VELOCITY AND SURFACE ALTITUDE OF THE LOWER PART OF HUBBARD GLACIER ALASKA, AUGUST 1978

By Robert M. Krimmel and William G. Sikonia

U.S. GEOLOGICAL SURVVEY

Open-file Report 86-549

Tacoma, Washington 1986 DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

U.S. Geological Survey Project Office - Glaciology 1201 Pacific Ave Tacoma, Washington 98402 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Federal Center Bldg. 41 Box 25425 Denver Colorado 80225 (Telephone: (303) 236-7476)

CONTENTS

Pa	a ge
Abstract	1
Introduction	1
Control and coordinate system	2
Terminus and glacier point	3
Velocity and surface altitude	3
References cited	5

ILLUSTRATIONS

			rage
Figure	1.	Map showing the lower Hubbbard Glacier, Alaska	. 6
	2.	Altitude of points on July 30, 1978	. 7
	3.	Altitude of points on August 23, 1978	. 8
	4.	Velocity vectors, July 30 - August 23, 1978	. 9
		TABLES	Pa ge
Tables		1. Control used for photogrammetry	. 10
		2. Terminus position points, July 30, 1978	. 11
		3. Terminus position points, August 23, 1978	. 11
		4. Glacier points, July 30, 1978	. 12
		5. Glacier points, August 23, 1978	. 12
		6. Velocities. July 30 - August 23, 1978	13

CONVERSION FACTORS

For use of readers who prefer to use inch-pound units, conversion factors for metric (International System) units used in this report are given below:

Multiply metric unit	<u>By</u>	To obtain inch-pound unit
grad kilometer	0.9 0.6214	degree mile
meter	3.281	foot

SYMBOLS AND ABBREVIATIONS

Symbol	<u>Name</u>	Units
ID#	Identification number	e
Km	Kilometer	km
m	Meter	m
UTM	Universal Transverse Mercator	
V	Velocity	m/day
VX	Velocity in the X direction	m/day
VY	Velocity in the Y direction	m/day
Χ	Horizontal component, positive to east	m
Υ	Horizontal component, positive to north	m
Z	Vertical component above National Geodetic Vertical Datum of 1929 (NGVD of 1929)	m

VELOCITY AND SURFACE ALTITUDE OF THE LOWER PART OF HUBBARD GLACIER, ALASKA, AUGUST 1978

by Robert M. Krimmel and William G. Sikonia

ABSTRACT

The terminus position and locations of numerous points on the lower part of Hubbard Glacier were determined from 1:58,000 scale vertical aerial photographs taken July 30, 1978 and August 23, 1978. The same surface features were located on each set of photography, allowing displacement during the time interval to be measured. Velocity of the lower glacier for the 24-day interval was about 7 meters per day. The terminus receded 45 meters between the two dates.

INTRODUCTION

Calving speed of several Alaska tidewater glaciers was measured to provide data for a comprehensive study at Columbia Glacier, Alaska (Brown and others, 1982). One of the glaciers measured was the Hubbard. In the late spring of 1986, Hubbard Glacier advanced sufficiently to close the entrance to Russell Fiord. Proposals were made to begin a comprehensive study of Hubbard Glacier to determine the stability and longevity of the ice dam across the entrance to Russell Fiord. This report contains photogrammetric data that may be of use to proposed Hubbard Glacier research.

Vertical aerial photography of the lower part of Hubbard Glacier was obtained on July 30, 1978 and August 23, 1978. Natural features, such as crevasse intersections, on the surface of the glacier can be followed between the two flight dates; this allows measurement of the surface movement. Data given in this report include the control used for the photogrammetry (table 1), the horizontal (X,Y) coordinates of points along

the terminus on both dates (tables 2 and 3), the horizontal (X,Y) and vertical (Z) coordinates of each of many glacier points for each date (tables 5 and 6), and the change in position of the glacier points between the two dates (table 6).

CONTROL AND COORDINATE SYSTEM

Control for the photogrammetry was extended toward the east from existing National Oceanic and Atmospheric Administration (NOAA) horizontal control in Disenchantment Bay. Stations HUBB, BANCAS, LEFTY, HAENKE, and LUFF were established by NOAA; stations START, SCARP, and STRIR (fig. 1, table 1) were established specifically for the Hubbard Glacier velocity measurements. All the stations were marked with temporary photo panels prior to the August 23, 1978 aerial photography. Surveying was done with theodolites reading to 0.0001 grads and estimated to be accurate to 0.0010 grads, and a microwave electronic distance measuring device estimated to be accurate to 0.1 m (meters). The altitude of HAENKE was determined by measuring the vertical distance to the tide level, the level of which was established by using NOAA-predicted tide tables for Yakutat, Alaska. The altitude of the net was thus referenced to NGVD of 1929 and estimated to be accurate to 0.5 m.

Geodetic calculations were made using a three-dimensional survey adjustment (Sikonia, 1977) and are estimated to be internally accurate to 0.3 m in X, Y, and Z, which is well within the limits of the photogrammetry methods used. In addition to latitude, longitude, and altitude, Table 1 gives the station locations in the Universal Transverse Mercator (UTM) system. In Tables 2-6 positions are UTM, but with 580,000 meters subtracted from the easting (X) and 6,650,000 meters subtracted from the northing (Y).

TERMINUS AND GLACIER POINTS

The UTM coordinates of 232 points were determined photogrammetrically by the U.S. Geological Survey's Western Mapping Center in Menlo Park, California by using methods described by Meier (Meier and others, 1985). The Hubbard Glacier photography was flown at a nominal scale of 1:58,000, whereas the Columbia Glacier photography described by Meier and others (1985) was flown at a scale of 1:46,000. On the basis of results from Meier and others (1985) and the difference in scales, it is concluded that the accuracy of the Hubbard points is about 2.5 meters in both the horizontal and vertical.

Tables 2 and 3 show the X and Y coordinates of 51 (July 30, 1978) and 71 (August 23, 1978) points at the ice-water interface, the glacier terminus. These points also are shown on figures 2 and 3 as diamonds. Tables 4 and 5 give the X, Y, and Z for 55 glacier points on both July 30, 1978 and August 23, 1978.

VELOCITIY AND SURFACE ALTITUDE

The change in coordinates of a point between the photo dates gives the displacement vector for the period. Table 6 gives the mid-point of each vector, its X and Y components in meters per day, and the total horizontal displacement in meters per day. Figure 4 shows the same information. It is estimated, based on information from Meier and others (1985, page F7) that the velocities are accurate to 0.2 m/day. Altitude changes are not easy to discern because each point is moving downslope on a surface that has a gentle slope and that is falling in time owing to ablation. Figures 2 and 3 show the altitude of each point and the point's location on the respective date.

The terminus retreated between July 30 and August 23. The area of the polygon formed by a point near the southeast terminus margin (UTM

, 6651938), a point near the northwest terminus margin (UTM 582482, 6658502), and the terminus points on July 30 was $1.22 \times 10^7 \, \text{m}^2$. The area of the polygon with the same end points and the terminus points on August $23 \text{ was } 1.18 \times 10^7 \, \text{m}^2$. The change in area between dates divided by the $8,800 \, \text{m}$ distance between the end points gives terminus recession of $45 \, \text{m}$. The average speed of points near the terminus (I.D. 101-105) was $7 \, \text{m/day}$. Over the 24-day interval the glacier would have advanced $168 \, \text{m}$ had there been no calving. The difference between the ice displacement and the terminus position change for the interval was $213 \, \text{m}$, thus the calving speed was $9 \, \text{m/day}$.

REFERENCES

- Brown, C.S., Meier, M.F., and Post, Austin, 1982, Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier: U.S. Geological Survey Professional Paper 1258-C, 13 p.
- Meier, M.F., Rasmussen, L.A., Krimmel, R.M., Olsen, R.W., and Frank, David, 1985, Photogrammetric determination of surface altitude, terminus position, and ice velocity of Columbia Glacier, Alaska: U.S. Geological Survey Professional Paper 1258-F, 41 p.
- Sikonia, W.G., 1977, Three-dimensional geodetic survey adjustment: U.S. Geological Survey Computer Contribution, U.S. Department of Commerce, National Technical Information Service, PB-278 600, 189 p.

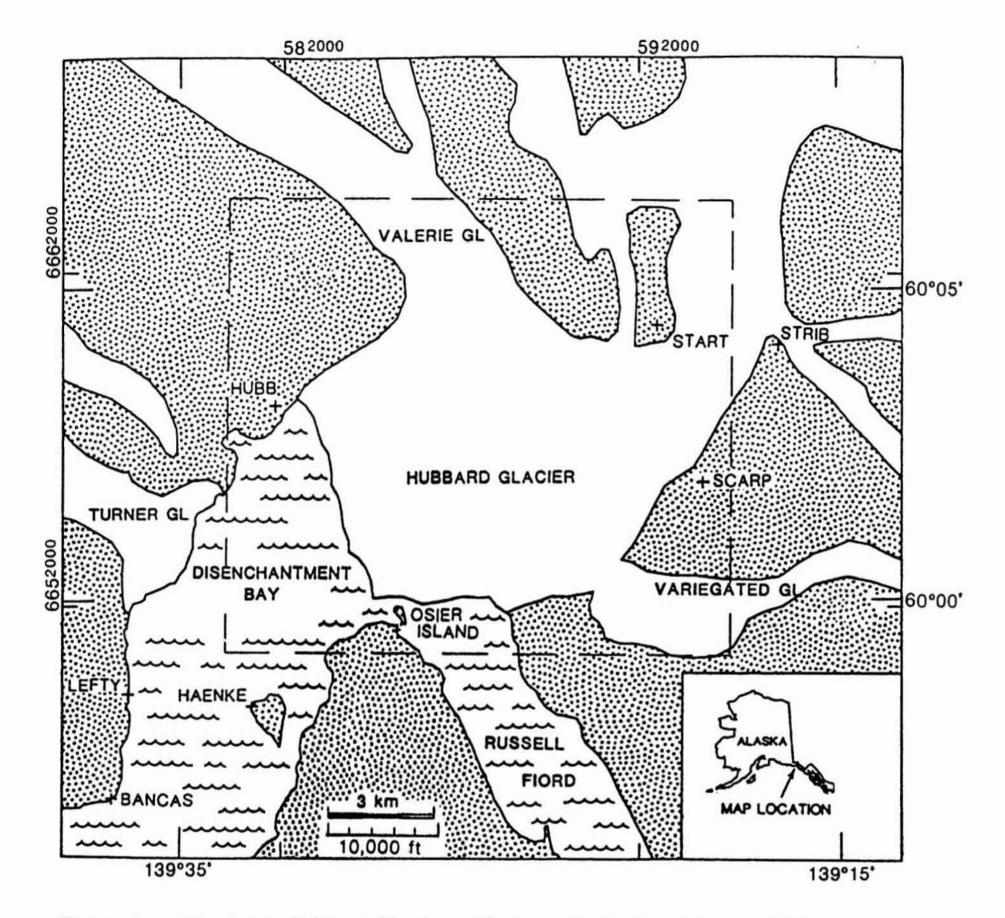


Figure 1 -- The lower Hubbard Glacier, Alaska. Control points used for the photogrammetry are shown as crosses. The dashed box indicates the approximate area shown in figures 2, 3, and 4. The terminus position is for 1974. Station LUFF is out of the map area toward the southwest.

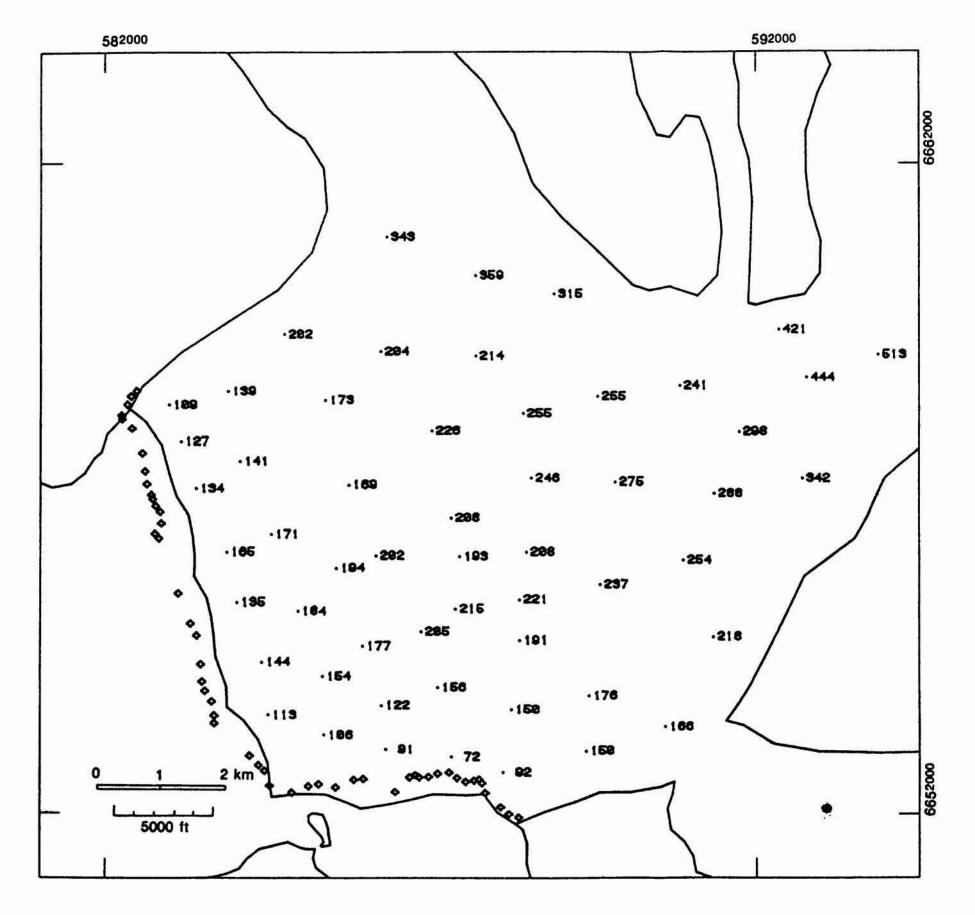


Figure 2 -- Photogrammetrically determined altitudes, in meters above NGVD of 1929, of points on July 30, 1978. The diamonds indicate photogrammetrically determined points along the terminus on the same date. The solid line terminus position is for 1974.

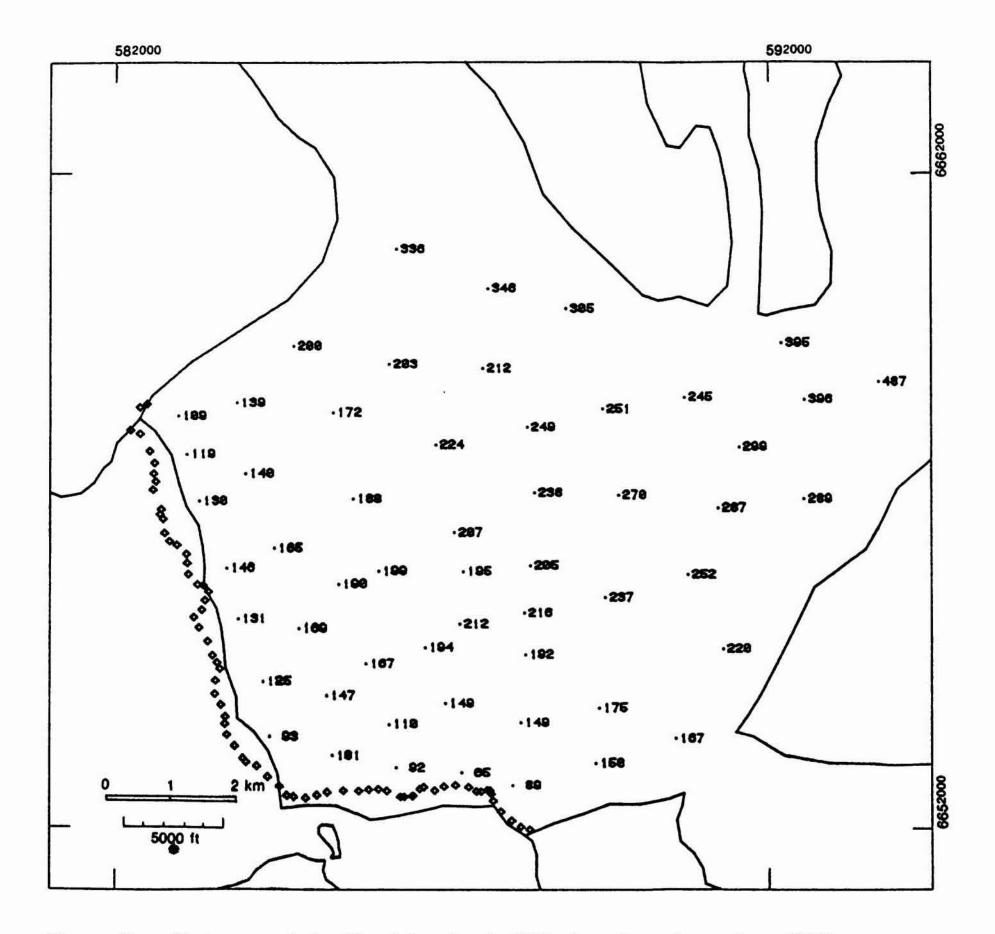


Figure 3 -- Photogrammetrically determined altitudes, in meters above NGVD of 1929, of points on August 23, 1978. The diamonds indicate photogrammetrically determined points along the terminus on the same date. The solid line terminus position is for 1974.

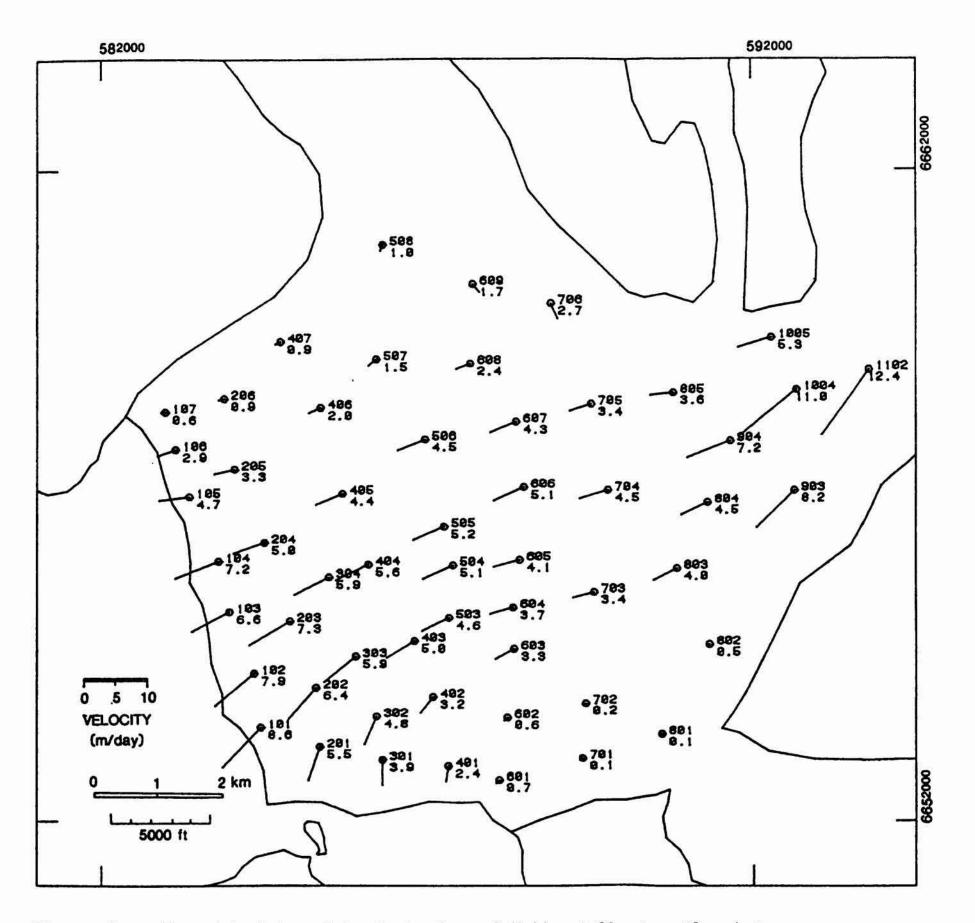


Figure 4 -- The midpoints of trajectories of Hubbard Glacier flow between July 30, 1978 and August 23, 1978 are shown as a circle. The upper number beside each circle is the point ID #, the lower number is the velocity in m/day. Radiating from the circle, is the direction of flow. The magnitude of the vector is also indicated by the scale on the figure.

Table 1 -- The control stations used in the photogrammetry. West Latitude and north Longitude are in degrees, minutes, and decimal seconds.

Altitude (Z) is in meters referenced to NGVD of 1929. Universal Transverse Mercator (UTM), zone 7 positions in meters.

NAME	LONGITUDE	LATITUDE	Z	UTM EASTING	UTM NORTHING
LEFTY	-139.363295	59.5828#5	16.0	577637.2	6649176.0
BANCAS	-139.370622	59.564789	12.6	577186.5	6646842.6
HAENKE	-139.324788	59.581899	14.9	581132.8	6648970.8
LUFF	-139.373925	59.541978	10.2	576774.4	6641194.6
HUBB	-139,329386	69. 939741	16.4	581617.7	66579#7.1
START	-139.262692	60.042508	741.7	592337.0	6660564.3
STRIB	-139.164419	69.949563	828.2	595796.7	6669958.7
SCARP	-139.196649	60.015238	571.6	593788.4	6655872.5

Table 2 -- Hubbard Glacier terminus position, July 30, 1978. X = UTM easting - 580,000 m, Y = UTM northing - 6,550,000 m. These points are shown in figure 2 as diamonds in the order of ID # from southeast to northwest.

ID #	X	Y	ID #	X	Y	ID #	X	Y
91991	8343	1938	91002	8195	1988	91993	8968	2996
91994	7834	2315	91995	7781	2469	91996	7736	2523
91997	7669	2593	91998	7533	2488	91999	7399	2547
91919	7289	2633	91911	7111	2619	91912	6979	2562
91913	6823	2554	91814	6767	2591	91915	6678	2554
91916	6453	2339	91917	5979	2532	91918	5827	2518
91919	5546	2492	91020	5292	2452	91#21	5137	2414
91922	4889	2323	91024	4536	2426	91925	4459	2658
	4369	2748	91027	4232	2891	91933	3687	3395
91926			91036	3649	3739	91037	3549	3892
91934	3685	3510					3419	4755
91938	3496	4641	91839	3477	4396	91842		ST
91943	3319	4937	91946	3129	5499	91050	2826	6238
91951	2763	6397	91#52	2864	6471	91953	2845	6644
91054	2775	6732	91955	2728	6849	91#56	2797	6997
91057	2639	7975	91958	2619	7268	91#6#	2569	7549
	2499	7931	91#64	2269	8972	91965	2250	8139
91962	77 7 7 7 7 7 7				10.000	The second second	2482	8594
91966	2343	8298	91967	2396	8423	91#68	2402	0394

Table 3 -- Hubbard Glacier terminus position, August 23, 1978. X = UTM easting - 580,000 m, Y = UTM northing - 6,550,000 m. These points are shown in figure 3 as diamonds in the order of ID # from southeast to northwest.

ID #	X	Y	ID #	X	Y	ID #	X	Y
92001	8353	1939	92992	8216	1985	92993	8973	2989
92994	7911	2217	92005	7789	2386	92996	7756	2493
92997	7741	2542	92998	7799	2559	92559	7694	2527
92919	7534	2529	92911	7413	2601	92912	7218	2627
92913	7949	2693	92914	6896	2544	92#15	6729	2593
92916	6667	2565	92917	6566	2464	92#18	6547	2455
92919	6431	2445	92929	6373	2444	92921	6163	2536
92922	6936	2561	92923	5887	2558	92924	5736	2534
92925	5499	2536	92926	5255	2511	92927	5999	2469
92928	4924	2431	92929	4743	2446	92939	4638	2465
92931	4526	2696	92932	4348	2768	92933	4182	2925
92#34	4914	2986	92935	3963	3847	92936	3838	3234
92937	3719	3484	92#38	3686	3573	92939	3694	3682
92949	3625	3862	92941	3539	4934	92942	3538	4243
92943	3612	4424	92944	3565	4517	92945	3496	4631
92946	3428	4845	92947	3289	5958	92948	3298	5216
92949	3339	5323	92959	3381	5471	92951	3434	5695
92952	3355	5696	92953	3265	5719	92854	3128	5879
92955	3119	6038	92956	3#95	6175	92957	2949	6315
92958	2833	6369	92959	2757	6588	92969	2733	6711
92961	2699	6778	92962	2719	6855	92963	2581	7156
92864	2623	7289	92#65	2591	7403	92#66	2696	7565
92867	2533	7752	92968	2385	8915	92969	2239	8973
92979	2384	8425	92971	2496	8472			

Table 4 -- Points on Hubbard Glacier, July 30, 1978. X = UTM easting - 580,000 m, Y = UTM northing - 6,650,000 m, Z in meters above NGVD of 1929. The ID # of each point corresponds to the ID # in table 5. These points can be identified on figure 2 by the altitude.

ID #	X	Y	Z	ID #	X	Y	2	ID #	X	Y	Z
191	4518	3519	113	192	4419	4343	144	193	4938	5262	135
194	3889	6030	165	195	3494	7994	134	196		7732	127
197	2986	8296	199	291	5376	3297	196	292		4118	154
293	4972	5129	184	264	4562	6391	171	295		7425	141
296		8593	139	301	6312	2987	91	392	6245	3667	122
393	5958	4587	177	394	5558	5784	194	401	7320	2872	72
402	7110	3945	156	493	6855	4819	205	484	6162	5973	292
485	5751	7861	169	496	5394	8369	173	497	4765	9373	292
593	7383	5156	215	584	7448	5962	193	595	7319	6553	298
596	7024	7894	226	597	6238	9113	294	508		19879	343
691	81#3	2634	92	692	8231	3691	150	603	8362	4678	191
684	8359	53#2	221	695	8466	6939	208	696	8545	7164	246
697	8421	8163	255	698	7697	9945	214	699	7699	19272	359
791	9373	2965	150	702	9423	3817	176	793	9594	5533	237
794	9826	7110	275	795	9569	8428	255	796	8991	9991	315
891	10590	3337	166	892	11332	4739	218	8#3		5997	254
894	11352	6939	288		19821	8595	241		12798	7169	342
994	11736	7884	298	1994	12782	8719	444		12351	9452	421
1162	13896	9865	513	- 113-15 (A.)				2-25			

Table 5 -- Points on Hubbard Glacier, August 23, 1978. X = UTM easting - 580,000 m, Y = UTM northing - 6,650,000 m, Z in meters above NGVD of 1929. The ID # of each point corresponds to the ID # in table 4. These points can be identified on figure 3 by the altitude.

ID #	x	Y	2	ID #	x	Y	Z	ID #	X	Y	2	
191	4376	3376	93	102	4274	4222	125	193	3897	519#	131	
104	3719	5967	146	195	3292	6999	130	106		7798	119	
197	2972	8294	189	201	5334	3982	101	292	200	4992	147	
263	4822	5848	169	204		6262	165	295	4911	7498	149	
296	3878	8498	139	391	6311	2893	82	392		3562	110	
393		4498	167	304	5431	5720	190	491	7311	2814	65	
492	7864	3885	149	493		4747	194	484	6941	5916	199	
485	5654	7826	189	496		8349	172	487	4746	9364	200	
593	7284	5198	212	504	7337	5911	195	595	7284	6593	297	
586	6923	7853	224	597	6219	9889	293	5#8	6323		336	
681	8#93	2622	89	602	8220	3591	149	693	8293	4639	192	
694	8274	5278	216	695	8379	6994	295	696		7114	238	
697	8325	8123	249	698	7644	9925	212	699	7725	19242	346	
761	9371	2964	150	792	9419	3814	175	793	9516	5513	237	
764	9722	7879	276	795	9482	8493	251	796	8926	9932	395	
891	10589	3335	167	892	11322	4725	228	893	16783	5864	252	
864	11254	6882	287	895	19736	8585	245	993	12579	7921	289	
994	11576	7821	299	1994	12577	8553	396	1995	12229	9415	395	
1102	13716	8825	487					100				

Table 6 -- Velocities of points on Hubbard Glacier, averaged over interval July 30, 1978 to August 23, 1978. X, Y, and Z is the midpoint between the positions on the two dates. VX is the X component of velocity, VY is the Y component of velocity, and V is the total horizontal velocity, all in meters per day.

ID #	X	Y	Z	VX	VY	٧
191	4447.0	3444.5	193.9	-5.9	-6.2	8.6
192	4346.5	4282.5	134.5	-6.0	-5.0	7.9
193	3967.5	5226.0	133.0	-5.9	-3.0	6.6
194	3799.5	5998.5	155.5	-6.7	-2.6	7.2
195	3348.	6997.	132.0	-4.7		4.7
196	3138.0	7729.9	123.0	-2.8		2.9
197	2979.0	8295.	189.0	-9.6	-9.1	9.6
201	5355.0	3144.5	193.5	-1.8	-5.2	5.5
292	5296.5	4868.8	150.5	-4.2	-4.8	6.4
293	4897.9	5984.5	176.5	-6.3	-3.7	7.3
295	4585.8 4849.5	6281.5	168.0	-4.8	-1.6	5.0
296	505 505	7416.5	149.5	-3.2	-0.7	3.3
391	3888.5 6311.5	8500.5 2948.0	139.	-9.9	100	8.9
392	6222.5	3614.5	86.5 116.9	0.6 -1.9	-3.9	3.9
393	5983.8	4542.5	172.9	-4.6	-4.4 -3.7	4.8
384	5494.5	5752.0	192.0	-5.3	-2.7	5.9 5.9
491	7315.5	2843.9	68.5	-9.4	-2.4	2.4
492	7987.9	3915.0	152.5	-1.9	-2.5	3.2
493	6893.5	4778.5	199.5	-4.3	-2.6	5.0
494	6101.5	5944.5	200.5	-5.0	-2.4	5.6
495	5792.5	7949.5	174.5	-4.9	-1.7	4.4
496	5372.5	8359.0	172.5	-1.8	-9.8	2.9
497	4755.5	9368.5	291.9	-9.8	-8.4	9.9
593	7333.5	5132.	213.5	-4.1	-2.9	4.6
594	7392.5	5936.5	194.9	-4.6	-2.1	5.1
585	7261.5	6528.9	297.5	-4.8	-2.1	5.2
596	6973.5	7873.5	225.9	-4.2	-1.7	4.5
597	6224.9	9191.9	293.5	-1.2	-1.9	1.5
598	6327.5	19859.9	339.5	-9.4	-9.9	1.0
691	8998.9	2628. €	99.5	-9.4	-9.5	9.7
692	8225.5	3596.₽	149.5	-0.5	-8.4	9.6
603	8327.5	4658.5	191.5	-2.9	-1.6	3.3
694	8316.5	5290.0	218.5	-3.5	-1.9	3.7
695	8418.9	6917.9	296.5	-4.9	-1.1	4.1
696	8489.# 8373.#	7139.0	242.5	-4.7	-2.1	5.1
697	7679.5	8143.9	252.9	-4.9	-1.7	4.3
689	7712.0	9035.0	213. 9 352.5	-2.2	-9.8	2.4
761	9372.	2964.5	150.0	1.1 -9.1	-1.3 g.g	1.7
792	9421.0	3815.5	175.5	-9.2	- 9 .1	9.2
793	9555.0	5523. ₽	237.6	-3.3	-0.8	3.4
794	9774.9	7994.5	272.5	-4.3	-1.3	4.5
795	9521.9	8415.5	253.6	-3.3	-1.0	3.4
786	8913.5	9961.5	310.0	1.5	-2.5	2.7
891	1#589.5	3336.0	166.5	8.9	-0.1	Ø.1
892	11327.9	4727.5	219.9	-0.4	-0.2	9.5
893	19826.9	5885.5	253.€	-3.6	-1.8	4.9
894	11393.9	6986.8	287.5	-4.1	-2.0	4.5
895	16778.5	8590.0	243.9	-3.5	-9.4	3.6
993	12639.9	7090.5	315.5	-5.8	-5.8	8.2
984	11656.0	7852.5	298.5	-6.7	-2.6	7.2
1994	12679.5	8636.	420.0	-8.5	-6.9	11.6
1995	12299.9	9433.5	408.0	-5.1	-1.5	5.3
1192	13893.9	8945.	599.9	-7.3	-10.0	12.4