Table 2. Depositional environments interpreted from carbonate-microlithofacies and conodont-biofacies data, Wahoo Limestone, eastern Sadlerochit Mountains, northeast Brooks Range, Alaska [Conodont genera: Ad., Adetognathus; C.?, Cavusgnathus? (includes only C.? tytthus); Cav., Cavusgnathus; De., Declinognathodus; Gn., Gnathodus; Hi., Hindeodus; Idg., Idiognathodus; Idd., Idiognathoides; Idp., Idioprioniodus; Kld., Kladognathus; Rh., Rhachistognathus; Vo., Vogelgnathus; 1?, assignment to taxon uncertain] | Meters
(abw) ¹ | Carbonate
Texture | Abun-
dant
(>50%) | Common
(10-50%) | Minor
(1-10%)
ER MEMBER | Rare
(<1%) | Sorting | Micrit-
ization | Abrasion | Depositional Environment
(Microlithofacies) | Conodont Genera (Includes only genera having more than 5 specimens in each sample) C.? Ca. Gn. Hi. Kld Rh Vo. | | | | | | ole) | Conodont
Biofacies | Depositional
Environment
(Conodont-based) | Univ. Alaska
Museum
Sample No. | |------------------------------|--------------------------|-------------------------|--------------------|--------------------------------|---------------|----------|--------------------|----------|--|--|-----|------|------|----|-----|------|-------------------------------|---|--------------------------------------| | | | | | RESTRICTE | | | | | | J C | Ca. | 611. | 111. | 1 | TAI | ٧٥. | | (CONOCON-Dased) | Sample No. | | 13.2 | Grainstone | Y | | ★●Q | ≈90 | weil | Α | moderate | open marine or open platform,
high energy | | 59 | | | 8 | 9 | 10 | cavusgnathid | open platform | AK22M16.2 | | 22 | Grainstone, packstone | Y# | * | ≈A&• Q Ò | 0 | moderate | М | moderate | open marine or open platform,
moderate to high energy | 1 | 69 | | 1 | | | | cavusgnathid | open platform, near restricted(?) | AK22M25 | | 32 | Grainstone | | Y## ★ | • | ≈A&XQ | moderate | С | moderate | open marine or open platform, moderate energy | | 53 | 6 | | 9 | | | cavusgnathid | open platform | AK22M35 | | 42 | Grainstone | YA | * | ≈&X∙ | Q | moderate | 0 | strong | open marine or open platform,
moderate to high energy | | 21 | | | | | | cavusgnathid | open platform, near restricted(?) | AK22M45 | | 47 | Grainstone | Y# | * | ≈ 0 88• | A&A | moderate | O | moderate | open marine or open platform, moderate to high energy | 1 | 63 | | | 14 | | | cavusgnathid | open platform | AK22M50 | | 50.5 | Grainstone | YA | * | ≈9A. 0 @
a ∑• | & <i>8</i> ★ | moderate | С | moderate | open marine, near restricted platform | 4 | 16 | | | | | | cavusgnathid | open platform, near restricted(?) | AK22M53.5 | | CAVUS | GNATHID- | KLADO(| GNATHID I | BIOFACIES (C | OPEN PLATFO | ORM TO C | PEN MA | RINE) | | | | _ | | | | | | | | | 0.4 | Packstone | Y# | | ₩ | Ø/Q | poor | C | moderate | open marine to open platform, moderate energy | | 108 | 67 | | 97 | | | cavusgnathid-
kladognathid | open platform to open marine | AK22M3.4 | | 6 | Grainstone,
packstone | YA | * | ≈90• | AβΣQ | moderate | Σ | moderate | open platform, near restricted platform | | 81 | 18 | | 30 | 14 | | cavusgnathid-
kladognathid | open platform to open marine | AK22M9 | | 7 | Grainstone,
packstone | Y | #I ★ | ≈9A&• | \$ 8⊠Q | well | O | moderate | open marine near restricted platform | | 88 | 15 | | 46 | 15 | | cavusgnathid-
kladognathid | open platform near open marine | AK22M10 | | 27 | Grainstone | Y# | | ≈9 A4 | Σ∙ | moderate | C | moderate | open marine or open platform, moderate energy | 3 | 7 | 5 | | 10 | | | cavusgnathid-
kladognathid | open platform to open marine | AK22M30 | | 37 | Grainstone,
muddy | * | Y | • | ≈& | moderate | М | moderate | open marine or open platform, moderate energy | | 8 | 6 | | 7 | | | cavusgnathid-
kladognathid | open marine, near open platform | AK22M40 | | GNATH | ODID-HIND | EODID | BIOFACIE | S (LOW ENE | RGY, OPEN N | IARINE) | | | | | | | | | | | | | | | 53 | Packstone | Y | 0@★ | Q | ~A&*A | poor | С | weak | open marine, low energy | | | 67 | 32 | 5 | | | gnathodid-
hindeodid | open marine, low
energy | AK22M56 | | Meters
(abw) ¹ | Carbonate
Texture | Abun-
dant
(>50%) | | Minor
(1-10%) | Rare
(<1%) | Sorting | Micrit-
ization | Abrasion | Depositional Environment (Microlithofacies) | spec | nclude
having
cimens | more
in ea | gene
than
ch sa | era
5
mple) | Conodont
Biofacies | Depositional
Environment | Univ. Alaska
Museum | |------------------------------|--|-------------------------|------------|------------------|--|----------|--------------------|----------|---|------|----------------------------|------------------|-----------------------|-------------------|-----------------------------------|--|------------------------| | | NNSYLVANIAN PART OF THE LOWER MEMBER OF THE WAHOO LIMESTONE DETOGNATHID-RELATED BIOFACIES (NEAR RESTRICTED PLATFORM TO LOW ENERGY, OPEN MARINE) Ad. C.? De. Hi. Rh. | | | | | | | | | | | (Conodont-based) | Sample No. | | | | | | 56 | Packstone-
wackestone,
grainstone | • | Y★ | ≈9A.0#
@031* | & & \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | moderate | С | weak | open to restricted platform | 1 | 15 | 19 | | 10 | declinognathodid-
adetognathid | mixed: near restricted to open platform near shoal | AK22M59 | | 59 | Grainstone, packstone | Υ | <i>•••</i> | | ≈9A& A • | moderate | С | moderate | open marine, moderate energy | 61 | 37 | 58 | | | adetognathid-
declinognathodid | open marine to open platform | AK22M62 | | 69 | Packstone
(dolomitic) | Y | * | 00 | & <i>8</i> ₹ A Q | poor | С | strong | open marine, low energy | 11 | 8 | | 18 | 10 | hindeodid-
adetognathid | open marine | AK22M72 | | Meters
(abw) ¹ | Carbonate
Texture | Abun-
dant
(>50%) | Common
(10-50%) | Minor
(1-10%) | Rare
(<1%) | Sorting | Micrit-
ization | Abrasion | Depositional Environment
(Microlithofacies) | mo | Conodont Genera (Includes only genera having more than 5 specimens in each sample) Ad. De. Hi. Idg. Idp. Rh. | | | | | Conodont
Biofacies | Depositional
Environment | Univ. Alaska
Museum | |------------------------------|-----------------------------|-------------------------|------------------------------|-----------------------------------|---------------|-----------|--------------------|----------|--|-----|---|-----|------|------|-----|-----------------------------------|------------------------------|------------------------| | UPPE | | OF THE | | LIMESTONE
THID BIOFAC | IES(?) (REST | RICTED T | O NEAR | OPEN PL | ATFORM) | Ad. | De. | Hi. | ldg. | ldp. | Rh. | | (Conodont-based) | Sample No. | | 246 | Grainstone | • | Q | \$ \$\$\$\$\$\$ | 80 | very poor | A | strong | restricted to open platform | 26 | 1 | | 7 | | 23 | adetognathid-
rhachistognathid | open platform, near shoal | AK22M249 | | 261.5 | Packstone, mudstone | | ~⊚*• | Y& / ★ | A V Q | very poor | 0 | | restricted to open platform | 15 | | | | | 18 | adetognathid-
rhachistognathid | restricted to open | AK22M264.5a | | ADET | OGNATHID- | | ISTOGNA' | THID BIOFAC | IES (OPEN PL | ATFORM | TO NEA | R SHOAL | AND SHOAL TO TIDAL C | HAN | INEL |) | | | | | | | | 84 | Grainstone | YAT | | A@&★ | <u> </u> | moderate | С | moderate | open platform, moderate energy | 27 | | | | | 31 | adetognathid-
rhachistognathid | open platform, near | AK22M87 | | 113 | Grainstone | | Y&/ | ≈9 0 ★• | 0 | very well | Α | strong | open platform to open marine,
high energy, tidal channel(?) | 66 | | 7 | | | 142 | | shoal to tidal channel | AK22M116 | | 118 | Grainstone | * | ≈YX | &3♥⊖ | 9A@AO | poor | С | moderate | open platform, near shoal | 11 | 1 | | | | 11 | adetognathid-
rhachistognathid | open platform, near
shoal | AK22M121 | | 157 | Grainstone | | ⊙ ⊖• | ≈ 0 Y###
&©16\X | 89 | moderate | Α | strong | shoal, near platform | 29 | | | | | 34 | adetognathid rhachistognathid | open platform, near shoal | AK22M160 | | 203 | Grainstone | | ⋆∙ | #• | | well | Α | strong | open platform | 12 | | | | | 18 | adetognathid-
rhachistognathid | open platform, near shoal | AK22M206 | | 241 | Grainstone, packstone | | ≈# 0 Y
##® | @★\\ | <i>ରଥର</i> | moderate | С | moderate | open platform | 13 | 5 | | | | 11 | adetognathid-
rhachistognathid | open platform, near
shoal | AK22M244 | | RHAC | <u>HISTOGNAT</u> | THID BIC |)FACIES (| NEAR SHOAL | . TO OPEN PI | _ATFORM |) | | | | | | | | | | | | | 95 | Grainstone | | 9 0 Y1
0 ⊖• | ≈#\&★A
ΣQ | 078 | well | С | strong | open platform, near shoal or tidal channel | 17 | | | | | 41 | rhachistognathid | open platform, near shoal | AK22M98 | | 107 | Grainstone, packstone | | €00 | ≈9 0 Y&©
♦¥ X Q• | A | well | Α | strong | open platform, near shoal,
high energy | 36 | | | | | 147 | rhachistognathid | open platform, near
shoal | AK22M110 | | 257.5 | Grainstone, packstone | YA | * | V 8⊚1X⊖ | | poor | С | moderate | open platform, moderate energy | 7 | | | | | 26 | rhachistognathid | open platform | AK22M260.5 | | RHACI | <u>HISTOGNAT</u> | THID BIC | | SHOAL OR TI | DAL CHANN | EL) | | | | | | | | | | | | | | 85 | Grainstone | | Y##&★ | ≈6 0• 0 | | very well | Α | strong | open platform or tidal channel,
high energy | 26 | | | | | 118 | rhachistognathid | shoal or tidal channel | AK22M88 | | 91 | Grainstone
(dolomitized) | | &• | ≈ v Y★0a | | very well | Α | strong | open marine, near shoal, or tidal channel, high energy | 26 | | | | | 245 | rhachistognathid | shoal | AK22M94 | | 97 | Grainstone | | *0 | ≈9 0 Y#
@ &X⊖• | <i>31</i> 0⊗ | well | С | strong | shoal and (or) tidal channel | 7 | | | | | 19 | rhachistognathid | shoal or tidal channel | AK22M100 | | 102 | Grainstone | | ≈9 0 ★ | ⊘ Y& ⊙ ⊖• | Q | very well | С | strong | tidal channel or open marine,
near shoal, high energy | 30 | | | | | 130 | rhachistognathid | shoal | AK22M105 | | 122 | Grainstone | | | ≈୩୯ Y&★
⊙• | Ø⊚1⊖a | well | A | strong | open platform, near shoal or tidal channel, high energy | 34 | 8 | | | | 180 | rhachistognathid | shoal or tidal channel | AK22M125 | | RHACE | HISTOGNAT | THID BIC | FACIES (| OPEN MARIN | E, NEAR SHO | AL) | | | | | | | | | | | | | | 133.5 | Grainstone | Y | * | ≈90##
801AX⊖ | AO | moderate | С | moderate | open marine to open platform,
near shoal, moderate energy | 36 | 24 | | | | 192 | rhachistognathid | open marine, near shoal | AK22M136.5 | | 187 | Grainstone, packstone | YA | ≈૧ | Q•
○V&3/*
Ø• | ΣΩ | moderate | С | weak | open platform or open marine,
moderate energy | 10 | 33 | | 19 | | 276 | rhachistognathid | open marine, near shoal | AK22M190 | | 232 | Grainstone | Y# | * | ≈9 0.0 & <i>8</i>
© | A@0a | well | С | strong | open marine to open platform, moderate energy | 8 | 7 | | 16 | | 37 | rhachistognathid | open marine, near shoal | AK22M235 | | Meters
(abw) ¹ | Carbonate
Texture | Abun-
dant
(>50%) | Common
(10-50%) | Minor (1-10%) (<1%) Sorting Micritization (Microlithofacies) Sorting (1-10%) (Includes only genera having most package of the support | | | | | ng mor
sample |) | Conodont
Biofacies | Depositional
Environment | Univ. Alaska
Museum | | | | | | | |------------------------------|---|-------------------------|--------------------|---|-----------------|---------------------|--------|-------------------|--|-----|-----------------------|-----------------------------|------------------------|------|-------|-----|--|------------------------------|------------| | UPPER | | OF THE | | LIMESTONE
OFACIES (OF | PEN MARINE, | NEAR SH | OAL) | | | Ad. | De. | Hi. | ldg. | ldp. | Idid. | Rh. | | (Conodont-based) | Sample No. | | 177 | Grainstone | | ≈9 0•
Y& | Λ#8®★
ΧΟ Θ | ØAQ | poor | Α | moderate | open platform, near shoal, or tidal channel(?) | | 23 | | | | | 20 | declinognathodid-
rhachistognathid | open marine, shoal apron | AK22M180 | | 197.5 | Grainstone, packstone | Y | * | V ⊙ | &3⊖ | moderate | С | moderate | open marine, near shoal | | 23 | | | | | 8 | declinognathodid | open marine, near shoal | | | 207 | Grainstone, packstone | Y | AT ® ★ | •• | ABAX• | moderate
to poor | С | İ | open marine, near shoal | | 30 | | 15 | 8 | | | declinognathodid-
idiognathodid | open marine | AK22M210 | | DECLI | NOGNATHO | DID-RE | LATED BI | OFACIES (LC | W ENERGY, | OPEN PLA | ATFORM | AND (OR | OPEN MARINE) | | | | | | | | | | | | 142 | Packstone
(dolomitized) | | Y | Φ# ★Q | ≈9 & | poor | 0 | | | 21 | 15 | | | | | 33 | rhachistognathid-
adetognathid | open platform or open marine | AK22M145 | | 152 | Mudstone
(dolomitized) | | | | * | not
applicable | 0 | not
applicable | open marine, low energy | | 34 | | | | | | declinognathodid | open marine | AK22M155 | | 162 | Packstone,
wackestone
(dolomitized) | | Y★ | V Q● | ₹ ₩0 | poor | С | strong | open marine to open platform, low energy | 44 | 41 | | | 6 | | 61 | rhachistognathid-
adetognathid-
declinognathodid | open platform or open marine | AK22M165 | | 178 | Packstone | | Y★ | # \DXO | A&31A | poor | С | moderate | open marine, low energy | | 21 | | | | | | declinognathodid | open marine | AK22M181 | | 217.5 | Packstone
(dolomitized) | | ΦY★ | ũ A | 8Ω | poor | С | moderate | open marine, low energy | | 34 | Γ | 75 | 12 | 3 | | declinognathodid-
idiognathodid | open marine | AK22M220.5 | | 237 | Packstone | | Y★ | • | ~ | poor | 0 | moderate | open platform to open marine | | 17 | | 8 | | | | declinognathodid-
idiognathodid | open marine | AK22M240 | | 250 | Wackestone,
mudstone
(dolomitized) | | | | Y## ★ | not
applicable | 0 | not
applicable | open marine, low energy | | 17 | | | | | | declinognathodid | open marine | Ak22M253 | | Meters
(abw) ¹ | Carbonate
Texture | Abun-
dant | Common
(10-50%) | Minor
(1-10%) | Rare
(<1%) | Sorting | Micrit-
ization | Abrasion | Depositional Environment
(Microlithofacies) | | | | | Co | nodor | nt Ger | nera | | | | | Univ. Alaska
Museum
Sample No. | |------------------------------|---|---------------|---------------------|----------------------------------|---------------------------|----------------------|--------------------|-----------------------|--|-----|-----|---------|-----|-----|-------|--------|------|----------|----------|-----|--|--------------------------------------| | ESTRI | CTED PLATFO | (>50%)
DRM | <u></u> | " - " | <u>,,,</u> | | | L | <u> </u> | Ad. | C.? | Cav | De. | Gn. | Hi. | ldg. | idp. | ldid | Kld. | Rh. | Vo. | Sample No | | 76.8 | Mudstone
(dolomitized) | | | | | | 0 | | intertidal to restricted; | 1 | | | | | | | | | | | | AK22M79.8 | | 80.8 | Packstone | | Y∙Q | &Σ | AO | well | Α | strong | restricted platform; conodonts suggest open platform near | | ļ | | | | | | | | <u> </u> | 9 | | AK22M83.8 | | 253 | Grainstone,
mudstone | • | * | ⊗&⊄ | ΣQ | very well | A | strong | shoal restricted platform; conodonts suggest open platform near shoal | | | | | | 1 | | | | | 4 | | AK22M256 | | 260.5 | Grainstone | • | | * | | very well | Α | strong | restricted platform; conodonts suggest near shoal, open platform | 8 | | | | | | | | | | 9 | | AK22M263. | | PEN T | O RESTRICTE | D PLATE | ORM | | | | | <u> </u> | pidaom | | | | 1 | | | | - | • | • | | | | | 55.5 | Packstone,
bafflestone | *• | | YATI | Ø≭a | poor | С | weak | restricted to open platform; conodonts confirm | | 3 | 2 | | | | | | | | | | AK22M58.5 | | 65 | Grainstone,
packstone | YH | *• | V ★Q | & \Delta \I O | poor to
weak | Α | moderate
to weak | open to restricted platform;
conodonts confirm | 4 | 2 | | 1 | | | | | | | | | AK22M68 | | 74 | Wackestone,
mudstone,
packstone | | Y★● | O##®♥★. | ≈A1 | poor | R | weak to | restricted to open platform, low
energy; rarity of cono-donts
suggest restricted to open
platform | | 1 | | | | | | | | | | | AK22M77 | | 76.5 | packstone | | Y• | ض Q | ≈ \$&1 ∑0
⊖ | moderate
to well | Α | moderate
to strong | restricted to open platform;
conodonts confirm | | 1 | | | | 1 | | | | | | 1 | AK22M79.5 | | 212 | Grainstone,
mudstone | • | | Y& ∉ ★ * | ঀ৶¥৹ | very well | A | strong | restricted to open platform;
conodonts suggest restricted
to near shoal | | | | | | | | | | | 7 | | AK22M215 | | PEN P | LATFORM | · | 1 | | | | | • | | | | • | | | | - | | | | | | | | 88 | Packstone,
wackestone
(dolomitized) | | @ | Ø★● | ≈9 0 AX
Q | poor | М | weak | open platform;
conodonts suggest open
platform near shoal | | | | | | | | | | | 14 | | AK22M91 | | 137 | Grainstone | YAT | * | 00 | A3QO | moderate | R | weak | open platform; conodonts confirm | 3 | | 9 | 2 | | | | | | | 7 | | AK22M140 | | 167 | Grainstone, | | ≈9 0 Y
#0 | ፟ቜ፞፞፞፞ቘፙፚ፞ዿ፞፞Ω
★⊖● | AO | poor to
moderate | С | weak to moderate | open platform; conodonts confirm | 1 | | | 1? | | | | 1 | | | 7 | | AK22M169. | | 191.5 | Grainstone,
bafflestone | | ≈9 7 0 | VY8 ★A• | | poor | Α | moderate | open platform; conodonts confirm | 12 | | | | | | | | | | 5 | | AK22M194. | | 222 | Grainstone | 0 | • | ŎY₹X | Φ | well | С | strong | open platform, behind shoal; 3 indet. conodont fragments | | | | | | | | | | | | | AK22M225 | | 243 | Grainstone, packstone | Y | ₩ | @ | ≈8©A | poor | A | weak | open platform to open marine | 3 | | | 5 | | | 3 | | | | 10 | | AK22M246 | | PEN P | LATFORM OF | OPEN N | | | | | | | | | - | 1_ | 1 | | | | | | | | ······································ | ALCOOME | | 62 | Grainstone, packstone | AY | @★⊖ | ≈0AXO | ମ& <i>ଌ</i> ପ | poor to
moderate | Α | moderate
to weak | open platform near shoal;
conodonts confirm | 5 | 2 | 2 | 12 | | | | | <u> </u> | | | | AK22M65 | | 169 | Grainstone | | ≈90 | \$0 ¥ X ⊙ • | æ (⊚A | very well
to well | A | strong | open marine to shoal;
conodonts suggest open
marine to shoal | 4 | | | 7 | | | | | | | 8 | | AK22M172 | | 171 | Grainstone | 0 | 0 | • | ≈9#/3®
⊖ | well to
very well | A | strong | shoal to open platform;
conodonts confirm | 4 | | | | | | | | | | 1 | | AK22M174 | | 174 | Grainstone | | ≈®X0 | 9 ४० ४ <i>५</i>
८८★७⊖• | A@10 | moderate
to poor | С | moderate | open platform to shoal;
conodonts suggest open
marine to shoal | | | | 1 | | 1 | | | | | 2 | | AK22M177 | | 181 | Grainstone | ₽≈ | 0 | ૧૯⊛★૦ | ΦΥΑΘΣ• | very well
to well | A | moderate | | 2 | | | | | | | | | | | | AK22M184 | | 182 | Grainstone | ₽≈ | Θ | &⊙• | | very well
to well | Α | moderate | | 2 | | | | | | | | | | | | AK22M185 | | 227 | Grainstone | | &⊚⊙• | ≈YØ★ | A | moderate | С | strong | open platform behind shoal or
tidal channel; conodonts
confirm | 6 | | | | | | | | | | 1 | | AK22M230 | | HOAL | <u> </u> | L | <u></u> | <u> </u> | | <u></u> | <u> </u> | | | | • | | | | | | • | | | | | | | 173 | Grainstone | 0 | | ≈∦Y&X
⊖• | 9A048 | well | A | moderate | shoal; conodonts confirm | 3 | | | 1 | | | | | | | 5 | | AK22M176 | | 179 | Grainstone | 0 | 1 | <u></u> | 0 ★ | very well | Α | strong | shoal; conodont data inadequate | 1 | | | | | | | | | | | | AK22M182 | | 180 | Grainstone | 0 | | ≈980 | BCQY0★
AX• | well | Α | strong | shoal; conodonts confirm | 2 | | | | | | | | | | 16 | | AK22M183 | | PEN N | MARINE TO O | PEN PLA | TFORM, LOV | V ENERGY | <u> </u> | | | | | | | | | | | | | | | | | | | 17.1 | Packstone | * | Y | ≈A.O.H
æ• | 802 | poor to
very poor | С | moderate | open marine to open platform,
low energy;
conodonts suggest open
platform | | | 9 | | | | | | | | | | AK22M20.1 | | | | MICRITIZATION | | | | | |--|---------------------|---|-------------------------------------|---|---------|---| |
SKE | LETAL | | | NONSKELETAL | 1 | | | Algae Undifferentiated Archaeolithophyllum sp. Asphaltina sp. Donezella sp. Bioclast, undifferentiated Bivalve Brachiopod Bryozoans Undifferentiated Fenestrate Ramose | 3&3@ < ★ ★ ♠ | Calcisphere Foraminifer Gastropod Oncoid Ostracode Pelmatozoan Sponge spicule Trilobite | ⊗ □ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ | Grapestone Intraclast Ooid Superficial ooid Peloid Quartz | 0 M C A | None
Minor (1-10%)
Common (10-50%)
Abundant (>50%) |