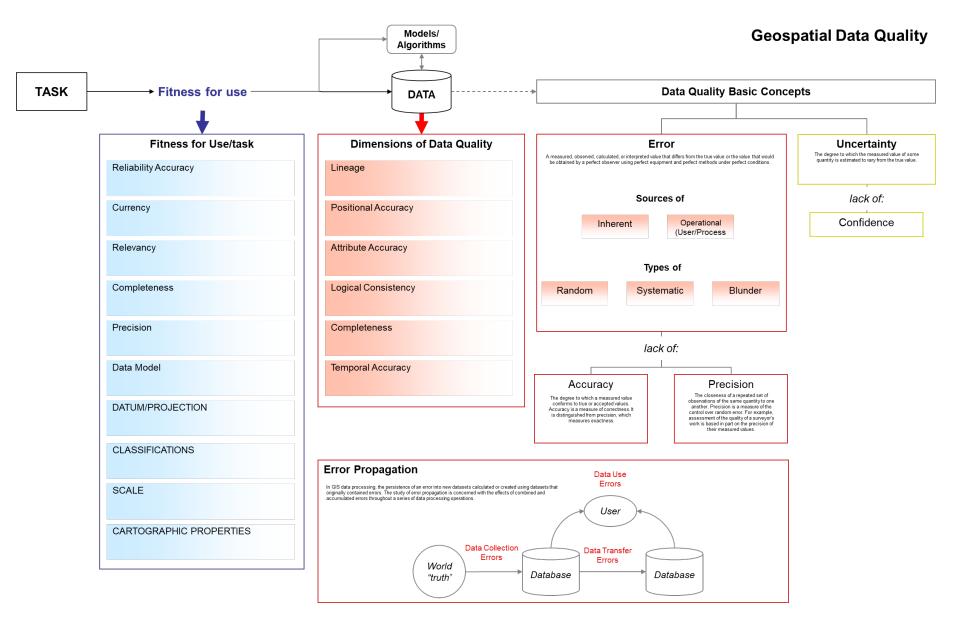

QA/QC of GeMS Data

Case Study:

The Alaska DGGS Geologic Mapping System

10 Jan 2022

Mike Hendricks, Jen Athey, Amy Macpherson


Alaska Division of Geological & Geophysical Surveys 3354 College Rd, Fairbanks AK 99709

Agenda

- Geospatial Data Quality Fundamentals
- Quality Assurance (QA) & Quality Control (QC)
- QA/QC in the Alaska DGGS Geologic Mapping System
- Data Reviewer updates in ArcPro

Geospatial Data Quality Fundamentals

Fitness for Use versus Data Quality

<u>Fitness for Use</u>: The ability of data to effectively be used for some intended purpose.

<u>Data Quality</u>: How faithfully the data represents the true (a) location, (b) shape, or (c) characteristics of the phenomena.

What level of data quality is required for a GeMS database to be fit for use? Not simple question

Some Causes of Data Quality Issues

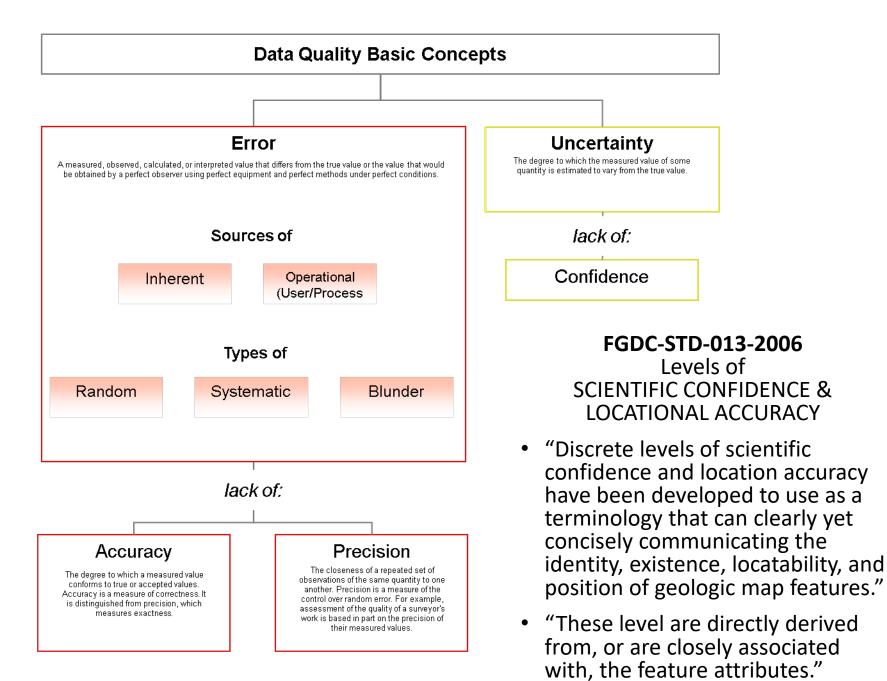
Conceptualization errors

- •Example: Raster Cell size issues
- Example: Vector representations of gradual change

Data Collection & Analysis Methods

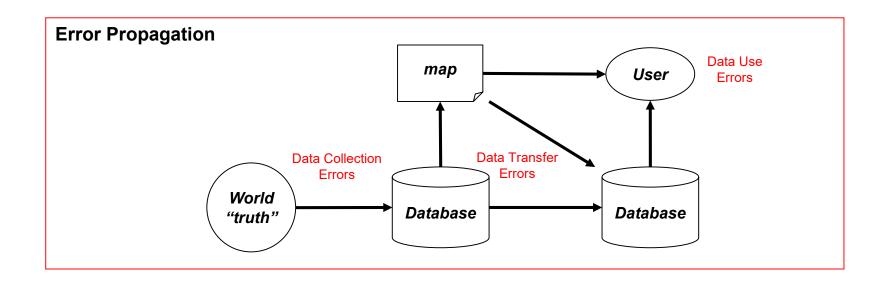
- Example: GPS errors
- Example: Digitizing errors
- Example: Process model errors
- Example: Age analysis

Human Error

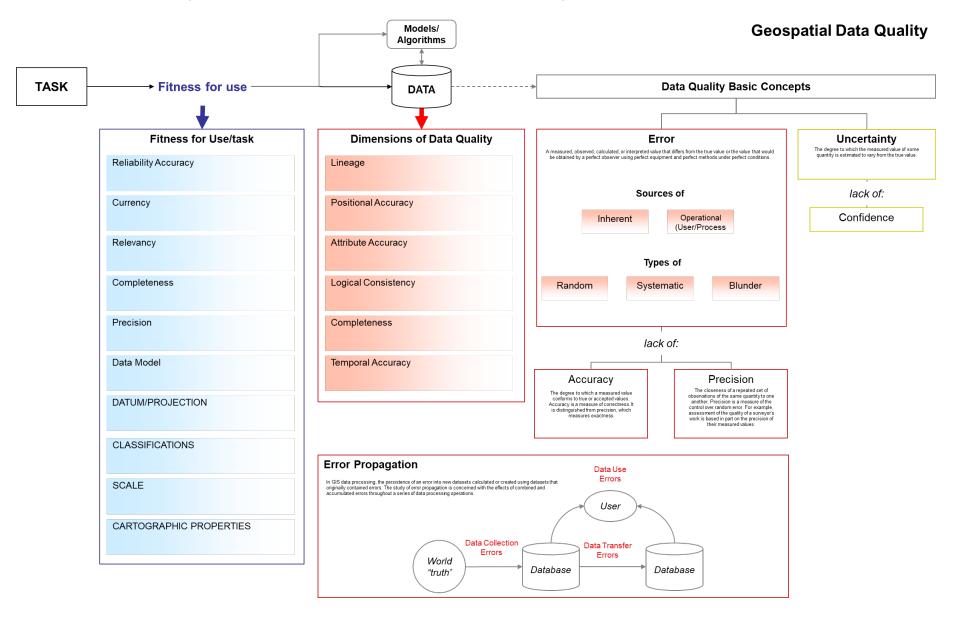

• Example: Blunders – typed 01.01.10 instead of 01.01.01

Temporal

• Example: Old Data


Elements of Data Quality

- **Positional Accuracy**: The accuracy of the position of features within a spatial reference system
- **Completeness**: The presence and absence of features, their attributes and relationships
- **Temporal Quality**: The quality of the temporal attributes and temporal relationships of features
- **Thematic Accuracy**: Classification correctness related to features and their attributes
- Logical Consistency: Adherence to logical rules of data structure, attribution, and relationships
- Usability: The data adhering to the user requirements for its intended use
- Lineage: What is the data source



Error Propagation

In GIS data processing, the persistence of an error into new datasets calculated or created using datasets & maps that originally contained errors. The study of error propagation is concerned with the effects of combined and accumulated errors throughout a series of data processing operations.

Geospatial Data Quality

Agenda

- Geospatial Data Quality Fundamentals
- Quality Assurance (QA) & Quality Control (QC)
- QA/QC in the Alaska DGGS Geologic Mapping System
- Data Reviewer

QA versus QC

- Quality Assurance Processes or methods to help prevent errors from being introduced in the data.
 - Data models GeMS, AK GeMS
 - Domains
 - Attribute Rules, etc. (ArcPro only)
 - Feature Templates
 - Editing Tools
 - Established Procedures, Documentation, and Training
- Quality Control Processes or tools to <u>identify errors</u> that are already in the data.
 - Visual
 - GP Tools
 - Data Reviewer
 - USGS GeMS Validation Tool(s)
 - Custom Python Tools

Develop & Document a QA/QC Workflow

- Plan
 - Get organizational buy in
 - Understand resources are required
- Develop a QA/QC Plan
 - Purpose and Scope
 - Roles and Responsibilities
 - Testing Environment
 - Requirements and Acceptance Criteria
 - QC Workflow, Process and Tools
- Metadata Integration

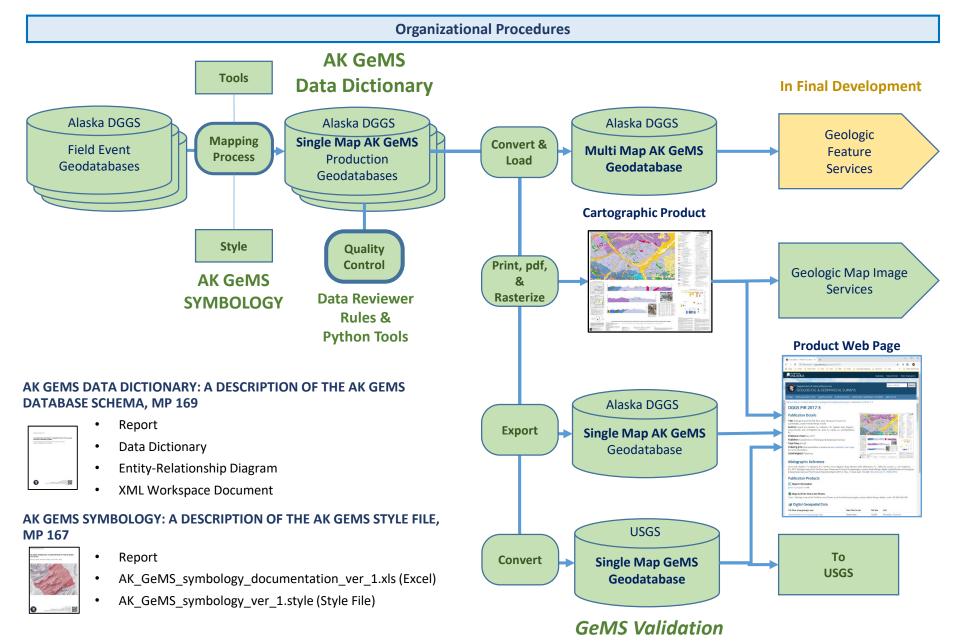
Implementing a **Quality Assurance** plan

- Develop and use a stable well-documented Data Model
 - Domains
 - Attribute Rules (Pro only)
- Establish Feature Editing Templates
- Consider creating custom editing tools
- Develop and "publish" data generation guide (documentation)
- Training

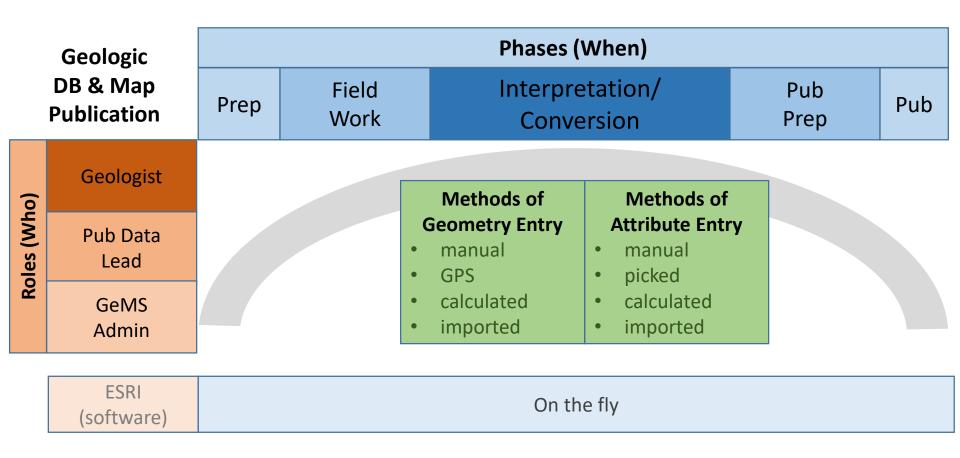
Implementing a **Quality Control** plan

- Manual Data Validation
 - Establish and Use a Check list
 - Visual
 - Geoprocessing Tools
- Automated Data Validation
 - Custom Scripts &/or models
 - Data Reviewer
 - GeMS validation tool
- When to perform QC
 - On-demand
 - Periodically
 - New/update Data

Agenda


- Geospatial Data Quality Fundamentals
- Quality Assurance (QA) & Quality Control (QC)
- QA/QC in the Alaska DGGS Geologic Mapping System
- Data Reviewer

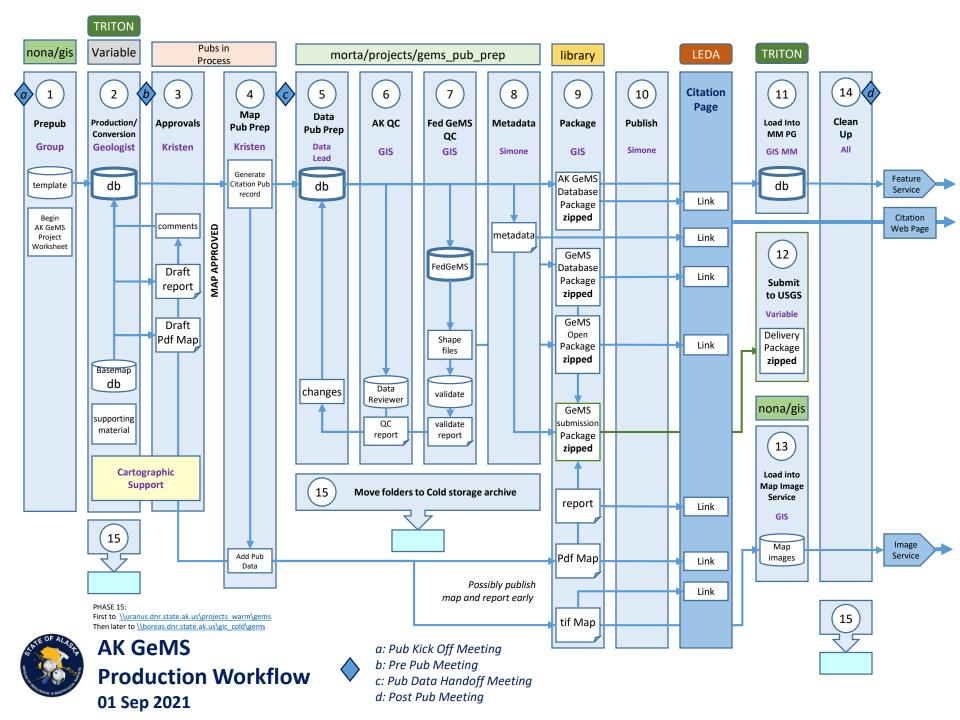
Some DMT AK DGGS Related Presentations


- DMT 2021: **Documentation of Alaska's geologic-GIS data management and delivery system** By Jennifer Athey, Mike Hendricks, and Patricia Ekberg
- DMT 2021: Symbolizing a GeMS geodatabase
 By Mike Hendricks, Patricia Ekberg, Jennifer Athey, and Amy Macpherson
- DMT 2021: Digital review of GeMS-based products
 By Mike Hendricks, Jennifer Athey, and Amy Macpherson
- DMT 2020-Lite: Customizing the GeMS Toolbox for local requirements By Mike Hendricks
- DMT 2020: Lessons From Converting Alaska Digital Geologic Maps to the USGS Geologic Map Schema (GeMS)

 By Chris Wyatt, Mike Hendricks, Jennifer Athey, and Patricia Ekherg
- By Chris Wyatt, Mike Hendricks, Jennifer Athey, and Patricia Ekberg
- DMT 2020: Alaska-GeMS Multi-map Database Schema Changes from the Federal GeMS Standard
 By Jennifer Athey, Mike Hendricks, Patricia Ekberg, and Chris Wyatt
- DMT 2020: Improving Quality Control of a GeMS Database with ESRI's Data Reviewer By Mike Hendricks, Jennifer Athey, Patricia Ekberg, and Chris Wyatt

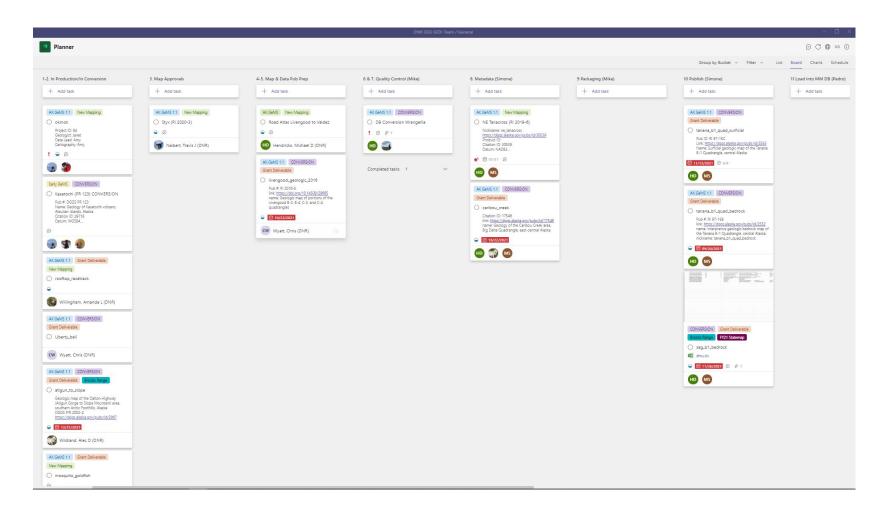
Alaska DGGS Geologic Mapping System Components

AK GeMS Phases, Roles, and Methods

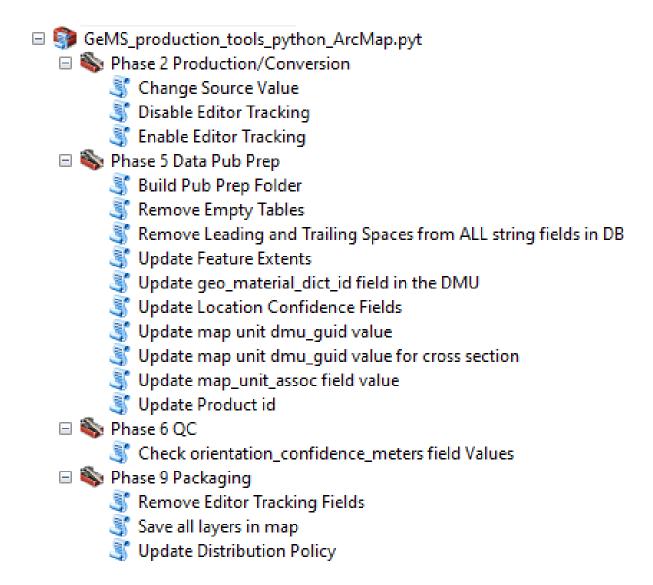


Example: map_unit_polys Documentation from Data Dictionary

<u>Field</u>	When	<u>Who</u>	How	<u>Why</u>	default value	<u>Domain</u>	data type
OBJECTID	on the fly	esri	calculated	software			OBJECTID
Shape	on the fly	esri	calculated	software			Geomtery
map_unit_polys_id	pub prep	pub data lead	calculated				string: 50
layer	Interpretation	geologist	calculated		0		Long Integer
category	pub prep	pub data lead	calculated			map unit polys category dom	string: 50
type	Interpretation	geologist				map unit polys type dom	string: 254
symbol	pub prep	variable	calculated				string: 254
label	pub prep	pub data lead	calculated				string: 50
map_unit	interpretation	geologist	manual				string: 10
identity_confidence	interpretation	geologist	manual			identity confidence dom	string: 50
is_concealed	interpretation	geologist	manual			is concealed dom	string: 10
modifier	interpretation	geologist	manual	allows special characteristic of a unit, withou making a new unit in the DMU		no domain, but suggested values of: hornfels, migmatite, mylonite, outcrop, shear, non, other, unspecified, unknown	
notes	interpretation	geologist	manual				string: 4096
data_sources_method	interpretation	geologist	manual			data sources method dom	Long Integer
data_sources_id	interpretation	geologist	manual				string: 50
product_id	pub prep	pub data lead	calculated				string: 50
draw_policy	Interpretation	Geologist	manual	Controls if the feature is drawn on the map product	yes	draw policy dom	string: 10
distribution_policy	pub prep	pub data lead	manual		1	distribution_policy_dom	Long Integer


AK GeMS Production Workflow

- To improve QA/QC we developed and published a 15 phase workflow document
- Identifies:
 - Workflow
 - Responsibilities
 - Location of Data
 - Production Meetings
 - Products


We are using MS Teams Planner App to track GeMS work

QA/QC focused workflow phases

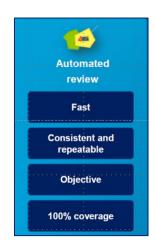
- ² Phase 2: Production (QA Focused) Geologist/Map Maker
 - AK GeMS Schema, Style file
 - Topologies
 - Some Editing Templates
 - Custom Tools/Scripts (Limited)
- Phase 3: Approvals (QC Focused) Map & Report Centric
 - Manual/Visual
 - Peer Review
 - Internal Approvals
- 4 5 Phases 4-5: Map & Data Pub Prep (QA Focused) Data Lead/GIS
 - AK GeMS Schema, Style file
 - AK GeMS Custom Tools/Scripts
- 6 7 Phases 6-7: AKGeMS/GeMS QC (QC Focused) Data Centric
 - Semi-automated
 - Topologies
 - Data Reviewer
 - GeMS Validation Tool

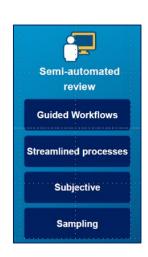
AK GeMS Custom Tools/Scripts

Issues in our QA/QC implementation

- Need to improve QA/QC tools/checks to validate symbology with attributes & vice versa
- Need to complete transition to ArcPro for all operations
 - particularly data reviewer QC
 - Style file ArcPro
 - Tools all transitioned
- Need a few additional data reviewer rules
- Need a few additional python tools
- Improve documentation
 - Data Producer Guide Needed
 - Data Conversion Guide needs to be updated
- Continue training of all levels of personnel
 - Weekly GIS Tips and Tricks Class ongoing for 5+ years
 - · Weekly GeMS meeting
- AK GeMS Schema/Template Updates (publish version 1.2 ~ summer 2022)
 - Update Domains
 - Attribute Rules
 - Contingent Values
 - New tables/feature classes? (very limited)

Agenda


- Geospatial Data Quality Fundamentals
- Quality Assurance (QA) & Quality Control (QC)
- QA/QC in the Alaska DGGS Geologic Mapping System
- Data Reviewer


What is ArcGIS Data Reviewer?

Data Quality Management for ArcGIS

Provides

- Rule-based automated validation
- Semi-automated workflows
- Track and report quality

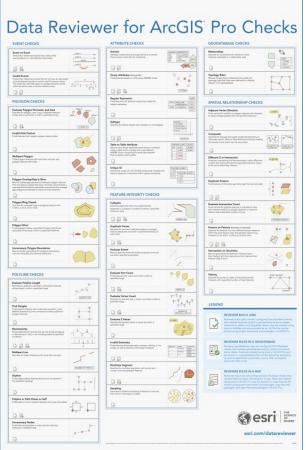
Execution Mechanisms

- Desktop ArcMap & ArcGIS Pro
- Models & python scripts
- Workflow manager
- As a Service via ArcGIS Server

Requires Installation of the Extension in ArcMap

Our focus at this time in Bold

Data Reviewer Checks


 \sim 40 configurable data check to choose from

Methods

- Adhoc/on the fly validation
- Batch validation

Categories of Data Reviewer Checks

- Attribute Checks
- Event Checks
- Feature Integrity Checks
- Polygon Checks
- Polyline Checks
- Spatial Relationship Checks
- Z value checks

Our Development Process

2020-2021

- ESRI Online Course
- In the Spring of 2020 and Winter of 2021 DGGS Used Dedicated ESRI Advantage Program Credits to develop Data Reviewer Rules and Procedures
- Developed List of Rules
- Built and Testing Rule Files with Data Reviewer in ArcMap (.rbj)
- Developed Organizational Procedures

2022

- ArcPro 2.9 now includes vast majority of rules from ArcMap
- Spring 2022 use ESRI Advantage Program Credits for transition

Current Procedure to Check a Map Database

- Used near the END of the production process
- Build a separate dedicated data reviewer database (for results) for each map (as opposed to a single data reviewer database for the organization)
 - Questions: How should this database be archived?
- Run by the GIS Staff (for now)

Some of the AK DGGS Rules List

Attribute Centric

- All values must meet database domain constraints
- The symbol code for a map unit must match that same map unit's symbol in the description of map units table
- The feature label must match the correct value in the identity_confidence field and vice versa
- Contacts and Faults features must only be split when key attributes change
- Map_units_polys features must only be split when key attributes change

Geometric Centric

- All features must have valid geometries
- Line features must not self intersect
- Contacts and Faults and Map Units must be single part features
- Curved segments for lines and polygons are not allowed
- Point feature classes that reference a station feature must be collated with that feature in the stations feature class
- Contracts and Faults must be on the boundary of map unit polygons
- Line features must be longer than 10 meters
- Polygon features must be larger than 100 square meters

Rule Files

Name	Size
_AK_GeMS_All_Rules.rbj	640 KB
AK_GeMS_check_data_sources_poly_has_related_data_source_record.rbj	11 KB
AK_GeMS_check_if_category_is_other_then_type_is_other.rbj	92 KB
AK_GeMS_check_map_unit_assoc_equal_intersecting_map_unit.rbj	36 KB
AK_GeMS_check_map_unit_symbol_to_dmu.rbj	27 KB
AK_GeMS_check_product_id_values.rbj	125 KB
AK_GeMS_check_type_value_includes_category.rbj	97 KB
AK_GeMS_Contact_and_fault_must_be_on map_unit_poly_boundary.rbj	10 KB
AK_GeMS_domain_checks.rbj	98 KB
AK_GeMS_invalid_geometry.rbj	88 KB
AK_GeMS_non_linear_check.rbj	57 KB
AK_GeMS_other_value_has_notes.rbj	101 KB
AK_GeMS_point_not_colocated_with_station.rbj	29 KB
AK_GeMS_polyline_closes_on_self_check.rbj	29 KB
AK_GeMS_segment_length_greater_then_1km_check.rbj	7 KB
AK_GeMS_short_lines.rbj	41 KB
AK_GeMS_single_part_check.rbj	19 KB
AK_GeMS_small_polygons.rbj	34 KB
AK_GeMS_uncertain_identity_confidence_has_question_mark_label.rbj	18 KB
AK_GeMS_unecessary_node_check.rbj	7 KB
AK_GeMS_unecessary_polygon_boundary_check.rbj	8 KB

Some references

- ESIRUC 2019 ESRI Best Practices: QA/QC for Your GIS Data https://www.esri.com/content/dam/esrisites/en-us/about/events/media/UC-2019/technical-workshops/tw-6391-1016.pdf
- ISO 19157:2013 Geographic information Data quality https://www.iso.org/standard/32575.html
- FGDC Digital Cartographic Standard for Geologic Map Symbolization https://ngmdb.usgs.gov/fgdc_gds/geolsymstd/download.php
- GeMS (Geologic Map Schema)—A Standard Format for the Digital Publication of Geologic Maps https://pubs.er.usgs.gov/publication/tm11B10
- Introduction to attribute rules https://pro.arcgis.com/en/proapp/latest/help/data/geodatabases/overview/an-overview-of-attributerules.htm