U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

DATA REPORT FOR A SEISMIC STUDY OF THE P AND S WAVE VELOCITY STRUCTURE OF

REDOUBT VOLCANO, ALASKA

PROPERTY OF DGGS LIBRARY

OPEN-FILE REPORT 96-703

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Menlo Park, California 1996

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

DATA REPORT FOR A SEISMIC STUDY OF THE P AND S WAVE VELOCITY STRUCTURE OF

REDOUBT VOLCANO, ALASKA

by

P. B. Dawson¹, B. A. Chouet¹, J. C. Lahr², R. A. Page¹, J. R. VanSchaack¹, and E. E. Criley¹

Open-File Report 96-703

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

¹Menlo Park, California, 94025 ²Fairbanks, Alaska, 99775-7320

TABLE OF CONTENTS

Summary	2								
Introduction									
Instrumentation	2 2 3 3								
Timing	3								
Field Procedure									
Site Selection	4								
Instrument Failure	4								
Active Experiment - Chemical Explosions	5 5 6								
1-D Velocity Model	5								
3-D Velocity Model	6								
Recorded Seismicity	6								
Data Archive	6 7 7								
Acknowledgments									
References	7								
TABLES									
Table 1. Station Locations	9								
Table 2. Data Stream and Trigger Parameters	10								
Table 3. Station Operation	12								
Table 4. Shot Schedule	13								
Table 5. Velocity Model	13								
Table 6. HYPOELLIPSE Summary Record Format	14								
Table 7. Listing of Local Events in HYPOELLIPSE Format	16								
Table 8. Data Archive Format	23								
FIGURES									
Figure Captions	24								
Figure 1. Map of station locations	25								
Figure 2. Shot 1-4 record sections	26								
Figure 3. Deep volcano-tectonic event	30								
Figure 4. Regional event	33								
Figure 5. Shallow summit crater event	36								
Figure 6. Summit crater steam event	37								
Figure 7. Drift River Glacier event	40								
Figure 8. Local earthquake locations	43								

Summary

Between December 13, 1989 and April 21, 1990 Redoubt Volcano, Alaska erupted more than 20 times. During this period 14 lava domes were formed of which 13 were subsequently destroyed. The composite volume of the eruptions was estimated to be on the order of 0.15 cubic km. Economic losses (about \$160 million) sustained during the eruptions prompted a number of studies of the volcano. The primary goals of these studies were to document the physical characteristics of the eruption and to address the reduction of hazards associated with the volcano. A special issue of the Journal of Volcanology and Geothermal Research (Miller and Chouet, 1994) has been devoted to the documentation of these eruptions, and should be referred to for further reading. This report describes the high-quality digital seismic data collected on Redoubt Volcano for three weeks during July, 1991. The data were collected to determine the velocity structure of the volcano and to provide insight into the dynamics of the eruptive sequence.

Introduction

Redoubt volcano is located on the northwest side of Cook Inlet, about 120 km southwest of Anchorage, Alaska. It is near the northeastern end of the Aleutian volcanic arc. The Quaternary stratovolcanoes of this arc are related to the northwestward subduction of the Pacific plate beneath southern Alaska. From a base elevation of 1500 m above sea level, underlain by Jurassic granodiorite of the Alaska-Aleutian Range batholith, Redoubt is a 1500 m high glacier-covered stratovolcano. The glaciers and volcanic deposits which mantle the volcano drape over the batholithic base to nearly sea level in adjoining glacially carved valleys.

The Quaternary history of the volcano extends back to about 0.9 Ma. At least 30 Holocene eruptions have been documented (Till et al., 1994), as well as lahars off all flanks of the volcano (Beget and Nye, 1994). Historic eruptions similar to the 1989-1990 sequence occurred in 1902, 1966, and 1968. The latest eruptive activity lasted about 6 months from December, 1989 until June, 1990.

The initial eruption of December 14, 1989 was preceded by an intense swarm of long-period seismicity which lasted for 23 hours. Following the initial eruption a lava dome began to form in the summit crater, sealing the vent. On December 26 long-period seismicity was again observed and increased in intensity until the dome was destroyed by another eruption on January 2, 1990. Repeated dome growth and destruction continued until April 21, 1990 when the thirteenth dome collapse occurred. The fourteenth and current dome was then emplaced and continued growing until about mid-June, 1990.

Instrumentation

PASSCAL (Program for Array Seismic Studies of the Continental Lithosphere) REF TEK® 72A digital recorders and geophones were provided for the experiment by IRIS

(Incorporated Research in Seismology) through the Lamont instrument center. A detailed description of the REF TEK® 72A portable seismic data acquisition system can be found in Refraction Technology, Inc. (1990). The recorder can collect up to 6 channels of data with sampling rates of 1 to 1,000 samples per seconds with 16 bit resolution. Mark Products three-component L-22-3D sensors (natural frequency of 2 Hz and sensitivity of 0.5 V/cm/s) were used. Data was written to 190 MB disk subsystems at 16 of the stations, and 600 MB disks were used at the remaining four stations.

The recorders were deployed in three semi-linear arrays across the volcano and in a diffuse pattern to fill gaps between the permanent network stations operated by the Alaskan Volcano Observatory (AVO). Figure 1 gives the array configuration and topography of Redoubt Volcano. Station names were derived from local place names and numbered consecutively along each array. The DR (Drift River) line trends N-S along the north-face of the volcano, the CR (Crescent River) line trends N-S along the south face, and the SE (south east) line trends NW-SE along the SE flank slope of the volcano. The SU station names are derived from their location about the summit of the volcano. Table 1 gives the station locations for the PASSCAL network and the local AVO network.

Timing

Because the internal clocks of each instrument drift independently, an Omega time clock was deployed with each station. At preset intervals, the internal clock was synchronized to the Omega time. Several of the stations had difficulty receiving the Omega satellite signal, in particular station N1, which never synchronized to the external signal and station E1 which had a systematic offset and drift rate. To compensate for this problem, we carried a USGS Master Clock II in the field and input a 1-Hz step function at a known minute mark to the PASSCAL instrument to provide an independent time-stamp.

Field Procedure

During July, 1991 the 20 digital seismic recorders were deployed on Redoubt Volcano. A total time limit of one month, including shipping to and from Alaska, and our desire to maximize the effective recording time required a multi-layered recording schedule. The schedule also had to reflect the fact that field work along the Cook Inlet during the summer was at the whim of prevailing fog patterns.

Our goal was to record local and regional seismic events, and four chemical explosions detonated around the volcano. Therefore, the recorders were programmed with eight separate data streams. The first stream continuously recorded the vertical component of ground velocity at 50 samples per second. The second stream recorded three components at 100 samples per second when a trigger threshold was met. The continuous recording was required because we had no opportunity to tune the trigger parameters for individual sites. To record the chemical explosions, a series of two-minute windows were programmed as data streams three through seven to record five times per day over a one week period. The entire experiment was supported by helicopter, economics required that

we visit each site only for deployment, one disk swap, a site check, and instrument retrieval. Table 2 gives the data stream and trigger parameters used for the experiment.

Prior to shipping the equipment to the Drift River Oil Terminal for deployment, all of the instruments were deployed in a huddle test in Anchorage, Alaska for two days. This test revealed several damaged circuit boards (most likely from heavy handling during shipping to Alaska) which were repaired on the spot by an IRIS technician. This practical experiment revealed the damaged units and allowed for better instrument performance and data collection during the actual deployment on Redoubt Volcano.

The 190 MB capacity of the hard disks determined the amount of time each station could record, indicating at least one disk swap was required at 16 of the stations. Stations SU1-SU4 were the highest and most inaccessible sites so we deployed 600 MB disks at these sites and did not perform any maintenance or disk swaps at these stations. We calculated a conservative value for the amount of data expected to be collected and determined that the sites with 190 MB disks would run about 10-12 days before filling with data. We were equipped with 10 extra disks which meant that approximately one half of the array could be serviced with a disk swap on any given day. The filled disks were then flown to Anchorage where the data was archived to exabyte tape, the disks cleared and flown back to the volcano, then the remainder of the array serviced in the same manner. Fortunately, the weather cooperated and we were able to reach the sixteen sites over a three-day period and perform the required disk swap. Table 3 gives the performance of the stations. The average recording time for all stations was 15.5 days over a 24 day period.

Site Selection

Sites were selected on one primary basis - helicopter access. Since Redoubt Volcano is heavily glacier-clad, this meant that most of the stations were deployed along ridges of well-consolidated volcanic rocks or granitic basement. The only site with suspect underpinning was SU1, located next to the summit dome. An outcrop was found at the edge of the ice-crater surrounding the summit dome, but it was not clear if the outcrop extended through the glacier or was a large block carried in the glacier. Sites E2 and E3 were occupied for a few days, then moved to SE2 and SE4 respectively to provide a better profile for shot number 4. The disks were not reformatted so data from E2-SE2 and E3-SE4 occur on the same disk.

Instrument Failure

Several factors led to the loss of data at five of the stations. Cables at station W2 provided tempting to the local critters, but they were eventually satisfied that there was no nutritive value to the cables. New cables were installed during a quick visit to the site prior to the firing of the shots. Station SE2 was destroyed by a bear, resulting in a few day's loss of data. The antennae pole and bolts provided an ideal scratching post for the bear. The site was re-established prior to the detonation of the chemical explosions. The bear was not satisfied with his distance mark in shot-putting the lead-acid car batteries and

decided to further his mark several days later. The disk swap at station DR5 failed. Stations E1 and N1 experienced difficulty receiving the Omega time signal as previously mentioned.

Active Experiment - Chemical Explosions

To help calibrate the network and to derive a well-constrained velocity model of the upper portion of the volcano, an active seismic experiment using chemical explosives was conducted. 1400 Kg of chemical explosives were transported to the Drift River Oil Terminal and, because of the proximity to large amounts of oil, uneasily stored by the terminal staff. The explosives were transported by external cargo net to three glacial kettles at the base of the volcano and to the summit crater. Each shot consisted of 350 Kg of explosives detonated at precise times on the hour. The recorders were programmed to turn on automatically during several windows per day to allow for contingencies such as bad weather. The recording times were set to begin on the hour and record for 120 seconds with an additional parameter programmed to record 10-s pre-event memory. The pre-event memory function turned out to not be implemented. Therefore, stations near the shot points have very little pre-event signal. Each shot was successful, due to the efforts of the personnel who valiantly performed under adverse conditions such as black flies and mosquitoes. Four team members spent 8 hours on the summit crater glacier adjacent to the steaming volcanic dome, loading explosives into a glacial crevasse, then detonating the shot from the seat of a partially flying helicopter. The said helicopter then took to immediate flight as large pieces of the surrounding hanging glaciers and substantial rockfall descended onto the summit glacier. Figure 2 shows record sections for the vertical component data for the four shots and Table 4 gives the shot schedule.

1-D Velocity Model

The shots were used to constrain the ad hoc 1-D velocity model used to locate seismicity recorded by the permanent network (Lahr, 1994). Two of the shots (numbers 2 and 3) and 10 of the recorders (the CR and DR lines) provided a reversed profile across the mountain. The traveltimes from these shots were used to constrain the shallow portion of the 1-D velocity model. Deeper velocities were determined by minimizing the root mean square travel time residuals of well recorded earthquakes in the 3-5 km depth range. The final 1-D velocity model is given in Table 5. The ultimate goal of this modelling was to accurately locate the seismicity occurring in a complex 3-D medium with a simple 1-D model. One test of the derived model is how well it relocates the shots. Using a modified version of the program HYPOELLIPSE (Lahr, 1989) in which the stations can be imbedded in the model, and P-wave arrivals from the PASSCAL network, the summit shot is relocated with an epicentral error of 30 m and a depth error of 70 m. Using P-wave arrivals from six stations of the permanent network the summit shot is located with an epicentral error of 40 m and a depth error of 90 m. The flank shots yield epicentral errors of 400 to 1750 m and depth errors of 660 to 1540 m.

3-D Velocity Model

P and S wave phase data from local seismic sources recorded by the PASSCAL and AVO networks were used to determine the three-dimensional velocity structure of Redoubt Volcano to depths of 7-8 km (Benz et al., 1996). 6219 P wave and 4008 S wave first arrival times were used. First-arrival times were calculated using a finite-difference technique and structure was determined using a nonlinear inversion procedure. The most prominent feature observed in both the P and S wave three-dimensional models is a relative low-velocity, near-vertical, pipelike structure approximately 1 km in diameter that extends from 1 to 6 km beneath sea level. This feature is aligned with the seismicity and is interpreted as a highly fractured and altered zone encompassing a magma conduit. No large low-velocity body suggestive of a magma chamber is resolved in the upper 7-8 km of the crust beneath the volcano.

Recorded Seismicity

During the three weeks the instruments were deployed approximately eight gigabytes of data were collected. Events recorded during the experiment include about 240 volcanotectonic events; several hundred regional and Wadati-Benioff zone events; hundreds of glacier quakes; several teleseisms; and thousands of small microearthquakes associated with the cooling of the crater dome. Station SU1, located a few hundred meters from the dome, triggered over 14000 times in 21 days recording steam bursts, glacier quakes, and seismicity associated with the cooling of the dome. About one half of these triggers were observed at nearby stations. Figures 3-6 show examples of the seismicity recorded by the network.

P and S-wave phases were picked from the digital records of over 240 volcano-tectonic events and many of the regional events recorded by the PASSCAL network. The University of Alaska XPICK program coupled with Lahr's HYPOELLIPSE program was used to locate the events. Uncertainties in the arrival times range from 0.02 to 0.1 sec. During the experiment 24 local events triggered the local (AVO) network. The large discrepancy in the number of events observed by the two networks is due to the sensitivity of the triggering algorithms employed and array configuration. Because of the large station spacing of the permanent network, the small magnitude events observed by many of the PASSCAL instruments did not trigger on the permanent network. Table 6 gives the format of the HYPOELLIPSE summary data. Table 7 gives the local event locations.

The distribution of local earthquakes (Figure 8) is reminiscent of the long-term posteruptive pattern described by Lahr et al (1994). Two prominent zones of seismicity are observed, the first directly beneath the crater dome extending from the crater floor to about 1.5 km depth. The second is offset to the north and west of the shallow seismicity by a few kilometers and extends from 3 to 7 km below the crater floor.

Data Archive

The data recorded by the PASSCAL recorders were downloaded to a SUN workstation in SEGY format. Trigger coincidence was determined with a 10 second maximum time difference between stations, and events recorded by more than three stations extracted from the data base and archived in AH format. Most of the coincident triggers which were obviously not correlated were removed from the final archive. In addition, the vertical component records from the continuous data stream were extracted for many of the local events when individual stations did not trigger on those events. Events were classified as local, regional, teleseismic, or glacial in origin based on visual characteristics.

The original Exabyte tapes (master data set) from disk dumps are available from the IRIS data center. The seismic data (in AH format) extracted from the master data set are preserved on Exabyte tape using the UNIX TAR facility. The extracted archive contains about 1.8 MB of data. Events are grouped into sub-directories by day and hour. Table 8 gives the data distribution structure. In addition, phase data and event locations are preserved in HYPOELLIPSE format in a separate sub-directory called "picks". Ancillary data such as the local network phase data and line files of topography are preserved in a sub-directory called "ancillary".

Acknowledgments

Numerous people contributed to the success of this experiment. For instrumentation, the staff of the Lamont PASSCAL instrument center provided guidance, computer advice, and technical help. Bob Busby of the instrument center directed our attention toward the details of the REF TEK® operation and Tom Jackson assisted with the preliminary tests of the equipment in Anchorage. Jim Fowler of IRIS made the logistical loan of the instruments and computers possible. The staff of AVO, including John Paskievitch and Inyo Ellersieck provided administrative and technical support. Our helicopter pilots Michael Wilton, Rick Farrish,, and Walt Woodrow performed amazing feats of high altitude mountain flying. The staff of the Cook Inlet Pipeline Company and the Drift River Oil Terminal including Don Gregor, Ron Green, and Larry Duncanson provided the critical task of helping us stage the experiment from the oil terminal.

References

Begét, J. E., and Nye, C. J., Postglacial eruption history of Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 62, 31-54, 1994.

Benz, H. M., Chouet, B. A., Dawson, P. B., Lahr, J. C., Page, R. A., and Hole, J. A., Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska, J. Geophys. Res., 101, 8111-8128, 1996.

Lahr, J. C., HYPOELLIPSE/Version 2.0: A computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern, *U. S. Geol. Surv. Open-File Rep.*, 89-116, 92 pp., 1989.

Lahr, J. C., Chouet, B. A., Stephens, C. D., Power, J. A., and Page, R. A., Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989-1990 eruptions at Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 62, 137-151, 1994.

Miller, T. P., and Chouet, B. A., editors, The 1989-1990 eruptions of Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 62, 1530, 1994.

Refraction Technology, Product Specification, REF TEK® 72A-02 Portable digital seismic data acquisition system, Refraction Technology, Inc., 1-24, 1990.

Till, A. B., Yount, M. E., and Bevier, M. L., The geologic history of Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res., 62, 11-30, 1994.

Table 1.
Station Locations

Station	Latitude (N)	Longitude (W)	Elevation (m)
	PASSCA	AL Instruments	
CR2	60 26.792	152 49.535	931
CR3	60 27.682	152 48,576	1287
CR4	60 28.388	152 48,288	1839
DR2	60 32,386	152 46.136	651
DR3	60 31.663	152 46,429	1226
DR4	60 31.136	152 46.902	1449
DR5	60 30.548	152 46.768	1872
E 1 Z	60 31.881	152 37.208	1201
E2Z	60 27.668	152 38.832	853
E3Z	60 29.320	152 38.830	1318
NIZ	60 30.275	152 42,490	1682
SE2	60 26.798	152 38.717	659
SE3	60 27.354	152 40.038	994
SE4	60 27,533	152 41.394	1371
SE5	60 28.354	152 42,743	1792
SU1	60 29,354	152 45.877	2479
SU2	60 29.436	152 46.624	2743
SU3	60 30.010	152 46,920	2433
SU4	60 29.814	152 44.318	2492
SU6	60 28.766	152 47.285	2492
W1Z	60 32.204	152 51051	1014
W2Z	60 29.488	152 53842	1135
	Permanent	Network Stations	;
DFR	60 35.51	152 41.16	1090
NCT	60 33.79	152 55.57	1079
RDN	60 31.37	152 44.26	1400
RDTE	60 34.39	152 24.32	930
RDTN	60 34.39	152 24.32	930
RDTZ	60 34.43	152 24.37	930
RDW	60 28.96	152 48.57	1813
RED	60 25.19	152 46.31	1064
REDE	60 25.19	152 46.31	1067
REDN	60 25.19	152 46.31	1067
REF	60 29.35	152 42.10	1801
RSO	60 27.73	152 45.23	1921
RS2	60 27.78	152 45.44	1953

Table 2. Data Stream Parameters

Data Stream 1 CONTINUOUS
Channels 1
Sample rate 50 samples per second
Data Format 16
Filters
Trigger Type CON
Record Length (seconds) 600

Data Stream 2 TRIGGERS Channels 123 Sample rate 100 samples per second Data Format 16 Filters Trigger Type EVT Trigger Channels 123 Minimum Number of channels 1 Trigger Window (seconds) Pretrigger Length (seconds) 10 Posttrigger Length (seconds) Record Length (seconds) 60 STA (seconds) 0.5 LTA (seconds) 60 Mean Average Length Trigger Ratio 5 Detrigger Ratio LTA Hold Flag OFF

Data Stream 3 SHOT 1
Channels 123
Sample rate 100 samples per second
Data Format 16
Filters
Trigger Type TIM
Start Time: Year 1991 Day 188 0:0:0
Repeat Interval Days 1 0:0:0 Number of Repeats 6
Pretrigger Length (seconds) 10
Record Length (seconds) 120

Data Stream 4 SHOT 2
Channels 123
Sample rate 100 samples per second
Data Format 16
Filters
Trigger Type TIM
Start Time: Year 1991 Day 188 04:0:0
Repeat Interval Days 1 0:0:0 Number of Repeats 6
Pretrigger Length (seconds) 10
Record Length (seconds) 120

Channels 123 Sample rate. 100 samples per second Data Format 16 **Filters** Trigger Type TIM Start Time: Year 1991 Day 188 06:0:0 Repeat Interval Days 1 0:0:0 Number of Repeats 6 Pretrigger Length (seconds) 10 Record Length (seconds) 120 Data Stream 6 SHOT 4 Channels 123 Sample rate 100 samples per second Data Format 16 **Filters** Trigger Type TIM Start Time: Year 1991 Day 188 18:0:0 Repeat Interval Days 1 0:0:0 Number of Repeats 6 Pretrigger Length (seconds) 10 Record Length (seconds) 120 Data Stream 7 SHOT 5 Channels 123 Sample rate 100 samples per second Data Format 16 Filters Trigger Type TIM Start Time: Year 1991 Day 188 21:0:0 Repeat Interval Days 1 0:0:0 Number of Repeats 6 Pretrigger Length (seconds) 10 Record Length (seconds) 120 Data Stream 8 MINMARK Channels 1 Sample rate 100 samples per second Data Format 16 Filters Trigger Type EXT Pretrigger Length (seconds) 2 Record Length (seconds) 11 Calibration Definition 91:195:23:57:48:705 ST: 0386 Start time: Year Day Repeat Interval Days : : Number of Repeats Length of CAL (seconds) Step OFF

Data Stream 5 SHOT 3

Freq OFF Noise OFF

Table 3. Station Operation

															_			_			_			_		_
Z	366					_	H									_		,	_						,	
EI	379				_	_	_	_	_	_	_	_		Ī			_	ļ	_	_	_	_			~	
W2	361			1	1			_	_						_	_	_		_	_	_	_	_	I		
Wl	394			_	_			_	-	_	_		_				-	1	-		_	1		Γ	1	
SU6	356		•					_		-			_	_			,		_	1	_					
SU4	148		}				===				_	_	_	_			_			_						
SU3	362					1	1		_	_		_	-	_	1		_	, ["	-	_	_					
SU2	382				~	ſ	,		1	-	1	_		_	_	_	1		$\overline{\parallel}$							
SUI	237	}		1	-	Ĭ	1 1							-	_	-] [1		ł			
SES	376)				Ī			1	ļ			ļ	~			ļ	1			1]	ì	~	
SE4	342								1	_	-	_]]	1		1	[]	7	1			
SE3	340									_	1				-			1		Į	[]		1	Ì		
SE2	192			ì		-			_	1	"			_				~	Ţ		1		~			
CR4	343		}	Ĭ		-	}					_						1	}))]]				
CR3	386	1	~~] [}		_					_					•		~						
CR2	341													_			1		Ì		1	_	1	1		
DRS	345										-	_														
DR4	359					_	_	_		_							}	-								
DR3	62						-								_	-										
DR2	370						_	_	_		_	_	_			~)		*			_	~		
Station	Inst. #	1991	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207

Table 4. Shot Schedule

Shot Number	Date	Latitude (N)	Longitude (W)	Elevation (m)	Shot Time (GMT)	Size (kg)
I	7/10/91	60 29.34	152 45,19	2430	04;00;00.01	350
2	7/10/91	60 33.19	152 46.49	400	06:00:00.13	350
3	7/11/91	60 26.17	152 49.91	600	00:00:00.01	350
4	7/11/91	60 26.62	152 37.47	320	04:00:00.01	350

Table 5. Velocity Model

Velocity (km/s)	Depth (km)
2.9	-3.0
5.1	-1.7
6.5	1.5

Table 6.
HYPOELLIPSE Summary Record Format

To save space no decimal points are used. Use the format for reading given below.

Item	Col.	Nos.	Format for Reading
Origin Time:			
KDATE - year, month, day	1	- 6	I 6
KHRMN - hour, minute	7	- 10	I 4
seconds	11	14	F4.2
LAT degrees	15	- 16	I2
N or S		17	A 1
LAT minutes	18	- 21	F4.2
LON degrees	22	- 24	I3
E or W		25	A 1
LON minutes	26	- 29	F4.2
DEPTH (km)	30	- 34	F5.2
PREFERRED MAGNITUDE	35	- 36	F2.1
NO - Number of P, S, and S-P readings used in the solution	37	- 39	13
GAP - Largest azimuthal separation in degrees between stations as seen from the epicenter (deg).	40	- 42	I3
D1 - Distance to closest station used in solution (km)	43	- 45	F3.0
RMS (sec)	46	- 49	F4.2
Azimuth of axis 1 of error ellipsoid (deg)	50	- 52	I 3
Dip of axis 1 (deg)	53	- 54	I 2
SE - Length of ellipsoid semi-axis 1 (km)	55	- 58	F4.2
Azimuth of axis 2 of error ellipsoid (deg)	59	- 61	13
Dip of axis 2 (deg)	62	- 63	12
SE - Length of ellipsoid semi-axis 2 (km)	64	- 67	F4.2
Average XMAG	68	- 69	F2.1
Average FMAG	70	- 71	F2.1
Processing state (not used by HYPOELLIPSE)		72	A 1
* - More data available to be added			
P - Preliminary, but location not finalized			
F - Final location determined			
G - NEIS solution			
A - NEIS solution obtained from AEIC			
I - Insufficient data to determine a hypocenter			
N - Not of principal interest			
SE - Length of ellipsoid semi-axis 3 (km)	73	- 76	F4.2
Quality - Either error ellipsoid quality or HYPO		77	Al
quality depending upon QUALITY OPTION record			

Table 6 (cont.)

Item		Col.		Nos.	Format for Reading	
MAGTYP - F, X,	A, or K to indicate which type of			78	A1	
	ed in columns 35-36					
NSWT - Number of	of S-phase arrivals used in solution	79	-	80	12	
/ or \	•			81	A 1	
has a / in column	MMARY record is always first and 81. If an archive file has more					
	ARY record, the second and					
-	is will have a \ in column 81]					
	of INSTRUCTION record	82	-	85	A 4	
Month data was ru	n	86	-	87	I2	
Year data was run		88	-	89	12	
Event type:				90	A 1	
	ıl or regional earthquake					
T tele	seism					
R regi	onal					
N nuc	lear explosion					
G glad	cial event					
X eme	ergent, low frequency, near volcano					
	rry shot					
	ficial source					
	er non-earthquake (eg sonic boom)					
	oration signal					
a vole	cano-tectonic					
B vol	cano long-period					
+ con	tinuation of previous event					
F false	e trigger					
Fixed location indi-	cator, from column 19 of			91	I 1	
INSTRUCTION	record or imposed by SELECT					
DELAY option						
Sequence number		92	_	96	A5	
S-P time at closest	station used in solution. Blank if	97	-	100	F4.2	
either P or S is no	t used. Set to 9999 if S-P .GE. 100.					
ZUP - Computed v	vith GLOBAL OPTION	101	-	102	F2.0	
ZDN - Computed v	with GLOBAL OPTION	103	-	104	F2.0	
•	slope of Ts vs Tp. Only computed	105	-	108	F4.2	
if TEST(49) is no	•					
Number of reading truncation, or box	s weighted out due to Jeffrey's,	109	-	110	12	
DEPTH (km)	TOIRILLING.	111	_	115	F5.2	

Table 7.
Listing of Local Events in HYPOELLIPSE Format

9107040350056860N3137152W4828	355	21208	3	8315 7	4121939	60	F	106A 14/	493a	95.3.5	0
9107040507575360N3060152W4424	428	21277	3	6350 6	5425542	79	F	96A 14/	493a	.5.4	0
9107040933240760N3111152W4568	473	20251	2	6344 2	50 7528	85	P	71A 13/	493a	.4.4	0
9107050822289160N3064152W4403	367	17205	3	5 41 6	60132 8	33	P	91A 12/	493a	.4.5	0
9107050834138460N3024152W4567	428 6	27161	1	5237 2	3914611	25	6P	56AF18/	493a	.3.3	0
9107050942080060N2957152W4535	-135	11257	1	6336 2	3324526	98	₽	20A 6/	493B	.1.1	0
9107051427506460N2947152W4636	-62	13125	0	8190 2	26 9843	122	P	52A 5/	493B	.0.3	0
9107060108205260N3014152W4494	266	26144	2	7183 7	26 9115	63	₽	50A 15/	493a	.0.2 184	0
9107060701425360N3054152W4455	449	29158	2	6 69 1	44159 3	33	P	88A 17/	493a	124.4.5 135	0
9107060839204760N2973152W4546	-141	13236	1	5340 3	40250 8	71	P	21A 8/	493X	.1.1	0
9107061045349160N2950152W4629	-147 8	13127	0	12335 5	27 6613	57	8P	17AF 6/	493B	.0.1	0
9107061401010960N3045152W4539	382	23141	2	717512	34 8118	59	P	91A 16/	493a	113.3.5	0
9107061615106960N2943152W4450	236	24137	2	9333 2	35 6426	45		80A 16/	493	.1.4	0
9107062125347160N3124152W4944	418	33 94	2	6106 2	3519720	26	P	55A 21/	493a	.2.2 203	0
9107062127381860N3116152W4941	388	23141	2	530117	5620322	32	P	94A 14/	493a	.5.5 165	0
9107070326437260N2938152W4563	-117	9107	0	4 16 5	5728415	63	P	20A 2/	493B	.2.1	0
9107070431372460N3136152W4862	43510	39105	2	524016	3814224	30	10P	58AF26/	493a	.3.2	0
9107070616338560N3127152W5008	441	29107	2	8 9714	3 7 19325	31	P	66A 18/	493a	80.3.3 169	0
9107070650079860N3012152W4494	253	26119	2	9 4216	3513717	22	P	76A 17/	493a	.0.2	0
9107070838101160N3067152W4649	344	35104	1	7110 5	3020118	31	Þ	61A 23/	493a	.2.3	0
9107070912075060N2951152W4588	-124	13187	0	4252 2	5234324	29	P	13A 7/	4 93a	.1.0	0
9107070914114160N3053152W4653		32102	1	5240 7	2414814	19	P	61A 22/	4 93a	74.3.4	0
9107071012244860N2973152W4469		20113	2	6228 1	31138 9	29	P	86A 14/	493a	.1.3	0
9107071028428560N3039152W4509	433 7	40124	2	5 59 1	30149 7	21	7P	52AF26/	493a	.3.3	0
9107071032492960N3059152W4470	455	20135	2	9 71 7	4816314	38	P	94A 14/	493a	.5.5	0
9107071640164160N2998152W4608		15101	1	416510	3026441	102	P	60A 10/	493a	.2.3	0
9107071649147860N2984152W4497		17112	3	4140 4	22 4917	48	₽	105A 12/	493a	.3.6	0
9107071756315060N2958152W4478		29108	2	8133 2	21 43 8	33	P	64A 18/	493a	.1.3	0
9107071942530360N2900152W4087		34109	2	829613	3520122	48	Þ	62A 21/	493a	.3.3	0
9107071945221260N3074152W4529		28128	2	6270 6	4417720	31	₽	66A 17/	493a	.3.4	0
9107072024562460N3065152W4535		30125	2	6247 8	3415420	25	P	61A 17/	493a	.2.2	0
9107072029075060N3057152W4552		31120	2	7268 1	4017813	30	P	54A 21/	493a	.3.3	0
9107072133108460N3052152W4645		33103	1	6171 7	2626315	37	P	56A 18/	493a	.2.2	0
9107072359514760N3091152W4581		25121	1	4 81 2	4317115	28	P	51A 14/	493a	72.3.3 179	0
9107080451509860N3038152W4428		22136	3	4119 8	30 2619	64	P	82A 13/	493a	.5.4 151	0
9107080631124060N2918152W4530		9249	1	20 2 4	8127030		P	22A 1/	493B	20.2.0	0
9107080744211160N2964152W4548		12240	1	735120	20 9940	50		148A 6/	493B	.4.2	0
9107080958127960N2957152W4642	-184	7138	1	321521	5931626	23	P	104A 2/	493R	.5.2	ß

9107081306364660N2959152W4655 -162	5132 0		6425324 138	P 170A 0/	493B	.4.5 0
9107081318425360N2870152W4653 355	25113 1	513114	43 3716 32	P 76A 16/	493a	83.4.3 239 0
9107081326401060N2953152W4603 -165	10141 0		65159 5 42	P 27A 3/	493B	.2.1 0
9107081401065060N2759152W5139 1968	B197 2	2326 8	504 5710 335	P8821D 0/	493E	699 0
9107081407138260N2691152W4699 1680	12185 2	4286 3	131 1714 259	P1229D 0/	493E	390
9107081507353360N2950152W4679 -171	11139 0		3117521 27	P 23A 2/	493B	.1.1 0
9107081509465560N2513152W5004 1975	13271 3	4109 3	137 1824 194	P1235D 0/	493E	490
9107081634417960N3414152W3751 460	22294 9	10132 6	93 4016 82	P 272B 14/	493a	1.1. 0
9107081703152260N2724152W5017 688	31176 1	913518	48 3527 39	P 56A 20/	493a	.3.1 138 0
9107081740075560N2938152W4578 -230	7254 0	4 23 0	2311312 71	P 335B 2/	493B	0.1 0
9107081912157260N2906152W4668 -139	8177 1	4306 1	66 3714 48	P 18A 2/	493B	.1.1 0
9107082013521560N2946152W4512 -230	5170 1	11113 5	25 23 7 66	P 906C 0/	493B	0.2 0
9107082309327660N3042152W4702 -115	10167 0	3 8 8	23 99 9 153	P 13A 2/	4938	.1.1 0
9107082312348560N3060152W4624 271	20108 0	5 63 2	5815536 40	94A 12/	493	.4.5 0
9107090248380960N2936152W4585 -229	7171 0	19320 4	39 51 6 21	P 166A 1/	493B	51.0.0 0
9107090549515960N3106152W4499 -11	5215 2	7157 2	103247 4 194	P2176D 0/	493G	.499 0
9107090552396960N3021152W4468 404	19180 1	313722	4323927 163	P 75A 12/	493a	.5.5 0
9107090632488060N2946152W4587 -90	18 72 0	11335 0	20 65 5 29	P 67A 6/	493B	.0.1 0
9107090636530460N2941152W4595 -230	10 83 0	21 25 1	25116 2 19	P 195A 2/	493B	.0.0
9107090719468660N2937152W4605 -230	11122 0	11266 0	15356 0 27	P2964D 6/	493a	.0.1 0
9107090918485760N2937152W4521 -230	7110 1	9 4 0	26 94 3 20	P 214A 0/	493B	.0.0
9107090958495360N3114152W4954 461	52 93 2	7 91 3	2918321 26	P 46A 34/	493a	.2.3 0
9107091114183960N2948152W4577 -203	12139 0	5 8818	3735122 20	P 45A 4/	493B	.3.2 0
9107091332021960N3123152W4530 414	32172 1	517923	3328026 55	P 64A 17/	493a	.3.3 209 0
9107091430305360N2492152W5377 4226	18284 5	21113 3	418 2310 630	252C 2/	493	1.1. 0
9107091450386660N2939152W4594 -165	15 89 0	7107 4	3820142 28	P 17A 6/	493B	.0.1 0
9107091612006960N3169152W4044 847	31262 5	813110	6522836 140	P 72A 19/	493a	161.6.3 173 0
9107091641041060N2987152W4470 -112	13131 0	1214310	40 5016 50	P 20A 2/	493G	.0.1 0
9107092207096160N2947152W4524 ~133	12102 1	4328 4	3223716 21	P 16A 3/	493B	.1.0 0
9107100014598360N3020152W4473 -90	14171 1	821614	8331015 52	P 245A 0/	493E	.1.6 0
9107100017576060N3026152W4791 412	46 66 1	7150 8	23241 8 33	P 46A 30/	493a	.2.2 223 0
9107100051409660N3022152W4780 408	39 65 1	8263 8	2617210 22	P 47A 26/	493a	96.1.3 246 0
9107100237372360N2987152W4459 264	30129 0	614511	22 5120 50	P 65A 19/	493a	97.0.2 180 0
9107100308444360N2956152W4549 -230	16157 1	6 56 1	16326 6 22	P 201A 10/	493X	.0.1 0
9107100359599460N2940152W4511 -138	16 86 1	5174 2	3626423 45	P 20A 0/	493A	.1.1 0
9107100600000460N3275152W4623 143	25119 1	5152 6	32 5831 29	P 39A 0/	493Q	.1.3 0
9107100609435360N2891152W4444 686	23164 2	5 52 2	195142 7 33	P 70A 14/	493a	147.4.4 270 0
9107100726593560N2950152W4490 -124	9196 1		89 4715 36	P 18A 4/	493X	.6.1 0
9107101032285760N3012152W4562 349	30122 1	5324 2	23 5539 63	P 54A 20/	493a	.3.3 213 0

9107101041322260N2980152W4570	-146	16102	1	832813	14 6426	19	P 25A 8/	493a	.0.1	0
9107101050319960N2947152W4522	-162	8103	1	833216	3522940	29	P 21A 0/	493B	.1.1	0
9107101051222460N2958152W4551	-100	15 92	1	5 69 2	27338 9	35	P 110A 7/	493B	.1.3	0
9107101058070660N2963152W4556	-89	15136	1	7 66 7	3333419	53	P 204A 7/	493B	.2.1	0
9107101218458060N2941152W4531	-101	6186	1	2247 3	78156 9	151	P 25A 0/	493B	.8 6	0
9107101220518560N2949152W4567	-111	20 90	0	7 76 3	2016716	35	P 11A 11/	493B	.0.1	0
9107101450418760N2967152W4659	129	16236	1	4256 0	13216613	68	P 72A 10/	4 93a	.2.4	0
9107101553467560N3005152W4562	462	44116	1	6144 4	2323623	40	P 50A 30/	493a	.2.2	0
9107101614205860N3073152W4567	360	39148	ı	715011	1924418	30	P 38A 25/	493a	.2.1 196	0
9107101619033760N2948152W4475	-157	7208	1	514520	10424321	36	P 56A 0/	493B	.3.1	0
9107101738166960N2942152W4518	-153	11 88	1	523713	2633426	44	P 19A 0/	493B	.1.1	0
9107101836067560N3103152W4901	451	21 87	2	4310 6	4021634	57	P 91A 14/	493a	.5.4	0
9107101926305260N3113152W5026	430	43165	2	626313	4116822	26	P 56A 28/	493a	.2.3	0
9107102027167860N2967152W4540	-172	6141	1	4238 1	5032814	59	P 246A 0/	493B	.6.6	0
9107102059185260N2835152W4477	-121	11134	2	8 2219	13528033	86	P 55A 0/	493B	.6 3	0
9107102114029060N2946152W4482	-179	10103	1	730820	2220630	32	P 24A 1/	493B	.1.1	0
9107102125061860N2956152W4546	-162	8 93	1	311110	47 1534	31	P 59A 0/	493B	.2.3	0
9107102257528060N2946152W4558	-220	8102	0	4 60 5	2532916	73	P 149A 0/	493B	.1.3	0
9107110000000860N2683152W4939	29	23108	0	7317 1	29 4744	39	P 55A 0/	493Q0	.1.3	0
9107110248533660N2935152W4584	-230	5172	0	6256 0	43346 0	134	P9900D 0/	493B	0 2	0
9107110251241560N2878152W4443	-100	12153	2	7303 0	35 33 0	83	P9900D 5/	493G	40.3.2	0
9107110522500460N2967152W4538	-230	6113	1	10 62 3	38332 4	51	P 422B 0/	493B	0.1	0
9107110558533060N2949152W4530	-132	7101	1	2344 9	3824930	30	P 22A 0/	493B	.2.1	0
9107110741504560N2948152W4573	-230	6144	0	14 15 0	38285 0	83	P9900D 1/	493B	.0.1	0
9107110837288260N3096152W4624	341	41138	1	714214	1923618	27	P 53A 25/	493a	.3.3	0
9107110916361260N3144152W4618	386	41142	0	624311	3614917	20	P 41A 27/	493a	.2.2	0
9107110939353060N2932152W4588	-230	5175	0	7 36 0	27306 0	54	V0 000663	493X	.01.	0
9107111004377560N2959152W4573	221	17310	1	727211	13017726	70	P 41A 11/	493a	.2.2	0
9107111005141260N2968152W4488	269	36 81	1	7142 1	1723230	47	P 38A 23/	4 93a	.0.2	0
9107111020573860N3085152W4527	-129	14189	1	724919	5514926	36	P 18A 4/	493G	.4.1 129	0
9107111051174160N2959152W4539	-230	7103	1	6254 0	28344 1	48	P 346B 0/	493B	.0.1	0
9107111510295060N2780152W4482	253	37146	2	8296 3	17 27 7	29	P 56A 25/	493a	.0.3	0
9107111526303760N2935152W4586	-230	8171	0	4 73 1	35343 2	70	P 727C 2/	493B	.0.2	0
9107111815241460N3062152W4549	-144	12169	1	6304 2	3821241	89	P 23A 4/	493G	.5.2	0
9107111824333260N2923152W4559	-230	9119	0	7116 3	18206 3	37	P 339B 2/	493B	0.2	0
9107111826584560N2945152W4544	-230	9104	0	6302 1	59 32 5	29	P 393B 2/	493B	0.2	0
9107111852181360N2936152W4579	-230	6173	0	4 59 1	39329 2	69	P 721C 0/	493B	0.4	0
9107111854431960N2937152W4557	-220	9109	0	7341 3	66 7213	32	P 145A 2/	493B	.1.1	0
9107111858292960N3039152W4438	44111	40168	1	5146 3	25 56 4	43	11P 60AF26/	493a	.3.3	0

9107112005085360N2937152W4569	-206	7175	0	417120	10127739	67	P	32A 2/	493B	.2.2	0
9107112137428760N2935152W4574	-179	10176	0	3253 0	1834317	39	P	81A 4/	493B	.5.3	Ð
9107112158143860N3090152W4640	357 2	38132	1	614412	2123712	34	2P	52AF25/	493a	.3.3	0
9107112245309660N2986152W4671	259-4	18190	Đ	9149 4	3223912	91	-4P	53AF12/	493a	.0.2	0
9107112326240760N2970152W4508	-193	9118	1	3257 5	1835034	47	P	30A 2/	4938	.4.1	0
9107120001348160N3038152W4636	308 4	29131	0	514718	1923914	38	4 P	43AF18/	493a	.2.2	0
9107120415407960N2639152W4526	849	13211	4	730311	97 3718	121	P	535C 0/	493E	2 4	0
9107120607310660N3062152W4551	333 1	30150	1	8 64 2	3415513	21	1P	52AF19/	493a	.3.3	0
9107120624497560N2944152W4503	-207	8195	1	3326 8	77 5711	28	P	169A 2/	493B	.2.2	0
9107120807033760N3002152W4538	246-1	19120	1	5151 2	4124228	104	-1P	48AF12/	493a	.1.3	0
9107120853452760N2989152W4584	-139	17131	1	5333 5	15 6410	21	Đ	43A 11/	493B	.1.1	0
9107120903321760N2981152W4550	-109	12130	1	3253 1	2116224	73	P	17A 6/	493B	.4.4	0
9107121217496060N2969152W4558	-174	18124	1	629211	17 2413	15	P	54A 12/	493a	.2.2	0
9107121305503660N2981152W4548	-114 2	18131	1	6 74 7	2016511	35	29	16AF12/	493a	.2.1	0
9107121438435460N2961152W4557	-230	5139	1	4 56 3	40326 3	54	₽	197A 0/	493B	0.3	0
9107121937161060N2955152W4541	-187	8166	1	2 4814	2231224	34	P	123A 2/	493B	.4.3	0
9107121938562660N2965152W4532	-106 0	17151	1	515910	31 6811	18	0.0	12AF11/	493a	.1.2	0
9107122056249660N3080152W4625		29134	1	614712	31 5032	50	1P	54AF18/	493a	.3.3	0
9107130002183960N3101152W4793	455 5	28122	1	614514	34 4729	66	58	56AF17/	493a	.3.3-262	0
9107130416418460N3064152W4359	639 3	26188	2	712811	4522531	106	3₽	57AF17/	493a	.4.4	0
9107131021357060N3070152W4640	313 4	30126	0	5172 6	3226840	53	4 P	54AF20/	493a	.3.3	0
9107131234342560N3031152W4532	289 1	21146	1	6 7615	4934116	28	1.P	50AF14/	493a	102.3.3 83	0
9107131316237360N3477152W4691	1285 5	23297	4	832616	9122924	195	5P	78AF16/	493a	.5.6	8
9107131623242360N2940152W4575		9171	8	6263 0	4335321	26	5	90A 3/	493G	.2.4	0
9107131657586060N3010152W4568	256 1	23119	1	832514	2823115	51	1P	42AF15/	493a	80.0.2	0
9107131746023260N3011152W4571	267 1	28119	1	535910	2326423	42	1 P	51AF18/	493a	.0.2	0
9107131951247260N2947152W4541	~230	5175	0	2237 0	62327 0	146	P9	9900D 0/	493B	0 9	0
9107132313548360N2895152W4564	-44	12138	1	7252 0	3916223	73	P	114A 6/	493B	.1.5	0
9107132324009860N2946152W4532	-230	7180	1	2243 0	17333 0	70		3900D 2/	4938	.0.2	0
9107140253420460N2939152W4593	-230	6100	0	8 29 0	43299 2	24	5.	1506D 1/	493B	.0.2	0
9107141158385860N3019152W4676		19109	0	8250 6	33341 9	21	28	52AF12/	493a	.0.4 687	0
9107141604155460N2989152W4540		22107	1	8326 9	25 6438	45	3P	55AF14/	493a	.3.3	0
9107141750214560N2761152W4446		17213	3	11303 6	25212 8		2P	76AF11/	493a	.4.3	0
9107141930055160N3061152W4442		15210	1	8129 2	4222034		81	77AF 9/	493a	.6.5	0
9107142149172060N2651152W4685		9279	4	733218	224 7330		P2	2894D 0/	493E	1.99	0
9107150431036460N2988152W4556		18103	1	5347 6	5125521	105	-1P	80AF11/	493a	100.4.5 136	
9107151001369560N2949152W4529	-	-	1	316118	6926026	31	88	25AF 0/	493B	.2.1	0
9107151327441660N2913152W4427		5258	1		394 5924	65	P	38B 0/		1.14	0
9107151411296760N3117152W4884	439 0	17129	2	629714	5220025	32	0.5	93AF11/	493a	.5.4	0

9107151459036260N3006152W4484	394 1	19149	1	4238 5	8232916	46	1P	65AF13/	493a	.4.4	0
9107151608121660N2945152W4533	-149	9164	1	415013	5224727	29	P	20A 0/	493B	.1.1	0
9107151930441460N2910152W4619	-185 8	6275	1	7100 2	36 10 4	236	8 P	50AF 0/	493B	,2.3	0
9107160101566260N3205152W4612	389 7	30147	1	712817	27 2633	60	7 P	42AF20/	493a	.3.2	0
9107160523220960N2959152W4620	-115 8	22126	0	8268 1	27178 8	13	8 P	7AF11/	493a	.0.0	0
9107160701280860N3528152W4999	1221 8	14316	6	5 5013	9014626	192	8P	78AF 9/	493£	172.5.6	0
9107161103504660N2960152W4564	-115	6216	0	425113	10615716	55	P	22A 0/	493B	.6.4	0
9107161117553360N2966152W4582	-159	13188	1	714316	2924024	74	P	12A 4/	493a	.1.1	G
9107161223068560N2977152W4610	409-2	17167	1	514912	27 5712	161	-2P	97AF10/	493a	.4.5	0
9107162044345160N3103152W5027	407 7	32113	2	6106 5	3719826	29	7 P	59AF19/	493a	.3.3 21	6 0
9107162212102460N3145152W4618	512 6	39140	0	723916	4214417	29	6P	52AF25/	493a	.3.3	0
9107170001489860N3110152W3566	94513	38275	8	1133122	44 7735	58	13P	140AF24/	493a	.7.3	Ð
9107170142587760N3047152W4397	270-1	21186	3	716913	27 7226	48	-1P	102AF12/	493a	.1.4	0
9107170725326160N2954152W4693	~193	5168	0	9338 1	57 68 2	133	P	34A 0/	493G	.2.2	0
9107170740238260N2932152W4552	-14912	6146	0	3 313	4326533	70	12P	22AF 0/	493B	.4.2	0
9107170748181360N2978152W4601	-164 9	9138	1	634622	3624034	74	9P	33AF 2/	493G	.2.2	0
9107171056277060N27701S2W5842	61012	37297	5	827515	5917729	49	12P	90AF24/	493a	.3.3	0
9107171152180860N2938152W4669	-228	5144	0	6108 3	70198 8	41	p	167A 0/	493G	.0.2	0
9107171322166960N2900152W4536	-226 8	7276	1	7148 3	40 58 5	63	8P	186AF 2/	493G	.0.2	0
9107171443519360N3124152W4615	365 9	39142	1	626624	3616425	23	9P	47AF26/	493a	.1.2	0
9107171452156560N2759152W4303	203 0	10157	1	316225	107 5235	56	0P	30AF 5/	493a	.4.4	0
9107171619267460N2908152W4483	~58	6151	1	2223 3	102133 4	73	P	196A 0/	493a	.51.	0
9107171629418760N2917152W4439	-139 6	6191	1	213110	42 3340	125	6P	99AF 0/	493G	.7 4	0
9107171915197560N2957152W4554	-137	7143	1	316116	6125823	86	P	32A 0/	493B	.5.2	0
9107172021176760N2939152W4519	-229	5185	1	0146 4	57 56 4	72	P4	1544D 0/	493X	.0 3	0
9107172214190060N2964152W4556	-230	5194	1	10121 4	51 30 4	84	82	2771D 0/	493B	.01.	0
9107180313266960N2908152W4514	-230	6165	1	2011524	36 440	110	P	116A 0/	493G	0.1	0
9107180327320960N3116152W4626	355 6	35138	1	516018	2525722	39	6P	50AF23/	493a	.3.2	0
9107180358295960N2725152W5009	709 2	25171	1	5116 6	4220926	61	29	79AF17/	4 93a	.5.4	0
9107180650442460N2954152W4470	-185 8	5208	1	1128 7	43 3615	79	88	341BF 0/	493B	.4.5	0
9107180725396860N3033152W4602	360 2	22137	1	7143 7	2323724	47	2P	59AF13/	493a	.2.3 174	4 0
9107180816126060N2947152W4521	-18111	6159	1	8329 0	8123934	220	11P	43AF 0/	493A	.3.1	0
9107180901244060N3000152W4244	593 7	34193	3	8321 1	3323033	75	7P	57AF22/	493a	116.3.3	0
9107181453305860N2876152W4328	-106	5208	1	2217 3	42412541	142	P	26B 0/	493G	.81.	0
9107181647003260N3094152W5018	399 3	33110	2	7113 2	3920321	30	3P	57AF20/	493a	.3.4	0
9107181748191860N3086152W4463	40011	36173	2	5134 3	2122513	41	11P	53AF24/	493a	.3.2	0
9107181816099460N2871152W4596	-230	6158	1	6211 5	80120 6	32	P	230A 0/	493G	0 4	0
9107181947188960N3036152W4455	421 3	32165	2	8139 5	18 4626	44	35	55AF21/	493a	.2.3	0
9107181953181260N3045152W4424	395 4	36172	3	8140 2	19230 7	40	4 P	51AF24/	493a	.3.3	0

9107182003239160N3061152W4627	384 1	23134	1	514215	2524234	73	12	55AF15/	493a	.2.3	0
9107182100302860N3033152W4437	356 8	35165	2	8227 5	36137 7	18	8 P	51AF22/	493a	124.4.3	0
9107182100516360N3020152W4475	350 4	32158	2	6140 5	17 4914	35	4P	48AF21/	493a	.2.2	0
9107182112569160N3017152W4478	411~2	18157	2	4139 3	2523015	95	-2P	64AF12/	493a	.3.4	0
9107182117418660N2947152W4536	-159 7	15136	1	634019	2124026	44	7 P	11AF 3/	493X	.1.0	0
9107182117418960N2951152W4558	-140 9	15134	0	1023715	4933424	23	9P	15AF 3/	493a	.0.0	0
9107182343412060N2986152W4452	292 4	34156	2	7315 0	19225 5	39	4P	58AF22/	493a	.3.3	0
9107190008351660N2955152W4557	7 -131	13153	0	4 4 8	3127028	50	P	17A 6/	493a	.1.1	0
9107190014027760N2939152W4594	-119	6139	Û	3347 3	5925615	118	P	44A 0/	493X	.4.4	0
9107190144146560N3079152W4360	447 6	39187	3	7136 5	23 4235	51	6P	60AF26/	493a	.2.2	0
9107190234112860N3024152W4475	378 2	33157	2	913714	26 4123	45	2P	72AF23/	493a	.3.4	0
9107190236073260N3044152W4418	396 2	23173	3	5227 1	115137 2	22	2P	87AF14/	493a	124.5.5 156	50
9107190515055160N3043152W4425	351 8	35168	2	6227 2	47137 4	21	9.5	62AF23/	493a	101.4.3	0
9107190630089560N3037152W4411	376-1	20173	3	6140 2	25230 7	116	-1P	75AF13/	493a	.4.4	0
9107190723140660N3101152W4557	371 3	34153	1	513818	2824542	50	3P	49AF23/	493a	.3.3	0
9107191115201660N3161152W4780	491-1	14217	1	7 7134	8131434	142	-1P	56AF10/	493a	.6.5	0
9107191401507860N2802152W4408	180 3	20131	1	7103 2	1919422	42	3P	51AF11/	4 93a	.1.3	0
9107191455200460N3049152W467	7 258-2	17128	1	B18411	2328132	44	-2P	65AF11/	493a	.1.4	Q.
9107191558200960N3080152W4623	318 2	26136	1	5 6717	4416319	26	2P	5 1AF16/	493a	2.2	0
9107191812329160N3055152W4633	3 -114	5167	1		22816626	52	P	27A 0/	493B	.6.5	0
9107192025029260N2946152W4556	-123	14149	0	11223 1	5231438	37	P	16A 7/	493a	.0.1	0
9107192132244160N2999152W4269	569 5	24184	3	9319 2	2822829		5P	80AF16/	493a	.5.5	0
9107192209147260N2969152W4532	2 -169	6165	1	515810	6225533	139	P	39A 0/	493a	.6.3	0
9107192326466260N3240152W4312	545 9	33249	3	912313	37 2726	59	99	71AF21/	493a	.4.4	0
9107200201550160N3089152W4586	3 453 1	20151	1	616316	3726230	57	1P	79AF13/	493a	.4.4 119	9 0
9107200314128060N2952152W3619	605	11281	5	433620	8622939	220	P	830C 0/	493E	2 7	0
9107200344388260N3069152W4563	333 6	31147	1	6132 6	26 4016	43	6P	61AF21/	493a	73.3.4	0
9107200419112460N3067152W440	7 359 4	27176	3	5136 7	23 45 8	60	4 P	65AF18/	493a	.4.4	0
9107200606143560N2833152W4268	3 -108	5183	0	3 35 4	69730412	116	P	36C 0/	493G	16	0
9107201017450660N2946152W4502	2 -149 7	15164	1	6161 5	3825431	70	7 P	22AF 9/	493a	.2.2	0
9107201116369460N3148152W457	7 459 4	31154	1	7218 5	39127 9	22	4 P	49AF19/	493a	97.2.3	0
9107201243486460N3101152W458	331 5	33147	1	613511	2123335	38	5P	48AF21/	493a	.2.2	0
9107201854201060N2952152W4520	-140	12158	1	923824	12134635	40	P	17A 4/	493X	.2.1	0
9107202028428560N3093152W4530	440 2	29158	1	7249 7	4215715	26	2P	69AF19/	493a	.4.2	0
9107202047324560N3098152W4553	3 474 3	28155	1	614414	2423715	36	3P	56AF18/	493a	.4.3	0
9107202107300560N3104152W4502	362 1	24168	2	5 5419	4815121	26	19	65AF14/	493a	.4.3	0
9107210059424960N2989152W432	L 415	23174	3	8311 2	31 41 7	73	P	80A 12/	493a	.4.4 15	
9107210310332460N3113152W455	L 443 1	27156	1	513615	3023324	52	11	71AF18/	493a	.3.2	0
9107210701245360N3064152W4580	281-2	15150	1	6160 5	4225331	96	-2P	76AF 8/	493a	.5.5	0

9107210724192360N3078152W4601	326 8 30140	1	716011	3525730	49	8P	64AF18/	493a	.3.3	0
9107211950038660N3061152W4606	331-2 18144	1	5158 7	3125126	55	-2P	71AF12/	493a	.2.4	0
9107211956030960N3068152W4572	342 6 31145	1.	714113	2823516	46	6P	61AF20/	493a	.3.3	0
9107221340277960N3058152W4585	315 2 21141	1	6136 7	29227 8	51	2 P	78AF13/	493a	.2.3	0
9107221526119560N3075152W4525	317 1 16164	2	6332 0	32 6211	60	1P 1	24AF11/	493a	75.4.3	0
9107222327245060N3108152W4628	520 2 17136	1	6 88 2	5817822	40	2 P	77AF10/	493a	. 4 . 4	0

Table 8.

Data Archive Format

Data	Direct	ories	(Julian	Day.	1991)

Phase Data Directory Ancillary Directory

185	186	187	188		204	205	206	207	picks	ancillary
-----	-----	-----	-----	--	-----	-----	-----	-----	-------	-----------

Hourly sub-directories for each day

Phase data files

Line Files etc.

00	01	02	03	04	05	06	07	08	09	10	11	188135225p	3000ft.red
12	13	14	15	16	17	18	19	20	21	22	23	188135225q	6000ft.red

Event sub-directories for 188J, hour 13

188130716	188130817	188131244	188131352	188131642
188131705	188132858	188133239	188133749	188134610
188135225				

Listing of event sub-directory 188/13/188135225

Horizontal (E)	Horizontal (N)	Vertical
		*50 samples/s from
		the continuous data
		stream
cr2E_she.188135232	cr2N_shn,188135232	ст2_shz,188135232
		cr3_shz.188135225*
cr4E_she.188135232	cr4N_shn.188135232	cr4_shz.188135232
dr2E_she.188135232	dr2N_shn,188135232	dr2_shz.188135232
dr3E_she.188135231	dr3N_shn.188135231	dr3_shz.188135231
		dr4_shz.188135225*
e1E_she.188135230	e1N_shn.188135230	e1Z_shz.188135230
e2E_she.188135231	e2N_shn.188135231	e2Z_shz.188135231
e3E_she.188135225	e3N_shn.188135225	e3Z_shz.188135225
se5E_she.188135230	se5N_shn_188135230	se5_shz.188135230
		su1_shz.188135225*
		su2_shz.188135225*
su3E_she.188135232	su3N_shn,188135232	su3_shz,188135232
		w1Z_shz.188135225*
w2E_she.188135231	w2N_shn.188135231	w2Z_shz.188135231

Figure Captions

- Figure 1. Map of station locations. Inset shows the location of Redoubt Volcano, Alaska with a star. Filled squares indicate the AVO network stations. Filled circles indicate the PASSCAL station locations. Shot points are indicated by open stars. Contours are at 3000, 6000, and 9000 feet. Note that stations E2 and E3 were moved to sites SE2 and SE4 after running for about 2 days.
- Figure 2. Record sections of the vertical components of the PASSCAL network for a) shot 1, b) shot 2, c) shot 3, and d) shot 4.
- Figure 3. Example of a deep volcano-tectonic event which occurred epicenterally between stations W1 and DR2 at a depth of 4.6 km. Stations are aligned by first arrival time. Start time of record is indicated by date and time at the top left corner of the figure. Station names are indicated on the left and amplitude values in counts on the right. a) Vertical components, b) and c), the horizontal north and east components. Note that the timing for station E1 is not correct it was not recoverable. Station SU3 did not trigger on this event, but the vertical component was recovered from the continuous 50 samples/s data stream.
- Figure 4. Example of a regional event which occurred about 150 km S of Redoubt Volcano at a depth of 70 km. a) vertical, b) north, and c) east components.
- Figure 5. Example of a shallow event associated with the summit crater dome. Vertical components only are shown. Thousands of these events were observed at station SU1.
- Figure 6. Example of a steam burst occurring near the summit crater. Note the high amplitude observed at station SU1. a) vertical, b) north, and c) east components.
- Figure 7. Example of a glacier quake which occurred in the main body of the Drift River glacier, just north of station DR2. a) vertical, b) north, and c) east components.
- Figure 8. Map and N-S vertical cross-section of the local seismicity which occurred between 3 July and 26 July, 1991. Depth in the vertical section is plotted at two times the horizontal scale. Stations are shown as open triangles.

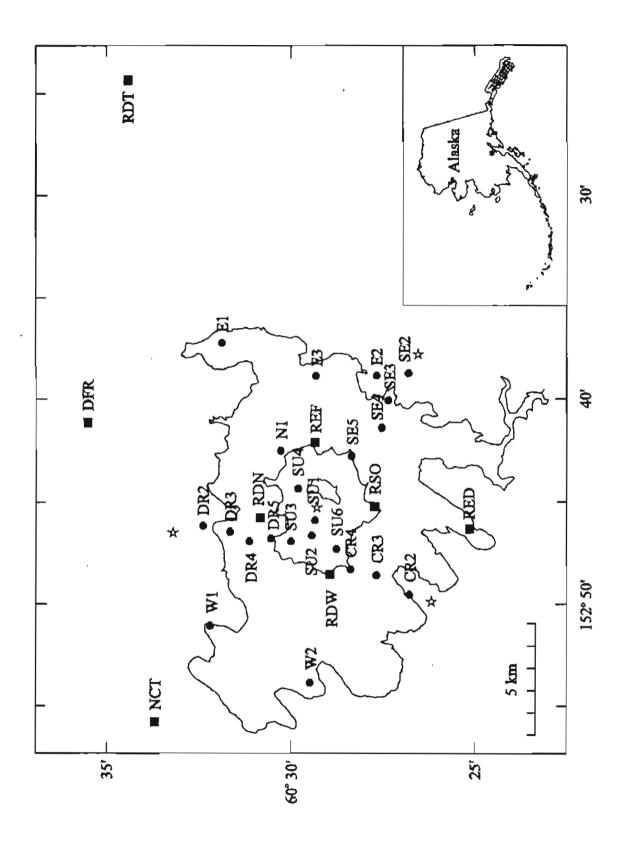


Figure 1.

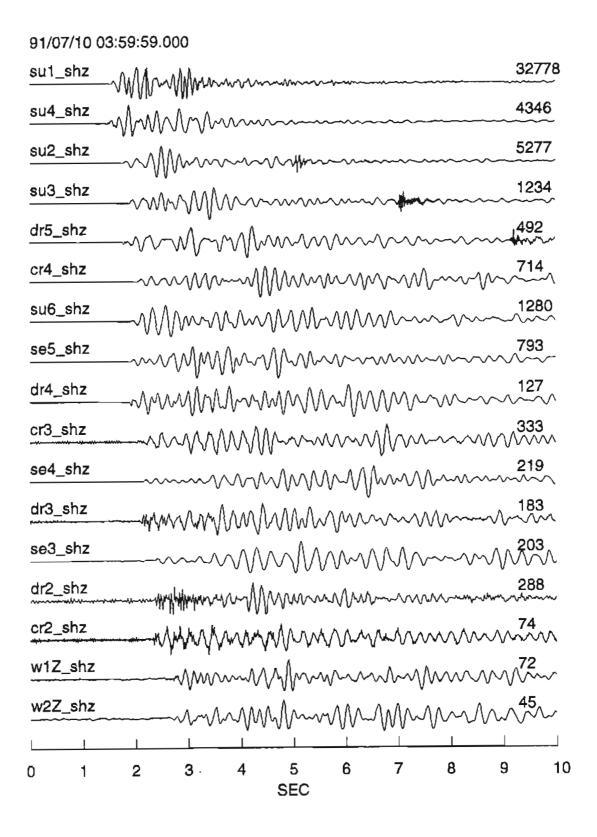


Figure 2a.

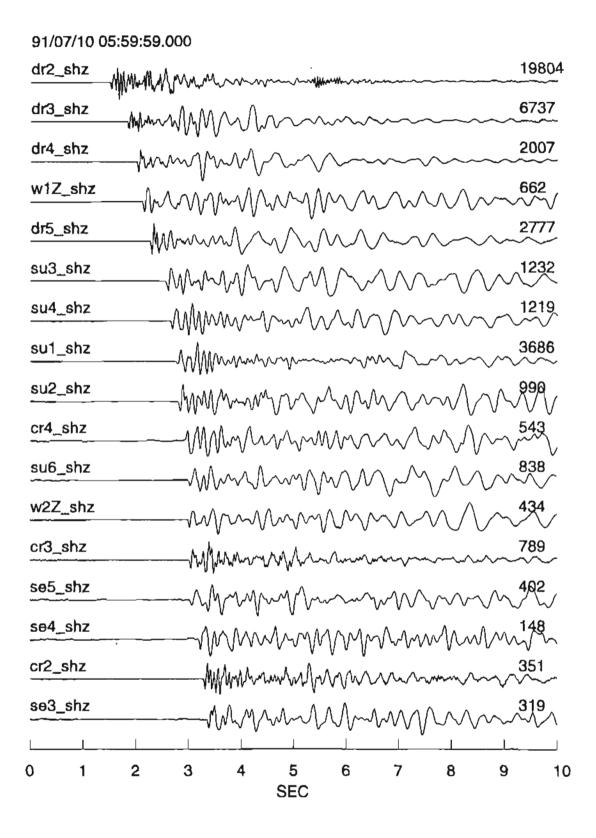
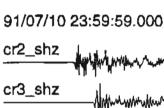



Figure 2b.

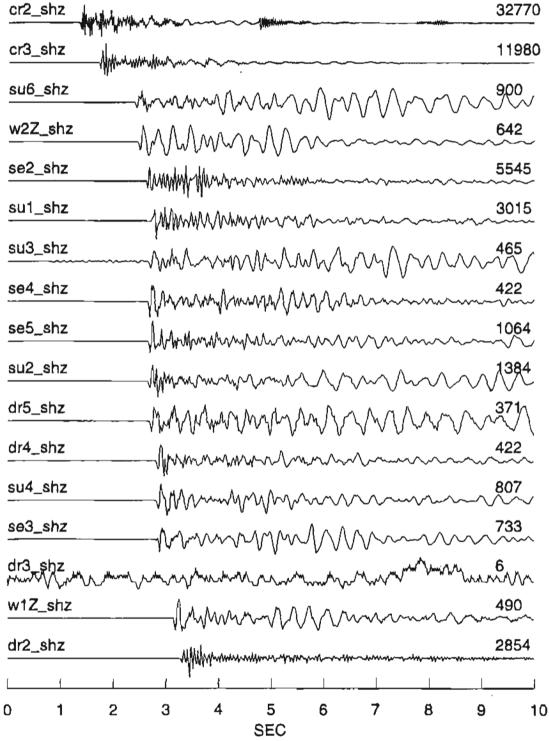


Figure 2c.

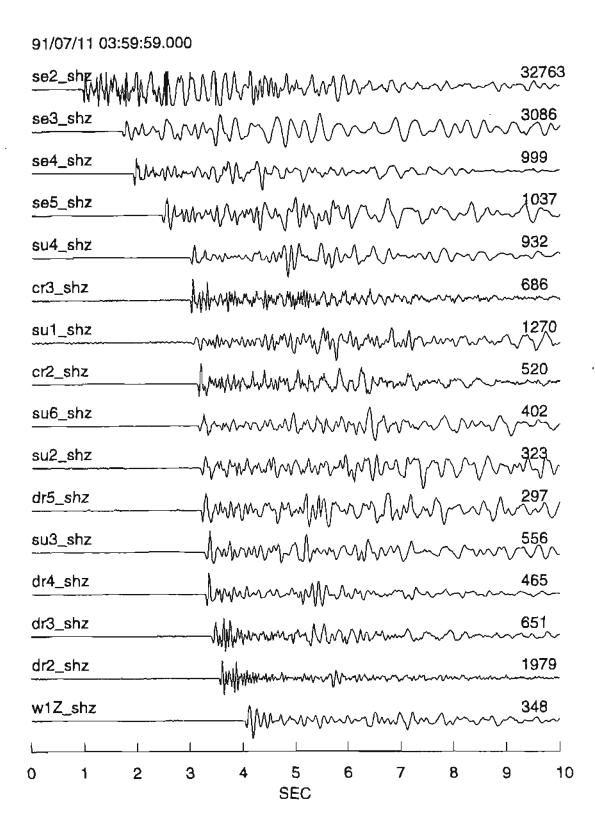


Figure 2d.

91/07/09 09:58:49.000 293 w1Z_shz 86 e1Z_shz 4120 dr2_shz 160 dr4_shz 1452 dr3_shz 788 dr5_shz 112 w2Z_shz 161 su3_shz 1386 cr3_shz 360 cr4_shz 141 su2_shz 714 cr2_shz 473 su1_shz 123 su6_shz 271 su4_shz 108 se5_shz 198 se4_shz 135 se3_shz 641 se2_shz 8 9 5 6 7 10 2 3 1 0

Figure 3a.

SEC

91/07/09 09:58:49.000 289 w1N_shn 134 e1N_shn 3730 dr2N_sh 484 dr4N_sh 2743 dr3N_sh dr5N_sh 2032 215 w2N_shn 2445 cr3N_sh 434 cr4N_sh 221 su2N_sh cr2N_sh 2598 466 ~~~~~ su1N_sh 151 su6N_sh 423 su4N_sh se5N_sh 87 se4N_sh 195 se3N_sh 113 se2N_sh 748 2 3 5 10 0 1 4 6 7 8 9

Figure 3b.

SEC

91/07/09 09:58:49.000

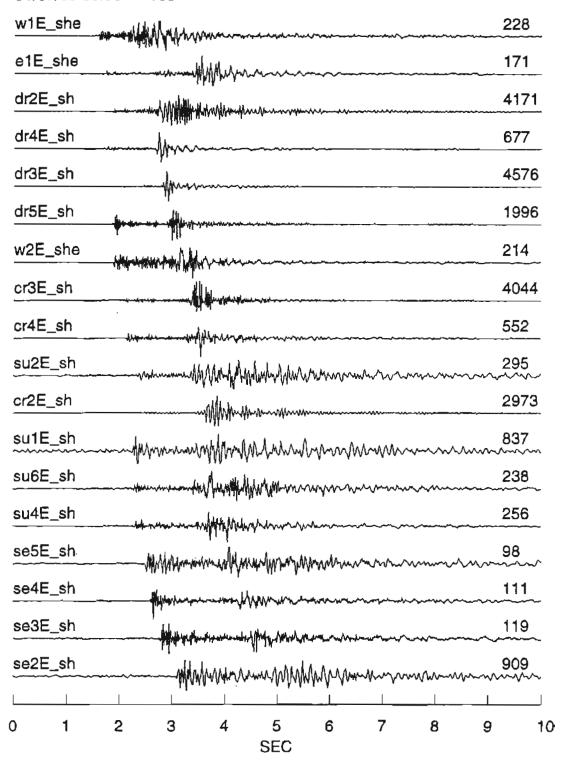


Figure 3c.

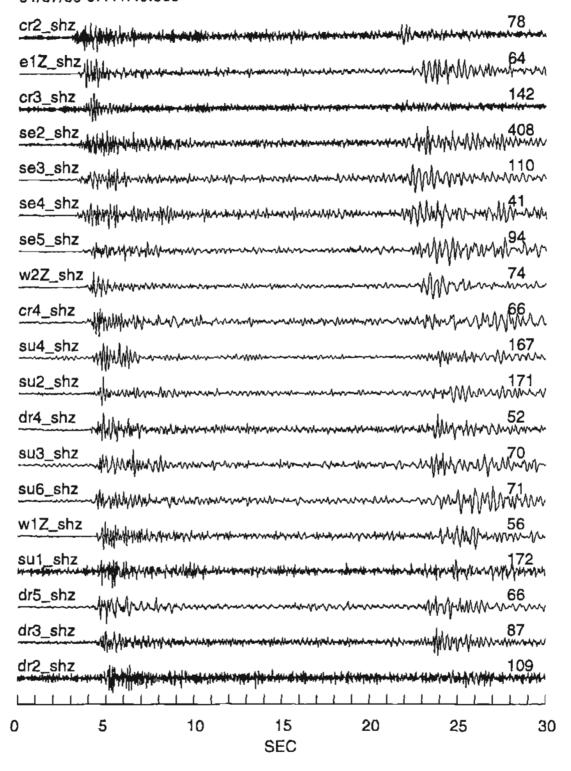


Figure 4a.

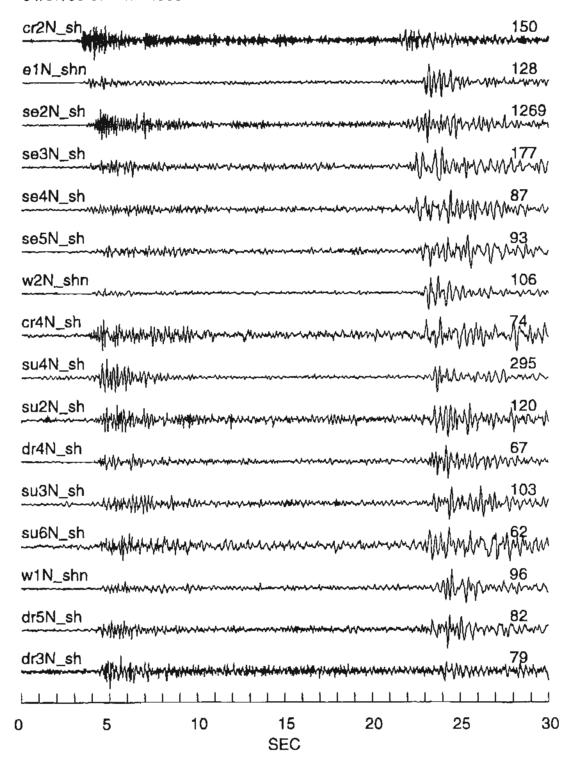


Figure 4b.

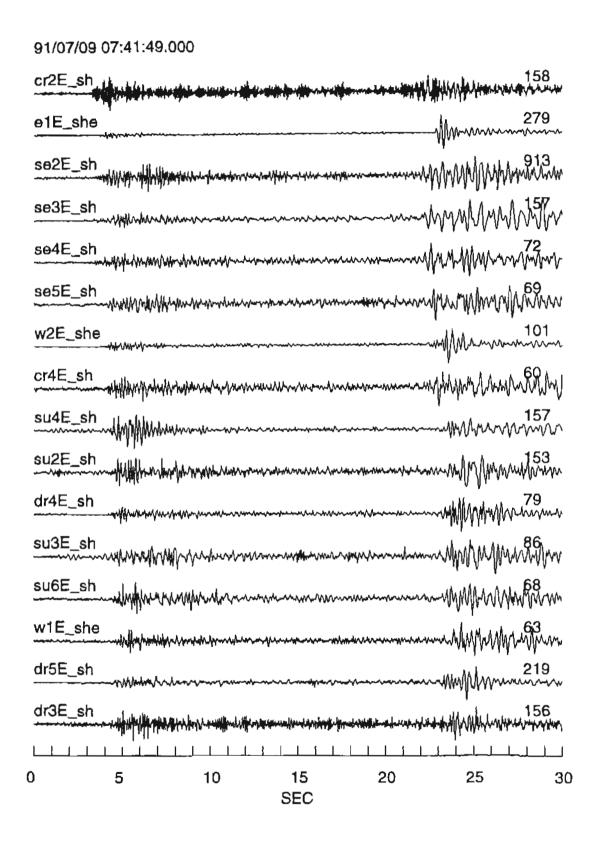


Figure 4c.

Figure 5.

5

SEC

4

0

1

2

3

6

7

8

9

10

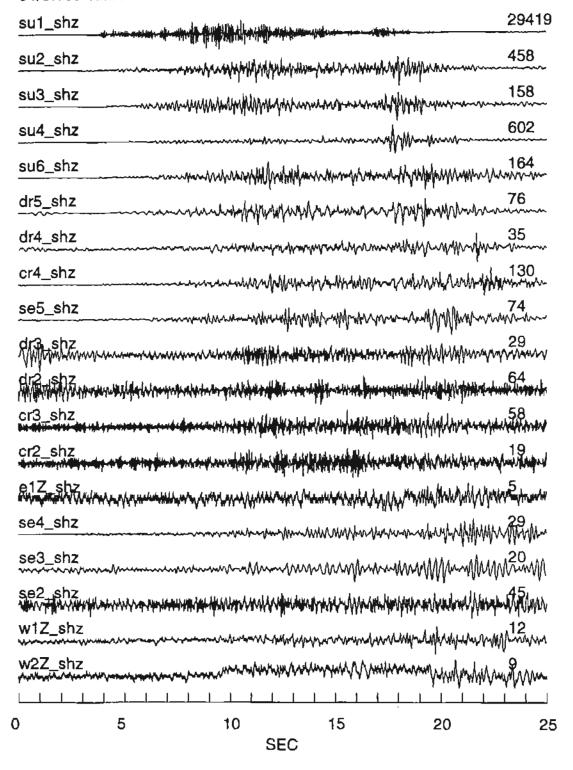
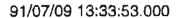



Figure 6a.

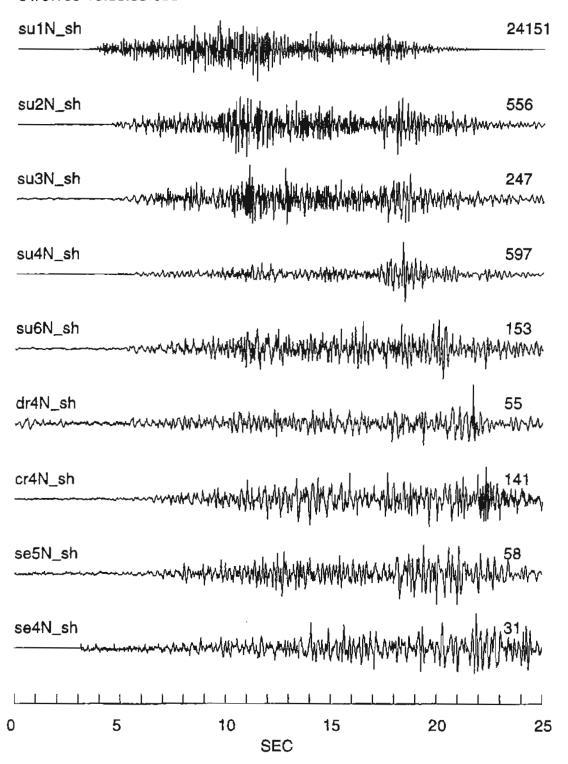


Figure 6b.

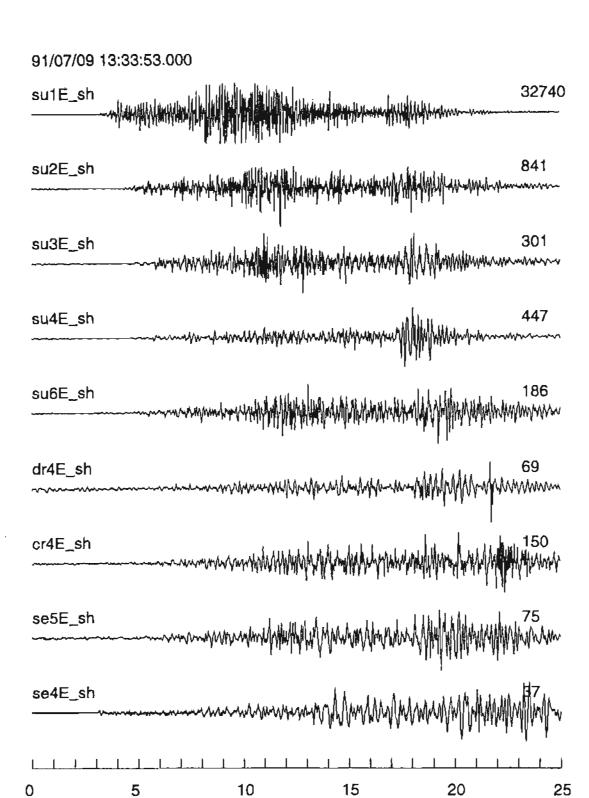


Figure 6c.

SEC

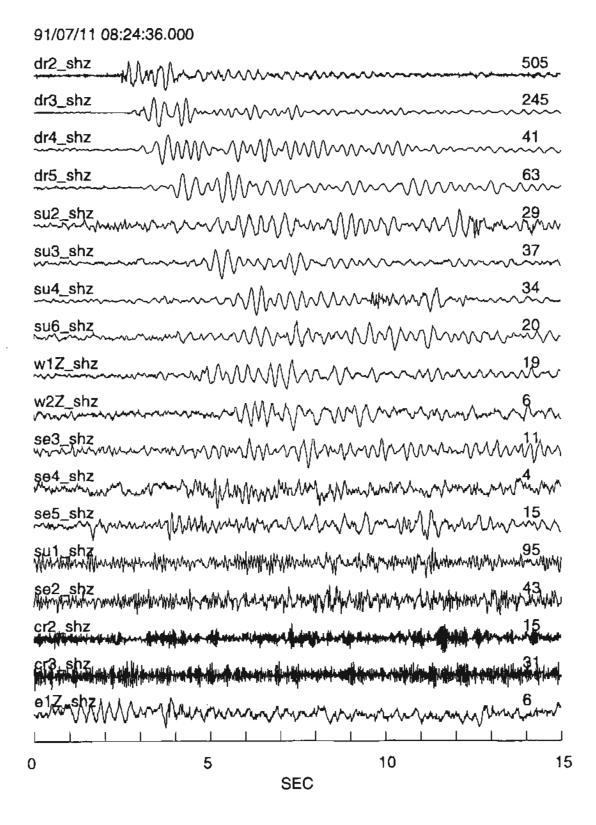


Figure 7a.

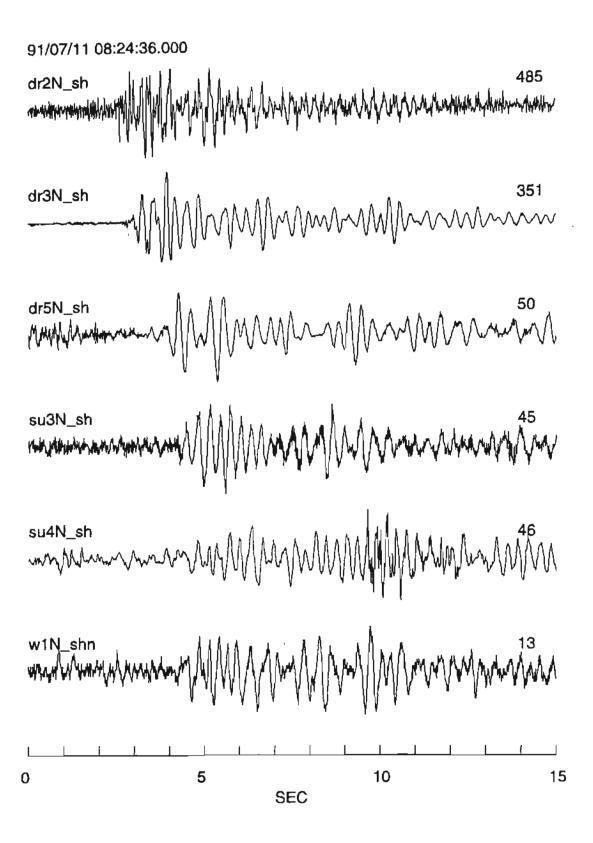


Figure 7b.

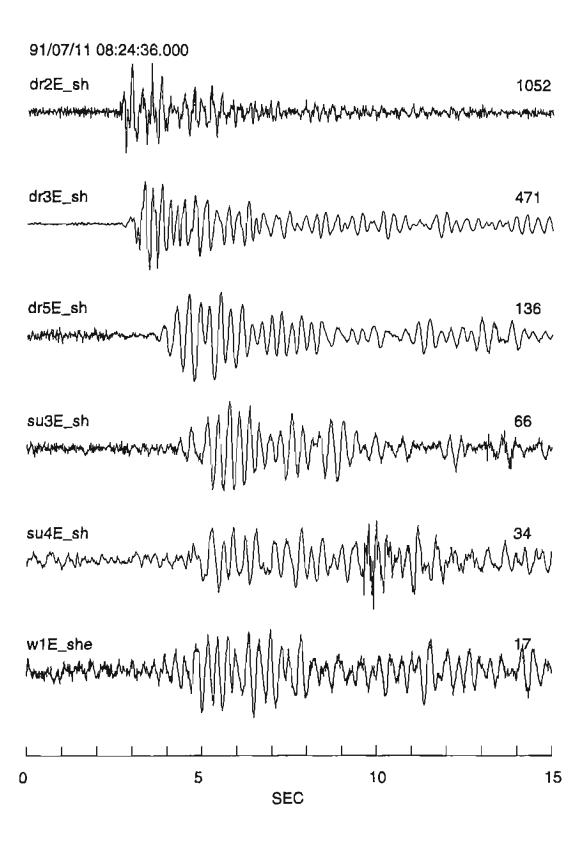


Figure 7c.

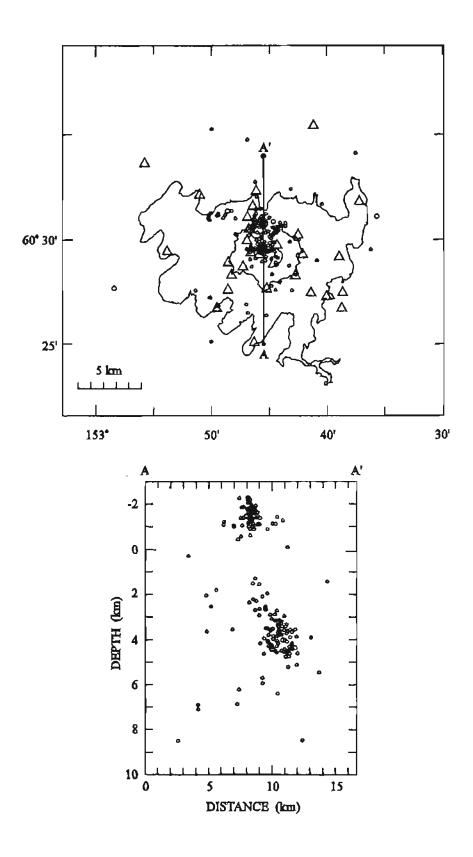


Figure 8.