. Beulah	205	726	564	384	240	533	1,387	~	728	336	trol, So. Be	936	167	435	leatgrass, A	189	110	559	405	252	927	918	102	237	263	fain, Absalo	59	367	198	580	895	623	187	227	86	238
*	Alfalfa.				•	•		4	7.4		•	Alfalfa cons	~	•	15.0	Stender wh			•	•			•	3.5	•		pues				•	•	4			3.9	4
Longitude		97 10	01 46	97 10	01 46	01 46	95 10	01 46	101 46 0	01 46	97 (0		01 46	95!	01 4		9 20	9 20	07 6	9 20	9 20	9 /0	9 20	0 9 201	9 20	9 20		9 20	07 6	07 5	07 6	9 20	9 20	9 40	9 20	107 6 0	6
Latitude		7 14	7 14	71 /	7 14	7 14	71 2	7 1 7	6 71 72	71 2	7 16		7	14	71 2		6 7 6	65 5	67 5	67 5	67 5	67 5	67 5	0 67 57	67 5	67 5		67 5	67 5	67 5	67 5	67 5	67 5	67 5	\$ 5 S	0 67 57	65 <
Sample		001M	BD2M	BOSA	804m	B05M	806.4	M200	SBOBMS	вс9 м	B 10M		U 1 1 1	812K	13	•	C01A	C02A	C03A	C 34 A	COSA	C 0 6 A	C 07 A	SCOBAE	C 09 A	c 10A		0015	0025	1035	C 0 7 S	C C 5 S	c 0 6 S	0078	C08S	SCOOSE	C 10 S

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five vestern states and Alaska--continued

10 ppm			m,	٠,	٥.	∞,	٧,	~	69.5	۲.	5		, 6	0	3.65		. 2	٧,	٧.	-84	٩	٧.	٠,	4	~	~		S	S	۴,	7.	~	~ , ·	V 4	? ^	86.	•
×		. 76	9	Ŷ	~	8	83	∞	.72	æ	~		•	4	\$6.		Λı	2	\sim	11.	m	_	_	M	Š	7		~	Ś	\$	7	9	Š	M F	n ,	, ad	
H9 00 ₽		.03	\Box	0	\Box	0	О	0	-02	0	Q		0	0	.10		0	Ö	0	• 03	Q	0	0	0	0	0		0	0	.01	0	0	9	50.	3 (20.	
e d d		<.138	.15	, 12	60,	14	.12	, 14	, 14	~	12	t a	3	~	<.300		0 >	10	נ	.065	60	.08	10	• 0 7	90	0 2		90	08	07	0.5	80	20,0	â	9 6	102	
Fe ppm	rth Dakota	275	0	\sim	3	\$	2	8	0	Š	0	, North Dakot	0	7	195	Mine, Montana	84	3.8	Q.	143	0	\sim	9	97	84	9 6	Montana	56	7.	ಹ	*	130	٠, r	n =	ים מ	^ Y \	,
and a	ulah Mine, No	۰	9	~	9	7	۷	9	7	v3	^	Beulah Mine	9	~	6 0	. Absaloka	4	•	7	9	v	~	~	s	4	9	aloka Mine,	9	7	9	9	S	w (^ -	^ '	^ v	
#dd nj	atfar 50. Beu	8.97	7	~	۲,	۲,	œ	M,	٦,	80	æ	control, 50.	4.	٧.	6.75	er wheatgrass	Š	0	۵	.81	8	æ	0	~	^	~	andfain. Abs	٥,	٥.	0.	~	~	٠,	^; `	0	2,14	
	ALTA	\$5.	Ø	M	S	S	٠,	~	.41	ø	.38	Alfalfa	96.	. 77	.72	Stende	\sim	2	M	. 38	M	m	S	2	N	M	ς,	.11	92.	. 22	•35	07.	۲٠.	1,10	17.		
# (d o)		1.035	0	~	0	~		9	.518	∞	~		.120	130	.<.150		0	.05	70	.027	08	90	0.5	0	.03	03		0.6	03	07	08	03	200	^ 4	9 6	660	
e co		7.9>	₩.	•	۲.	٥.	Š	۲,		Š	Š		~	\sim	14.3		۷.	,	7	<2.5	m	₹.	Š		٠,	ĸ.		~	~	•	2.	4	, t		٠,	9.6	
Sample		SBOTMS	802K	G03M	364 11	B05 K	806M	807N	B08M	809R	B10M		0118	S 8 1 2 M	9 SB13MS		C 0 1 A	C 02 A	C03A	S C 04 A E	c 05 A	C 0 6 A	C 0 7 A	COEA	¢ 600	CICA		0115	€ 025	C 03 S	C 04 S	C 0 S S	2000	£078	2032	SC 70 SF	3

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

Sample	Li ppm	mg %	Mn ppm	Мо ррм	Na ppm	Nb ppm	Ni ppm	Р %	Pb ppm
			Alfalfa	ı, So. Beulah M	line, North Dake	ota			
	3 A 5	242		* * * * * * * * * * * * * * * * * * * *	700	0.0		0.45	
\$80135	2.07	.262	42	2.21	200	.90	2.41	.062	.97
\$802M\$.62	.308	72	1.54	254	1.46	1.54	.054	1.69
\$803M\$.54	.308	11	.90	390	<.56	.16	.040	.60
\$ B 04 M 5	.48	.221	12	1.54	154	<.45	.30	.053	.93
\$805MS	1.15	.338	18	3.10	194	.70	•66	.065	1.01
SHOOMS	.50	.236	19	.43	112	<.58	.45	-862	.81
\$807M\$.84	.380	161	5.84	387	2.26	6.64	.062	2.19
\$B08M\$	3.33	.355	43	1.85	370	<.69	1.18	.074	.89
SBO9MS	4.48	.297	46	1.85	428	.78	· 2.35	-056	1.06
\$810M\$	2.44	.293	21	1.10	140	<.57	1.28	.055	.73
			Alfalia cor	ntrol, So. Beut	ah Mines North	Dakota			
281182	.72	.552	116	4.80	72	1.80	7.56	.168	2.40
SB12MS	1.30	.741	72	3.12	195	1.56	2.99	.156	1.43
SB13MS	.90	.960	36	2.40	98	1.80	3.15	.150	1.65
97	•,5	1,00	30	2,40	70	1.50	3	• • • • •	1.03
			Slender v	aheatgrass, Abs	saloka Mine, Mor	ntana			
SCOTAE	<.12	.049	15	.23	3.2	<.27	.14	.020	.70
SCOZAE	<.20	.075	29	.26	20	<.46	<.10	.023	.55
SCOBAE	<.19	.058	24	.22	19	<.45	.17	.026	.36
SCOLAE	< .11	.051	15	.19	19	<.25	.24	.026	.59
SEOSAE	.16	.060	23	.24	22	<.37	.14	.026	.72
SCUSAE	<.14	.037	17	. 14	19	<.32	, 15	.010	.32
SCOTAE	<.28	.082	87	.67	23	1,43	. 51	.015	1.84
SCO8AE	<.14	.049	3.3	.10	28	<.33	.08	.030	.60
3 C O 9 A E	.12	.051	23	.17	20	<.28	.14	.019	.57
SCIDAE	-14	.053	16	-13	30	<.33	.13	.030	.56
			Sand	dfain, Absaloka	Mine, Montana				
	<.12	.260	18	1.83	22	<.29	<.06	.015	.29
327032									
\$602SF	.17	.319	46	5.46	76	. 39	.25	.023	.75
S C O 3 S F	<.15	.281	25	.36,	42	<.35	.12	.015	.53
\$C04\$F	.15	.218	41	3.77	46	- 35	.22	.017	-67
SC055F	< .14	.281	104	3.60	79	-86	.43	.014	1.26
S C D 6 S F	•50	.367	86	1.60	47	. 55	.36	.018	1.01
SC07SF	.10	.148	36	2.29	23	<.24	.09	.018	.42
SC085F	.13	.211	35	.67	3.5	.38	.17	.051	.58
5009SF	<.16	.281	62	1.72	3.9	<.36	.21	.016	.47
5 C 1 O S F	<.13	.271	96	.73	43	.59	.40	.018	.96

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

Sample	\$ e pp#	Sr ppm	maq 2	Ti ppm	U ppm	V ppm	Y ppm	2n ppm	Zr ppm
			#lfalfa	, So. Beulah Mi	nes North bak	ota .			
\$801MS	.20	151.8	1,700	9.0	.028	.46	.35	24.8	1,24
245082	.08	>308.0	1,300	16.2	.931	1.08	.59	15.4	1.62
2003/12	.08	126.0	1,500	<5.6	.048	.23	.14	12.0	.66
\$804MS	. 10	, 76.8	1,300	6.7	.038	-44	. 29	14.4	1.01
2M2082	.15	223.2	2,600	7.1	.115	.48	.42	20.2	1.15
2M4082	. 75	105.4	1,700	8.1	.074	.33	.34	20.5	.93
5807AS	.10	>292.0	2,800	24.8	.058	2.26	1.39	56.9	3.58
\$808MS	. 15	155.4	2,000	8.1	.030	.34	.38	. 20.0	.96
SBO9MS	. 15	>224.0	1.300	16.1	.022	.67	.43	20.2	1.12
\$B10M5	-15	109.8	1,500	7.3	.024	.31	.28	20.7	.73
			Alfalfa con	trol, So. Beula	h Mine, North	Qakota			
SBIIMS	.40	168.0	2,500	15.46	.048	1.56	1.06	19,2	3.60
285182	. 70	130.0	3,200	18.2	.052	.75	1,05	23.4	2.34
SM 5813MS	.80	130.5	2,500	<14.0	.060	.89	.80	18.0	1.29
			Stender w	heatgrass, Abs	iloka Miner Moi	ntana			
\$101AE	.04	4.9	\$50	4.1	.046	.12	.13	21.2	.38
SCDZAE	.04	5.0	850	<4.7	•020	<.18	.11	12.0	. 43
SC03AE	.02	5.3	500	4.7	.038	.22	.21	16.3	.58
SC04AE	.02	7.0	400	6.7	.022	.23	.21	12.7	.62
SCOSAE	. 04	10.8	500	4.8	.016	. 22	.17	14.8	.39
SCGGAE	-02	10.2	400	7.5	.027	.20	.22	10.9	.92
S C D 7 A E	.02	8.2	450	14.3	.820	1.02	.43	11.2	1.53
SCOSAS	.02	3.5	550	<3.3	.014	.09	.07	7.0	.25
SCOPAE	-02	6.6	450	3.9	.024	.16	.14	8.7	.36
SCIOAE	.02	3.9	550	4.6	.028	.13	.13	9,1	.56
			Sand	fain, Absaloka	Mine, Montana				-
SCOISF	.02	24.2	1,000	<2.9	.025	<.06	.07	7.4	.30
SC025F	.04	50.4	3,600	4.2	.050	.16	.16	18.1	.71
SC03SF	. 92	19.4	900	<3.5	.030	.15	.16	12.9	.38
SC045F	.04	52.2	400	8.4	.035	.29	.41	22.6	2.00
SCOSSE	.06	86.4	1,400	8.3	.029	.68	.40	9.0	1,44
SC065f	.04	78.D	1,200	7.8	.047	.51	.32	8.2	1.13
SC075F	.02	33.8	650	3.1	.010	.15	.15	6.2	.47
SC035F	.04	23.7	550	3.8	.026	.14	. 14	4.5	.64
SC093F	.03	30.8	1,800	<3.6	.047	.09	.12		.36
								6.6	.99
\$C105F	. 02	49.5	900	4.3	.026	- 59	- 33	5_6	. 7 9

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five vestern states and Alaska--continued

Ed pps		11 06	565	, 02, , 038 , 035	5	4.3	150	10	96	. 455	2		<. C2C	3	20.	200	90	22	2 0		C3	70	20	02	90	3 6	×. 031	0
		13.	くくく	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1.14	4.0	3.0	~	, o	٥		.2.	2	7	V	~	~ 1	. 27		~			~	\sim		.17	4-
Ве ррп		.138	23	W 12 12 12 12 12 12 12 12 12 12 12 12 12			12	202.	125	0 M I	-		.108	-	50	2 5	14	50,	V C		17	200	- ~	188	3.6	7 ×	. 226	36
ed ed	rado	4 6 6 7 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6				5.7	. ,		M.			•	2.8			, 6		•		01.0		,,		8	M	•	7.0	
& dd 8	Mine, Colo			0 0 T N	olorad	39.3	90	5 5	40	44			7.8	•	•		~	•	4 4	, North Dak	•	•	, ,	6	•	<u>.</u> , -	5.9	
As ppm	Seneca No. 2	22.55	0 0	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	Σ	.30	07.		1.30	59.	ainoe No. 2		07.	' ~	2	0 ~	^	9 -	* •	Velva Mine	•	~	~	•	Ö	~ ~	30.	Λ
Al ppm	wheatgrass	306	0 00 v	143 132 245		410 570	80 80	~ -	9 1	172	3 4		284	~	3 0	0 0	8	0 0	55	wheatgrass	~	v,	4 0	000	7		86	7
Ash X	ntermediate			6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Alfal	5.7					red v		6-7		•			•		Intermediate				•	•	•	7.8	
Langitude	Ī	107 6 20 107 6 20 107 6 20 107 6 20	07 6 2			107 6 20 107 6 20	07 6 2 07 6 2	5 9 70	5 9 70	2 9 70	5		106 32 0	06 32	56 36	06 32	28 90	06 32	35 90		0 10	0 0	010	010	010	0 0	101	01 0
Latitude		40 26 15 40 26 15 40 26 15	0 26 1	0 26 1 0 26 1 0 26 1		40 26 15	0 26 1	0 26 1	0 26 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0 23 17	1 53	2 5 3	1 53	1 53		1 23		7 57	7 5 7	75 5	7 57	7 57	7 5 7	0 25 27	7 57
Sample		S E 0 3 A C S E 0 3 A C S E 0 3 A C	E 05 A	E02A E08A E09A E09A		SE01MS SE02MS	E 0 3 M E 0 4 M	E05M	E07N	100 P	5		SHOTAC	₹03 A	F004 A	MOGA	M07A	# 08 A	3 10 A		E 01A	E02A	E 0 4 A	E 05 A	E064	E 0 7 A	VEO9AI	E 10A

Concentrations of elements (dry-weight basis) in samples of vegotation from thirteen surface coal-mine reclamation since sites in five western states and Alaska--continued

Sample	mdd eg	Co ppm	Er pom	edd nj	F pp	Fe ppm	Ge ppm	на ррв	×	ta ppa
			Intermediate	h wheatgrass	, Seneca No.	2 Mines Col	orado			
SEOTAC	•	690*>	38.	69.	د ده	138	20	0	0	\$.
6 7 C 3	3.07	92	A 0 7	40	> 4	186	707	, e	7.1	79">
E 04 A	, 5	9	r 🗸	2	~ د	, m	16	9 0	ے د	ó n
E 05 A	\$	07	~	S	9	w	114	0	0	. 0
£06A	ċ	.09	Š	D.	10	0	19	0	9	?
€07A	8.	08	₩3	٦,		61	. 13	e.	۶,	9
ED8A	2	• 06	M) .	~	10	52	٠16	0	*	٥.
E 09 A	Š	• 05	M	α¢)	9	79	-	0	٠,	4
£ 10 A	\$	-07	7	~	٧.	76	25	Q	-	7
			ALF	Alfalfa, Seneca	No. 2 Mine.	Colorado				
E 0 1 M	٧,	_	89.	8	5 ~	\sim		Ö	0	M
E 0 2 M	•		7	M.	9	156	.15	0	4	•
SEDIW	\$	-22	M	Š	7	0	. 12	0	2	٠.
E 04.4	Ś.		Š	0	6	8	.13	0	∞	ň
SEOSA		\frown	v.	0,	oca ·	~	02.	0	~	•
E 064	٠,	٠.	7 [χ,	9 '	5 '	~ .	0	S	00
NECOUN VXXCUV) ·)	000.	37.	, v	0 <	7<7	261.	70.	0 a	55.
2007	, 4		ያ ሌ	`^	* <	7 0	ייייייייייייייייייייייייייייייייייייי	2 0	0 4	0 4
£ 103		~~	ľ	, ,,	, eo	134		707	7	2
	1		.		•		•	•		•
			Crested	wheatgrass	Seminor No.	2 Rine, Wyomi				
**	7	60	6.10	7.	7	4	60	۵	0	7,
⋖.	4	04	27.	٠,	۷	7	7	0	5	<u>۱</u>
¥	Š	50	\$5.	0		~	٦.	0	m	<u></u>
A	-1	10	79.	۲,	12	9	5	0	0	٠,
4	۲.	10	. 80	8		Š	~	0	٠,	.5
ž .	,	0.5	20	~	7	O.	01.	0	٩	4
Κ,	ξ.	Λ (6.7	٥,	1 cx	٥.	0	0	~ <	∾.
× •	* u	2 4	9 0	•	- 0	4 6	2 *	2 0	7	1 1
SMIDAC	2.73	050	6 M	3,25	^	140	105	02	1.10	94.7
			Intermedi	ate wheatgra	ss. Velva Mi	ne, North ba	kota			
VE01A1	<8.3	.089	31.	×	3		7	0	2	90
VEBSAI	^	620.>	.20	۲.	5		26	0	*	7.
VEGSAI	9-9>.	<.071	.31	1,42	9	20	. 199	.02	.21	1.56
1 × 70 3 A	Ś	<.069	.23	~	S		2	0	\sim	, 6
VEDSAI	⋄.	. 201	.21	~ `	ν /		• 16	0	\sim	4
VEUGAL	01	990.	3.0	? (vn v		^:	0 0	v	٠٠
14.000	- a	20.7	25	۲,۲	, (- V	= C	~ ~	••
10000	40	•		1	,		'n	2		•

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaskam-continued

Sample	Li ppm	Mg X	Mn ppm	Мо рря	Na ppm	мь ррв	Ni ppm	Р %	Pb ppm
			Intermediate w	rheatgrass, Ser	veca No. 2 Mine	, Colorado			
SEQIAC	.28	.083	21	.32	59	<.64	.14	.048	.76
SEOSAC	. 28	.104	13	.23	45	<.64	<.14	.041	.97
SED3AC	.38	.109	13	.30	59	<.60	<.13	.054	.77
SEDAAC	.37	.159	15	.47	40	<.57	.24	.040	.85
SEGSAC	<.28	.098	37	.61	39	.77	.30	.042	1.26
SE06AC	<.40	.119	16	.41	49	<.92	<.20	.069	.82
SEOTAC	.27	.136	8	.19	37	<.63	.14	.065	.68
3 A 803 2	<.25	.082	14	.35	38	<.59	<.13	.054	.69
SE09AC	<.23	.075	24	.20	35	<.54	.13	.052	.70
SEIBAC	.29	.086	14	1.22	36	.72	.20	.050	1.08
•			Alfalf	fa, Seneca No.	2 Mine, Cotora	do			
SEOTMS	.40	.228	9	1.31	43	<.53	.47	.063	.63
SEOZHS	1.08	.624	19	1.00	385	· <.72	.69	.069	.77
\$ £ 03 M \$.57	.542	12	.50	35	<.59	.44	.088	.54
SECONS	.47	.482	21	1.68	67	.74	.52	.074	1.14
SEOCMS SEOSMS	.80	.640	33	1.90	630	1.30	.22	.075	1,20
SECOMS	.61	.623	50	.99	99	<.71	.30	.065	.74
\$£07MS	.48	.312	40	1.56	66	1,14	1.08	.072	1.38
\$20863	<.13	.211	19	1.10	35	.62	.44	.037	.84
SEO9MS	.66	.436	9	1.58	211	<.61	.66	.073	.57
SETORS	.89	-409	13	1.51	58	<.83	.63	.071	.76
			Crested who	eatgrass, Semi	noe No. 2 Mine,	Wyoming			
CH0115	1 37	100	2.2		3.0		17	044	
3 A C D M 2	1.27	.108	2.5	.17	29	<.46	.17	.064	-64
SMOZAC	.41	.083	14	.30	30	4.43	.18	.055	.60
SACCHE	.30	.075	20	.24	45	.46	, 28	.060	.75
5 M O 4 A C	1.38	.106	27	-19	42	<.49	•55	.048	.58
SMOSAC	.27	.074	14	. 22	42	.52	.35	.080	.85
SMOGAC	.40	.085	28	.23	28	<.46	.23	.065	60
\$ # 07 A C	.21	.068	21	.20	34	<.48	. 22	.073	.73
248942	.30	.080	12	.32	38	<.46	.15	.070	.65
\$M09AC	.25	.107	63	.40	32	-82	.50	.076	1.20
SMIDAC	1.50	.110	23	.15	. 25	<.46	.22	.065	.70
			Intermediate	e wheatgrass, t	Velva Mine, Nor	th Dakota			
VEGTAL	<.36	.049	38	.40	22	<.83	<.18	.058	.98
VEO2A1	.32	.047	17	.19	28	<.73	<.16	.055	1.26
VEO3AI	<.28	.036	38	.16	1.8	<.66	<.14	.050	1.21
VEOTAL	<.28	.041	32	.23	21	.83	<.14	.038	1.38
VEOSAI	<.27	.048	44	.14	23	<-62	<.13	.040	1.01
VEO6AI	<.26	.053	79	.38	26	1.19	.25	.036	1.93
VEG7AI	<.30	.045	105	. 4.4	26	1.73	.46	.038	2.40
VEO8AI	<.32	.049	.05	.53	20	1.62	. 48	.057	2.35
VEOSAI	<.31	.039	13	2.42	39	<.73	<_16	.039	1.40
LAGFSV	<.32	.047	77	.40	50	1.34	.32	.051	1.87

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation

	Concentrations	of elements (dry-weight basis sites in five) in samples o western state	f vegetation f s and Alaskall	rom thirteen s continued	urface coalina;	ine reclamati	٥
Sample	Second #2	Sr pos	# d d 5	Ti ppm	∎dd n	* DO	Y 000	add uz	Zr ppe
			Intermediate w	wheatgrass, Seni	eca No. 2 Mine	· Colorado			
E01A	-	6	Q		02	~	-		0
E02A	2		0		02	v.	~	•	30)
£03A	~ (•	Ø		02	\sim	7	٦,	∞ .
E04.1	~ ₹		٥ د د	٠, د	95	~ 4	-	v, a	۵ ۲
F 0.4 A	> -	•	2		2 0	7 A	7 A	A .	~ r
£07A			0		20	~	1 ~		- 4
E 08 A	~		75	2	02	_	-		MS
SEDSAC	07.	7° M	700	7.5>	<.023	4.	25.	∞. ~. 0	77.
E JUA	4	•	Λ	•	20	^	_		•
			Alfalf	ar Seneca No.	2 Mines Colora	do			
E013			070	7" 2	0.2	Δ	N	,	œ
€02₩			30	O	03	~	~5	5	7
SED3M		0	,50	Š	0 \$	_	\sim	o.	4
E 0 4 34		Š	30	0	20	Š	7	5	~
E058		~ *	740	2 5	2,0	9 0	9 >	<u>ه</u> د	4
VEUORS VEOVES	().	2.75	2,200	1 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	- CO.	١٥٠ ا	94	6 5 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	78.7
£ 083		, 50	9 0	7 7	03	. 2	٠.		
E098		7	O	9	0.5	~	~	8	S
E 184		Š	, 00	g. 8	0.2	~	3	α̈́	_
			Crested whe	atgrass, Semino	oe No. 2 Mine,	Wyoming			
MOTA	01.		,20	5.4	03	7	_		~
SMOZAC	90.	7-9	1,300	~ 0	\$50.	. 4.3	.23	۵. پ	20,
2028 2038	2 -	•	0 × 0	ے د	9 6	~ 8	1	4	~ 4
X 00 X	70	1 4	٠o	7.51	200	۰ -	7 4	. 6	3 0
H06 A	70.	•	, 16	\Box	90	4	~		40
M07A	⁷ 0°	4	202,	عې <u>د</u> هغ	80	v.	~ •	~ 0	4 1
M 0 0 M	90.		2 0	10.	0 0	2 C	- ×	, c	30
H 10A	90.		120	·	90	, M	·		
			Intermediate	wheatgrass. V	elva Mine, Nor	th Dakota			
VEBIAI	.08		•	90	0.7	-	<.18	۸,	•
-	. 20		\sim	~	90	*	۲.	8	0
-5	90.	4	0	9	20	- ;	×,14	×.	•
at a	0, 8	∞ +	S	vφ	000	س ا د	~; -	٠.	9 4
VECOAL	80.	7.92	007 7007	< 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 <	080	35.	30	10.0 15.0	. 40
~	. 08			∞ .	90	00	50	7	80
~	20	-	5	3 67	7			.	

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mins reclamation since sites in five western states and Alaska--continued

Cd ppm	100 00,00 00,00 100 100 100 100 100 100	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	3,735 2,590 1,995
	1,73 1,76 1,46 1,92 1,50 1,50 1,50	1.50 1.72 1.72 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	X 8 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Be pps	. 173 . 272 . 272 . 122 . 122 . 128 . 130	<pre><.158 <.172 <.175 <.156 <.072 <.072 <.068 </pre>	000.> 000.> 000.> 000.> 000.>
8 dd 4	000 000 000 000 000 000 000 000 000 00	24.9 10.9 10.9 8.3 8.2 8.2 8.2	36.8 20.7 5.7 8.8 8.8
8 ppm Pakota	110 115 130 130 53 52 78 36 27 54 56 57 57 57 57 57 57 57 57 57 57 57 57 57	67.1 58.5 54.6 54.6 11.9 11.9 10.9	13.9 9.6 8.6 8.6 10.8 13.3
As ppm Mine, North	20 00 60 60 60 55 30 30 30 10	.75 .75 .60 .60 .005 .005 .005	<pre><.05 <.05 .15 .15 .usibetti M <.05 <.05 <.05 <.05 <.05</pre>
Al ppa ilfa, velva	242 245 385 183 183 121 257 77 74 76 100	340 542 398 115 115 194 85	241 129 116 f Lillou 198 115
Ash X Atfalf	6.9 6.8 7.7 7.7 7.7 7.8 6.2 6.5 9.5 9.5	7.9 8.6 7.8 7.8 3.6 3.6 3.4 American green	3.3 5.0 2.7 0;amondlea 4.5 3.7 3.7
Longitude	101 101 101 101 101 101 101 101 00 00 00	101 0 0 101 0 0 101 0 0 148 44 0 148 44 0 148 44 0	148 44 0 148 44 0 148 44 0 148 44 0 148 44 0 148 44 0
Latitude	0 25 27 0 25 27	47 57 0 47 57 0 47 57 0 47 57 0 63 51 0 63 51 0 63 51 0	63 51 0 63 51 0 63 51 0 63 51 0 63 51 0
Sample	VEOTHS VEOZHS VEOZHS VEOZHS VEOZHS VEOZHS VEOSHS VEOSHS	VE11MS VE12MS VE12MS US1AS US2AS US3AS	USJAN USJAN USJAN USJUS USSUS

c o	La pos		4	,		3	ō	'n	~	'n	9	1 0 0		5.05	~	D.		-	1,26	•		_	. 81	~		. 2	1.33
reclamati	×		1,03	9	0	0	7	٦,	0	-	~	1.18		\sim	~	•		52.	. 79	12.		. 59	.63	. 57			.85
ce coal-mine	# 00 DH		-02		.01	.01	-01	.01	.02	.03	0,	10.		<.01	O	.01		.01	.02	0		.03	10.	.01			.05 .04
teen surfa d	Gt pom		200	<.136	. 208	۲.	<.142	٦.	~	٦,	***	-		<.158	\sim	1/3		.07	<.072	• 06	aska	0	090*>	0		0.	020">
tion from the skacontin	Fe pps	Dakota	M	116	169	4	7.8	117	87	33	5.1	77	North Dakota	502	0	٨-	Mine, Alaska	83	130	26	elli Mine, Al	115	83	ВЭ	ine, Alaska	9.5	22
es of vegeta tates and Al	F 904	Mine, North	•	7	J	۰	ν.	9	~	9	•	9	Velva Mine, N	4	5	α¢	r, Usibelli	٨	•0	9	antral, Usibe	7	•	83	Usibelli M	7	٧٨
sis) in samplive destern s	nod nj	falfa, Velva	M	9.1	72.6	۲,	~	0.9	7	00	Ŋ	7.3	control	7.90	7	00	in green alde	~	9.36	òC)	reen alder ca	. 2	5.70	Š	idleaf willow.	- 7	6.66
(dry-velght bas sites in fi	E C C D	AL¥	63.	77.	.58	۲۶.	.23	.37	.13	.12	80	,24	Alfalfa	.33	. 38	.34	America	. 17	.25	.14	American gr	.19	٠. ٢	.13	Diamond	.50	. 22
f elements (d	Co por		690,5	<.066	<.077	<.061	<.071	.156	×.064	.062	<.055	<.059		.158	<.086	820.		.144	.072	. 068		660.	. 120	.054		∞	.148
oncentrations of	Ce ppm		7.6	80	0	<5,7	9	~	9	S	9	<5.5		<7,3	8	~		5	<3.3	*1		\sim	•	7.		4	7 . K . Y . Z . Z . Z . Z . Z . Z . Z . Z . Z
Coo	Sample			VE02MS	VE03MS	VED4MS	VEOSMS	VEDENS	VEO7MS	VED8MS	VED9MS	VE 10MS		VE11MS	VE1225	VETIMS		S 1 A	US 24S	S 3 A		S 1 A	USSAN	53A		S 1 %	USSWS USS#8

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

Sample	Łi ppm	Mg %	Mn pom	Мо рра	Naрре	Nb ppm	Ni ppm	PX	Ръ ррв
			Alfa	ılfa, Velva Mir	ne, North Dakot:	s			
VE01MS	3.86	.221	47	8.97	38	1.38	1.17	.104	1.59
VE02#\$	7.48	.286	39	8.16	272	1.63	.68	.189	1.22
2M203N	5.93	.376	77	6.08	46	2.16	1.00	.077	1.46
VEO4MS	5.49	.238	13	2.44	73	<.57	.23	.085	2.62
VE05MS	3.91	.284	26	2.41	71	<-66	.50	.106	.85
VEO6MS	5.07	.250	31	5.69	62	1.01	1.33	.125	1.17
VEO7MS	7.68	.192	13	1.92	141	<.60	.38	-070	.76
VEOBMS	5 - 89	.198	27	2.48	105	<.58	.62	.093	.48
VED9KS	9.43	.364	14	5.27	247	<.60	-62	.078	.72
V € 10 M S	5.90	.212	18	5.02	89	<.55	.53	.059 ·	.77
			Alfalfa	control, Velva	Hine, North D	akota			
V & 11 M S	18.17	.411	27	8.69	1,817	<.73	.63	. 205	1.11
VETZMS	4.30	.344	50	4,21	688	1.03	1.81	.215	1.20
₽ VE13HS	10.92	.499	40	3.90	1,014	.72	1.01	.203	.94
105			American	green alder, l	sibelli mine,	Maska			
ប្ទារាន	< -14	_180	137	.11	14	<.33	3.96	.209	.43
USZAS	<.14	.166	576	.11	5	<.33	2.88	.216	.36
2 A E 2 U	<_14	.163	218	.08	10	<.32	4.08	.224	.37
			American gree	en alder contro	ol, Usibetli Mia	ne, Alaska			
USTAN	<.13	"20S	>640	.16	25	<.31	2.51	.172	_40
USZAN	<.12	.162	420	.07	14	<.28	2.19	.150	.21
USBAN	<.11	.151	540	.16	19	<.25	2-16	.173	.30
			biamond	eaf willow, Us	sibelli Miner A	laska			
บราชร	<,18	.180	284	.09	18	<.42	3.87	.203	.41
USZWS	<.15	.185	333	.11	15	<.34	4.44	.192	.29
USBUS	<.14	.144	315	.15	21	4.33	3.85	.168	, 33

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

add 12		1.03	1.62	.52	75.	.78	24.	97.	77	39		.73	1.03	75.		.79	2.23	56.		2.90	1.44		74	1.48
wdd v?		13.1	20.8	14.6	34.1	27.3	16.6	21.7	23.4	20.7		17.4	50.6	22.6		9.99	61.2	65.9		7-75	37.8		173.3	144.3
. Y	_	. 23	57.	.13	.16	.32	<.13	<.12	02.	,12		.20	34	.31		60.	01.	20.		21.	.07		٤.	. 13
V E G G		. 76	1.16	.30	02.	<.16	<.13	<.12	<.13	.14	Dakota	72.	,64	.37	Alaska	<.07	60.	<07	Mine, Alaska	.10	01.	Alaska	60	.0. .1.
#dd n	e, North Dakota	.055	260.	,024	.227	.218	.102	050	.130	760	Hine, North	,356	690.	.187	Usibelli Mine,	<.01¢	<.014	<.014		.013	<.012 .022	Usibelli Mine, I	<018	<.015 <.014
Ti ppm	lfas Velva Mine	6.9	7.7	<5.7	9.9>	<7.3	0.9>	<5.8	0.9>	<5.5	control, Velva	7.3	7.8	<7.3	green alder, U	<3.3	<3.3	<3.2	n alder control, Usibelli	7-0	<2.8 <2.5	leaf willow, Us	2.4>	<3.4 <3.3
e dd S	ALFAL	1,900	1,800	1,500	1,500	2,700	1,200	1,500	2,400	1,400	Alfalfa c	00007	4,000	4,600	American	1,300	1,700	1,500	American green	1,100	1,100	Diamondle	1,300	1,800
Sr ppm		151.8	215.6	128.1	78.1	109.2	8.09	58.9	0.75	7.97		71.9	74.8	77.2		12.6	18.4	6.6		16.8	12.9		18.0	13.7
Se ppm		30	. 50	. 30	. 35	. 55	. 30	. 25	. 55	57.		0,	.35	. 70		10.	.01	10.		10.	.03		.02	.02
Saple		VE01MS VE02MS	VE03MS	VE04MS	VE05MS	VEDAMS	VEOTHS	VE08MS	\mathbf{x}	VE10MS		VEITHS	VE12MS	VE13MS	06	USTAS	USZAS	U53AS		ยราลพ	USSAN		USTWS	US 3WS US 3WS

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

■dd py		. 124	3.936	2,180		.153	,056	.034	450.	.032	.022		.240	340	. 260	. 264	- 652	,224
% eO		97.	25.	75.		. 4.2	07.	77.	.36	.37	97.		66.	26.	. 91	1.44	66.	1.15
Ge ppa		<.062	<.082	<.068		<.102	<.112	<,114	<.082	<.092	<.112		<.300	<.280	092.>	<.240	<.260	<.280
Ba ppm	4 0 × 1	7.8	10.7	7.8		11.7	<°5	17.1	10.7	14.3	16.8		33.0	18.2	19.5	33.6	41.6	16.8
E d d	i Mine, Alaska	13.3	7.0	10.5	Net Mexico	10.2	7.8	8.5	7.8	12.0	0.6	New Mexico	55.5	51.8	40.3	>60.0	>65.0	51.8
As pom	ol, Usibelli	<0.05	<,05	.10	Juan Mine,	.10	.10	.15	10	.15	.15	Juan Bine.	. 25	. 25	\$2.	. 20	. 30	.20
Al ppm	willow control,	121	602	323	acaton, San	454	246	1,026	320	555	728	altbush, San	1,395	938	1,118	1,440	1,690	882
A Ha A	Diamondleaf	3.1	4.1	3.4	Alkalis	5.1	5.6	5.7	4.1	4.6	9.8	Fourwing s	15.0	14.0	13.0	12.0	13.0	14.0
Longítude		148 44 0	77	77		22	25	108 25 20	\$	52	22		22	25	25	25	108 25 20	25
Latitude		63 51 0	۲,	23		5 7	5 7	36 45 0	5 5	4 5	5 7		5 5	57	4.5	۶ ک	36 45 0	4 5
4 Q g e s		USTWN	USSIN	USBUN		SJ111A0	SJ11240	SJ121A0	SJ211A0	5.121240	SJ221A0					5,121,150	5.3.2.1.2.F.0	5,122150
														10	7		_	-

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

e J q m s 2	Ce ppm	Со рра	Cr ppm	Сирря	f ppm	Fe ppm	Ge ppm	На ррт	K %	La pom
			Diamondi	eaf willow co	ntrol, Usib	elli Mine, Al	aska			
ยราพท	<2.9	.155	.19	3.72	6	84	<.062	.01	.68	_87
US 2WN	<3.8	2.870	-24	6.15	8	115	<.082	.03	1.07	<.82
us 3wn	<3.2	.272	.34	5.10	5	126	<.068	.01	.78	.34
		1 '	Alka	li sacaton, S	an Juan Min	es New Mexico				
SJ111A0	<4.7	.255	.47	2.80	8	326	.102	.20	.16	<.47
SJ112A0	<5.2	.168	.90	1.96	В	213	<.052	. 25	.24	2.35
53121A0	<5.3	.342	.91	2.56	9	513	.074	.20	. 26	1.03
GALISTS	<3.8	.164	.49	2.05	6	217	.074	.15	.20	<.38
SJ212A0	4.5	.276	.74	2.30	8	352	<.042	.15	. 25	.69
DAISSLE	<5.2	.224	.90	2.80	8	381	<.052	.25	.35	1.12
			Fourwi	ng saltbush,	San Juan Mi	nes New Mexic	0			
SJ1111F0	<14.0	.600	2.40	12.00	19	915	<.138	.10	2,55	<1.39
SJ111F0 OSJ112F0	<13.0	.560	1.96	9.80	21	714	<.129	.10	2.10	<1,30
00 SJ121F0	<12.1	.650	2.47	9.10	18	767	<.120	.20	2.99	<1.21
\$121150	<11.2	.360	1.92	10.20	19	708	<.110	.08	2.64	1.56
SJ212F0	<12.1	.520	1.82	8.45	34	1,066	.169	.20	2.08	1.82
SJ 221F0	<13.0	.280	1.96	9.10	15	616	<,129	.15	3,22	<1.30
3455110	1,340			7.10		210	-4-67	• • • •	,,	

Concentrations of elements (dry-weight.basis) in samples of vegetation from thirteen surface coal-mine reclamation since sites in five western states and Alaska--continued

₽Q dq		.30	•	1.53	1.01	1.65	1.23	1.38	1.79		1.22	1.08	1,18	96.	1.69	66.
a X		. 169		.031	.034	.029	.033	.037	.039		.120	780.	.078	780.	.065	,80,
Ni ppm		3.41		99.	.73	1.08	67.	79.	. 78		3,15	1.37	3.38	1,68	1.95	11.1
N D DDB	Nine, Alaska	< 29 < 38 < 32 < 438	Merico	70.	. 53	1,31	92.	69.	.62	Hexico	3.00	25.5	1.25	<.52	<.56	1.18
Na ppi	, Usibelli Mine	21 21 31	Hine, Neu	1,275	1,120	912	6.510	1,380	1,680	Mine, Nev	19,500	19,600	6,500	240	11,700	10,500
Edd off	willow control, Usibelli	11.	acaton, San Juan	.76	06*	72.	.57	8.	.48	altbush, San Juan	.78	72"	99.	1.32	.53	.57
Hn pps	Diamondleaf	192 340 303	s	98	26	7.4	3.1	\$ \$	38	Fourwing s	165	133	169	240	802	0.6
Mg X		.217)	280,	.112	260"	,119	. 101	2115		750	078	. 202	-672	-611	.784
Lì pom		6.12 6.16		97.	.22	.23	.16	.37	.39		1.80	2.10	1.82	1.20	2.47	1.12
Sample		US 7 UN US 2 UN US 3 U		SJ 11140	SJ112A0	5312140	SJ211A0	SJ212A0	5322140		53111160		SJ121F0		SJ212FO	SJ 221F0

Concentrations of elements (dry-weight basis) in samples of vegetation from thirteen surface coal-mine reclamation sites in five western states and Alaska--continued

2. 000		06.	1.68	1 - 46		1.73	. 54	3,31	1,15	2,30	5.26		8.55	3.92	4.03	5.28	8.19	3.08
add n1		133,3	164.0	180,2		16.3	12.3	12.5	11.1	17.0	13.4		55.5	60,2	61.1	86.4	68.8	26.6
# dd }		80.	82.	.15		67.	30	89.	.37	97.	.62		\$6.	09.	. 65	1,03	1.26	09.
1 000	, Alaska	90°>	•16	22*	xíco	1.02	29.	1.37	99"	.97	1.23	Hexico	2,10	1.68	1.69	2.04	2,73	1.54
# dd n	Usibelli Mine.	<.012	.033	.014	n Mines New Mexico	.122	.146	. 125	139	.156	. 101	Hine, Nev	.120	,112	,130	,072	104	112
Ti pp.	willow control,	6.5>	۵,۵	6-5	acaton, San Juan	12.7	5.3	5.77	10.7	18.9	29.1	altbush, San Juan	61.5	33.6	2.44	43.2	63.7	25.2
s ppa	Diamondles (wi	1,200	1,700	1,200	Alkali sac	1,380	1,600	1,200	1,800	1,500	1,600	3 6	5,200	4 ,000	4 > 200	00777	5,200	4 . 100
ST PPR		10.9	18.9	13.6	,	17.8	17.4	23.9	17.6	23.9	6.95		42.0	35.0	41.6	70.8	53.3	53.2
Se ppm		.01	.01	.01		. 10	.08	10	10	٥٠.	. 10		. 15	. 15	. 10	. 30	57.	¥.
Sample		USTUN	NAZSO	USSWN		5,11140	5112AO	5112140	5,121120	5321240	\$J 221 AO		5317160		5312160		5.4.2.1.2.F.O	5,122,150