Cretaceous Ammonites
From the Lower Part of
The Matanuska Formation
Southern Alaska

By DAVID L. JONES

With a STRATIGRAPHIC SUMMARY

By ARTHUR GRANTZ

GEOLOGICAL SURVEY PROFESSIONAL PAPER 547

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967
Abstract

Introduction

Mid-Cretaceous faunal sequence in southern Alaska

Albian

Cenomanian

Stratigraphic summary of the lower part of the Matanuska Formation, by Arthur Grantz

Unit A, strata of Albian age

Limestone Hills area

North front of the Chugach Mountains

Matanuska Valley

Nelchina area and southwest Copper River

Correlation within the Matanuska Valley-Nelchina area

Stratigraphic summary of the lower part of the Matanuska Formation—Continued

Unit B, sandstone of Cenomanian age

Unit C, strata of Cenomanian to Santonian (?) age

Unit C-1, lutite of Cenomanian to Coniacian or Santonian age

Unit C-2, composite sequence of Coniacian and Santonian (?) age

Regional correlation of the lower part of the Matanuska Formation

Geographic distribution of ammonites

Systematic descriptions

References

Index

CONTENTS

Page

1

1

2

3

4

6

7

7

8

9

9

11

12

15

21

44

47

ILLUSTRATIONS

Plate 1. Gaudryceras, Anagaudryceras, Lytoceras, and Parajaubertiella.

2. Tetragonites and Sciponoceras.

3. Calycoceras and Bogunnarites.

4. Puzosia, Desmoceras (Pseudoulligella), Scaphites, Otococites, Hulenites, Moffites, Aucellina and Mesopuzosia.

5. Grantziceratites.

7. Freboldiceratites and Archoplinites.

8. Archoplinites.

10. Map of Matanuska Valley-Nelchina area, Alaska, showing fossil localities.

Figure 1. Index map of Alaska.

1. Schematic diagram showing relationship of informal stratigraphic units.

2. Generalized columnar section of the Matanuska Formation, Limestone Hills area.

3. Generalized columnar section of the Matanuska Formation and correlation with rocks in the upper Chitina Valley area.

5. Cross section of Lytoceras sp.

7. Cross sections of Gabbiericeras and Parajaubertiella.

8. Suture line of Otococites texhioensis.

9. Cross section of Sciponoceras sp.

10. Suture line of Sciponoceras sp.

11. Suture line of Brevericeratites hulsenese.

12. Scatter diagram showing whorl relationship of Grantziceratites affinis.

13. Scatter diagram showing relation of umbilical width to whorl shape in Grantziceratites affinis.

14. Box graph showing frequency distribution in Grantziceratites affinis.

15. Suture lines of Grantziceratites affinis.

16. Suture lines of Grantziceratites globulare.

17. Derivation of Grantziceratites, Freboldiceratites, and Archoplinites.

18. Suture line of Freboldiceratites singulare.

20. Suture line of Moffites robustus.

21. Reconstructed cross section of Calycoceras sp.

22. Suture line of Subprionocyclus normalis.

23. Suture line of Hulenites sp.
<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Checklist of fossils</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Ammonite and selected Inoceramus-bearing localities</td>
<td>17</td>
</tr>
</tbody>
</table>
CRETACEOUS AMMONITES FROM THE LOWER PART OF THE MATANUSKA FORMATION
SOUTHERN ALASKA

ABSTRACT

The lower part of the Matanuska Formation comprises a thick and complexly intertongued assemblage of siltstone, shale, sandstone, and conglomerate that ranges in age from Early Cretaceous (Albian) to Late Cretaceous (Coniacian or Santonian). These rocks were deposited mainly on eroded Jurassic sedimentary and volcanic rocks in a tectonically narrow trough lying between an emergent area to the north in the area of the Talkeetna Mountains and the northern Copper River Lowland and a sporadically emergent area to the south, which is now part of the northern Chugach Mountains. The rocks are overlain by claystone and siltstone of Santonian and Campanian age at the base of the upper part of the Matanuska Formation. Deformation, uplift, and erosion during deposition of the Matanuska Formation produced intraformational unconformities which now bound many of the cartographic units into which the formation has been divided. Stratigraphic and structural studies by Arthur Grantz have shown that after (and perhaps also during) deposition of the Matanuska Formation, the Nelchina area was broken into three major blocks by lateral movement on two splay faults of the Castle Mountain fault system, and that these major blocks display different rock sequences, informally termed the northern, central, and southern sequences. The stratigraphic record of each sequence differs significantly from the others, and detailed reconstruction of the history of sedimentation and deformation of the Matanuska Formation rests heavily on paleontologic correlations between these sequences.

The oldest beds of the Matanuska Formation in the Matanuska Valley-Nelchina area, near Limestone Gap in the northern sequence, consist of sandstone-bearing abundant specimens of Auclina sp. and rare specimens of Moffittites robustus. These rocks are assigned to the early early Albian zone of Moffittites robustus. Upper lower Albian rocks assigned to the zone of Breviceratites hulense occur in both the northern and southern sequences but have not been positively identified in the central sequence. Middle Albian rocks are unknown throughout the area, but upper Albian rocks may be present in the southern sequence.

Cenomanian rocks, characterized by Desmoceras (Pseudoukliigella) japonicum, rare specimens of Calycoceras sp., and a new species of Inoceramus, are widespread in the central and southern sequences but absent in the northern sequence. These rocks are overlain by Turonian rocks that contain fairly abundant but fragmentary specimens of Inoceramus cf. I. cuvierii, several other species of Inoceramus, and rare ammonites, including Otoceratites teshtoensis and Mesopuzosia aff. M. indopacifica. The overlying rocks contain abundant specimens of Inoceramus usajimensis and scarce specimens of I. yokoyamai, together with a few poorly preserved ammonites indicative of a Coniacian and possible Santonian age.

In this report, 20 species of ammonites are discussed and illustrated. Scrappy material and poor preservation of many specimens preclude specific identification of some forms and necessitates showing only the affinities of others. Although some of the forms discussed are apparently new, the scarce and poorly preserved material now at hand does not warrant assignment of new names at this time.

INTRODUCTION

The main purpose of this report is to provide paleontologic data to substantiate the correlation of complex sequences of upper Lower Cretaceous and lower Upper Cretaceous rocks in the Matanuska Formation of south-central Alaska (fig. 1). Ammonites from the upper part of the formation have been discussed by Jones (1964).

An account of the changing concepts concerning the age of the Matanuska Formation and a brief description of the entire formation were given by Grantz (1964) and Jones (1964) in earlier reports and will not be treated fully here. The lower part of the formation was considered by Imlay and Reeside (1954, p. 232) to be of Coniacian age on the basis of its stratigraphic position below beds bearing the Santonian species Inoceramus undulatoplicatus, the supposed presence of Parapuzosia and Prohauvericeras, and the presence of Inoceramus close to I. usajimensis. Imlay later changed the identification of Prohauvericeras to Soninia of Bajocian age (written commun., 1954) and that of Inoceramus undulatoplicatus to I. schmidti of Campanian age (written commun., 1955). Later studies by Jones showed that the Parapuzosia belongs to Conadoceras and that some of the specimens referred to as I. usajimensis belong to a new species of Cenomanian age.

These changes, together with the identification by Imlay (1959) of Albian ammonites obtained from near the base of the formation, showed that previous interpretations as to the lower age limit of the formation required revision, although when first discovered, the stratigraphic significance of the Albian ammonites was equivocal, and Imlay (1960, p. 88) suggested that they might have been reworked into much younger beds.

In order to ascertain the stratigraphic position of the Albian fossils discussed by Imlay, and also to gather additional fossils from the lower part of the Matanuska Formation, Grantz and Jones visited the Matanuska Valley-Nelchina area in 1959. Field data showing that
the Albian fossils were indeed in place, and that rocks of Cenomanian and probable Turonian ages were also present, were published in a preliminary note (Grantz and Jones, 1960). In that report, as well as in a later report on the ammonites from the upper part of the Matanuska Formation (Jones, 1964), it was suggested that strata of Coniacian and Santonian ages were missing and that Campanian beds rested directly on probable Turonian beds. This interpretation was based on a lack of identifiable fossils of known Coniacian and Santonian ages. In 1963 Grantz revisited the Nelchina area and collected well-preserved specimens of *Inoceramus yeharai* Yehara and other Inocerami and ammonites indicative of Coniacian and possibly Santonian ages. These collections, augmented by additional fossils collected by Jones and Grantz in 1964, indicate that the total age span of the Matanuska Formation in the Nelchina area is from at least early Albian to early Maestrichtian, although deposition was not continuous and no single sequence contains a complete sedimentary record.

In the present report Grantz is responsible for discussion of the stratigraphy and for lithologic correlations within the Matanuska Valley-Nelchina area; Jones is responsible for local and regional paleontologic correlations and for systematic descriptions.

MID-CRETACEOUS FAUNAL SEQUENCE IN SOUTHERN ALASKA

In order to establish the age of the fossils from the structurally complex and lithologically heterogeneous rocks of the Matanuska Formation in the Matanuska Valley-Nelchina area, these fossils must be compared with those in a local standard of reference, preferably one with a structurally simple sequence of rocks containing abundant fossils that have been studied in some detail. In southern Alaska the most richly fossiliferous sequence of Albian and Cenomanian rocks occurs in
the upper Chitina Valley, an area currently being studied by Jones. No detailed description of the Cretaceous rocks of the entire region is yet available, although a general account was given by Moffit and Capps (1911) and Moffit (1918, 1938), and the Cretaceous rocks of the McCarthy A-4 quadrangle have been mapped by Miller and MacColl (1964) and described by Jones and Berg (1964). Recently, Imlay (1959, 1960) and Matsumoto (1959a) have figured Cretaceous fossils from the upper Chitina Valley, but the stratigraphic relationships reported in these papers are either obscure or in need of partial revision. The following summary of the mid-Cretaceous faunal sequence in the upper Chitina Valley is presented here to provide a background to assist in understanding the age and facies relationships of the Matanuska Formation in the Matanuska Valley-Nelchina area, where the rock sequence is stratigraphically less complete, generally less fossiliferous, and structurally more complex.

ALBIAN

On the basis of studies of the ammonite faunas of the upper Chitina Valley, Imlay (1960) established several faunal zones of Albian age. The lowest zone, containing the "Leconteites modestus and Puzosigella faunules" was said to be characterized by L. modestus (Anderson), Puzosigella cf. P. rogersi (Hall and Ambrose), P. cf. P. perrinsmithi (Anderson), P. cf. P. taffi (Anderson), Anagaudryceras aurarium (Anderson), and Auscellina sp. Rocks bearing this faunule were correlated with the Leconteites lecontei zone of California and assigned an early or early middle Albian age (Imlay, 1960, p. 98).

From rocks overlying the Leconteites modestus and Puzosigella zone, Imlay recognized the "Moffitites robustus and Leconteites densus faunule," characterized by Moffitites robustus Imlay, Kennicottia bifurcata Imlay, Leconteites densus (Whiteaves), L. crassicoloratus Imlay (nomen nudum), Anagaudryceras aurarium (Anderson), Phyllopachyceras cf. P. shastalense (Anderson), Calliphylloceras cf. C. alderseni (Anderson), Psychoceras cf. P. lacee (Gabb), Calliasmiceras (Wollemanniceras) alaskamum Imlay, C. (W.) folhinei Imlay, and other species. The correlation of this zone with the zonal sequence of California established by Anderson (1938) and Murphy (1956) was uncertain, and Imlay (1960, p. 91) suggested that it occupied a position intermediate between the zones of Leconteites lecontei and Breuericeras hulenense.

The Moffitites robustus zone is overlain, according to Imlay, by rocks containing the "Breuericeras breweri and B. cf. B. hulenense faunule" characterized by many species, the most important of which are Breuericeras breweri (Gabb), B. cf. B. hulenense (Anderson), Puzosia alaskana Imlay, Parasitesites bullatus Imlay, Hulenites cf. H. reesidei (Anderson), and Lemuroceras (Subarachnites) aff. L. belli McLearn. This zone was considered to be approximately equivalent to the zone of B. hulenense of northern California and was assigned a late early Albian age in the sense of Breistroffer (1947) and Wright (1957) or an early middle Albian age in the sense of Spatch (1923, 1942).

A fourth faunule, the "Freboldiceras singulare faunule" known only from the Matanuska Formation in the Talkeetna Mountains, was also recognized by Imlay (1960, p. 92). This faunule included Tetragonites sp., Beudanticeras [=Grantsiiceras of the present report] glabrum, Grantsiiceras multiconstrictum, and Lemuroceras [=Arcthoplites of the present report] talkeetnatum and was of particular interest "because its component species show close affinities with Albian species in the western interior of Canada and in India, and because its genera and species have no known affinities with the Albian ammonites of California or Oregon, although they occur in the same marine basin as the Albian ammonites of the Chitina Valley that are closely related to ammonites in California and Oregon" (Imlay, 1960, p. 92). This fauna was suggested to be either slightly older or slightly younger than the Breuericeras zone of the upper Chitina Valley, and a younger age was favored (Imlay, 1960, p. 92).

Imlay's work was based on fossils collected by various geologists engaged in reconnaissance studies of the rocks of the upper Chitina Valley, and many of the collections could either not be located precisely or were derived from float. More detailed collecting by Jones, in conjunction with geologic studies by E. M. MacKevett, Jr., and the late Don J. Miller, both of the U.S. Geological Survey, was undertaken in 1961; Jones and Imlay jointly collected Cretaceous fossils from this area in 1962, and Jones made additional collections in 1963 and 1965. Preliminary studies of these collections necessitate a revision of Imlay's zonal scheme as summarized above. In brief, the major changes are as follows:

The Moffitites robustus fauna characterizes the lowest part of the Albian sequence of the upper Chitina Valley (fig. 4), and specimens of "Leconteites modestum" and "Puzosigella cf. P. rogers" identical with those figured by Imlay have been found with this fauna. Auscellina is extremely abundant in this zone. The Moffitites robustus zone is probably equivalent to, or slightly older than, the early Albian Leconteites lecontei zone of California and Oregon (Jones and others, 1965).

The Breuericeras hulenense zone overlies the Moffitites robustus zone and can be correlated with the rocks bearing the "Freboldiceras singulare faunule" of the Talkeetna Mountains. This correlation is based on the
Likewise, the absence in southern Alaska of the western interior of Canada perhaps can be explained reported from any other localities in southern Alaska. Northern California (Murphy, 1956) are missing or as Charlotte Islands, B.C., beds yet unidentified in both the Chitina Valley and the Matanuska Valley-Nelchina area and have not been separated by nearly 700 meters of sandstone and siltstone.-Mortonicerm. These younger rocks are characterized lands, associated described by Matsumoto and many other species of ammonites including Pseudohelicoceras sp., Marshallites cuneohecquoensis (Whiteaves), Marshallites sp., Zelandites inflatus Matsumoto, and Proplocenticeras sp. Some of these ammonites have been described by Matsumoto (1959a). A similar fauna is known from the Queen Charlotte Islands, associated with the upper Albian ammonite Mortoniceras.

Strata of middle and early late Albian ages equivalent to the zone of Oxytropidoceras packardi and the lower part of the zone of Pervinqueria huleneana of northern California (Murphy, 1956) are missing or as yet unidentified in both the Chitina Valley and the Matanuska Valley-Nelchina area and have not been reported from any other localities in southern Alaska. Likewise, the absence in southern Alaska of the Gastroplices fauna of middle Albian age known from northern and north-central Alaska and the western interior of Canada perhaps can be explained by the absence of rocks of this age. On the Queen Charlotte Islands, B.C., beds containing Brevericeras huleneense and those containing D. (P.) dawsoni are separated by nearly 700 meters of sandstone and siltstone in which cleoniceratid and other ammonites are common. These middle Albian fossils also are unknown in southern Alaska.

CENOMANIAN

The beds in the Chitina Valley bearing Desmoceras (PseudouhligeZa) dawsoni are overlain by strata containing D. (P.) japonicum Yabe together with many other species of ammonites, some of which were described by Matsumoto (1959a). Other characteristic species of this fauna include Parajaubertella imlayi Matsumoto, Eogunnarites alaskaensis Matsumoto, and Turrilites acutus Passy. This fauna is of undoubted Cenomanian age (Matsumoto, 1959a, p. 81) and characterizes the beds herein termed the zone of Desmoceras (PseudouhligeZa) japonicum. Other forms common in, but not restricted to, this zone include Zelandites inflatus Matsumoto and Marshallites cuneohecquoensis (Whiteaves).

Upper Cenomanian and Turonian rocks were reported to occur in the upper Chitina Valley by Matsumoto (1959a, p. 86). These rocks crop out in the vicinity of Nikolai Creek and yielded fossils identified as Inoceramus hobotensen Nagao and Matsumoto, I. cf. I. pictus Sowerby, and a new species of Marshallites close to an upper Cenomanian form from Japan. Additional collecting from this place has shown that Desmoceras (PseudouhligeZa) japonicum occurs in the uppermost beds and D. (P.) cf. D. japonicum occurs lower in the section in brownish-yellow siltstone that yielded the Marshallites n. sp. Still lower in the section Brevericeras huleneense was collected, so this sequence can be correlated with the Albian and Cenomanian zones discussed above.

Poorly preserved fragments of Inoceramus similar to I. cuvierrii were collected in 1965 from black shale in the McCarthy B–4 quadrangle. These fossils suggest that beds of Turonian age occur locally within the upper Chitina Valley area. The presence of Turonian beds within or near the lower Chitina Valley is suggested by a single specimen of Subprionocyclus normalis found on a mudcone in the eastern part of the Copper River Lowland. This specimen is figured in this report to demonstrate that upper Turonian strata are probably present in the subsurface of that area; possibly, these beds crop out in the lower Chitina Valley, but they have not yet been identified there.

STRATIGRAPHIC SUMMARY OF THE LOWER PART OF THE MATANUSKA FORMATION

By ARTHUR GRANTZ

The Matanuska Formation was deposited in a long but probably narrow trough with a complex history (the Matanuska geosyncline of Payne, 1955). This trough extended from the Chitina Valley on the east beyond the tip of the Alaska Peninsula on the southeast. The formation, which crops out in the Matanuska Valley, the Nelchina area, and the southwest Copper River Lowland, comprises several overlapping prisms of clastic sedimentary rocks which are separated by unconformities (Grantz, 1960a, b; 1961a, b; 1965). These unconformities record important episodes of uplift and erosion, and thus the prisms they bound are lithogenetic units. Some of the prisms consist of a
single dominant rock type; others consist of assem-
blages of rock types in characteristic arrangement.
Silty claystone and siltstone are the common rocks in
these prisms, but sandstone and conglomerate are
abundant and in some prisms are complexly interbedded
and intertongued with the claystone and siltstone. Be-
cause of these complexities, the character of the formation
is best elucidated by delineating and mapping some
of its unconformity-bounded prisms, as well as its
strictly lithologic units.

The prisms which constitute the lower part of the
Matanuska Formation range in age from Albian to
Coniacian or Santonian. They rest unconformably on
Jurassic and Lower Cretaceous rocks and are overlain
by Santonian (1), Campanian, and Maestrichtian rocks
in the upper part of the Matanuska Formation. The
relationship of the main units in the lower part of the
Matanuska Formation is summarized in figure 2, and

![Figure 2](image)

Figure 2.—Relationship of informal stratigraphic units of the lower part of the Matanuska Formation (stippled) in three structurally bounded sequences. Vertical ruled areas represent missing or as yet unidentified parts of the sequence. Unstippled units belong to the upper part of the Matanuska Formation or to other formations.
River. These faults bound three stratigraphic sequences designated on figure 2 as the northern, central, and southern sequences. Because of these structural complexities, some of the stratigraphic sequences described below are incomplete, and a number of sections must be discussed to illustrate regional variations in the formation across its relatively narrow outcrop belt. Subdivisions of the formation will be designated informally by letters which are compatible with, but represent a revision of, the informal symbols for units of the Matanuska Formation used by Grantz and Jones (1960). For brevity, units consisting of mixtures of claystone, silty claystone, and siltstone, with or without shaliness, will in places be called lutite in the following discussion.

UNIT A, STRATA OF ALBIAN AGE

Albian strata lie at the base of the Matanuska Formation in the vicinity of Limestone Hills in the northern part of the Nelchina area and along the north front of the Chugach Mountains in the southern part of the Nelchina area. Between these Albian occurrences lie the important Caribou and Castle Mountain fault systems, which bound an area in which Cenomanian beds form the base of the formation. The Albian rocks in the Limestone Hills are relatively thin, are character-
ized by soft claystone and siltstone bearing a rich ammonite fauna, and contain sandstone and coal-bearing beds at their base (fig. 3). They rest with unconformity upon Hauterivian or younger calcareous sandstone. The Albian rocks of the Chugach front are grossly similar but they are entirely marine, contain fewer ammonites, and some outcrops contain beds of algal nodules. In the lower Matanuska Valley the Albian rocks rest unconformably on Upper Jurassic siltstone. In the Nelchina area and southwest Copper River Lowland, they rest on Lower Jurassic volcanic and associated sedimentary rocks. In addition to sandstone and shale, the Albian sequence of the Chugach front is characterized by hard siliceous claystone and siltstone bearing many poorly preserved *Inoceramus* valves in some beds.

The two rather different Albian facies of the Matanuska Valley-Nelchina area, that of the Limestone Hills to the north and that of the Chugach front to the south, are separated by two major faults and an area in which Albian rocks were either not deposited or were removed by uplift and erosion in the late Albian or early Cenomanian. The abrupt change from one sequence to another may be due to juxtaposition along the major fault systems. On the other hand, transitional beds may have existed in the intervening eroded area between the faults.

LIMESTONE HILLS AREA

Coal-bearing beds lie at the base of the Matanuska Formation in and near the Limestone Hills (fig. 3). These beds, informally designated unit A-1, rest disconformably on calcareous marine sandstone of Hauterivian or younger age and grade upward into marine beds containing Albian mollusks. All known exposures are small erosional remnants and lie within 8 to 9 miles of Limestone Gap, at the center of the Limestone Hills. These basal coaly beds are sharply lenticular and variable in lithology, and their character is known only in a general way. At their base at Limestone Gulch (fig. 3) is about 50 feet of current-bedded medium- and fine-grained nonmarine sandstone. This is overlain by more than 30 feet, and locally by 100 feet or more, of brownish-dark-gray carbonaceous siltstone and claystone containing beds of bone and coal ranging from a few inches to at least 3 feet thick and a few beds of sandstone. In some sections the carbonaceous siltstone and claystone is overlain by 60 to 100 feet of medium-grained sandstone with current bedding and large sandy calcareous concretions. In its lower part this sandstone contains thin layers of siltstone and coaly shale and is thought to be nonmarine. At Limestone Gulch its middle and upper parts are littoral or inner sublittoral marine deposits and contain the ple-

cypod *Aucellina* (see pl. 4, figs. 27, 28) and rare specimens of the ammonite *Moffittites robustus* Imlay (USGS Mesozoic loc. M557) of early early Albian age (*Moffittites robustus* zone). The middle and upper (marine) parts of this sandstone are apparently represented by only a few thin sandstone beds or a pebbly siltstone near Flume Creek, less than 3 miles east of Limestone Gulch. Sandstone with coaly lenses, possibly correlated with the lower and middle (nonmarine) parts of the Limestone Gulch section, crops out on Mazuma Creek, on Caribou Creek near Chitna Creek, and perhaps elsewhere in the adjacent region; in each of these areas, it is overlain disconformably by beds of Campanian or Maestrichtian age.

In the Limestone Hills the basal sandy and coaly beds are overlain conformably by about 240 feet of marine silty claystone and siltstone, informally designated unit A-2, which is characterized in its lower beds by brownish-gray-weathering slopes and numerous limestone concretions containing well-preserved ammonites. The beds that form brownish-gray-weathering slopes are roughly 100 to 125 feet thick, light olive gray, and contain abundant limestone concretions and lentils throughout. Fossil wood occurs in about the basal two-fifths, and numerous ammonite-bearing concretions occur in about the upper three-fifths of these beds. About 110 to 135 feet or more of olive-gray silty claystone and siltstone containing fewer limestone concretions and ammonites forms the top of the claystone and siltstone unit and is overlain disconformably by siltstone of late Campanian or Maestrichtian age. The abundant ammonites in these claystones and siltstones (USGS Mesozoic locs. 24877, 25320, M553-M556, M559) show that all these beds belong to the *Brevericeras huleniense* zone of late early Albian age; identified forms include

- *Brevericeras huleniense* (Anderson)
- *Anapandyceras sacca* (Forbes)
- *Archopliicites talkeetnanus* (Imlay)
- *Freboldiceras singular* Imlay
- *Grantziceras affine* (Whiteaves)
- *A. glabrum* (Whiteaves)
- *Lytoceras n. sp.*
- *Hulentites sp.*
- *Parasalites bulls* Imlay
- *Puzosia alaskana* Imlay

NORTH FRONT OF THE CHUGACH MOUNTAINS

MATANUSKA VALLEY

Lithic (epiclastic volcanic) marine sandstone, from 0 to about 25 feet thick, forms the base of the Matanuska Formation in the lower Matanuska Valley, where it is exposed at the north front of the Chugach Mountains near Wolverine Creek. The sandstone, informal unit A-I, rests unconformably upon siltstone of the Naknek
Formation (Upper Jurassic), and its basal contact shows rough erosional microtopography. It is gray and brown weathering, grades from coarse and pebbly in its lower beds to very fine grained at the top, and contains limestone concretions and wood fragments. A few pelecypods and small ammonites belonging to *Anagaudryceras* of Albian age were collected from USGS Mesozoic locality M1168 (pl. 10) in the upper part of this sandstone. USGS Mesozoic locality M583 from the same outcrop may date the sandstone more precisely, for this locality contains *Brewericieras hulenense* of late early Albian age. However, the precise stratigraphic position of this locality is unknown; it might be from the sandstone itself, or from the overlying beds.

The basal sandstone is conformably overlain, but also overlapped, by fairly hard dark-green and medium-dark-gray silty claystone 250 to 300 feet or more thick. These beds are informal unit A-II. Abundant limestone nodules that in places are concentrated into lenses of limestone conglomerate 2 to 4 feet thick occur in the lowest 40 feet of this unit. Among the nodules are banded or layered masses produced by calcareous algae and some fragments of unidentifiable ammonite and pelecypod shells. At or near the top of the exposed part of the unit is fine- and medium-grained dark-greenish-gray graywacke sandstone 40 or more feet thick that contains some plant scraps. Because they are gradational, it is assumed that the sandstone and the silty claystone are of the same age; and because they rest conformably on beds with Albian fossils (unit A-I) and most closely resemble Albian lutite in the Matanuska Formation, they are tentatively assigned to the Albian. Mesozoic locality M583, which contains late early Albian fossils, is either from these beds or from the conformably underlying sandstone (unit A-I). A large covered interval separates the Albian beds near Wolverine Creek from Tertiary conglomerate which appears, from its structural position and attitude, to overlie them unconformably.

At a few localities in the upper Matanuska Valley, rather hard silty claystone overlies beds similar to unit A-I and may be correlative with unit A-II. At USGS Mesozoic locality M572 (pl. 10) these beds yielded poorly preserved ammonites similar to *Arcthoplites* of early to middle Albian age, a hamitid ammonite of uncertain age, and *Inoceramus* with ribbing similar to that of *Inoceramus* sp. *I. cuvierii* of Turonian age. Thus the age of this collection and the correlation of these rocks are equivocal.

Nelchina area and southwest Copper River Lowland

The basal beds of the Matanuska Formation along the Chugach front in the upper Matanuska Valley—Nelchina area and southwest Copper River Lowland are marine epiclastic volcanic sandstones that are commonly crossbedded and probably correlate with the somewhat similar but much thinner and lenticular basal beds near Wolverine Creek. They therefore are assigned to the same informal unit (A-I). Unit A-I rests with angular unconformity and sharp erosional microtopography upon Lower Jurassic lavas and volcaniclastic rocks wherever studied. In a typical section on the East Fork of Matanuska River these beds consist of lithic (epiclastic volcanic) sandstone, the lower half being coarse and conglomeratic and containing some rhynchonellid brachiopods and the upper half being fine and medium grained. The character of these beds, however, varies considerably from place to place. For example, 3 miles southwest of the beds at the East Fork, the basal unit is tripartite, consisting of a basal pebbly sandstone with abundant fossil wood, a medial siltstone and fine-grained sandstone with limestone nodules and concretions, and an upper sandstone unit with large sandy limestone concretions. The thickness of unit A-I in the Nelchina and adjacent areas is also rather variable, ranging from 100 or less to almost 400 feet.

About 300 feet of pebbly epiclastic volcanic sandstone beds in a small area on the southeast side of Sheep Mountain may also belong to unit A-I, although their age has not been definitely established, and they possibly belong with the overlying beds of Cenomanian age (unit B). These beds contain small brachiopods, and, near the base, a conglomerate with zones of irregular limestone and calcareous (algal?) nodules.

Snails (USGS Mesozoic loc. M1962) and several ammonites (USGS Mesozoic locs. M2409, M2418), as well as brachiopods and wood, have been found in unit A-I. The ammonites, which include *Brewericieras cf. B. hulenense, Grandziiceras sp., Anagaudryceras cappae, Arcthoplites bellii, Parasilesites bullatus, and Phyllopauchyceras sp.*, establish the late early Albian age (*Brewericieras hulenense* zone of unit A-I in this area. Unit A-I is thus equivalent to the claystone and siltstone of unit A-2 and is younger than the *Moffittites*-bearing beds of unit A-1 of the Limestone Hills area.

Conformably overlying the basal Albian sandstone (A-I) are greenish-gray, medium-dark-gray, and some olive-gray and brown siltstone and silty claystone with locally abundant interbeds of sandstone and coarse siltstone. This sequence, informal unit A-III, is characterized by numerous irregularly distributed beds and thick zones of hard (silicious) claystone and siltstone cemented by diagenetic calcite and silica, by accumulations of generally fragmented *Inoceramus* valves in some beds, and locally by zones containing numerous irregularly shaped limestone and calcareous algal nodules. Limestone concretions and lentils are locally common,
and calcareous intervals, thin layers of volcanic ash (†), and a few beds of glauconitic calcarenite are present. In the southern part of the Nelchina area some sections of this sequence are at least 700 or 800 feet thick, and south of Twin Lakes, in the southwest Copper River Lowland, similar rocks are at least 300 or 400 feet thick. Thicker sections may be present, but they are obscured by the extensive faulting which characterizes the Chugach front. In the southern part of the Nelchina area, unit A-III is overlain by softer beds of Turonian age, and the similar rocks south of Twin Lakes are overlain by sandstone of Cenomanian age.

Beds and zones of hard (siliceous) lutite constitute the bulk of unit A-III and contain small ammonites and an unnamed species of Inoceramus which, although poorly preserved, suggest a late Albian or early Cenomanian age. The unnamed Inoceramus is a form with very fine concentric riblets that is similar to a species which occurs in the upper Albian rocks of the upper Chitina Valley; the ammonites include Desmoeceras (Pseudouhligella) cf. D. (P.) Dawsonii and a scrap that may be Marshellites. They were collected at USGS Mesozoic localities M590, M1774, M2410, M2411, M2413 (†), M2414, M2415, and M2416.

South of Twin Lakes the hard (siliceous) beds of unit A-III rest on 200 feet or more of relatively soft greenish-gray lutite which contains an ammonite scrap that may belong to Grantisiceras of late early Albian age (USGS Mesozoic loc. M2386). These softer beds may represent Unit A-II of Wolverine Creek. In the Nelchina area the hard (siliceous) beds of unit A-III appear to rest directly on unit A-I, the basal sandstone of late early Albian age, and soft beds that may represent unit A-II have not been recognized. In neither area have fossils of middle Albian age (the zone of Oxytropidoceras packardi of California) been found. These relationships suggest that the base of unit A-III may mark either a disconformity or a hiatus south of Twin Lakes and a disconformity in the southern part of the Nelchina area.

CORRELATION WITHIN THE MATANUSKA VALLEY-NELCHINA AREA

The Albian siltstone and silty claystone sequence of the Limestone Hills area (unit A-2) contains ammonites belonging to the Breviceroceras hubenense faunzone throughout. It is thus correlative with (1) sandstone (unit A-I) at the base of the Matanuska Formation in the Chugach front in the Nelchina area, which also contains ammonites characteristic of this faunal zone and (2) at least some part of the Albian section near Wolverine Creek from which B. hubenense of late early Albian age was also collected. Unit A-I at the base of the Matanuska Formation in the Limestone Hills area contains Auellina and Moffittites robustus of early Albian age. It is therefore slightly older than unit A-I of the Chugach front in the Nelchina area and either correlates with unit A-I of the Wolverine Creek area or is slightly older. The latter view is supported by the apparent absence from the shallow marine sandstone that constitutes unit A-I near Wolverine Creek, of Auellina, a common fossil in shallow marine rocks of early early Albian age in southern Alaska. Unit A-II near Wolverine Creek and units A-I and A-II (†) in the upper Matanuska Valley and south of Twin Lakes are all probably also correlative with unit A-2 of the Limestone Hills.

UNIT B, SANDSTONE OF CENOMANIAN AGE

A distinctive marine sandstone of Cenomanian age, generally with a basal siltstone member, is an important cartographic unit in the southern half of the Nelchina area. The Cenomanian beds, informal unit B, occur mainly where Albian beds either were never deposited or were removed by mid-Cretaceous erosion. Thus in most places they lie at the base of the Matanuska Formation. They rest upon Lower Jurassic volcanic and Middle and Upper Jurassic sedimentary rocks with angular unconformity, and the subjacent volcanic rocks locally are conspicuously weathered. Unit B has not yet been definitely recognized in the Matanuska Valley or along the north front of the Chugach Mountains except south of Twin Lakes, in the southwestern part of the Copper River Lowland, where it rests upon the hard siltstone (unit A-III) of late Albian age. Along the Chugach front west of the Twin Lakes area, unit B is either absent or is represented by beds which could not be differentiated in the field from the upper part of unit A-III. At most places sandstone of unit B is overlain with apparent conformity by siltstone of Cenomanian or Turonian age (unit C-1), but south of Horn Mountains in the central part of the Nelchina area unit B is locally overlain by Campanian beds of the upper part of the Matanuska Formation. Cenomanian beds are absent from the Nelchina area north of Horn Mountains and the Caribou fault system, where Campanian or younger beds rest directly upon Albian rocks.

The basal siltstone member of the Cenomanian sandstone unit rests upon a weathered erosion surface with locally sharp microlrelief. The weathered zone is several feet thick where the surface was cut in Lower Jurassic volcanic rocks. Residual clay deposits as much as 2 feet thick and siltstone and sandstone as much as 6 feet thick containing angular granules to cobbles of volcanic rock occur locally at the base of the unit. In one area at the west end of Sheep Mountain, sandstone and coarse siltstone at the base of the basal siltstone
member are a few tens of feet thick. Above these variable, lenticular, and commonly very thin basal beds is a thicker and more widespread siltstone that is prominent in unit B around Sheep Mountain. This siltstone was not found in the northernmost outcrops of unit B in the Nelschina area, but in places its position may be occupied by about 60 feet of silty olive-black sandstone. At Sheep Mountain the siltstone member is typically 50 to 200 feet thick, and in places it may rest directly on pre-Matanuska rocks. Typically an olive-, greenish-, or medium-dark-gray siltstone, it ranges from silty shale to coarse siltstone and very fine sandstone. At some localities the siltstone weathers reddish gray or is mottled reddish and greenish gray. It contains some limestone concretions, and coaly layers, coal fragments, and fragmentary plant remains were found in a number of outcrops. The siltstone is dated as Cenomanian (zone of Desmoceras (Pseudouhligella) japonicum) by the presence of the ammonite Desmoceras (Pseudouhligella) japonicum Yabe, in particular, and the ammonites Marshallites (?) sp., Zelandites (?) sp., Eogunnarites alaskaensis Matsumoto, and Parajubertella imlayi Matsumoto at USGS Mesozoic localities 24837, M398, M387, M381, M389, and M385.

The most characteristic and widespread component of unit B is a greenish-gray fine- and very fine grained shallow marine sandstone that conformably overlies the basal siltstone. It contains common and locally abundant Inoceramus sp. "A," a moderate-sized fairly stout-shelled pelecypod, and rare ammonite fragments, including Calycoceras sp. indet. (USGS Mesozoic locs. M398, M1938). In its northernmost outcrops the sandstone is fine to medium grained and pebbly; to the south it is fine and very fine grained with coarse siltstone. Plant fragments are widespread but not abundant. The sandstone is thick bedded or massive, in many places crossbedded, and silty interbeds and small intraclasts of glauconitic siltstone occur locally, especially to the south. It is variously lithic or feldspathic, nowhere quartzose. Near the Caribou fault the sandstone is about 150 to 200 feet thick; near Sheep Mountain it is about 100 to 250 feet thick and possibly, at one place, about 300 feet thick.

Unit B is evidently the product of clastic deposition in a shallow seaway which transgressed an uneven weathered erosion surface; the main sandstone unit seems to have had a northern source, and deposition of the siltstone member is thought to have been terminated by the spread of partially winnowed sand from shallow, near-shore accumulation areas in the northern part of the Cenomanian basin. If this interpretation is correct, then the siltstone member is a basinward facies of the lower part of the sandstone member.

UNIT C, STRATA OF CENOMANIAN TO SANTONIAN (?) AGE

UNIT C-1, LUTITE OF CENOMANIAN TO CONIACIAN OR SANTONIAN AGE

Medium-dark-gray lutite (silty claystone and sandstone), informally designated unit C-1, conformably overlies unit B in the central part of the Nelschina area and along the Chugach front south of Twin Lakes in the southwest part of the Copper River Lowland. Along the Chugach front in the Nelschina area, unit C-1 rests with apparent conformity upon unit A-III. Unit C-1 is absent north of the Horn Mountains and crops out north of the Caribou fault only on the southeast flank of these mountains. It has not been definitely identified in the Matanuska Valley but probably occurs in at least the upper part of the valley. Medium-dark-gray silty claystone of Campanian (and locally Santonian?) age in the upper part of the Matanuska Formation conformably (?) overlies unit C-1 north of the Matanuska River in the Nelschina area. Along the Chugach front, however, unit C-1 is overlain with angular unconformity by a unit of interbedded siltstone, sandstone, and conglomerate that is informally designated unit C-2.

Unit C-1 is rather similar in appearance to the dark lutite of the overlying Campanian beds (Inoceramus schmidtii zone), and rocks of these two units have been mapped together in parts of the Nelschina area. Where rocks of the Matanuska Formation have not been strongly indurated by tectonic compression, these units can be distinguished by the greater abundance and larger size of limestone concretions with well-developed cone-in-cone structure in the Campanian beds and by the presence of large and locally abundant valves of Inoceramus schmidtii. Also, the Campanian silty claystone has a bluish cast in many outcrops, in contrast to the gray color, in places with a strong greenish or purplish cast, of unit C-1. Furthermore, along the Chugach front, unit C-1 has thicker and more numerous beds of altered volcanic ash.

Unit C-1 is possibly 1,500 feet or more thick in the valley floor of the Matanuska River; it thins to about 400 feet on the northeast side of Sheep Mountain and to a feather edge in the west-central part of the Nelschina area. Late Cretaceous erosion of unit C-1 in the central Nelschina area is demonstrated by reworked limestone concretions with Coniacian fossils in a Campanian channel conglomerate at USGS Mesozoic locality M561 and by reworked Turonian or Coniacian fossils in Campanian lutite at USGS Mesozoic locality 22964. Because unit C-1 has been mapped with Campanian beds in many places, and because complete thick sections have not been found, its maximum thickness is not known. Around Sheep Mountain its basal beds are
olive or greenish-gray siltstone, much of which is hard, sandy, or coarse. These beds grade into predominantly medium-dark-gray silty claystone and siltstone containing fossiliferous limestone concretions, thin interbeds of fine-grained detrital sandstone, some beds of glauconitic calcarenite rich in Inoceramus prisms and shell fragments, and a few thin shelly siltstone layers. Unit C-1 weathers typically to chunky fragments. South of the Matanuska River the unit is medium dark gray or greenish gray and commonly has a purplish cast. In places there, it is pebbly and contains sandstone beds and lenses and some thin beds of volcanic ash.

Unit C-1 contains fairly common Inoceramus fragments and some ammonites, but identifiable collections have not been found at enough places to completely define its age in all areas. Near Camp Creek a large collection of mollusks at USGS Mesozoic locality M600 from the base of the unit is of Cenomanian age. On the north side of the Matanuska River gorge, USGS Mesozoic locality M1989 in the lower part of C-1 contains fragments of the ammonite Euomphaloceras (?) sp. and other fossils indicative of a possible Cenomanian age. At all other places where datable mollusks were found near the base of unit C-1, the fossils are of probable Turonian age. This age assignment is based mainly on the presence of Inoceramus aff. I. cuvierii, the most common mollusk in most outcrops of unit C-1 (USGS Mesozoic locs. 25960, 25966, 25971, 25985, 25987, M569, M601, M1947, M1949, M1950, M1951, M1968, M1988, M2389, M2391, M2406). At some outcrops this pelecypod is associated with ammonites and other Inoceramidai that are of probable Turonian age or that are known to range into the Turonian. These associated fossils include Otoceras? teshinensis, Mesopozosia aff. M. indopacifica, Scaphites cf. S. planus gigas, Tetrarhopites aff. T. glabrus, Scolarchites sp. indet., and Inoceramus cf. I. concentricus nipponicus; they were found mostly in unit C-1 (USGS Mesozoic locs. 24539, 24533, M601, M1945), but some of these forms occur as intraclasts in Campanian beds at USGS Mesozoic locality 25964.

The youngest faunule identified from unit C-1 occurs around Sheep Mountain and in the valley floor of the Matanuska River. It has not yet been found in the northernmost outcrops of unit C-1 near the south side of the Horn Mountains, although it occurs as reworked intraclasts in Campanian beds of the upper part of the Matanuska Formation at USGS Mesozoic locality M361. This faunule is dominated by Inoceramus wuajimensis Yehara of Coniacian age (USGS Mesozoic locs. 24189, 24231, 24232, 24233, 25972, 26730, M1942, M1943, M1958, M1959(?), M1986, M1987, M1992, M1994(?), M1995(?)). It also contains I. cf. I. yoko-
bedded unit. The Inoceramids have been assigned to *Inoceramus uwojimensis* of Coniacian age (USGS Mesozoic locs. M1953, M1959, M2387, M2403) and to a new species related to *I. uwojimensis* that may be of Coniacian or Santonian (?) age (USGS Mesozoic locs. 25979, M591, M3272, M1773, M1952, M1961, M2384, M2397, M2401, M2402, M2404, M2405). The ammonites include a scaphite from Shell Oil Co. locality T1006 that is similar to forms in the Turonian and Coniacian of Japan and a long-ranging species of *Neo-phylloceras* from USGS Mesozoic localities M591 and M1952. Their ages are compatible with, but do not add to, the Coniacian age suggested by the Inoceramid. The outcrops at the mouth of Tazlina Lake, which possibly belong to unit C-2, contain (at USGS Mesozoic locs. M2396 and M2397) the *Inoceramus* n. sp. related to *I. uwojimensis*, which is of Coniacian or Santonian (?) age and (at USGS Mesozoic loc. M1969) an ammonite scrap, which perhaps belongs to *Canadoceras* or *Mesopo- saosia* of Santonian or Campanian age.

The composite unit is clearly younger than Coniacian beds in unit C-1 along the Chugach front, for it rests upon them with angular unconformity. The lutite of unit C-2, however, is similar to lutite in the upper part of unit C-1 near Sheep Mountain where unit C-2 is absent from the section. The upper part of C-1 in this area contains *Inoceramus uwojimensis*, as does unit C-2, and thin beds of fossiliferous-fragmental calcarenite and detrital sandstone. The similarity of these beds to unit C-2 suggests that C-2 may be a facies of the upper part of unit C-1 near Sheep Mountain and that a disconformity corresponding to the unconformity at the base of unit C-2 may be present in the upper part of C-1 north of the Chugach front; however, because the sections with and without unit C-2 are closely juxtaposed across the Matanuska River and its East Fork, transcurrent movement along a branch of the Castle Mountain fault system near these rivers was probably at least partly responsible for the absence of unit C-2 north of the Chugach front.

REGIONAL CORRELATION OF THE LOWER PART OF THE MATANUSKA FORMATION

The lower part of the Matanuska Formation comprises rocks ranging in age from Albian to Coniacian or Santonian, although the sequence is not complete and several unconformities are present (figs. 2, 4). The fossils of Albian and Cenomanian ages are similar to those from the upper Chitina Valley, and fairly close correlation between the rocks of the two areas can be achieved. The Albian faunas include species known from California as well as from the Arctic Slope of Alaska and the western interior of Canada. This joint occurrence permits a rather close tie between two faunal provinces, the Indopacific and the Western Interior, which previously could be correlated only by indirect means.

Cenomanian fossils are scarce and are generally similar to forms known elsewhere in the Indopacific faunal realm. This is also true for Turonian fossils, which for the most part are poorly preserved and fragmentary. The Coniacian fossils are similar to forms known from the upper Chitina Valley and are comparable, or identical, with Japanese species.

The basal sandstone beds of the Matanuska Formation in the vicinity of Limestone Gulch (unit A-1) are equivalent to the basal beds of the Albian sequence of the upper Chitina Valley, on the basis of the presence of *Moffittites robustus* and *Auocellina*. The overlying grayish-brown siltstone (unit A-2) containing the *Freboldiceras singularia* fauna as well as the basal sandstone (unit A-1) along the northern front of the Chugach Range south of the Matanuska River are correlative with beds bearing the *Breuericeras hulenense* fauna of the upper Chitina Valley, Queen Charlotte Islands, the Methow Valley area of northern Washington (Popence and others, 1960, p. 1535), unnamed beds near Mitchell in central Oregon, and part of the Chickabally Mudstone Member of the Buddha Canyon Formation of Murphy, Peterson, and Rodda (1964) in northern California. This stratigraphic unit is equivalent to part of the Ono Formation of previous usage (Murphy, 1966).

Breuericeras hulenense reached its known northern extent in the Matanuska Valley-Nelchina area, where it mingled with representatives of the northern *Granticeras* and *Archophyltes* fauna. Elements of this northern fauna are known as far south as the Queen Charlotte Islands, British Columbia, but are unknown from Oregon and California. *Granticeras* occurs at several localities in northern Alaska. Near Hughes several well-preserved specimens of *G. affine*, together with a probable new species of *Cleaniceras*, were collected by W. W. Patton, Jr., of the U.S. Geological Survey; Inlay (1961, p. 7) has reported *Granticeras affine* and *G. cf. G. affine* from the lower part of the Torok and Fortress Mountain Formations of the Arctic Slope of Alaska. In Canada, *Granticeras* [=*Boudanti- ceras*] occurs commonly in the Moosebar and Gates Formations, the lower part of the Buckinghorse Formation, and the Loon River and Clearwater Formations (Henderson, 1954, p. 2285).

The basal beds of the Matanuska Formation near Sheep Mountain (unit B) are correlative with the *Desmoceras* (Pseudoohligella) *japonicum*-bearing beds of the upper Chitina Valley on the basis of the presence of *D. (P.) japonicum*, *Eogunnarites alaskaensis*, and
Regional Correlation

Parajaubertella imlayi. Rocks of the upper Albian *D. (P.) dawsoni* zone have not yet been positively identified, but they might be represented in the region south of the Matanuska River by the siliceous beds in the upper part of unit A–III. Rocks of mid-Cenomanian age are represented by sandstone beds in the upper part of unit B that bear rare specimens of *Calycoceras* sp. and a new species of *Inoceramus* characterized by a long thin overhanging umbo in the left valve. The overlying beds in the basal part of unit C–1 may be either late Cenomanian or early Turonian, as discussed below.

In California, the Bald Hills Member, and perhaps the uppermost part of the underlying Chickabally Mudstone Member of the Budden Canyon Formation (Murphy and others, 1964), arc correlative with the *D. (P.) japonicum* and *D. (P.) dawsoni*-bearing rocks of the Chitina Valley and the Matanuska Valley-Nelchina area. Upper Albian rocks in central Oregon (Jones, 1960; Packard and Jones, 1962) may be somewhat older than the *D. (P.) dawsoni* zone of southern Alaska, although a precise correlation of the two is not possible. The Oregon rocks contain an abundant ammonite fauna characterized by *Mortoniceras* sp., *Anisoceras merriami,* and *Desmoeras* (*Pseudouhligella*) sp. This latter form was referred to *D. (P.) dawsoni* by Matsumoto (1959a, p. 61) but a study of large collections have convinced the writer of the present report that the Oregon specimens consistently have a more inflated whorl section than do the Alaskan forms and therefore are probably not conspecific.

Figure 4.—Generalized columnar section of the Matanuska Formation showing faunal succession in the lower part of the formation and correlation with rocks in the upper Chitina Valley area.
Albian or Cenomanian rocks correlative with those of the Matanuska Valley-Nelchina area may be present elsewhere in southern Alaska, although little is known of their occurrence. Parkinson (1960) reported that on the Alaska Peninsula, lower Cretaceous rocks crop out in the Cape Douglas area and that some of these rocks are of Albian age on the basis of microfossils (L. J. Parkinson, written commun., 1961). Because field examination in 1965 by Jones and R. Detterman revealed only beds of probable late Neocomian age, the identification of the Albian strata could not be substantiated. Poorly preserved fossils in the Shell Oil Co. collection in Seattle, obtained from locality SOC M249, Kuiultka Bay, were examined by the writer and tentatively identified as Desmoceras (Pseudouhligella) japonicum and Marshallites sp. A large specimen of Anagaudryceras suaya, similar to the specimen of A. suaya from the Queen Charlotte Islands figured by Whiteaves (1884, pl. 25), was collected from Portage Bay by Prof. F. W. True of the U.S. Fish Commission. Unfortunately, there are three “Portage Bays” on the Alaska Peninsula, and it has not been possible to ascertain from which one the fossil was collected. The most likely place appears to be the Portage Bay located at the head of Kuiultka Bay, although it has not yet been demonstrated that Cretaceous rocks are exposed there.

Cenomanian rocks occur in northern Alaska, but with the exception of the Arctic Slope region, they have received little detailed study and have yielded a relatively meager fauna that has little or nothing in common with those from southern Alaska. The Nanushuk Group of the Arctic Slope is of probable late Albian and Cenomanian ages (Jones and Gryc, 1960, p. 153, fig. 31) based on Inoceramus dunveganensis McLearn, a species not known to occur in Alaska south of the Brooks Range, although erroneously reported to occur in the central Kuskokwim region (Cady and others, 1955, p. 45).

The Kuskokwim region probably does contain rocks of Cenomanian age, on the basis of the presence of species of Inoceramus similar to undescribed forms from the upper Chitina Valley area and a single specimen of Turritilites acutus of Cenomanian age from the upper Anvik River region.

Rocks of probable Turonian age, containing an abundant fauna of Inoceramus and rare ammonites, occur in an informal unit C-1 of the Matanuska Formation. The Inoceramus specimens are generally fragmentary and whole valves are rare. The most common form is referred to Inoceramus cf. I. cuvieri, which is known from Turonian deposits of northern Alaska (Jones and Gryc, 1960) and elsewhere. Another common species is related to Inoceramus concentricus nipponicus Nagao and Matsumoto (1939), known from Cenomanian deposits of Japan. Associated with these species are several ammonites, including well-preserved specimens of Otoscaphites teshioensis (Yabe), Mesopuzosia aff. M. indopacifica (Kossmat), Tetragonites aff. T. gruberi (Jimbo), Neophylloceras sp., and Gaudryceras sp.

This fauna overlies beds in the lower part of unit C-1 from which a fauna of probable late Cenomanian or early Turonian age was obtained. Fossils from this fauna include Sciponoceras sp., Tetragonites aff. T. gruberi, Gaudryceras aff. G. densepticatum (Jimbo), Bostrychoceras sp., fragments of a desmoceratid ammonite resembling D. (Pseudouhligella) japonicum, and Inoceramus sp.

The presumed Turonian fauna is overlain by beds yielding abundant specimens of Inoceramus waniimensis of Coniacian age. With the exception of the upper Chitina Valley, Turonian rocks have not yet been positively identified elsewhere in southern Alaska, although the presence of a small specimen of Subprionocyclus normalis on a mud cone in the southeastern part of the Copper River Lowland (Grantz and others, 1962) suggests that upper Turonian deposits may be present locally in that area. The displacement of this fossil rules out any understanding of its stratigraphic significance, but it seems likely that it was brought up by connate water from subsurface marine deposits of Turonian age.

Further evidence for the presence of Turonian beds in the Matanuska Valley-Nelchina area is provided by Foraminifera studied by Bergquist (1961). In his lowest microfaunal unit, zone A, Bergquist (p. 2004-2005) reported the presence of Bathysiphon alexanderi Cushman

B. taurinensis Sacco

“Cribrostomoides” cretacea Cushman and Goudkoff

Ammodiscus cretaceus (Reuss)

Globocealia aff. G. gordialis (Jones and Parker)

Bobilius minimum (Roemer)

Gryardina floralis White

G. globolosa (Hagenow)

Eponides sp.

Globotruncanus arca (Cushman)

Rectoglandulinia sp.

Planulina spissocostata Cushman

Haplophragmoides sp.

Marssonella ozyona (Reuss)

Gaudryina cf. G. bentonensis (Carmen)

Marginalina baltica (Reuss)

"Globigerina" cretacea (d'Orbigny)

Pelosina complanata Franke

Cibicides stephensoni Cushman

Beds yielding this fauna occur from 100 to 400 feet above the base of the Matanuska Formation in the Squaw Creek area and from depths of 4,350 to 4,818 feet.
in the nearby Eureka test well 1. These beds were tentatively correlated by Bergquist with beds of the lower Cachenian Stage of California (G–2 of Goudkoff, 1945), mainly on the basis of the presence of Cibicides stephensoni. The lower Cachenian Stage was assigned a middle to late Turonian age by Popenoe, Imlay, and Murphy (1960, p. 1517). However, some of the forms listed above, for example, Globotruncanana area, are indicative of a post-Turonian age, so it seems possible that samples from low in the section were contaminated by fossils from higher in the section.

Turonian beds probably occur in the central Kuskokwim region of southwestern Alaska, where an undescribed fauna of Otoceras, Scalarites, and Inoceramus spp. is known from the Kuskokwim Group (Cady and others, 1955).

On the Arctic Slope of Alaska, Turonian beds are widespread and have yielded many fossils (Jones and Gryc, 1960; Cobban and Gryc, 1961), but these show only a slight relationship to faunas of southern Alaska.

Deposits of Coniacian age, represented by lutite of unit C–1, are characterized by fairly abundant specimens of Inoceramus uwajimensis and rare specimens of I. cf. I. yokoyamai and Mesopusosia sp. The overlying sandstone of unit C–2 contains locally abundant valves of a new species of Inoceramus close to, and presumably derived from, I. uwajimensis, which may be of late Coniacian age. Unit C–1 is thus equivalent to the lower part of the dominantly siltstone and shale sequence of the upper Chitina Valley area that in the McCarthy A–4 quadrangle was designated unit K2 (Miller and MacColl, 1964; Jones and Berg, 1964, p. 10, 11).

Elsewhere in southern Alaska, positive evidence is not available for the presence of Coniacian rocks, although Imlay (in Imlay and Reeside, 1954, p. 228) postulated that some deformed and fragmentary specimens of Inoceramus obtained from slate and graywacke near Girdwood in the Chugach Range and from Woody Island near Kodiak are of late Coniacian or early Santonian age. This age determination was based on comparison of the Alaskan specimens with those from Utah and Wyoming, as similar forms have not been found in other well-dated and richly Inoceramus-bearing rocks of Alaska. Such a long-range correlation without benefit of local stratigraphic control leaves this precise age determination open to some question, although undoubtedly the forms are of late Mesozoic age. Until confirming evidence is obtained, it seems best to leave open the exact age of the Inoceramus-bearing part of the Chugach slate and graywacke belt and regard as unconfirmed the determination of Coniacian fossils from this belt.

GEOGRAPHIC DISTRIBUTION OF AMMONITES

The collecting localities of the ammonites described in this report and of several undescribed forms and selected species of Inoceramus are shown on table 1. The general position of each locality is shown on plate 10, and detailed descriptions of the localities are given in table 2.
CRETAEOUS AMMONITES FROM MATANUSKA FORMATION, SOUTHERN ALASKA

<table>
<thead>
<tr>
<th>Fossil</th>
<th>USGS Mosecone Locality No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hulenites</td>
<td>25222</td>
</tr>
<tr>
<td>Hamitid</td>
<td>25222</td>
</tr>
<tr>
<td>Momites</td>
<td>25222</td>
</tr>
<tr>
<td>Anaqaudryceras</td>
<td>25222</td>
</tr>
<tr>
<td>Parwilesites</td>
<td>25222</td>
</tr>
<tr>
<td>Lytocera</td>
<td>25222</td>
</tr>
<tr>
<td>Ardhoplites</td>
<td>25222</td>
</tr>
<tr>
<td>Mesopuzosia aff.</td>
<td>25222</td>
</tr>
<tr>
<td>Arelhoplites</td>
<td>25222</td>
</tr>
<tr>
<td>Freholdiceras</td>
<td>25222</td>
</tr>
<tr>
<td>Marshallitw</td>
<td>25222</td>
</tr>
<tr>
<td>Su'moceras</td>
<td>25222</td>
</tr>
<tr>
<td>Scaphites</td>
<td>25222</td>
</tr>
<tr>
<td>Euomphaloceras (7)</td>
<td>25222</td>
</tr>
<tr>
<td>Orantriceras</td>
<td>25222</td>
</tr>
<tr>
<td>Hlenites</td>
<td>25222</td>
</tr>
<tr>
<td>Arelhoplites talkeetnanus</td>
<td>25222</td>
</tr>
<tr>
<td>Zelandites infusus</td>
<td>25222</td>
</tr>
<tr>
<td>Eucamptoceras aldrichanum</td>
<td>25222</td>
</tr>
<tr>
<td>Parajankertella byliny</td>
<td>25222</td>
</tr>
<tr>
<td>Anageniceras maccua</td>
<td>25222</td>
</tr>
<tr>
<td>Brachiceras halstenae</td>
<td>25222</td>
</tr>
<tr>
<td>Archhophites talbotianus</td>
<td>25222</td>
</tr>
<tr>
<td>Probabilis singularis</td>
<td>25222</td>
</tr>
<tr>
<td>Granzticeras affinis</td>
<td>25222</td>
</tr>
<tr>
<td>Halgeria</td>
<td>25222</td>
</tr>
<tr>
<td>Psammosites</td>
<td>25222</td>
</tr>
<tr>
<td>Poicoia abalanes</td>
<td>25222</td>
</tr>
<tr>
<td>Halenites sp.</td>
<td>25222</td>
</tr>
<tr>
<td>Mullites relatae</td>
<td>25222</td>
</tr>
<tr>
<td>Parasella bellatus</td>
<td>25222</td>
</tr>
<tr>
<td>Hamitid ammonite</td>
<td>25222</td>
</tr>
<tr>
<td>Eunympholeoceras (7) sp.</td>
<td>25222</td>
</tr>
<tr>
<td>Aucellina sp.</td>
<td>25222</td>
</tr>
<tr>
<td>Incercasella cf. I. conerius</td>
<td>25222</td>
</tr>
<tr>
<td>n. sp. "H"</td>
<td>25222</td>
</tr>
<tr>
<td>n. sp. "A"</td>
<td>25222</td>
</tr>
<tr>
<td>unassignable</td>
<td>25222</td>
</tr>
<tr>
<td>cf. I. pacificus</td>
<td>25222</td>
</tr>
<tr>
<td>sp.</td>
<td>25222</td>
</tr>
<tr>
<td>cf. I. concentricus nipponicus</td>
<td>25222</td>
</tr>
<tr>
<td>Ammonite, gen. and sp. indet.</td>
<td>25222</td>
</tr>
<tr>
<td>Anageniceras cuppeli</td>
<td>25222</td>
</tr>
<tr>
<td>Archophites hiri</td>
<td>25222</td>
</tr>
<tr>
<td>Tetragamites sp.</td>
<td>25222</td>
</tr>
<tr>
<td>Phylloceras chilamus</td>
<td>25222</td>
</tr>
<tr>
<td>Crab fragments</td>
<td>25222</td>
</tr>
</tbody>
</table>
Table 1.—Checklist of fossils from the lower part of the Matanuska Formation, Matanuska Valley-Nelchina area—Continued

<table>
<thead>
<tr>
<th>Fossil</th>
<th>USGS Mesoic Local. No.</th>
<th>Collector, year of collection, description of locality, and stratigraphic position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hulenites sp.</td>
<td>24168 52AGz 18</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. Anchorage D-2 quad. On south tributary of Squaw Creek, 1.95 miles N. 40° E. of southeast summit of Gun Sight Mountain. Unit B.</td>
</tr>
<tr>
<td>Brewericeras sp.</td>
<td>24189 52AGz 20</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. Anchorage D-2 quad. On south tributary of Squaw Creek, 2.01 miles N. 40.5° E. of southeast summit of Gun Sight Mountain. Unit C-1.</td>
</tr>
<tr>
<td>Anagaudryceras sp.</td>
<td>24203 52AGz 55</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. Anchorage D-2 quad., on south tributary of Squaw Creek, 2.47 miles N. 24° E. of southeast summit of Gun Sight Mountain. Unit C-1.</td>
</tr>
<tr>
<td>Mesop2lzosia sp.</td>
<td>24204 52AGz 58</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. Anchorage D-2 quad., on south tributary of Squaw Creek, 2.25 miles N. 26° E. from southeast summit of Gun Sight Mountain. Unit B.</td>
</tr>
<tr>
<td>Momites sp.</td>
<td>24205 52AGz 59</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. From talus, same locality as 24204, Unit B.</td>
</tr>
<tr>
<td>Lytoceras n. sp.</td>
<td>24206 52AGz 65</td>
<td>A. Grantz, R. Hoare, and R. Imlay, 1952. Anchorage D-2 quad., south tributary of Squaw Creek, 1.50 miles N. 30.5° E. of southeast summit of Gun Sight Mountain. Unit B.</td>
</tr>
<tr>
<td>Brachydeceras sp.</td>
<td>24229 52Ahr 1</td>
<td>R. Hoare, 1952. Anchorage D-1 Quad., borrow pit on north side of Glenn Highway at mile 120.25. Unit C-1.</td>
</tr>
<tr>
<td>Archaeopteris sp.</td>
<td>24231 52Ahr 5</td>
<td>R. Hoare, 1952. Anchorage D-1 quad., north side of Glenn Highway at mile 118.94. Unit C-1.</td>
</tr>
<tr>
<td>Archaeopteris sp.</td>
<td>24232 52Ahr 6</td>
<td>R. Hoare, 1952. Same locality as 24321. Unit C-1.</td>
</tr>
<tr>
<td>Tetragonites sp.</td>
<td>24233 52Ahr 7</td>
<td>R. Hoare, 1952. Anchorage D-2 quad., south tributary of Squaw Creek, 2.02 miles N. 60.5° W. of southeast summit of Gun Sight Mountain. Unit B.</td>
</tr>
<tr>
<td>Tetragonites sp.</td>
<td>24239 52AGz 266</td>
<td>A. Grantz, 1952. Anchorage D-2 quad., on south side of Alfred Creek, 1.22 miles S. 55° W. of mouth of Pass Creek. Unit C-1.</td>
</tr>
<tr>
<td>Alcyonites sp.</td>
<td>24850 53AGz 6A</td>
<td>A. Grantz, 1953. Anchorage D-2 quad. Same locality as 22123, Unit B.</td>
</tr>
</tbody>
</table>

Table 2.—Ammonite and selected Inoceramus-bearing localities in the lower part of the Matanuska Formation, southern Alaska

<table>
<thead>
<tr>
<th>USGS Mesoic Loc. No.</th>
<th>Collector, year of collection, description of locality, and stratigraphic position</th>
</tr>
</thead>
<tbody>
<tr>
<td>24168 52AGz 18</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. Anchorage D-2 quad. On south tributary of Squaw Creek, 1.95 miles N. 40° E. of southeast summit of Gun Sight Mountain. Unit B.</td>
</tr>
<tr>
<td>24189 52AGz 20</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. Anchorage D-2 quad. On south tributary of Squaw Creek, 2.01 miles N. 40.5° E. of southeast summit of Gun Sight Mountain. Unit C-1.</td>
</tr>
<tr>
<td>24203 52AGz 55</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. Anchorage D-2 quad., on south tributary of Squaw Creek, 2.47 miles N. 24° E. of southeast summit of Gun Sight Mountain. Unit C-1.</td>
</tr>
<tr>
<td>24204 52AGz 58</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. Anchorage D-2 quad., on south tributary of Squaw Creek, 2.25 miles N. 26° E. from southeast summit of Gun Sight Mountain. Unit B.</td>
</tr>
<tr>
<td>24205 52AGz 59</td>
<td>A. Grantz, R. Hoare, R. Imlay, 1952. From talus, same locality as 24204, Unit B.</td>
</tr>
<tr>
<td>24206 52AGz 65</td>
<td>A. Grantz, R. Hoare, and R. Imlay, 1952. Anchorage D-2 quad., south tributary of Squaw Creek, 1.50 miles N. 30.5° E. of southeast summit of Gun Sight Mountain. Unit B.</td>
</tr>
<tr>
<td>24229 52Ahr 1</td>
<td>R. Hoare, 1952. Anchorage D-1 quad., borrow pit on north side of Glenn Highway at mile 120.25. Unit C-1.</td>
</tr>
<tr>
<td>24231 52Ahr 5</td>
<td>R. Hoare, 1952. Anchorage D-1 quad., north side of Glenn Highway at mile 118.94. Unit C-1.</td>
</tr>
<tr>
<td>24232 52Ahr 6</td>
<td>R. Hoare, 1952. Same locality as 24321. Unit C-1.</td>
</tr>
<tr>
<td>24233 52Ahr 7</td>
<td>R. Hoare, 1952. Anchorage D-2 quad., south tributary of Squaw Creek, 2.02 miles N. 60.5° W. of southeast summit of Gun Sight Mountain. Unit B.</td>
</tr>
<tr>
<td>24239 52AGz 266</td>
<td>A. Grantz, 1952. Anchorage D-2 quad., on south side of Alfred Creek, 1.22 miles S. 55° W. of mouth of Pass Creek. Unit C-1.</td>
</tr>
<tr>
<td>24850 53AGz 6A</td>
<td>A. Grantz, 1953. Anchorage D-2 quad. Same locality as 22123, Unit B.</td>
</tr>
<tr>
<td>USGS Mesopaleo Loc. No.</td>
<td>Field No.</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>24851 53AGz 8</td>
<td>A. Grantz, 1953. Anchorage D-2 quad., 2,200 ft north of Glenn Highway. Lat 61° 49' 17" N., long 147° 32' 10" W. Unit B.</td>
</tr>
<tr>
<td>24853 53AGz 16</td>
<td>A. Grantz, 1953. Anchorage D-2 quad., approximate 0.25 mile N. 57° W. of BM3117, 500 ft north of Glenn Highway. Lat 61° 49' 27" N., long 147° 26' 48" W. Unit C-1.</td>
</tr>
<tr>
<td>24855 53AGz 26</td>
<td>A. Grantz, 1953. Anchorage D-2 quad., north of Glenn Highway, approximately 0.25 mile N. 67° W. of BM3305 and 0.37 mile S. 22° W. from point where Camp Creek crosses Glenn Highway. Lat 61° 50' 12" N., long 147° 25' 02" W. Unit B.</td>
</tr>
<tr>
<td>24856 53AGz 31</td>
<td>A. Grantz, 1953. Anchorage D-2 quad., north of Glenn Highway, about 0.25 mile N. 67° W. of BM3305 and 0.4 mile S. 21° W. from point where Camp Creek crosses Glenn Highway. Lat 61° 50' 12½" N., long 147° 25' 08" W. Unit B.</td>
</tr>
<tr>
<td>24857 53AGz 52</td>
<td>A. Grantz, 1953. Anchorage D-2 quad., float from 2.75 miles north of Glenn Highway, on north branch of south tributary to Caribou Creek. Lat 61° 50' 22" N., long 147° 36' 10" W. Unit B.</td>
</tr>
<tr>
<td>24877 53AGz 137</td>
<td>A. Grantz, 1953. Talkeetna Mountains. A-2 quad., southern part of Limestone Gulch, east of Billy Creek. Lat 62° 01' 40½" N., long 147° 39' 15½" W. Unit A-2.</td>
</tr>
<tr>
<td>25320 54AGz 53</td>
<td>A. Grantz, 1954. Talkeetna Mountains. A-2 quad., unnamed west tributary to Flume Creek. Lat 62° 00' 41½" N., long 147° 34' 46½" W. Unit A-2.</td>
</tr>
<tr>
<td>25960 55AGz 170</td>
<td>A. Grantz, 1955. Valdez D-8 quad., 3,000 ft southeast of southern shore of Twin Lakes, on unnamed tributary, elev 3,050 ft. Lat 61° 56' 41½" N., long 146° 52' 08½" W. Unit C-1 or C-2.</td>
</tr>
<tr>
<td>25961 55AGz 183a</td>
<td>A. Grantz, 1955. Valdez D-8 quad., 7,500 ft south of Twin Lakes, elev 4,550 ft. Lat 61° 54' 02½" N., long 146° 31' 47½" W. Unit B.</td>
</tr>
<tr>
<td>25962 55AGz 184b</td>
<td>A. Grantz, 1955. Valdez D-8 quad., 25½ miles south of Twin Lakes, elev 4,500 ft. Lat 61° 52' 58½" N., long 146° 53' 01½" W. Unit B.</td>
</tr>
<tr>
<td>25963 55AGz 186b</td>
<td>A. Grantz, 1955. Valdez D-8 quad., 1½ miles south of southwest tip of Twin Lakes, elev 3,900 ft. Lat 61° 53' 31½" N., long 146° 54' 01½" W. Unit B.</td>
</tr>
<tr>
<td>25965 55AGz 253b</td>
<td>A. Grantz, 1955. Anchorage D-1 quad., about 2,300 ft north of Pass Creek. Lat 61° 58' 10½" N., long 147° 21' 09½" W. Unit B.</td>
</tr>
<tr>
<td>25966 55AGz 257a</td>
<td>A. Grantz, 1955. Anchorage D-1 quad., 1,500 ft north of Pass Creek. Lat 61° 58' 04½" N., long 147° 21' 51½" W. Unit B.</td>
</tr>
<tr>
<td>25967 55AGz 258a</td>
<td>A. Grantz, 1955. Anchorage D-1 quad., about 8,500 ft northeast of big bend of Pass Creek. Lat 61° 57' 20½" N., long 147° 19' 23½" W. Unit B.</td>
</tr>
<tr>
<td>25968 55AGz 268a</td>
<td>A. Grantz, 1955. Anchorage D-1 quad., 300 ft north of Pass Creek. Lat 61° 57' 50½" N., long 147° 21' 12½" W. Unit C-1.</td>
</tr>
<tr>
<td>25971 55AGz 289b</td>
<td>A. Grantz, 1955. Anchorage D-1 quad., Lat 61° 52' 12½" N., long 147° 20' 40½" W. Unit C-1.</td>
</tr>
<tr>
<td>25972 55AGz 300</td>
<td>A. Grantz, 1955. Anchorage D-2 quad., north side of Glenn Highway, 1,500 ft northeast of point where Camp Creek crosses highway. Lat 61° 50' 30½" N., long 147° 24' 00½" W. Unit C-1.</td>
</tr>
<tr>
<td>25974 55AGz 304g</td>
<td>A. Grantz, 1955. Anchorage D-1 quad., south bank of Pass Creek. Lat 61° 57' 49½" N., long 147° 21' 31½" W. Unit B.</td>
</tr>
<tr>
<td>25975 55AGz 306</td>
<td>A. Grantz, 1955. Anchorage D-1 quad., Lat 61° 57' 47½" N., long 147° 22' 23½" W. Unit B.</td>
</tr>
<tr>
<td>25978 55AGz 347</td>
<td>A. Grantz, 1955. Anchorage D-1 quad., southern tributary to east fork of Matanuska River, about 5,000 ft above mouth. Lat 61° 48' 45½" N., long 147° 20' 40½" W. Unit C-2.</td>
</tr>
<tr>
<td>25979 55AGz 361</td>
<td>A. Grantz, 1955. Anchorage D-1 quad., east fork of Matanuska River. Lat 61° 50' 14½" N., long 147° 14' 00½" W. Unit C-2.</td>
</tr>
<tr>
<td>26730 57AGz 67</td>
<td>A. Grantz, 1957. Anchorage D-2 quad. Lat 61° 48' 08½" N., long 147° 36' 36½" W. Unit C-1.</td>
</tr>
<tr>
<td>M555 59AGz 1Mp</td>
<td>A. Grantz, D. L. Jones, 1959. Same locality as M553, but from 125 to 155 ft above base. Unit A-2.</td>
</tr>
<tr>
<td>M556 59AGz 1MQ</td>
<td>A. Grantz, D. L. Jones, 1959. Same locality as M553, but from 0 to 125 ft above base. Unit A-2.</td>
</tr>
<tr>
<td>M559 59AGz 7M</td>
<td>A. Grantz, D. L. Jones, 1959. Talkeetna Mountains A-2 quad., west tributary to Flume Creek. Lat 62° 00' 45½" N., long 147° 34' 50½" W. Brown-weathering siltstone, about 100 ft above base. Unit A-2.</td>
</tr>
<tr>
<td>USGS Mesozoic Loc.</td>
<td>Field No.</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>M568</td>
<td>59AGz M31</td>
</tr>
<tr>
<td>M574</td>
<td>59AGz M60</td>
</tr>
<tr>
<td>M583</td>
<td>Standard Oil</td>
</tr>
<tr>
<td>M590</td>
<td>59AGz M143</td>
</tr>
<tr>
<td>M595</td>
<td>59AGz M155</td>
</tr>
<tr>
<td>M596</td>
<td>59AG M162</td>
</tr>
<tr>
<td>M597</td>
<td>59AG M163</td>
</tr>
<tr>
<td>M598</td>
<td>59AG M164</td>
</tr>
<tr>
<td>M600</td>
<td>59AG M166</td>
</tr>
<tr>
<td>M601</td>
<td>59AG M193</td>
</tr>
</tbody>
</table>

Table 2.—Ammonite and selected Inoceramus-bearing localities in the lower part of the Matanuska Formation, southern Alaska—Con.
Table 2.—Ammonite and selected Inoceramus-bearing localities in the lower part of the Matanuska Formation, southern Alaska—Con.

<table>
<thead>
<tr>
<th>USGS Me-</th>
<th>Collector, year of collection, description of locality, and stratigraphic position</th>
<th>Collector, year of collection, description of locality, and stratigraphic position</th>
</tr>
</thead>
</table>
TABLE 2.—Ammonite and selected Inoceramus-bearing localities in the lower part of the Matanuska Formation, southern Alaska—Con.

<table>
<thead>
<tr>
<th>USGS Mesozoic Loc. No.</th>
<th>Field No.</th>
<th>Collector, year of collection, description of locality, and stratigraphic position</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2404</td>
<td>64AGz 41</td>
<td>A. Grants, D. L. Jones, 1964. Alaska, Nelchina area, Anchorage D-2 quad. Lat 61°47.3' N., long 147°29.3' W. Unit C-2.</td>
</tr>
<tr>
<td>M2406</td>
<td>64AGz 43</td>
<td>A. Grants, D. L. Jones, 1964. Alaska, Nelchina area, Anchorage D-2 quad. Lat 61°47.35' N., long 147°33.75' W. Unit C-2.</td>
</tr>
</tbody>
</table>

SYSTEMATIC DESCRIPTIONS

Suborder LYTOCERATINA
Family LYTOCERATIDAE
Subfamily LYTOCERATINAE

Genus LYTOCERAS Sues

Type species (International Commission on Zoological Nomenclature Opinion 130) : Ammonites jimbriatus J. Sowerby.

Lytoceras sp.

Plate 1, figures 8, 9; text figure 5

Two fragmentary specimens of Lytoceras were obtained from USGS Mesozoic locality M556. Presumably, these fragments belong to the same species, but this cannot be demonstrated as there are no known specimens intermediate in size between the small example shown on plate 1, figures 8 and 9, and the large example shown in text figure 5. These fragments apparently belong to a new species, but the material at hand is insufficient for creating a new taxon.

As shown by the small specimen, the early whorls are depressed and inflated, with breadth greater than height. The umbilicus is wide with sloping walls that round evenly to meet the slightly inflated flanks. The venter is broadly arched. Ornamentation of the outer layers of the shell consists of very fine lirae, but this is preserved on only a few small patches. The internal mold shows periodic forwardly inclined shallow constrictions and irregularly developed inconspicuous riblets that are strongest on the venter. The large fragment (fig. 5) is very inflated and depressed and is separated to a whorl height of more than 70 millimeters. The outermost layer of shell is gone, but the thick inner layer shows very weak ornamentation consisting of low slightly prorsiradiate riblets and weak periodic constrictions. These constrictions are bordered by low, crinkled ridges that probably extended outward as flared ribs. Very indistinct spiral ornamentation is visible and the intersection of this with the radial riblets forms a faint reticulate pattern. The internal mold appears to be smooth. On the dorsal side, growth lines and riblets bend abruptly forward to form an adoral projection.

221-689 O—66—3
Examples of *Lytoceras* from Albian deposits of the Pacific Coast region of North America are rare. They are common, however, in older Cretaceous deposits ranging in age from Valanginian to Aptian. In California *L. batesi* (Trask) is very common in the *Gabrioceras vintunum* zone (Aptian) of the Ono Formation of former usage (Murphy, 1956, fig. 6; Murphy and others, 1964), but it does not range higher into the Albian. This species differs from the Alaskan form by having a nearly circular cross section and more regularly developed ribs. *L. mahadeva* (Stoliczka, 1866, p. 165, pl. 80) from the Utatur Group of southern India has a less depressed, more rounded whorl section and more regular crinkled ribs. *L. ezoensis* Yabe (1903, p. 9, 10, pl. 1, fig. 1) from Japan has a more compressed outer whorl and closely spaced crinkled ribs. *L. crenocostatus* (Whiteaves, 1876, p. 45, pl. 9, fig. 2) from Queen Charlotte Island, originally based on a small specimen and later equated with *L. batesi*, is too poorly known for an adequate diagnosis; however, well-preserved specimens from Albian strata of Chitina Valley may be referable to this species. These specimens have a nearly circular cross section and widely spaced crinkled ribs. They do not show the closely spaced prominent ribs of *L. batesi* or the depressed whorl section of the Talkeetna Mountains specimen.

Measurements: The measurements of specimens are given in millimeters, except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Diameter</th>
<th>Height</th>
<th>Breadth</th>
<th>Ratio of breadth to height</th>
<th>Width of umbilicus</th>
<th>Umbilicus (percent of diam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 132083a, 132083b</td>
<td>11.3</td>
<td>68</td>
<td>54</td>
<td>1.23</td>
<td>1.18</td>
<td>4.0</td>
</tr>
<tr>
<td>USNM 132083a</td>
<td>11.8</td>
<td>68</td>
<td>54</td>
<td>1.23</td>
<td>1.18</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Figure 5.—Cross section of *Lytoceras* sp., USNM 132083a from USGS Mesozoic locality M556, × 1.

Family TETRAGONITIDAE

Genus GAUDRYCERAS GROSSOUVRE

Type species (subsequent designation by Boule and others, 1906): *Ammonites mitis* Hauer.

Gaudryceras aff. *G. denseplicatum* (Jimbo)

Plate 1, figures 1-4

Several small poorly preserved fragments of Gaudryceras are known from the lower part of the Matanuska Formation. The shell is ornamented with numerous, closely spaced flexed ribs that arise at the umbilical seam, subdivide and bend strongly forward near the umbilical shoulder, are nearly radial at midflank, and cross the venter with moderate forward projection. Periodic constrictions are present, and these are bordered by low ridges on which the ribs are bundled. The specimens are all deformed to varying degrees, so accurate measurements are impossible. The whorls are inflated, about as broad as they are high, with slightly rounded flanks, broadly rounded venter, abruptly rounded umbilical shoulder, and steep umbilical wall.

The characteristic feature of *G. denseplicatum* is the development in the adult of coarse major folds that bear numerous minor ribs; these ribs cannot be observed in the Alaskan specimens owing to their small size. However, these small specimens agree well with the inner whorls of large specimens of *G. denseplicatum* from California and Oregon that do show the major folds, but larger and better preserved specimens are needed for positive identification of the Alaskan forms.

Figured specimens: USNM 132145, 132146.

Collecting localities: USGS Mesozoic loci. M600, M2263, M1839(?), M2391(?).

Stratigraphic position: Lower part of unit C-1, probably late Cenomanian or early Turonian; fragments possibly belonging to this species found also in upper Turonian and Coniacian parts of unit C-1.

Type species: *Anmonites sacya* Forbes.

Anagaudryceras sacya (Forbes)

Plate 1, figures 5-7, 13-15

Two specimens of *Anagaudryceras sacya* are known from the lower part of the Matanuska Formation, both distorted. The smaller specimen (pl. 1, figs. 5-7) is similar to the specimen from the Chitina Valley figured by Matsumoto (1959, pl. 22, fig. 4) although the width of its umbilicus has been greatly reduced due to secondary crushing. The oblique only slightly flexed constrictions are similar on both specimens, as is the rounded whorl section with nearly equal height and breadth. On the larger specimen from the Talkeetna Mountains, the body chamber was also crushed down over the earlier whorls, and the umbilicus is distorted. Inner whorls of this specimen have five deep oblique constrictions per whorl. The outer septate whorls have flattened flanks, a subvertical umbilical wall, rounded umbilical shoulder, and a broadly rounded venter. Oblique only slightly flexed constrictions cross the flanks and are marked on the venter by a slightly raised ridge. The body chamber is covered with broad closely spaced slightly flattened sigmoidal ribs. Most of the outer shell layer is missing; but where preserved, the very fine lirae characteristic of *Anagaudryceras* can be seen.

Figured specimens: USNM 122066, 122068.

Collecting localities: USGS Mesozoic lacs. M556, M568.

Stratigraphic position: Unit A-2; late early Albian zone of *Brewericeras hulenense*. Unit B of probable Cenomanian age.

Genus* PARAJAUBERTELLA* Matsumoto

The genera *Gabbicoceras* Hyatt, *Jauberticeras* Jacob, and *Parajaubertella* Matsumoto are all generally similar in shell form, being characterized by inflated depressed early whorls with a deep umbilicus and a sharp umbilical shoulder. *Jauberticeras* was considered by Wright (1957, p. L203) to be a synonym of *Gabbicoceras* (subfamily *Tetragonitidinae*), and *Parajaubertella* (subfamily *Gaudryceratinae*) was accepted as a valid genus. Wiedmann (1962a) recently studied these genera and considered *Jauperticeras* and *Gabbicoceras* to be distinct, but he rejected *Parajaubertella* as a synonym of *Gabbicoceras*. Wiedmann's reason for this change was based on the nature of the internal suture; *Jauberticeras* has a more complex internal suture than does *Gabbicoceras*, with three, rather than two, internal lobes (fig. 6). *Parajaubertella* also has only two internal lobes and was therefore not thought to be distinct from *Gabbicoceras*. The sutureal differences between *Gabbicoceras* and *Jauberticeras*, as pointed out by Wiedmann, seem to be sufficient to hold these two genera apart. The sutureal similarities of *Gabbicoceras* and *Parajaubertella*, however, are not sufficient to override other morphologic differences that serve to separate the two genera, particularly in view of the difference in age of the two forms; *Gabbicoceras* is known from Aptian beds and *Parajaubertella* from Cenomanian beds. As was pointed out by M. A. Murphy (oral commun., 1963), the sutureal of *Gabbicoceras*, *Anagaudryceras*, and *Parajaubertella* are all basically similar (fig. 7), so other features must be used to subdivide this broad group of ammonites. *Parajaubertella* and *Gabbicoceras* can be clearly distinguished by differences in the shape of the umbilicus (fig. 7). In *Parajaubertella* the umbilicus is steplike with a nearly vertical wall; in *Gabbicoceras* it is funnel shaped with a sloping wall. The presence in both genera of an angular umbilical shoulder is best explained as a homeomorphic development.

Parajaubertella imlayi Matsumoto

Plate 1, figures 10-12; text figures 6D, 7B

Only one specimen of *Parajaubertella imlayi* is known from the Talkeetna Mountains. It consists of a broken fragment showing a well-preserved body chamber and poorly preserved inner septate whorls. This specimen agrees closely in whorl proportions with Matsumoto's figured specimen from the Chitina Valley, but it differs by having well-developed ribs on the body chamber at a much smaller diameter. This difference is not significant, as recently obtained collections from the Chitina Valley demonstrate considerable variation in diameter at the time of appearance of this character. The ribs are rounded, slightly asymmetrical, with a steep adoral slope and a gentle adapical slope; they arise on the umbilical wall, are gently flexed on the flanks, and cross the...
Figure 6.—Suture lines of Gabbiloceras, Jauberticeras, Parajaubertella, and Anagaudryceras.
Genus TETRAGONITES Kossmat

1895. Tetrarognites Kossmat, Paläontologie u. Geologie Österreich-Ungarns u. des Örients, Beitr., v. 9, p. 131.

Type species (original designation): Lytoceras tiiomotheanum Mayor.

Tetrarognites aff. T. glabrus (Jimbo)

Plate 2, figures 1–12, 23–26

Compare:

Specimens of Tetrarognites aff. T. glabrus from the Matanuska Formation are poorly preserved, fragmentary, and mostly crushed or distorted. Therefore, accurate measurements and close comparison with other, better preserved specimens cannot be made. Small specimens have an inflated whorl section with flattened flanks and venter and a steep nearly vertical umbilical wall. Oblique constrictions are very weak and are clearly visible only on one specimen, where they appear as black lines that run obliquely across the flanks and form a shallow concave sinus on the venter. The umbilicus is fairly small, ranging from 23 to 30 percent of the diameter. Early whorls have a B/H (breadth to height) ratio equal to or greater than 1.0. Larger specimens lack constrictions, have a rounded rather than flattened venter, and are more compressed, the B/H ratio being less than 1.0.

The Matanuska specimens appear to be closely related to T. glabrus, but they differ by having somewhat more compressed whorls (see measurements below). Their whorl section is similar to that of T. epigonus Kossmat (1895, p. 135, pl. 17, figs. 4–8), but that species has well-developed oblique constrictions persisting to a larger diameter.

Measurements: The measurements of specimens are given in millimeters, except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Diameter</th>
<th>Height</th>
<th>Breadth</th>
<th>Ratio of breadth to height</th>
<th>Width of umbilicus</th>
<th>Umbilicus (percent of diam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 132000</td>
<td>19.7</td>
<td>13.0</td>
<td>7.9</td>
<td>1.61</td>
<td>9.0</td>
<td>40</td>
</tr>
<tr>
<td>132092</td>
<td>20.3</td>
<td>13.0</td>
<td>7.5</td>
<td>1.65</td>
<td>9.0</td>
<td>40</td>
</tr>
<tr>
<td>132094</td>
<td>20.3</td>
<td>13.0</td>
<td>7.5</td>
<td>1.65</td>
<td>9.0</td>
<td>40</td>
</tr>
<tr>
<td>132096</td>
<td>20.3</td>
<td>13.0</td>
<td>7.5</td>
<td>1.65</td>
<td>9.0</td>
<td>40</td>
</tr>
<tr>
<td>California specimens 1:</td>
<td>23.0</td>
<td>16.0</td>
<td>10.0</td>
<td>1.60</td>
<td>11.0</td>
<td>45</td>
</tr>
</tbody>
</table>

1 Measurements from Matsumoto (1895a, p. 150).

Figured specimens: USNM 132000, 132001, 132002, 132003, 132004, 132005, 132006.

Number of specimens: 10 plus several fragments.

Collecting localities: USGS Mesozoic locs. M000, M001, M2301.

Stratigraphic position: Lower to middle (?) parts of unit C-1; upper Cenomanian or lower Turonian to probable upper Turonian.
Tetragonites aff. T. timotheanus (Pictet)

Plate 2, figures 13–18

Compare:
1848. Ammonites timotheanus (Major) in Pictet, Grès Verts, v. 1, p. 295, pl. 2, fig. 6 (paratype); pl. 3, fig. 1 (lectotype) [fide Wiedmann, 1962b, p. 172].

1908. Tetragonites kilianii Jacob, Geol. Soc. France, Mem. Paléont., no. 33 (1907), p. 21, pl. 1, figs. 9a, 9b.

1959. Tetragonites sp. nov.? Matsumoto (in part, includes only the large measured adult shell from USGS Mesozoic loc. 9492), Kyushū Univ. Mem. Fac. Sci., ser. D, Geol., v. 8, no. 3, p. 77.

1962. Tetragonites timotheanus (Pictet). Wiedmann, Palaeontogr., v. 118, pt. A, no. 4, p. 172, pl. 8, fig. 10; pl. 14, figs. 4–6; text figs. 30–33.

Two specimens generally similar to Tetragonites timotheanus are known from the Albian siltstone section exposed in Limestone Gulch (USGS Mesozoic loc. M556). On early whorls these specimens have a quadrate whorl section with flattened nearly parallel flanks, a flattened venter, and a moderately wide umbilicus with a vertical umbilical wall and angular umbilical shoulder. On the body chamber the flanks are slightly rounded, and the venter is low and broadly arched. Oblique rectilinear constrictions number about nine per whorl and are prominent on the flanks of the septate part and on the early part of the body chamber; on the outer part of the body chamber they have become obsolete.

According to Wiedmann (1962b, p. 172–174), T. timotheanus is characterized by a broad rectangular cross section, wide umbilicus, and early disappearance of prorsiradiate constrictions.

The two Alaskan specimens differ from those described by Wiedmann by having a slightly narrower umbilicus and constrictions that persist to a larger diameter.

Measurements: The measurements of specimens are given in millimeters, except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Diameter</th>
<th>Height</th>
<th>Breadth</th>
<th>Ratio of breadth to height</th>
<th>Width of umbilicus</th>
<th>Umbilicus (percent of diam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 132097</td>
<td>11.5</td>
<td>15.5</td>
<td>1.34</td>
<td>9.5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.5</td>
<td>19.7</td>
<td>1.48</td>
<td>14.3</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>132098</td>
<td>21.4</td>
<td>26.6</td>
<td>1.25</td>
<td>13.8</td>
<td>26.5</td>
<td></td>
</tr>
<tr>
<td>ca. 22</td>
<td>ca. 9</td>
<td>12</td>
<td>1.34</td>
<td>7.8</td>
<td>ca. 34</td>
<td></td>
</tr>
<tr>
<td>ca. 12.8</td>
<td>4.5</td>
<td>3.6X2</td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Slightly distorted.

Figured specimens: USNM 132097, 132098.
Collecting locality: USGS Mesozoic loc. M556.
Stratigraphic position: Unit A-2; late early Albian, Brewericeras huleneense zone.

Family SCAPHITIDAE

Genus SCAPHITES Parkinson

Type species (subsequent designation by Meek, 1876, U.S. Geol. Survey Terr., v. 9, p. 413): Scaphites aequialis Sowerby.

Scaphites sp. indet.

Plate 4, figures 12–14, 21

One small, partly crushed specimen of Scaphites is known from Shell Oil Co. locality T1006. The septate whorls are poorly preserved, but they appear to have been depressed and inflated. The straight shaft and hook are likewise very broad with abruptly rounded flanks and slightly arched venter. Ornamentation is obscured on the septate part, although a few heavy ribs are visible on the flank. On the straight shaft, the flanks bear five or six fairly heavy widely spaced forward-inclined ribs that split on the ventrolateral shoulder into many fine threadlike riblets that cross the venter with a slight forward projection. The margin of the aperture is marked by a heavy projecting collar.

The Alaskan form shows affinities to both S. pseudoaequalis Yabe and S. yonekurai Yabe (1910, pl. 15), known from Turonian and Coniacian deposits of Japan (Matsumoto, 1954, p. 17). S. pseudoaequalis differs by having an apparent flat unribbed area low on the shaft and prominent ribs on the hook. S. yonekurai has finer, more numerous ribs on the flank of the shaft.

Figured specimen: USNM 132084.
Collecting locality: SOC, T-1006.
Stratigraphic position: Unit C-2; probably late Coniacian.

Genus OTOSCAPHITES Wright

Type species (original designation): Ammonites bladenensis Schlüter, 1871.

According to Wright (1953, p.475), the characteristic features of Otoscapites are: "Moderately evolute spire, followed by a fairly long, well-curved shaft and hook. Compressed to coronate whorl section. Mouth-border with more or less strong constriction and collar and long narrow lateral lappets. Spire with moderately strong ribs. Shaft with striae or fine ribs and sometimes ventrolateral or umbilical tubercles. Suture as in Scaphites of the same age and size."

This genus has a wide geographic distribution, occurring in Europe, Texas, California, Oregon, Japan, and
Otoscaphites teshioensis (Yabe)

Plate 4, figures 15-18; text figure 8

Four complete specimens and several small fragments of *Otoscaphites teshioensis* are known from the Matanuska Formation. The coiled part of the shell is moderately evolute with rounded whorls (B/H ratio about 1). Ornamentation consists of primary ribs that arise on the umbilical slope, cross the umbilical shoulder with a forward projection, and bend backward on the lower flank. On the midflank the ribs have a radial course, and on the outer flank they split into two secondary ribs that cross the broadly rounded venter with a slight forward projection. On the outer part of the coiled septate part, small nodes appear at the point of rib bifurcation. These nodes become progressively larger with increased growth, and the ribs on the flanks and venter become progressively weaker. On the body chamber, which on the figured specimen is slightly deformed and squeezed into contact with the coiled part, the ornamentation consists of irregularly developed nodes on the ventrolateral shoulder, together with faint ribs that run obliquely from the nodes to the dorsal margin. Only faint irregular ribs and growth striae cross the venter. Eight ventrolateral nodes are visible on the figured specimen; both the adoral and adapical part of the body chamber are smooth except for growth striae. The suture line is moderately complex with irregularly trifid first lateral lobe (fig. 8).

Although *O. teshioensis* was first named as a variety of *O. puercaus* (Yabe), it differs from that species in having bifurcating primary ribs with ventrolateral nodes and well-developed ribs on the venter. Also the flanks of the body chamber are much broader and tend to be flatter on *O. teshioensis* than on *O. puercaus*. The study of large collections of *O. puercaus* from California and of several specimens from the Chitina Valley, Alaska, indicates that although the two forms are
probably closely related, they should be regarded as distinct species.

Two species of *Otoscaphites* described by Cobban and Gryc (1961) from the Seaboo Formation of northern Alaska differ from *O. tekoensis* by being much smaller and by having more inflated and more involute whorls and different ornamentation.

Measurements (in millimeters). USNM 132099: Length, 25; height at last septum, 7; breadth at last septum, 6.7.

Figured specimen: USNM 132099 from USGS Mesozoic loc. 24853.

Collecting localities: USGS Mesozoic locs. 24853, 24239 (?).
Stratigraphic position: Unit C–1, Turonian.

Family BACULITIDAE

Genus SCIPONOCERAS Hyatt

Type species (original designation): *Hamites baculoideus* Mantell.

Sciponoceras sp. indet.

Plate 2, figures 19–22; text figures 9, 10

Three fragments of *Sciponoceras* are known from the lower part of the Matanuska Formation, but their poor state of preservation prohibits positive identification. The largest fragment, shown on plate 2, figures 19 to 22, has an oval cross section (fig. 9) with nearly parallel sides. Ornamentation consists of weak ribs on the venter that run obliquely across the flanks and disappear on the dorsal side. The ribs number four to five in a distance equal to the section height. A strong oblique constriction is visible at the distal end.

A smaller specimen, whose suture is shown on figure 10, has a subcircular cross section and shows moderate taper (see measurements below). No ribs or constrictions are present on this specimen, but another crushed fragment shows two oblique constrictions.

![Cross section of Sciponoceras sp. indet.](image)

Figure 9. Cross section of *Sciponoceras* sp. indet., USNM 132100 from USGS Mesozoic locality M800. X 4.

Figure 10. Suture line of *Sciponoceras* sp. indet., USNM 132101 from USGS Mesozoic locality M2383, at height of 5 mm, breadth of 4.6 mm.

Measurements: The measurements of specimens are given in millimeters, except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Height</th>
<th>Breadth</th>
<th>Ratio height to breadth</th>
<th>Distance between measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 132300</td>
<td>9.4</td>
<td>7.4</td>
<td>0.79</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>6.5</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>5.5</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>132301</td>
<td>7.3</td>
<td>6.0</td>
<td>0.82</td>
<td>31</td>
</tr>
</tbody>
</table>

Figured specimens: USNM 132100, 132101.
Collecting localities: USGS Mesozoic locs. M600, M2383.
Stratigraphic position: Lower part of unit C–1, probably late Cenomanian or early Turonian.

Suborder AMMONITINA

Family DESMOGERATIDAE

Genus DESMOGERAS

Subgenus PSEUDOWLIQELLA Matsumoto

Type species of Pseudowliqella (original designation): *Desmoceras dawsoni japonica* Yabe.
Desmoeceras (Pseudohlgiella) japonicum Yabe

Plate 4, figures 10, 11

1959. *Desmoeceras* (Pseudohlgiella) *japonicum* Yabe. Matsumoto, Kyushu Univ. Mem. Fac. Sci., ser. D, Geol., v. 8, no. 3, p. 58, pl. 13, figs. 1a–c, 2a–c, 3a–c, 4a–c; pl. 14, figs. 1a, b. (See this reference for complete synonymy.)

Desmoeceras (Pseudohlgiella) *japonicum* is rare in the Matanuska Formation; it is found in abundance only near Camp Creek on the south side of Gunsight Mountain. This scarcity is in marked contrast with that in the Cenomanian beds of the upper Chitina Valley, where this species occurs in great abundance. Most of the Matanuska specimens are small and crushed, but the characteristic features of the species are adequately shown, in particular, the inflated whorl section, flattened flanks, small pitlike umbilicus, and sigmoidal constrictions strongly projected on the venter. The ratio of breadth to height falls within the range of values given by Matsumoto (1959a, p. 58) for the Chitina Valley specimens, but the umbilicus of some of the Matanuska specimens is slightly narrower.

Measurements: The measurements of specimens are given in millimeters, except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Diameter</th>
<th>Height</th>
<th>Breadth</th>
<th>Ratio of breadth to height</th>
<th>Width of umbilicus</th>
<th>Umbilicus (percent of diam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 132102</td>
<td>23</td>
<td>12.7</td>
<td>15.5</td>
<td>0.68</td>
<td>2.7</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Holotype: According to Matsumoto (1959a, p. 252), the holotype is GT. 1–260, obtained along the Ikushunbetsu, 10 miles east of the Ikushunbetsu coal mines, Japan.

Figured specimens: USNM 132102.

Number of specimens: 8 to 12 relatively undistorted specimens, many crushed fragments.

Collecting localities: USGS Mesozoic locs. M506, M2281, M2282, M2283, M2285, M2286 (?).

Stratigraphic position: Lower siltstone member of unit B Cenomanian; lowest part of unit C–1. Cenomanian or possibly lower Turonian.

Genus BREWERICERAS Casey

Type species (original designation): *Ammonites brevieri* Gabb.

Brewericeras huleneense (Anderson)

Plate 6, figures 10, 11, 15–19; text figure 11

1965. *Brewericeras huleneense* (Anderson). Jones, Murphy, and Packard, U.S. Geol. Survey Prof. Paper 503–F, p. 16, pl. 8, figs. 1, 2, 4; pls. 9, 10; pl. 11, figs. 1–3, 13–14.

Six specimens of *Brewericeras huleneense* from the Matanuska Formation are in the Survey's collection; three were obtained from USGS Mesozoic locality M556 in Limestone Gulch, one from locality M557 in a nearby unnamed canyon, one from locality M558 on upper Wolverine Creek, about 7 miles northeast of Palmer, and one crushed and eroded specimen from the basal sandstone south of the Matanuska River at locality M2400.

The specimens of *B. huleneense* from the Matanuska Formation agree well with typical California specimens and also with those from Chitina Valley figured by Imlay (1960) and Jones, Murphy, and Packard (1965). This species is variable in strength of ribbing, width of umbilicus, and ratio of breadth to width, but the few examples dealt with here are insufficient to establish the range of variation. The characteristic features of this species are: compressed whorl shape with flattened flanks; abruptly rounded or angular umbilical margin with nearly vertical umbilical wall; slightly excentric coiling; and variably developed falcate ribs that are most prominent on the outer part of the flanks. An indented spiral line on the umbilical wall, first described by Murphy and Rodda (1960, p. 851), is well developed on the Alaskan forms. The suture line (fig. 11) is complex with a narrow asymmetrical deeply inclined first lateral saddle, a very deep and narrow first lateral lobe, and an asymmetric second lateral saddle.

Measurements: The measurements of specimens are given in millimeters except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Diameter</th>
<th>Height</th>
<th>Breadth</th>
<th>Ratio of breadth to height</th>
<th>Width of umbilicus</th>
<th>Umbilicus (percent of diam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 132004</td>
<td>33</td>
<td>16</td>
<td>9</td>
<td>0.50</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>USNM 132005</td>
<td>43</td>
<td>20</td>
<td>10</td>
<td>0.50</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>USNM 132105</td>
<td>60</td>
<td>32</td>
<td>16</td>
<td>0.50</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>USNM 132106</td>
<td>60</td>
<td>32</td>
<td>16</td>
<td>0.50</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>

California specimens:

1. 40 20 12 0.60 7 17.5
2. 55 20 14 0.54
3. 65 21 16.5 0 30
4. 65 21 16 0.58 10 18

1 Smooth specimens from the One area, northern California.
CBWIA'UEOUS AMMONITES FROM MATANUSKA FORMATION, SOUTHERN ALASKA

Figure 11.—Suture line of *Brewericeras hulenense* (Anderson), pleistotype USNM 132105 from USGS Mesozoic locality M556. × 6. Specimen illustrated on plate 6, figures 16-18.

Figured specimens: USNM 132103, 132104, 132105.
Collecting localities: USGS Mesozoic locs. M556, M559, M583, M2409.

Stratigraphic position: Unit A-2 north of Matanuska River and Unit A-1 south of the river (USGS Mesozoic loc, M583 may be from Unit A-II). Zone of *B. hulenense*, late early Albian.

Genus GRANTZICERAS Imlay

Type species (original designation): *Beudanticeras* (*Grantziceras*) multiconstrictum Imlay.

The name *Grantziceras* first appeared as a nomen nudum in Professional Paper 354-D, which was written later than Professional Paper 335, but released earlier.

Imlay (1961, p. 56) considered *Grantziceras* to differ from typical species of *Beudanticeras* by having numerous regularly spaced falciform constrictions that appear at an early age, broadly bundled striae on the flanks, and a scaphitoid body chamber. Other possible distinguishing features include a lack of strong periodic ridges on the shell and a larger size than other described species of *Beudanticeras*. None of these features seem to be critical in separating *Grantziceras* from *Beud-
anticeras. For example, Casey (1961) has recently figured specimens of *Beudanticeras* which are fully as large as the Alaskan forms and also have falciform constrictions at an early age. The feature that clearly separates *Grantziceras* from *Beudanticeras*, however, is the nature of the umbilicus. In *Grantziceras* the umbilicus is narrow and funnel shaped with sloping walls that round gently and evenly to meet the flanks; in *Beudanticeras*, the umbilicus is steplike with vertical to subvertical walls and an abruptly rounded or angular umbilical shoulder.

Among the Alaskan specimens a complete gradation can be shown between constricted forms ("*Grantziceras multiconstrictum*") and nonconstricted forms, so subgeneric separation of these two is not warranted. Instead, the generic concept of *Grantziceras* is herein redefined to include not only the typical constricted form but also the more compressed involute shells with few or no constrictions. Other characteristic features of the genus include: narrow funnel-shaped umbilicus; sloping gently rounded umbilical walls; narrowly arched venter; ornamentation restricted to bundled striae; and weak riblets.

Grantziceras affine (Whiteaves)

Plate 5, figures 1-15; plate 6, figures 4-6; text figure 15

1893. *Desmoceras affine* Whiteaves, Royal Soc. Canada Trans., 1st ser., v. 16, p. 113, pl. 8; pl. 11, figs. 1, 1a.

1960. *Beudanticeras (Grantziceras) multiconstrictum* Imlay, idem, p. 105, pl. 14, figs. 1, 2.

1961. *Beudanticeras (Grantziceras) multiconstrictum* Imlay, U.S. Geol. Survey Prof. Paper 335, p. 36, pl. 14, fig. 1; pl. 15, figs. 1-12.

1961. *Beudanticeras (Grantziceras) affine* (Whiteaves). Imlay idem, p. 57, pl. 13, fig. 24 (?); pl. 14, fig. 2.

The shell of *Grantziceras affine* is compressed, discoidal, and involute; the umbilicus is funnel shaped and narrow, ranging from 11 to about 23 percent of the diameter, with sloping walls that round evenly and gently to meet the slightly inflated and convergent flanks. The venter is narrow and evenly rounded. The outer layer of the shell is covered with fine growth striae that are bundled on the flanks and become more conspicuous on the venter. The internal mold bears variably developed falciform constrictions that arise above the umbilical seam, project forward about the lower one-third of the flank, run radially across the midflank, and bend forward again at the outer one-third of the flank. These constrictions are visible only when the shell has been removed; on larger specimens with deep constrictions, the posterior edge of the constriction on the venter may be marked by a low ridge. The constrictions are asymmetrical, the adoral side being steeper than the adapical side.

Figure 12.—Relation of whorl breadth to whorl height for *Grantziceras affine* from the Nelchina area.
As shown by the following measurements and text figures 12 and 13, the inflation of the whorl and the diameter of the umbilicus are variable. In general, the more inflated forms with B/H ratio of 0.65 or higher have an umbilical width greater than 17 percent of the diameter, and those with a B/H ratio of less than 0.65 have an umbilical width ranging from 11 to about 17 percent of the diameter. The more inflated forms also tend to have more and deeper constrictions, as was noted by Whiteaves (1893, p. 115), although compressed and highly constricted forms are also known.

Compressed specimens with B/H ratio ranging from 0.50 to 0.60 constitute about 55 percent of the presently known sample from the Matanuska Formation (fig. 14). Highly compressed individuals with B/H ratio less than 0.50 are rare, about 3 percent. Inflated forms with B/H ratio between 0.60 and 0.70, and those with a ratio greater than 0.70, constitute about 25 and 17 percent respectively. Because a continuous intergrading series exists between the compressed, poorly constricted forms and the inflated, more constricted forms, it is impossible to split this morphologic group into two subgenera and three distinct species, as others have done.

The suture line is very complex with successive sutures closely interlocked (text fig. 15). The first lateral saddle is asymmetrically bifid and finely subdivided with a narrow to moderately wide stem. The first lateral lobe is irregularly trifid and much deeper than the ventral lobe. The second lateral saddle is thin and asymmetrically bifid and nearly as high as the first lateral saddle. From the second lateral saddle the suture descends to the umbilical seam in a long series of successively smaller saddles, the number of which is variable depending on the size of the specimen and the inflation of the whorl. No basic sutural differences were found between highly constricted and nonconstricted forms, although apparently the first lateral saddle tends to be wider on more inflated varieties (compare figs. 15 B, C, and D).

G. affine differs from *G. glabrum* (Whiteaves), described below, mainly by having a more complexly subdivided suture, a somewhat more inflated whorl section, and a larger umbilicus with a more sloping umbilical wall.

Figure 13. Relation of width of umbilicus to ratio of whorl breadth to height for *Granticeras affine* from the Nelchina area.

Figure 14. Frequency distribution of the ratio of whorl breadth to height for *Granticeras affine* from the Nelchina area.
Graptoliticeras glabrum (Whiteaves),

Plate 6, figures 1-3, 7-9; text figure 16

1947? Beudanticeras affine (Whiteaves). Warren, idem, p. 121, pl. 30, fig. 5.

According to Whiteaves (1893, p. 115), Desmoceceras affine var. glabrum differs from D. affine in the total absence of constrictions. However, study of Whiteaves' types as well as abundant material from the Nelchina area shows that Graptoliticeras glabrum differs from G. affine mainly in the nature of the suture (fig. 16). In G. glabrum the suture is broad and shallowly incised with massive low elements; in G. affine the suture is complexly interlocked with narrow and highly incised elements. Other minor differences are that Graptoliticeras glabrum tends to have a more compressed whorl section, flatter flanks, more narrowly rounded venter, smaller umbilicus, slightly more angular umbilical shoulder, and less pronounced constrictions than G. affine.

The differences between these two forms are slight, but in the Matanuska material no intergradation has been observed between the forms with the highly incised interlocking sutures, which constitute the bulk of the sample, and the forms with broad, shallowly incised, more widely spaced sutures, known only in a few specimens. As yet, no geographic or stratigraphic differences are known in the distribution of these two species. Perhaps the sutural differences reflect only a response to slightly different ecological or physiological conditions and are not of specific importance. If so, the name G. affine should be rejected as a synonym.

Number of specimens: 50+

Figured specimens: USNM 132106, 132107, 132108, 132109, 132110, 132111, 132112, 132113.

Collecting localities: USGS Mesozoic localities 24877, 25320, M555, M556, M559, M2349, M2380 (?).

Graptoliticeras glabrum (Whiteaves)

According to Whiteaves (1893, p. 115), Desmoceceras affine var. glabrum differs from D. affine in the total absence of constrictions. However, study of Whiteaves' types as well as abundant material from the Nelchina area shows that Graptoliticeras glabrum differs from G. affine mainly in the nature of the suture (fig. 16). In G. glabrum the suture is broad and shallowly incised with massive low elements; in G. affine the suture is complexly interlocked with narrow and highly incised elements. Other minor differences are that Graptoliticeras glabrum tends to have a more compressed whorl section, flatter flanks, more narrowly rounded venter, smaller umbilicus, slightly more angular umbilical shoulder, and less pronounced constrictions than G. affine.

The differences between these two forms are slight, but in the Matanuska material no intergradation has been observed between the forms with the highly incised interlocking sutures, which constitute the bulk of the sample, and the forms with broad, shallowly incised, more widely spaced sutures, known only in a few specimens. As yet, no geographic or stratigraphic differences are known in the distribution of these two species. Perhaps the sutural differences reflect only a response to slightly different ecological or physiological conditions and are not of specific importance. If so, the name G. affine should be rejected as a synonym.

Number of specimens: 50+

Figured specimens: USNM 132106, 132107, 132108, 132109, 132110, 132111, 132112, 132113.

Collecting localities: USGS Mesozoic localities 24877, 25320, M555, M556, M559, M2349, M2380 (?).

Graptoliticeras glabrum (Whiteaves)

According to Whiteaves (1893, p. 115), Desmoceceras affine var. glabrum differs from D. affine in the total absence of constrictions. However, study of Whiteaves' types as well as abundant material from the Nelchina area shows that Graptoliticeras glabrum differs from G. affine mainly in the nature of the suture (fig. 16). In G. glabrum the suture is broad and shallowly incised with massive low elements; in G. affine the suture is complexly interlocked with narrow and highly incised elements. Other minor differences are that Graptoliticeras glabrum tends to have a more compressed whorl section, flatter flanks, more narrowly rounded venter, smaller umbilicus, slightly more angular umbilical shoulder, and less pronounced constrictions than G. affine.

The differences between these two forms are slight, but in the Matanuska material no intergradation has been observed between the forms with the highly incised interlocking sutures, which constitute the bulk of the sample, and the forms with broad, shallowly incised, more widely spaced sutures, known only in a few specimens. As yet, no geographic or stratigraphic differences are known in the distribution of these two species. Perhaps the sutural differences reflect only a response to slightly different ecological or physiological conditions and are not of specific importance. If so, the name G. affine should be rejected as a synonym.

Whether or not this may be the case cannot be determined from study of the Matanuska material because of its limited occurrence. Perhaps study of these two forms in Canada, where more widespread geographic distribution and better stratigraphic control are available, will show the significance of the sutural variation.

Measurements: The measurements of specimens are given in millimeters, except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Diameter</th>
<th>Height</th>
<th>Breadth</th>
<th>Ratio of breadth to height</th>
<th>Width of umbilicus</th>
<th>Umbilicus (percent of diam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 132115</td>
<td>36</td>
<td>19</td>
<td>11</td>
<td>1.9</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>38</td>
<td>16</td>
<td>1.9</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>132114</td>
<td>46</td>
<td>24</td>
<td>16</td>
<td>1.9</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>24</td>
<td>16</td>
<td>1.9</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>24</td>
<td>16</td>
<td>1.9</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>GSC 5028</td>
<td>72</td>
<td>45</td>
<td>30</td>
<td>1.9</td>
<td>0.53</td>
<td></td>
</tr>
</tbody>
</table>

Holotype: GSC 5028.

Figured specimens: USNM 132114, 132115 from USGS Mesozoic localities M555, M556.

Stratigraphic position: Unit A-2; Brevericeras kulense zone.

Type species (by original designation): Freboldiceras singulare Imlay.
A. Pleiotype USNM 132112 from USGS Mesozoic locality M556. Nearly smooth poorly constricted form. × 3.

B. Pleiotype USNM 132107 from USGS Mesozoic locality M556. Specimen figures on plate 5, figures 4-6. Constrictions weakly developed. × 9.

Figure 15—SUTURE LINES OF
C. Plesiotype USNM 132113 from USGS Mesozoic locality M556. Highly constricted variety. $\times 3\frac{1}{2}$.

D. Plesiotype USNM 132109 from USGS Mesozoic locality M556. Specimen figured on plate 5, figures 8–10. $\times 5$.

GRANTZICERAS AFFINE (WHITEAVES)
Freboldiceras was originally based on four specimens obtained from USGS Mesozoic locality 24877 on the south side of Limestone Gulch. The essential generic characters are a compressed subovate whorl section, gently convex flanks, narrowly rounded venter, and fairly narrow umbilicus with steeply inclined wall; ornamentation consists of prominent flexuous primary ribs that are swollen near the umbilical margin and obsolete on the outer flanks, together with irregularly-spaced constrictions and flexuous striae. The suture line is simple with a very wide, shallowly incised first lateral saddle and a deep, broad, slightly asymmetrical first lateral lobe. The second lateral saddle is strongly asymmetrical, the ventral part being lower than the dorsal part.

Since Imlay's (1959, 1960) study of Freboldiceras, additional specimens have been obtained from the type locality and nearby. These specimens show that the
type species, *F. singulare*, is highly variable, particularly in regard to strength of ornamentation and development of secondary ribs. The more coarsely ribbed forms approach, and may even grade into, *Arcthoplites* [= *Lemuroceras* of Imlay, 1960, and *Subarcthoplites* of Casey, 1954, and Imlay, 1961]. This close relationship was suggested by Casey (1961, footnote, p. 167), who stated: "I have also been privileged to study casts of *Lemuroceras* talkeetanum Imlay—an interesting Alaskan form of *Subarcthoplites* in which the test is coarsely striated—and in which the umbilical ends of the primary ribs are delicately emphasized; further emphasis, accompanied by obsolescence of ribbing on the outer flank and venter, leads to *Freboldiceras*.”

Although typical specimens of *Freboldicera* and “*Subarcthoplites*” can be separated with no difficulty, a few passage forms with intermediate characters cannot readily be assigned to either taxon. In such a situation, two courses of action are open to the paleontologist. One is to lump together as one highly variable genus the representatives of both taxa; this successfully eliminates the problem of placement of the passage forms, but it may obscure fundamental differences in what might be two separately evolving lineages derived from a common ancestor. Lumping together of possibly intergrading forms also demands precise stratigraphic control and the demonstration that the fossils under consideration may have coexisted as a single population. This latter requirement can best be met by finding many specimens together in a single bed or in a single concretion, as in the thoroughly convincing study of ammonite variation published by Reeside and Cobban (1960).

Such precise control is lacking in the Alaskan forms under consideration: (1) because the fossils mainly occur singly in isolated calcareous concretions, many of which were concentrated on the surface of the ground by erosion of the enclosing shaly matrix, and have subsequently rolled downhill and are now out of their original stratigraphic position; (2) because of the difficulty and expense of reaching the type locality, sufficient time has not been available for trenching the outcrop and obtaining fossils in place.

The other alternative to lumping is, of course, to regard the two forms as constituting distinct, although closely related, genera, with the passage forms serving to demonstrate that both were probably derived from a common ancestor. This procedure is followed herein (text fig. 7) but with the full realization that it is arbitrary and that when more specimens and better stratigraphic control are available, it may be necessary to unite both taxa to form one highly variable genus.

FIGURE 17.—Concept of derivation of *Grantziceras*, *Freboldiceras*, and *Arcthoplites* from a common ancestor. *Freboldiceras* and *Arcthoplites* overlap in certain characteristics which necessitates an arbitrary subdivision of the two.

Comparison of suture lines of *Freboldiceras*, *Arcthoplites*, and *Grantziceras* show basic similarities between the three groups. In particular, the suture of *G. glabrum* approaches that of *Freboldiceras*, so it seems possible that these three taxa were derived from common ancestral species as shown in figure 17.

Freboldiceras singulare Imlay

Plate 7, figures 1–25; text figure 18

The shell of *Freboldiceras singulare* is compressed with slightly inflated, rounded flanks, evenly rounded venter, and moderately wide, shallow umbilicus with sloping walls and a rounded shoulder. Ornamentation consists of ribs that are swollen on the umbilical shoulder and lower flanks and that are obsolete to varying degrees on the outer flanks and venter. The shell is smooth up to a diameter of 8 mm at which point low, widely spaced elongate riblets and bundled striae appear on the umbilical shoulder and lower flank (pl. 7, figs. 1–3). The riblets are radial and die out on the upper flank; the striae cross the venter with forward projection. The whorl is about as broad as it is high in early stages, and whorl height increases rapidly with increased diameter, so that at 16 mm the ratio of breadth to height is about 0.65. Ornamentation gradually becomes more prominent with increased growth, and at a diameter of 15 to 20 mm umbilical swellings become broader and higher, and irregular secondary ribs may appear on the outer flanks (pl. 7, figs. 4–6, 10–12); neither primary nor secondary ribs cross the venter. Development beyond this stage leads either to *F. singulare* through effacement of the secondary ribs or to...
Arcthoplites talkeetnamus through emphasis of the secondary ribs and strengthening of the primary ribs. The specimen of *F. singulare* shown on plate 7, figures 7 to 9, has strong slightly flexed primary ribs with indistinct broad intercalated secondary ribs on the outer flank and venter. Such ribs are missing on the specimens shown on plate 7, figures 16 to 20, 24, and 25. On the latter specimen, ornamentation weakens at a fairly early stage, and the body chamber is nearly smooth except for shallow constrictions and bundled striae. Another variation in the ornamentation pattern is shown by the specimen figured on plate 7, figures 21 to 23, on which the primary ribs are very coarse on the lower flanks, become broad and flattened on the outer flank, and tend to bifurcate irregularly to form secondary ribs that cross the venter as low bulges. This specimen shows obvious affinities to the more coarsely ribbed specimen of *A. talkeetnamus* shown on plate 7, figures 26 to 28, and may be regarded as a passage between the two genera. Another similar, although larger, specimen with a diameter of 60 mm is in the paleontology collections of the University of California, Los Angeles, and was examined through the courtesy of Professor W. P. Popenee. At a whorl height of 16 to 18 mm, thin strong primary ribs bifurcate on the outer flank and secondary ribs cross the venter with little decrease in strength, as is typical for *A. talkeetnamus*. At a whorl height of about 18 to 20 mm the whorl is constricted, and the primary ribs become obsolete on the outer flank and are marked on the venter by low faint ridges; this ornamentation is identical with that of the specimen of *F. singulare* shown on plate 7, figures 21 to 23. At larger whorl heights some primary ribs again bifurcate and are prominent on the venter. This specimen is clearly intermediate between *Freboldiceras* and *Arcthoplites*, as at different stages of its development it shows the characteristics of both genera.

The suture line (text fig. 18) of *F. singulare* is simple with broad, shallowly incised saddles and lobes. No essential differences are seen between the sutures of *F. singulare* and *A. talkeetnamus*, and this further supports the concept of their close relationship. In addition, the suture line of *Grantsiceras glabrum* (text fig. 16) is similar to that of *Freboldiceras*, and this suggests a common ancestor for these three genera.

Measurements: The measurements of specimens are given in millimeters, except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Diameter</th>
<th>Height</th>
<th>Breadth</th>
<th>Ratio of breadth to height</th>
<th>Width of umbilicus</th>
<th>Umbilicus (percent of diam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 128868 1</td>
<td>10</td>
<td>24</td>
<td>19</td>
<td>0.78</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>132116</td>
<td>22</td>
<td>4.4</td>
<td>4.6</td>
<td>1.04</td>
<td>2.9</td>
<td>20</td>
</tr>
<tr>
<td>132117</td>
<td>31</td>
<td>9.4</td>
<td>7.3</td>
<td>0.79</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>132118</td>
<td>31</td>
<td>12.5</td>
<td>11.4</td>
<td>0.81</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>132119</td>
<td>22</td>
<td>9.6</td>
<td>7.5</td>
<td>0.79</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>132120</td>
<td>31.6</td>
<td>14.5</td>
<td>11.3</td>
<td>0.78</td>
<td>7.7</td>
<td>24</td>
</tr>
<tr>
<td>132121</td>
<td>23</td>
<td>15.6</td>
<td>16</td>
<td>0.92</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>132122</td>
<td>52</td>
<td>26</td>
<td>26</td>
<td>1.07</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>132123</td>
<td>41</td>
<td>15.6</td>
<td>15.5</td>
<td>0.82</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>132124</td>
<td>42</td>
<td>14.7</td>
<td>18</td>
<td>0.81</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>

1 Holotype, measurements from Inlay (1959, p. 183).
2 Slightly crushed.

Holotype: USNM 128868.

Type locality: USGS Mesozoic loc. 24877.

Figured specimens: USNM 132116, 132117, 132118, 132119, 132120, 132121, 132122, 132123.

Collecting localities: USGS Mesozoic locs. 24877, M553, M556.

Stratigraphic position: Unit A-2; Zone of *Broccliceras hulenense*; Late early Albian.

Genus ARCTHOPLITES Spath

Type species (by original designation): *Hoplites jachromensis* Nikitin.

Ammonites from Alaska and Canada herein referred to *Arcthoplites* have had a long and somewhat confused nomenclatural history. *Arcthoplites* was originally based on *Hoplites jachromensis* Nikitin (1888, p. 57, pl. 4, figs. 1–7), an ammonite that on early whorls is characterized by alternating long and short ribs and on later whorls by slightly flexed primary ribs that bifurcate high on the flanks to form a characteristic γ-shaped pattern.

McLearn found some arcthoplitid specimens near the Brule Rapids on the Athabasca River in Canada. He designated these specimens by the manuscript names *A. (?) limpidianus* and *A. (?) bell* and sent them to Spath (Spath, 1942, p. 688) for additional study. Spath referred these specimens to his new genus *Lemuroceras* (Spath, 1942, p. 687), and McLearn (1945) later validated *A. (?) bell* as *L. bell*. As originally proposed, *Lemuroceras* was without description or diagnosis and was based on a species, *Pseudohaploceras (Deshayesites) aburense* Spath (1933, p. 801, pl. 128, figs. 3a, b, 6a, b), which was figured but not described. *Lemuroceras* as proposed was thus a nomen nudum, but this was rectified by Collignon (1949) who diagnosed

**Figure 18.—Suture line of Freboldiceras singulare* Inlay, plesiotype USNM 132121 from USGS Mesozoic locality M556. Specimen illustrated on plate 7, figures 16, 17, 24, 25. X 4½.
both the genus and the type species and described nine new species. In 1953 Crickmay objected to referring L. bellii McLearn to Lemuuroceras and, instead, assigned it to his genus Coloboceras, which in turn was rejected by Casey (1954) as a homonym. Casey supported Crickmay's contention that L. bellii was improperly assigned to Lemuuroceras, and he created a new genus, Subarcthoplites, with L. bellii as type species.

According to Casey (1954, p. 111), Subarcthoplites is: "Like Arcthoplites, but with more convex venter, the ribs bifurcating from a lower point on the flanks and without the pronounced tendency to cupid's-bow curvature. Umbilical wall subvertical, fairly high, with rounded rim. Suture line as in Arcthoplites." Casey further emphasized that Subarcthoplites is clearly distinct from Lemuuroceras, as that genus is a more planulare form with an oblique generally rimless umbilical wall and with less frequent bifurcation of the ribs.

Imlay (1961, p. 59–60) reluctantly accepted Subarcthoplites and suggested that it is more closely related to Lemuuroceras than to Arcthoplites and might be regarded as a subgenus of the former. Regarding the relationship of Subarcthoplites to Arcthoplites, Imlay (1961, p. 60) stated, "Some of the immature specimens of Subarcthoplites bellii (McLearn) from Alaska are similar in appearance to the immature specimens of Arcthoplites jachromensis (Nikitin) (1888, pl. 4, fig. 7), but the adults are clearly differentiated by lower points of rib branching, by constrictions, and by a tendency for the ribbing to disappear on the body chamber instead of becoming coarser." In another paper by Imlay (1960, p. 108–111), written after but published before U.S. Geological Survey Professional Paper 335 (Imlay, 1961), he recognized L. talkeetnanum as well as L. (Subarcthoplites) aff. L. bellii (McLearn).

Preliminary studies of many specimens of "Lemuuroceras" bellii obtained from the upper Chitina Valley, as well as the specimens of "Lemuuroceras" talkeetnanum discussed below, indicate that both of these species can indeed be assigned to Arcthoplites, and that if Subarcthoplites is deemed to be useful, it should be regarded as a subgenus of Arcthoplites.

A. bellii will be thoroughly discussed in another paper; briefly, the reasons for its inclusion in Arcthoplites are summarized as follows: This species has been found to be highly variable morphologically, and previous descriptions based on one or two specimens are inadequate. For example, the position of rib branching is variable; on some specimens it occurs lower on the flanks than on typical A. jachromensis, but on other specimens it is equally high. Also, on some specimens the cupid's-bow, or Y-shaped branching pattern, is well developed, but on others the secondary ribs may be intercalated freely or only weakly joined to the primaries so that the branching pattern is not as apparent. The convexity of the venter is also variable and is mainly dependent on the inflation of the whorls. Some specimens of A. bellii have a flattened venter identical with that of Nikitin's (1888) specimen figured by him on plate 4, figure 7.

Arcthoplites talkeetnanum (Imlay)

Plate 7, figures 29–31; plate 8, figures 1–18; plate 9, figures 1–2; text figure 19

Arcthoplites talkeetnanum has a compressed whorl section with slightly inflated flanks, broadly and evenly rounded to slightly flattened venter, moderately wide umbilicus with sloping umbilical walls, and evenly rounded shoulder. Ornamentation is prominent and variable. On early whorls, at diameters up to about 8 mm, the shell is smooth. Up to a diameter of 15 mm, the shell is similar to that described for Freboldioceras singulare. At a diameter of 18 to 20 mm, primary ribs are well developed and spring from elongate swellings or bullae on the umbilical shoulder and lower flank; secondary ribs are also present and either arise freely below the midflank or split from the primary ribs. Both primary and secondary ribs cross the venter with forward projection and with a tendency to weaken along the midventral line (pl. 8, figs. 4–6; 10–12). Some specimens at this stage exhibit a well-developed Y-shaped pattern of bifurcation of the primary ribs (pl. 8, fig. 3), but this is more commonly developed at somewhat larger diameters. At diameters of more than 20 mm, ornamentation is variable; some specimens show coarse flexed ribs that bifurcate regularly high on the flanks to produce the cupid's-bow pattern typical of the genus (pl. 7, figs. 26–28). These specimens tend to be inflated with a wide umbilicus. On other, generally more compressed forms the umbilicus is narrower, the ribs split lower on the flanks (pl. 7, figs. 29–31), and additional intercalated ribs may appear high on the flanks (pl. 8, fig. 7). At diameters of about 50 mm ornamentation begins to weaken, and the ribs become more rectilinear with a less pronounced tendency to split into secondary ribs (pl. 8, figs. 13–17). The diameter at which ornamentation becomes obsolete is variable, however, as is shown by the specimen on plate 8, figures 1 to 3, on which the ribs begin to weaken at a diameter of about 30 mm. At very large diameters the
shell is smooth except for bundled growth striae and irregular riblets (pl. 8, fig. 18; pl. 9).

The suture line (text fig. 19) is similar to that of *F. singularare* with a first lateral saddle that is very broad and shallowly incised; the first lateral lobe is somewhat deeper than the ventral lobe, and the second lateral saddle is highly asymmetric.

A. talkeetnunus is closely related to *A. bellii* (McLear). It differs from that species mainly by having coarser bullae along the umbilical shoulder, particularly on the early whorls. This difference is especially apparent when comparing the more coarsely ribbed variants of each species; that part of each whorl exposed within the umbilicus bears low, indistinct bullae on *A. bellii* and very prominent swollen bullae on *A. talkeetnunus*. No intergradation in this feature has been observed between the two species.

Measurements: The measurements of specimens are given in millimeters, except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Diameter</th>
<th>Height</th>
<th>Breadth</th>
<th>Ratio of breadth to height</th>
<th>Width of umbilicus</th>
<th>Umbilicus (percent of diam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 13016</td>
<td>12</td>
<td>39</td>
<td>18</td>
<td>0.76</td>
<td>30.5</td>
<td>25</td>
</tr>
<tr>
<td>132225</td>
<td>30</td>
<td>24</td>
<td>11</td>
<td>0.79</td>
<td>36.5</td>
<td>25</td>
</tr>
<tr>
<td>132226</td>
<td>29</td>
<td>26</td>
<td>15</td>
<td>0.77</td>
<td>36.5</td>
<td>25</td>
</tr>
<tr>
<td>132227</td>
<td>50</td>
<td>23</td>
<td>13</td>
<td>0.72</td>
<td>21.5</td>
<td>25</td>
</tr>
<tr>
<td>132228</td>
<td>116</td>
<td>78</td>
<td>35</td>
<td>0.71</td>
<td>54.3</td>
<td>25</td>
</tr>
</tbody>
</table>

1 Holotype, measurements from Imlay (1960, p. 110).

Holotype: USNM 13015.

Type locality: USGS Mesozoic Loc. 24877.

Figured specimens: USNM 132224, 132225, 132226, 132227, 132228, 132229, 132230.

Collecting locality: USGS Mesozoic Loc. 24877, 5556, 5559, 5572.

Stratigraphic position: Upper Albian, early Albian.
Mesopuzosia aff. *M. indopacifica* (Kossmat)

Plate 4, figures 30–35

Eight specimens from the Matanuska Formation show affinities with *Mesopuzosia indopacifica*, but they are too poorly preserved for positive identification. All these specimens are fragmentary and have been crushed and deformed to varying degrees. The whorls are moderately compressed with slightly inflated flanks, broadly rounded venter, subvertical umbilical wall, and abruptly rounded umbilical shoulder. Ornamentation is variable at different growth stages and also between individuals. At diameters of less than 30 mm, the shell is apparently smooth except for periodic constrictions. At a diameter of about 50 mm, ornamentation consists of fine alternating long and short ribs, the long ribs predominating. The long ribs arise near the umbilical shoulder and the short ribs on the lower flank or near midflank. The long ribs have a slightly sinuous course on the flank, and both sets of ribs cross the venter with equal strength and with strong forward projection. The fairly deep broad constrictions have a slightly oblique course across the flanks and are projected forward, parallel to the ribs, on the venter. The constrictions are usually bordered by a strong ridge that may occur on either side but more commonly on the posterior side. On large specimens, of which only fragments are known from Alaska, the ornamentation is variable in strength and in number of intercalated secondary ribs. On the specimen shown on plate 4, figure 32, differentiation between secondary ribs and primary ribs is slight, and secondary ribs that arise near midflank are few. On the specimen shown on plate 4, figure 31, as many as three secondary ribs are intercalated between the primaries, and these arise at about midflank.

The Alaskan specimens differ from Kossmat's (1898, pl. 17, fig. 2) figured specimen by having finer more distinctly developed alternating long and short ribs with less pronounced forward projection on the venter. Matsumoto (1954, p. 85) has described specimens of this species from Japan on which the ornamentation consists of distinctly alternating long and short ribs.

* **M. pacifica** Matsumoto (1954, p. 82, pl. 14, fig. 1; pl. 15, fig. 1, 2; pl. 16, figs. 1–3; text fig. 2) is closely related to *M. indopacifica* and may not be specifically distinct. According to the original description, *M. pacifica* differs from *M. indopacifica* by having inflated flanks, a somewhat broader whorl, and ribs with a slightly more flexed course on the flanks. Specimens from Madagascar identified by Collignon (1961, p. 50, pl. 15, fig. 2, pl. 20) as *M. pacifica* appear to be similar to the Alaskan forms, but their preservation is too poor to permit detailed comparisons.

Most of the Japanese specimens of *M. pacifica* differ from the Alaskan forms by having stronger ornamentation on the lower flanks, with primary ribs continuing to the umbilical seam. Likewise, the specimen from California, identified by Matsumoto (1959b, p. 19, 20) as *M. indopacifica* [= *Puzosia (Parapuzosia) hearni* Anderson, 1958, p. 238, pl. 38, fig. 1] has somewhat stronger ribs on the lower flanks, but in density and pattern of ribbing it agrees closely with the Alaskan specimens.

Figured specimens: USNM 132134, 132135, 132136, 132137, 132138.

Collecting localities: USGS Mesozoic localities 24229, M601.

Stratigraphic position: Unit C-1, associated with *Inoceramus cf. I. cuvierii* and other species of probable Turonian age.

Genus MOFFITITES Imlay

Type species (by original designation): *Moffitites robustus* Imlay, 1959.

The genus *Moffitites* is characterized by moderately to extremely inflated whorls, moderate involution, and primary ribs that bifurcate on the ventrolateral shoulder to form secondary ribs. These ribs cross the venter with moderate forward projection and with a tendency to weaken along the midventral line; shallow constrictions are variably present and are parallel to the ribs. This genus was named from specimens obtained from the Chitina Valley; the specimen from the Matanuska Formation of the Talkeetna Mountains is the only one known outside of the type area.

Moffitites robustus Imlay

Plate 4, figures 24–26; text figure 20

Moffitites robustus is represented by one small specimen from the Matanuska Formation obtained from USGS Mesozoic locality M557, where it occurs in association with *AuceUina* sp. (pl. 4, figs. 27–29). This specimen agrees well with Chitina Valley specimens, particularly the one illustrated by Imlay (1960) on plate 13, figures 11 and 12, although its ribs are slightly coarser and constrictions appear at a much earlier stage. Such minor differences are not important, however, as preliminary studies of recently obtained large collections of *Moffitites* from the type locality and elsewhere in the Chitina Valley indicate a wide range of morphologic variation for this species.

Holotype: USNM 120874.

Type locality: USGS Mesozoic loc. 2191, Fohlin Creek, Chitina Valley, Alaska.
CRETACEOUS AMMONITES FROM MATANUSKA FORMATION, SOUTHERN ALASKA

Figure 20.—Suture line of *Yofitites robustus* Imlay, plesiotype USNM 132139 from USGS Mesozoic locality M557. Specimen illustrated on plate 4, figures 24-26. × 9.

Figured specimen: USNM 132139.
Collecting locality: USGS Mesozoic loc. M557.
Stratigraphic position: Unit A-1; zone of *M. robustus*, early early Albian.

Family ACANTHOCERATIDAE

Genus CALYCOCERAS Hyatt

Type species (original designation): *Ammites navicularis* Sharp.

Calycoceras sp. indet.

Plate 3, figures 1, 2; text figure 21

One large and several smaller fragments of *Calycoceras* are present in the Survey's collections from the Matanuska Formation, and three fragments are present in the Shell Oil Co. collections in Seattle, Wash. All these specimens are crushed, and positive specific identification cannot be made, although they appear to be most similar to *C. stoliczkai* Collignon. The figured specimen consists of a large fragment of a body chamber that has been distorted and deeply eroded on one side. Ornamentation consists of very prominent thin ribs separated by wide rounded interspaces. The ribs are alternately long and short; the long ribs begin at the umbilical seam and bear a distinct tubercle at the umbilical shoulder; the short ribs arise freely on the lower flank, and both primary and secondary ribs cross the venter with equal strength. Preservation of the ventral part of the figured specimen is too poor to determine positively if ventrolateral tubercles are present, but one of the Shell Oil Co. specimens shows a low node in this position.

A reconstruction of the whorl section of the figured specimen (text fig. 21) shows that the whorl is depressed, broader than high, with a rounded between-rib cross section. This reconstruction is probably not accurate enough to permit determination of the ratio of breadth to height.

Matsumoto (in Matsumoto and others, 1957, p. 19) has described *Calycoceras of C. stoliczkai* Collignon from the Cenomanian of Japan, which appears to be close to the Alaskan specimens. According to Matsumoto, on the Japanese form, "The outer whorl is ornamented with very strong ribs that are usually alternating long and short. The long ribs are provided with prominent tubercles at the umbilical shoulder, while the short ribs disappear just above it. Other tubercles are nearly completely obsolete on the outer whorl, but are discernible on the inner whorls." This description fits the Alaskan forms, but better preserved specimens are needed for positive identification.

Figured specimen: USNM 132140.
Collecting locality: USGS Mesozoic loc. M595.
Stratigraphic position: Sandstone member of unit B, probably of about mid-Cenomanian age.

Family COLLIGNONICERATIDAE

Genus SUBPRIONOCYCLUS Shimizu

Type species (original designation): *Prionocyclus hitchinensis* Billinghurst.

Subprionocyclus normalis (Anderson)

Plate 6, figures 12-14; Text figure 22

Only one small specimen of *Subprionocyclus normalis* is known from southern Alaska, and this is the only North American representative of the genus known from north of Oregon. This single specimen is of particular interest, as it was found on the top of a mud cone in the Copper River Basin, many miles from the...
The species is highly variable. 0.6.

Radially elongate umbilical bullae lateral characterised, a small umbilicus, flat. It is a small fragment consisting of about half a whorl and is characterized by a small umbilicus, flat slightly convergent flanks, and a narrow fastigate venter which bears a sharp median heel. Ornamentation consists of flexed primary ribs that spring in pairs from radially elongate umbilical bullae together with occasional secondary ribs that arise freely between the primaries at about midflank. Clavate tubercles are well developed on the ventral shoulder, although the lower part is less rounded. For this genus is scarcely discernible. In this regard, the specimen approaches Beesdites, which is characterized by a single row of ventrolateral tubercles; however, typical specimens of S. normalis do not show the double ventrolateral tubercles until a diameter larger than that of the Alaskan specimen is attained. The suture line is relatively simple with a wide asymmetrical bifold first lateral saddle and a narrow first-lateral lobe that is deeper than the ventral lobe. This suture agrees well with that figured by Matsumoto (1959b, p. 120, fig. 66b) for a specimen of S. normalis from California.

Large collections of S. normalis obtained from a single locality near Redding, Calif., show that this species is highly variable. Matsumoto (1959b, p. 120) reported that the ratio of width of umbilicus to diameter ranges from 15 to 30 percent and that the B/H ratio is normally less than 0.7 and commonly between 0.5 and 0.6. Ornamentation is also variable, both in strength and number of ribs and in prominence of umbilical and ventrolateral tubercles. The Alaskan specimen falls well within the range of variation of the California specimen, as shown by the following measurements:

Measurements: The measurements of specimens are given in millimeters, except as indicated.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Diameter (mm)</th>
<th>Height (mm)</th>
<th>Breadth (mm)</th>
<th>Ratio of breadth to height</th>
<th>Width of umbilicus (mm)</th>
<th>Umbilicus (percent of diam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNM 132141</td>
<td>ca. 20</td>
<td>7.9</td>
<td>4.6</td>
<td>0.58</td>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>

Figured specimen: USNM 132141.

Collection locality: USGS Mesozoic loc. M1795, on mud cone in Copper River Lowland.

Stratigraphic position: Unknown.

Family KOSSMATICERATIDAE

Genus EOGUNNARITES Wright and Matsumoto

Type species (original designation): *Olocostephanus unicus* Yabe.

Eogunnarites alaskaensis Matsumoto

Plate 3, figure 3

Only one specimen of *Eogunnarites alaskaensis* is known from the Matanuska Formation of the Talkeetna Mountains, although several crushed fragments may belong to this species. The figured specimen is a large fragment of a crushed body chamber and a fragment of the ventral part of the preceding whorl. Identification of this specimen is based mainly on the nature of the ornamentation, which consists of sharp, closely spaced, narrow primary ribs which bifurcate on the flanks to produce secondary ribs of equal strength. Rib interspaces are rounded and wider than ribs. One broad, deep constriction is present which appears to cut the ribbing at a slight angle. The venter, as shown by the undeformed septate fragment, is broad and evenly rounded.

Despite the poor preservation of the Talkeetna Mountains specimen, the characteristic ornamentation and whorl shape permit identification of this species.

Figured specimen: USNM 132142.

Holotype: USNM 132237.

Type locality: USGS Mesozoic loc. 25444, Chitina Valley, Alaska.

Collecting locality: USGS Mesozoic loc. M508.

Stratigraphic position: Lower siltstone member of unit B: zone of *Desmoceras* (*Pseudohalipliga*) *japonicum*, Cenomanian.
Genus HULENITES Matsumoto

Type species (original designation): Puzosia reesidei Anderson.

Hulenites sp.

Plate 4, figures 19–20, 22–23; text figure 23

Two specimens referable to Hulenites were obtained from USGS Mesozoic locality M556. These are similar to specimens from the Chitina Valley figured by Inlay (1960, pl. 18, figs. 18–21) as Hulenites cf. H. reesidei (Anderson). The smaller specimen has rounded whorls, deep oblique constrictions, and numerous very fine threadlike ribs that arise on the lower flank and cross the venter with a forward projection and without appreciable weakening. The larger specimen is generally similar, but the constrictions and ribs are more sinuous. The ribs arise just below midflank, either singly or in bundles of two or more, bend backward at midflank and curve forward on the outer flanks, and weaken on the venter. Faintly bundled striae trend obliquely forward on the lower flank. On the body chamber, which is rounded, rather than flat, flanks. On the holotype of H. reesidei, the venter. Faintly bundled striae trend obliquely forward on the outer flank, and weaken on the venter. Ridges slightly more prominent than the ribs.

These specimens are close to a paratype (CAS 8842) of H. reesidei from California, as was pointed out by Murphy (1956, fig. 6), H. reesidei occurs in the Acanthohoplites gardneri and H. reesidei (latest Aptian or earliest Albian) zones of California and thus is older than the Alaskan species.

H. jimbo (Anderson) and H. onona (Anderson) are also closely related to the Alaskan forms and apparently are of approximately the same age. H. jimbo has coarser ribs, and H. onona has much less conspicuous constrictions.

Figured specimens: USNM 132143a, 132143b.

Collecting localities: USGS Mesozoic locs. M553, M555.

Stratigraphic position: Unit A–2; zone of Breveroceras hulmenense, late early Albian.

REFERENCES

Nikitin, S., 1888, Les vestiges de la période crétacée dans la russe centrale: Mém. de Comité Géol., v. 5, no. 2, 205 p., 5 pls.

——1883, Descriptions of two new species of ammonites from the Cretaceous rocks of the Queen Charlotte Islands: Canadian Record Sci., v. 5, no. 8, p. 441–446, pl. 7.

INDEX

[Italic page numbers indicate major references and descriptions]

A

Page

Abundosoceras, Pseudophyloceras (Deshayesites) 38
Acanthoceratidae ... 42
Acanthodesmoceras gardneri .. 44
acutus, Turritilita 4, 14
agglutinated, Eupunctites 26
affine, Beudanticeras 31, 35
Anagaudryceras ... 31
Bendoritites (Grantziceras) 31
Desmoceras ... 31, 35
glabrum, Desmoceras .. 35
Graniticeras ... 16, 17
Granitiziceras ... 7, 12, 31, 32, 34, 35
alaska, Pseudoceras 3, 4, 16, 17, 60; pl. 4
alaskansis, Eupunctites 4, 10, 12, 16, 17, 17
alaskum, Calliphylloceras (Wollemanniceras) 3
Albian age rocks, Chitina Valley 4
Albian fauna ... 12
alderami, Calliphylloceras 3
alecksoni, Buchyphylloceras 14
Anamminites cretaceus .. 14
Ammonite ... 16, 17, 18, 19, 20, 21
good geographic distribution 15
Hamfield ... 16, 17
Ammonites bidens .. 25
harreri ... 62
mi1a ... 27
nepa ... 23
timokawus 24
Ammonitida ... 28
Anapagadiceras 8, 82, 25; pl. 1
aurarium ... 3
cuppi ... 8, 16, 17
paksi ... 35
nepa ... 26, 27
Anisoceras merriami .. 13
grenada, Globotruncanus ... 14, 15
Artoceras ... 3, 8, 12, 37, 38, 39
bella ... 8, 16, 17, 38, 39; pl. 1
frackmanesi .. 39
limpidianus .. 38
talkeetanensis .. 7, 16, 17, 28, 39, 40; pl. 7, 8, 9
sp ... 4
Arctic Slope, Turritilita beds ... 15
Auselina ... 9, 13
sp ... 3, 7, 16, 17, 41
aurarium, Anapagadiceras 3

B

Baetidae ... 28
boscoides, Halesites 28
Stipoceras ... 28
Bald Hills Member .. 13
belei, Lytoceras ... 22
Buchyphylloceras alexanderi ... 14
bella, Artoceras .. 8, 16, 17, 38, 39, 40
Lemuroceras ... 38
(Buchyphylloceras). 3, 39
beulense, Gaudryina .. 14

Page

Beudanticeras ... 3, 12, 30, 31, 35
glabrum ... 3, 31, 35
Calliphylloceras (Wollemanniceras) alaskanum .. 3
fossilinae ... 3
Cyprioceras ... 12
sp ... 10, 13, 16, 17, 17; pl. 3
Campian beds, lutite .. 10
Capnolites ... 1, 12
Cape Douglas arzn., Lower Cretaceous rocks 14
sp ... 6, 16, 17
Carlib Mountain, fault system 14
Cenomanian age, sandstone, Unit B 9
fossil ... 12
northern Alaska .. 14
rocks ... 2
siltstone ... 9
Cenomanian sandstone unit, basin member 9
Cenomanian to Santonian age, Unit C 10
Chichagofy Mudstone Member of Budden .. 13
Canyon Formation ... 13
Chitina Valley, ammonite fauna 3
Chitinaanus, Phyllepoceras ... 16, 17
Chugach Mountains, North Front 7
Chiciedo stephensoni .. 14, 15
Chloroceras ... 12
Callignonoceratidae .. 42
Chloroceras ... 29
complania, Policeras .. 14
crankerius, Nickajackoceras (Inoceramus) 11, 14, 16, 17
Coniacian age, lutite .. 15
Coniacian and Santonian age, Unit C-2 .. 11
Coniacian strata .. 2
Cras fragmenta ... 16, 17
crenoceratida, Lycoceras 22
crakro, Crinitolinidae .. 14
Globigerina ... 14
crakro, Ammodoceras .. 14
Crinitolinidae cretaceus .. 14
cumacea, Marshnillia .. 4
custieri, Inoceramus .. 4, 8, 11, 14, 16, 17, 41

D

dawsoni, Desmoceras .. 29
Desmoceras (Pseudophyloceras) 4, 10, 13
Epiprepoceras ... 3
Donner, Leonidites ... 3
Draploceras ... 14, 16, 17, 44
Elococeras ... 22
(Deshayesites) aburunse, Pseudophyloceras 38
Desmoceras .. 36
affine ... 31, 35
glaborum ... 35
epicycle ... 29
glabrum ... 31, 35
epicycle ... 29
Japania ... 4

E

Eogunnarites ... 43
alaskaensis ... 6, 10, 12, 16, 17, 47; pl. 3
Epiprepoceras ... 3
epiprepoceras ... 24
Epiprepoceras ... 24
Epiprepoceras sp ... 14
Pseudoceras sp ... 11, 16, 17
crakro, Lytoceras ... 22

F

Faunal sequence, Albian rocks ... 3
Cenomanian rocks ... 5
mid-cretaceous ... 3
floreas Gilroyida ... 14
fossilinae, Calliphylloceras (Wollemanniceras) 3
Familiferus sequence, Albian rocks 2
Freeheliceras ... 4, 54, 36, 37, 38
singulare ... 3
7, 12, 16, 17, 35, 37, 38, 39, 40; pl. 7

G

Gabbroceras ... 24, 25, 26; pl. 1
analgum ... 28, 27
inslag ... 23
winterium 22
pardoii, Acanthocupites .. 44
Gastropods ... 4
absent, northern Alaska .. 4
Gaudryceras ... 14, 16, 17, 44
Draploceras ... 14, 16, 17, 44; pl. 1
Draploceras ... 22
gastropods ... 14
sp ... 14

47
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmidti, Huleniites</td>
<td>14</td>
</tr>
<tr>
<td>recedii, Huleniites</td>
<td>3, 44</td>
</tr>
<tr>
<td>Puzosia</td>
<td>44</td>
</tr>
<tr>
<td>reedii</td>
<td>43</td>
</tr>
<tr>
<td>Regulites</td>
<td>4</td>
</tr>
<tr>
<td>Roboosa mitterlei</td>
<td>14</td>
</tr>
<tr>
<td>robustus, Moffittites</td>
<td>3, 7, 9, 12, 16, 41, 62</td>
</tr>
<tr>
<td>roperi, Puzosigella</td>
<td>3</td>
</tr>
<tr>
<td>sacya, Anagaudryceras sacya</td>
<td>3</td>
</tr>
<tr>
<td>Santonian rogersi, Sciponoceras</td>
<td>3</td>
</tr>
<tr>
<td>Scaphitidae Regularis</td>
<td>7, 16, 17, 35, 37, 38, 39</td>
</tr>
<tr>
<td>Reesidites reesidei, Hulenites</td>
<td>6</td>
</tr>
<tr>
<td>scalarites, Moffittites</td>
<td>3, 7, 12, 16, 41, 62</td>
</tr>
<tr>
<td>Sheep Mountain, baculoides</td>
<td>7</td>
</tr>
<tr>
<td>Stomatocentrum</td>
<td>39</td>
</tr>
<tr>
<td>subarcthoplites bell, Lemuroceras</td>
<td>3, 39</td>
</tr>
<tr>
<td>Subpseudocyclites normalis</td>
<td>4, 14, 15, 16, 49, 69, 66</td>
</tr>
<tr>
<td>talkeetnanum</td>
<td>3</td>
</tr>
<tr>
<td>talkeetnanus, Arcthopilites</td>
<td>3, 37, 39</td>
</tr>
<tr>
<td>Talkeetna Mountains, Matanuska Formation</td>
<td>3</td>
</tr>
<tr>
<td>talkeetnumum, Lemuroceras</td>
<td>3, 37, 39</td>
</tr>
<tr>
<td>Subarcthopilites teshioensis</td>
<td>39</td>
</tr>
<tr>
<td>Subarticulites, Subphyllocystites</td>
<td>28</td>
</tr>
<tr>
<td>tenuispira, Taxyphites</td>
<td>29</td>
</tr>
<tr>
<td>Upper Cenomanian rocks, Chitina Valley</td>
<td>4</td>
</tr>
<tr>
<td>Upper Cenomanian rocks, Chitina Valley</td>
<td>4</td>
</tr>
<tr>
<td>Tetragonites, Tetragonitidae</td>
<td>12, 16, 17, 35, 37, 38, 39</td>
</tr>
<tr>
<td>Upper Cenomanian rocks, Chitina Valley</td>
<td>3</td>
</tr>
<tr>
<td>U.S. GOVERNMENT PRINTING OFFICE: 1966 0—221-689</td>
<td></td>
</tr>
</tbody>
</table>
PLATES 1–9
 Both specimens from USGS Mesozoic loc. M600.
 1, 2. Side and back views of USNM 132145.
 3, 4. Side and ventral views of USNM 132146.

 5–7. Side, front, and back views of plesiotype USNM 132085 from
 USGS Mesozoic loc. M568.
 13–15. Side, front, and back views of plesiotype USNM 132086 from
 USGS Mesozoic loc. M556.

8–9. Lytoceras sp. (p. 21).
 Front and side views of USNM 132083b from USGS Mesozoic loc.
 M556.

 Side, front, and back views of plesiotype USNM 132087 from USGS
 Mesozoic loc. 24837.
CRETAceOUS AMMONITES FROM THE LOWER MATANUSKA FORMATION
PLATE 2

[All figures natural size]

7–8. Side and back views of USNM 132092 from USGS Mesozoic loc. M600.
9–10. Side and back views of USNM 132093 from USGS Mesozoic loc. M600.
11–12. Side and back views of USNM 132094 from USGS Mesozoic loc. M600.

19–22. *Sciponoceras* sp. (p. 28).

USNM 132100 from USGS Mesozoic loc. M600. Note deep oblique constriction at adoral (lower) end.

19. Left side.
21. Right side.
22. Ventral side.
CRETACEOUS AMMONITES FROM THE LOWER MATANUSKA FORMATION
PLATE 3

[Figures natural size except as indicated]

Figures 1–2. Calycoceras sp. indet. (p. 42).
Back and side views of USNM 132140 from USGS Mesozoic loc. M505.
\(\times \frac{3}{2} \). Specimen distorted and flattened, and ribs eroded from left side of specimen in figure 1.

3. Eozunarites alaskaensis Matsumoto (p. 43).
Side view of plesiotype USNM 132142 from USGS Mesozoic loc. M598.
Specimen crushed.
CRETACEOUS AMMONITES FROM THE LOWER MATANUSKA FORMATION
PLATE 4

(Figures natural size except as indicated)

 All specimens from USGS Mesozoic loc. M556.
 4–6. Side, front, and back views of USNM 132132. × 2.
 7–9. Side, front, and back views of USNM 132133.
10–11. Desmoceras (Pseudouhligella) japonicum Yabe (p. 28).
 Side and back views of USNM 132102 from USGS Mesozoic loc. M596.
 Side, front, and back views of USNM 132084 from SOC T–1006.
15–18. Otoecaphites tebbii (Yabe) (p. 27).
 Side, front, and back views of USNM 132099 from USGS Mesozoic loc. 24853.
19, 20, 22, 23. Hulenites sp. (p. 44).
 19, 20. Side and back views of USNM 132143a from USGS Mesozoic loc. M553.
 Side and back views of USNM 132139 from USGS Mesozoic loc. M557. × 2.
 Left valve and anterior views of USNM 132144 from USGS Mesozoic loc. M557. This species is extremely abundant in Moffitites zone of Chitina Valley area.
 30, 35. Back and side views of USNM 132134.
 Specimens 31–34 are slightly to moderately distorted and were obtained from USGS Mesozoic locs. M601 and 24229.
31. Side view of USNM 132135.
32. Side view of USNM 132136.
33. Side view of USNM 132137.
34. Side view of USNM 132138.
CRETACEOUS AMMONITES FROM THE LOWER MATANUSKA FORMATION

4–6. Side, front, and back views of plesiotype USNM 132107. Note one distinct and two incipient constrictions.

7, 11, 12. Front, back, and side views of plesiotype USNM 132108. Constrictions poorly developed. Note bundled striae and feather structure.

8–10. Side, front, and back views of plesiotype USNM 132109. Note abundant shallow constrictions on body chamber.

CRETACEOUS AMMONITES FROM THE LOWER MATANUSKA FORMATION
PLATE 6

(Figures natural size except as indicated)

Both specimens from USGS Mesozoic loc. M556.
1–3. Side, front, and back views of plesiotype USNM 132115.
7–9. Side, front and back views of plesiotype USNM 132114.

Side, front, and back views of plesiotype USNM 132111 from USGS Mesozoic loc. M556. Note slightly larger umbilicus and more broadly rounded venter than on *G. glabrum*.

10–11. Side and back views of plesiotype USNM 132103 from USGS Mesozoic loc. M583. This specimen is figured to document presence of Albian strata along northern border of Chugach Range, south of Matanuska River.
15, 19. Front and side views of small specimen, plesiotype USNM 132104 from USGS Mesozoic loc. M556.
16–18. Side, front, and back views of large specimen, plesiotype USNM 132105 from USGS Mesozoic loc. M556.

Side and back views of plesiotype USNM 132141 from USGS Mesozoic loc. M1795; found on top of mud cone in Copper River Basin. × 2.
Cretaceous ammonites from the Lower Matanuska Formation
1–2. Side, front, and back views of USNM 132116 showing smooth inner whorls and first appearance of ribs on flank. × 2.
4–6. Side, front, and back views of USNM 132117 showing early appearance of faint secondary ribs on outer flank.
7–9. Side, front, and back views of USNM 132118 showing faint secondary ribs on outer flank and venter.
10–12. Side, front, and back views of USNM 132119 showing secondary ribs on early part of whorl and normal "*Preboldiceras*" type of umbilical swellings on later part of whorl.
16–17, 24, 25. Side, front, and back views of USNM 132121 showing early disappearance of ribbing.
18–20. Side, front, and back views of USNM 132122 showing strong ribs on lower flank and smooth outer flank and venter.
21–23. Side and back views of USNM 132123. Coarsely ribbed variant showing tendency of primary ribs to bifurcate to produce secondary ribs of *Arctoplites*-type.
CRETACEOUS AMMONITES FROM THE LOWER MATANUSKA FORMATION
PLATE S

[All figures natural size. All specimens from USGS Mesozoic loc. M556]

Figures 1–18. Archoplites talkootanus (Imlay) (p. 39).
1–3. Side and front views of USNM 132126 showing rapid disappearance of ribbing.
4–6. Side, front, and back views of USNM 132127.
10–12. Side, front, and back views of USNM 132129.
13–15. Side, front, and back views of USNM 132130a showing rectilinear ribs on early part of whorl and disappearance of ribs on later part.
16–17. Side and back views of USNM 132130b showing persistence of ribbing to greater diameter.
18. Back view, USNM 132130c.
CRETACEOUS AMMONITES FROM THE LOWER MATANUSKA FORMATION
Side and front views of USNM 132130c showing disappearance of ribbing at large diameter.
CRETACEOUS AMMONITES FROM THE LOWER MATANUSKA FORMATION