

2022 Alaska Coastal & Ocean Mapping Summit

The Path Forward

November 16th, 2022

Coastal National Elevation Database Update

Jeffrey J. Danielson – U.S. Geological Survey

USGS Coastal National Elevation Database (CoNED) Update

Jeffrey J. Danielson USGS EROS / ISAB CoNED Applications Project Chief November 16, 2022

U.S. Department of the Interior U.S. Geological Survey

USGS Coastal National Elevation Database (CoNED) Applications Project

- 1) Support coastal and marine spatial planning, by constructing the Coastal National Elevation Database (CoNED) at select focus regions thereby establishing a topobathymetric elevation model (tbdem) baseline product for scientific investigations and applications.
- 2) Conduct 3D point cloud and satellite-based remote sensing research to extend topography and bathymetry data structures for topobathymetric elevation models and create methods for fostering land change science studies.

San Francisco Bay

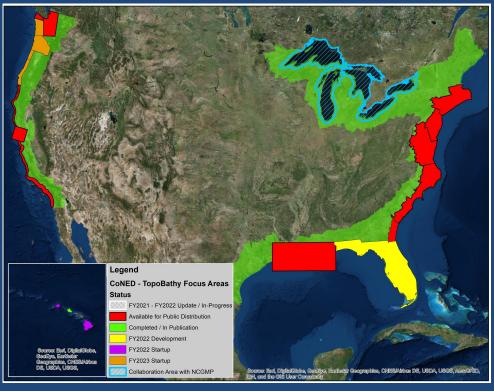
Southern California

Central California

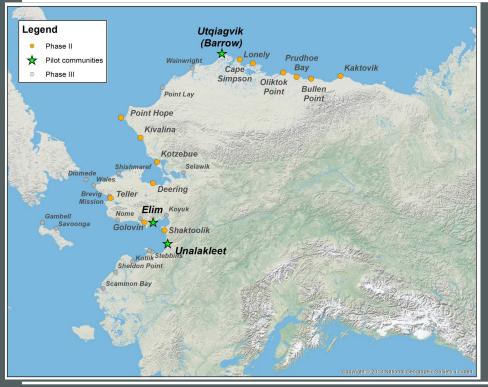
Hawaii - Oahu

Stakeholders: USGS Coastal Storm Modeling System (CoSMoS), NOAA-OCM Sea Level Rise Viewer, NOAA National Water Model, LA CPRA Coastal Master Plan, ADCIRC Hydrodynamic Model, VIMS SCHISM Model, Nature Conservancy Coastal Resilience Viewer, and DOI Pacific Islands Climate Adaptation Science Center

Point of Contact: Jeffrey Danielson, CoNED Applications Project Chief, daniels@usgs.gov

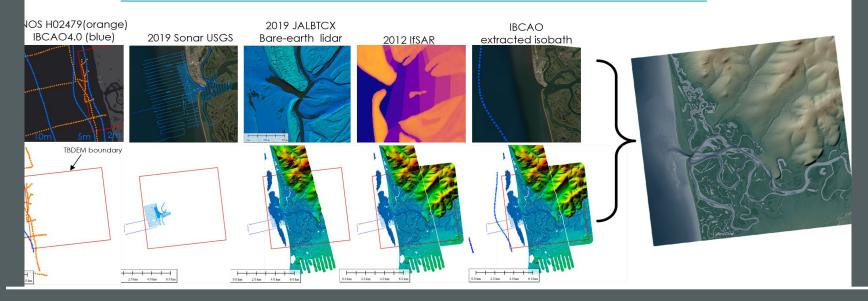


USGS CoNED: Topobathymetric Elevation Model – Requirements / Specifications

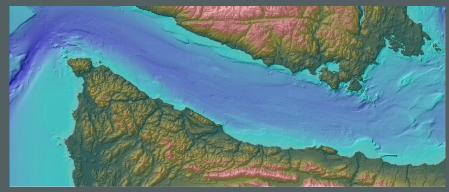

- **Spatial Resolution:** *1-Meter*
- Projection: UTM Based
- Horizontal Datum: North American Datum of 1983 (NAD83 2011)
- Vertical Datum: North American Vertical Datum of 1988 (NAVD88)
 - Geoid Geoid18 or most current geoid
- Lidar Accuracy Specifications:
 - Topographic Lidar: Quality Level 2 (QL2) 0.7 meter pulse spacing, 2 points per sq. meter, 10cm RMSEz
 - Bathymetric Lidar: Quality Level 2 (QL2B) 0.7 meter pulse spacing, 2 points per sq. meter, 0.25, 0.0075 vertical accuracy coefficients (IHO S-44), 10cm RMSEz
- TBDEM Uncertainty
- **Gap–Filling:** For areas void of source data, Smooth interpolated areas
- Land / Water Masking: 20m (Land) and 200m (Water)
- Interpolation: *Terrains (Lidar) and Empirical Bayesian Kriging (Sonar)*
- **Nesting:** Consistent Resampling, Cell Alignment (Pixel Edge), and Spatial Resolution
- Federal Geographic Data Committee

INTERAGENCY WORKING GROUP ON DCEAN AND CONSTANT OF CONTROL ON CONTROL OF C

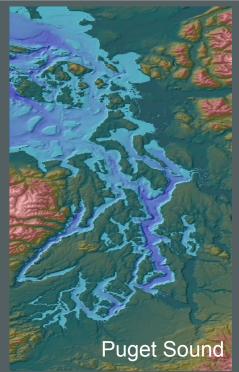
Alaska – Integrated Topobathymetric DEM Development to Support Coastal Flood Hazards


Pilot Communities = FY23
Phase 2 = FY24 (CoNED)
Phase 3 = FY25

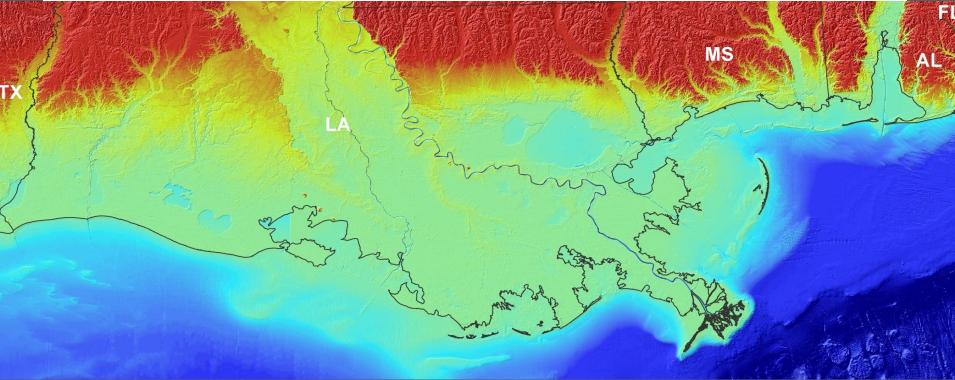
Alaska – Integrated Topobathymetric DEM <u>Development to Support Coastal Flood Hazards</u>


Accuracy of the flood hazard model is strongly influenced by nearshore bathymetry (< 20-30 m; depending on coastal morphology; <u>e.g.</u> bay vs open coast) and elevation surface (overland flow). **Currently:** Building seamless TB-DEMS with available bathymetry and elevation data.

Expand USGS CoNED efforts beginning FY24



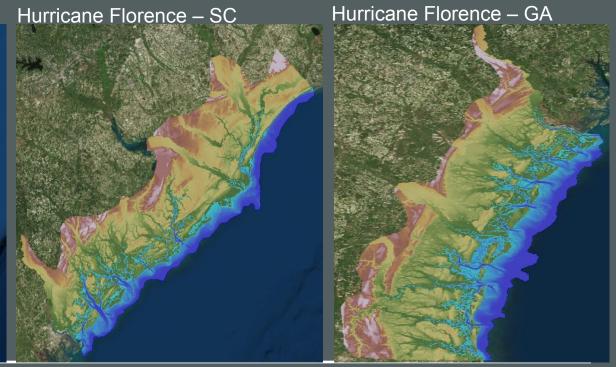
Pacific Northwest Topobathymetric DEM - CoNED Puget Sound and Juan de Fuca: 1-Meter TBDEMs



Strait of Juan de Fuca

Northern Gulf of Mexico (NGOM2) – USGS CoNED (2022) Integrated Topobathymetric Elevation Model

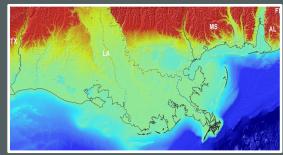
USGS CoNED–LA CPRA NGOM2 Collaborative Update NGOM2 Stakeholder User Community

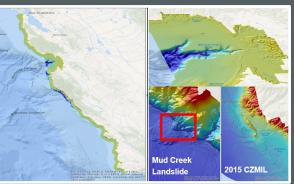


- □ ERDC-CL (ADCIRC)
- Tulane Geology and Modeling
- The Water Institute of the Gulf
- USGS CoSMoS, SPCMSC
- LSU Coastal Studies Institute / LSU Center for Coastal Resiliency
- LA CPRA Coastal Master Plan
- NOAA National Water Model

Topobathymetric DEMs – USGS CoNED Update Hurricane Florence 1-Meter TBDEMs (NC to GA)

Questions (Jeffrey Danielson, daniels@usgs.gov)


San Francisco Bay


Hawaii - Oahu

Southern California

Northern Gulf of Mexico (NGOM)

Central California

Hurricane Sandy Region

End of Presentation

Thank you!

GRAV-D & CORS Updates

Nic Kinsman, Steve Bassett, & Will Freeman - NOAA

National Geodetic Survey Positioning America for the Future

geodesy.noaa.gov

TMENT OF C

2022 Alaska Coastal Mapping Summit The Path Forward - November 16

NSRS Component Updates

ACMS Objective 2.2: Upgrade Alaska National Spatial Reference System Components to Support Mapping Data Acquisition

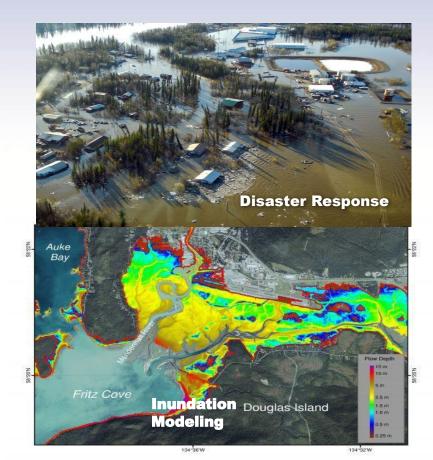
Nic Kinsman NGS Alaska Regional Geodetic Advisor

Jeff Johnson NGS GRAV-D **Project Manager**

Kevin Ahlgren NGS Geodesist

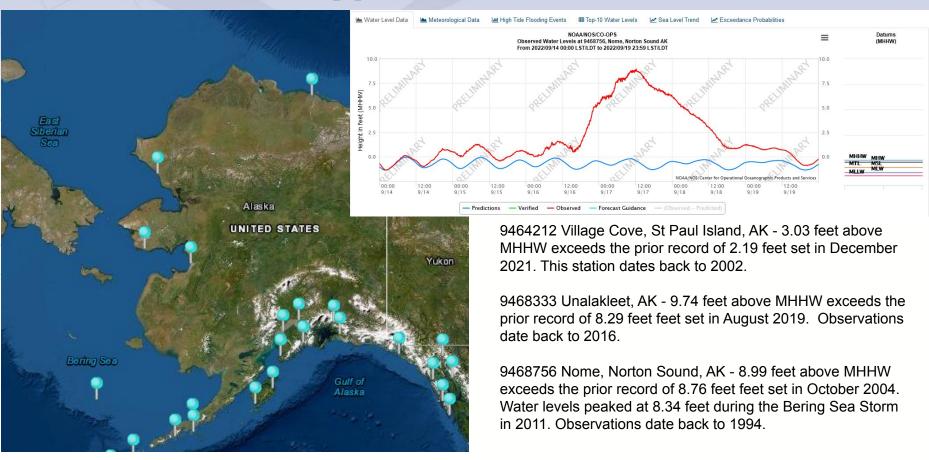
Will Freeman NGS CORS Program Manager

Steve Bassett Physical Scientist, CO-OPS Tides & Currents


Stephen White NGS Remote Sensing Division

geodesy.noaa.gov

NSRS & VDatum Support Resilient Infrastructure



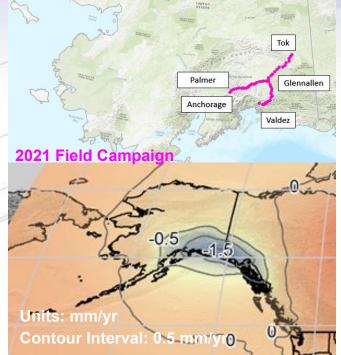
geodesy.noaa.gov

NWLON Supports Real-Time Water Levels

Implementation Plan Milestones

2.2.1.1	Remaining areas of AK GRAV-D project completed over Aleutians for 100% Alaska coverage	Oct-2024	In Progress
2.2.1.2	Absolute Gravity Network and Geoid Monitoring Service (GeMS) established to support dynamic geoid (DGEOID) model	Oct-2025	In Progress
2.2. <mark>1</mark> .3	GRAV-D data fully incorporated into gravimetric geoid model (GEOID2022)	Oct-2025	In Progress
2.2.2	Establish five NOAA Foundation CORS in Alaska	Oct-2023	In Progress
2.2. <mark>3.1</mark>	Cost assessment to add GNSS to 27 existing AK NWLON sites and 31 new NWLON station to fill Alaska gaps completed	Oct-2022	Not Yet Started
2.2.3.2	Improved geodetic control at water level stations in Sand Point, Sitka, Seward, and Unalaska (Global Sea Level Observing System stations)	Oct-2025	In Progress
2.2.4.1	Short term tidal observations acquired	Oct-2027	In Progress
2.2.4.2	GNSS observations taken on tidal benchmarks	Oct-2027	In Progress
2.2.4.3	Models of transformation grids developed and published for use	Oct-2028	Not Yet Started

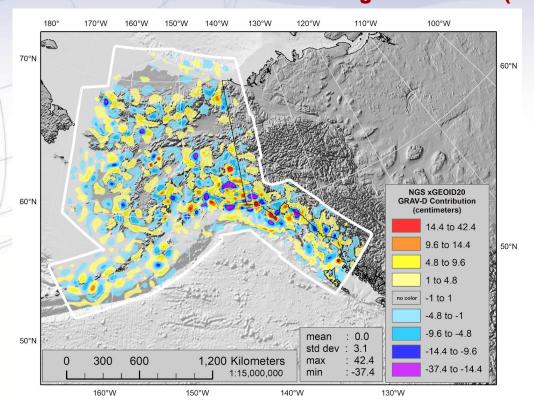
NOAA's National Geodetic Survey Positioning America for the Future


geodesy.noaa.gov

Remaining areas of AK GRAV-D project completed over Aleutians for 100% Alaska coverage Target: Oct 2024 (In progress)

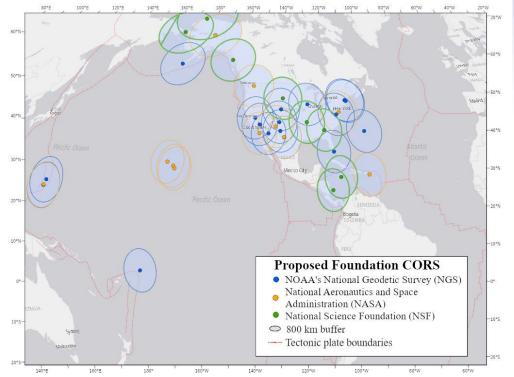
- Collection of remaining Aleutian Island Block planned for April 2023
- 13 flights remain: Weather must cooperate to complete all required flight lines
- Base of Operations will be Anchorage with the NOAA WP-3D Orion

Absolute Gravity Network and Geoid Monitoring Service (GeMS) established to support dynamic geoid (DGEOID) model Target: Oct 2025 (Pilot completed 2021; on hold to accelerate NSRS modernization)


- In modernized NSRS, dynamic geoid model includes a "time-dependent component" with monitored geoid changes over space and time
- 2021 field work updated observations on ~50 passive marks (GNSS, gravity, DOV)
 - 40+ hour static GNSS
 - Gravity: 20 uGal precisions
 - DOV profile of 2021 geoid
- DGEOID updates will be released with GEOID2022 beta version in 2023 and a final version ~2025

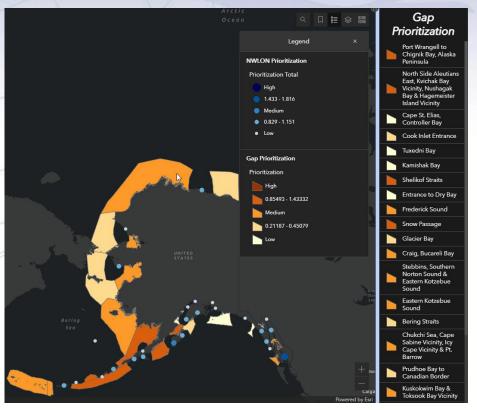
Alpha xDGEOID20 model based on GRACE (NASA GSFC mascon v02.4, Luthcke, et al. 2013).

NOAA's National Geodetic Survey Positioning America for the Future


geodesy.noaa.gov

GRAV-D data fully incorporated into gravimetric geoid model (GEOID2022) Target: Oct 2025 (In progress)

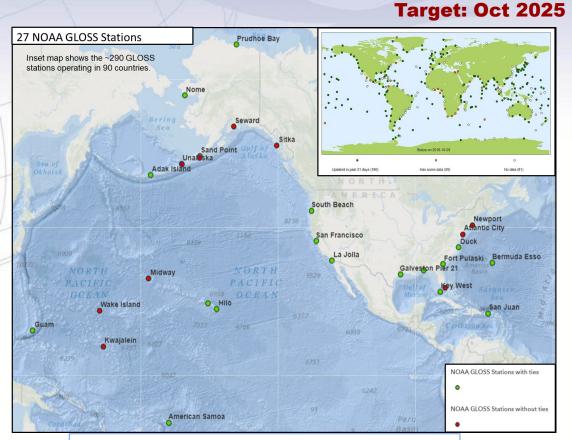
- xGeoid20 includes all GRAV-D data to date and covers all of mainland Alaska
 - xGeoid20 available for use in scientific, research, and pilot applications
- GRAV-D data also in use by State of Alaska DGGS for natural resource exploration


Establish five NOAA Foundation CORS in Alaska Target: Oct 2023 or Oct 2024 (In progress)

- Adopted FCORS stations in Alaska:
 - AB09 Wales (NSF)
 - AB51 Petersburg (NSF)
 - ATQK Atqasuk (NFS)
 - FAIR Fairbanks (JPL)
 - GCGO Fairbanks (JPL)
- Field work planned to establish two NGS-owned FCORS station in Summer 2023 or 2024 at
 - Fairbanks (possibly two FCORS)
 - $\circ~$ Cold Bay (one FCORS)

geodesy.noaa.gov

Cost assessment to add GNSS to 27 existing AK NWLON sites and 31 new NWLON stations to fill Alaska gaps completed

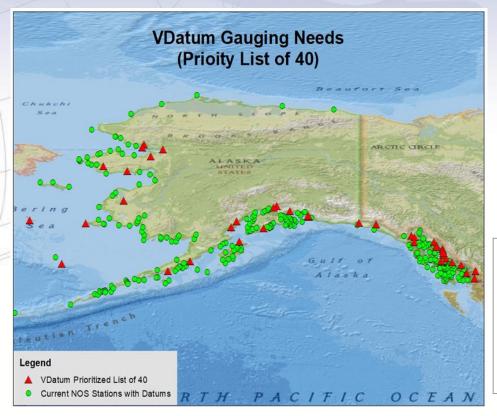


- It costs CO-OPS \$400K-\$600K to install an NWLON station in Alaska, depending on many variables including site-readiness and whether it is contracted or not, among others.
- The remote nature of most Alaska NWLON stations presents an accessibility challenge for conducting O&M, which increases *annual* costs above the installation expense.
- CO-OPS will continue to work with AWLW to increase access to important water level data.

NOAA's National Geodetic Survey Positioning America for the Future

geodesy.noaa.gov

Improved geodetic control at water level stations in Sand Point, Sitka, Seward, and Unalaska (GLOSS stations)


- CO-OPS is evaluating the logistics required for leveling ties between NWLON water level sensors and the existing NGS CORS stations for GLOSS
- CO-OPS is evaluating and testing feasibility of co-locating new cGNSS at NWLON stations

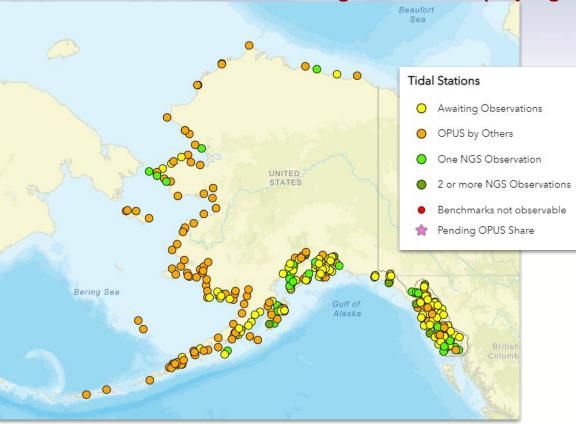
AK GLOSS Stations with untied CORS

Location	NWLON ID	CORS ID	Separation (meters)	Status	GPS at Tidal Benchmark (number(year))
Sitka	9451600	AKSI	396	CORS working Intermittently, no published ties between ARP and WL station	4 (2006 - 2022)
Seaward	9455090	AKSE	1554	No published ties	6 (2006 - 2022)
Unalaska	9462620	AV09	950	CORS working Intermittently, no published ties between ARP and WL station	6 (2006 - 2022)
Sand Point	9459450	AB07	2584	CORS installed but not working, no published ties between ARP and WL station	5 (2006 - 2020)

geodesy.noaa.gov

Short term tidal observations acquired Target: Oct 2027 (In progress)

 14 stations completed thus far; additional stations planned to be accelerated by proposed State of Alaska project in FY22


• Completed:

• Palmer

- Yale Arm, College Fiord
- St. George Island Airport
- Beartrap Bay, Port Gravina
- Taan Fiord
- Nuka Bay
- Eklutna

- Mountain Village
- Grantley Harbor
- North Kotzebue Sound
- Buckland
- Iniskin Bay
- Lagoon Island, Bartlett Cove
- Hyder

GNSS observations taken on tidal bench marks Target: Oct 2027 (In progress)

- GPS on tidal bench marks support sole-station offsets and VDatum improvements
- Top priorities are water level stations in Alaska where local tidal datums exist, but no corresponding NSRS heights (NAVD 88) appear in the OPUS Shared Database
- Community OPUS Shares have significantly advanced progress since 2014 efforts to prioritize this (see orange)

End of Presentation

Thank you!

Alaska Water Level Watch

Carol Janzen – AOOS

The Eye on Alaska's Coasts and Oceans

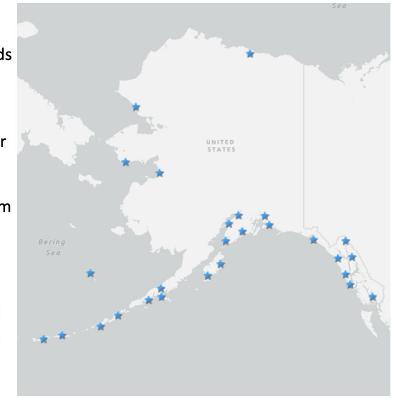
Alaska Water Level Watch – AWLW Update on Activities and Successes

Alaska Coastal Mapping Summit November 16-17, 2022

Carol D. Janzen (AOOS) Jaci Overbeck, NOAA OCM, AK Regional Geospatial Coordinator Autumn Poisson, Alaska Department of Natural Resources-DGGS Rob Bochenek & Will Koeppen (Axiom Data Science)

What is the Alaska Water Level Watch – AWLW?

- The Alaska Water Level Watch (AWLW) is a collaborative group working to improve the quality, coverage, and accessibility to water level observations in Alaska's coastal zone.
- Steering Committee (6) representing NOAA, AKDNR, NWS, AOOS and Private Industry
- Annual water level workshops
- Solicits inputs for Alaska's water level build-out plans



Kivalina water level installation, 2022 (courtesy: Autumn Poisson, AKDNR-DGGS

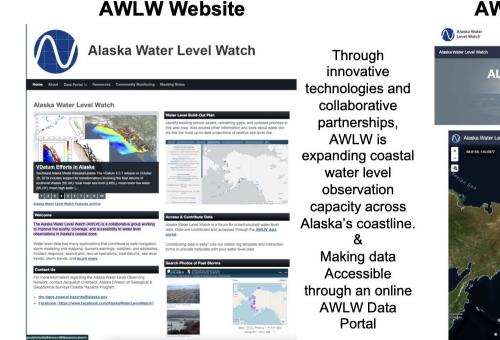
Why Alaska Water Level Watch?

CHALLENGE

- Alaska's remote coastline among the nation's most vulnerable to geohazards
- NOAA's CO-OPS National Water Level Observation Network (NWLON ★) in Alaska consists of 27 active sensors for ~ 66,000 miles of coastline
- CO-OPS Tides & Currents online system hosts only the NOAA NWLON data
- Additional water level data exist and easy comprehensive access is needed for storm-surge forecasting, informed emergency response, safe navigation, and charting

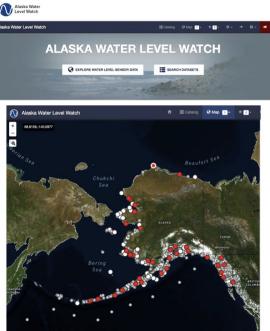
Why Alaska Water Level Watch?

CHALLENGE


- Alaska's remote coastline among the nation's most vulnerable to geohazards
- NOAA's CO-OPS National Water Level Observation Network (NWLON ★) in Alaska consists of 27 active sensors for ~ 66,000 miles of coastline
- CO-OPS Tides & Currents online system hosts only the NOAA NWLON data
- Additional water level data exist and easy comprehensive access is needed for storm-surge forecasting, informed emergency response, safe navigation, and charting

SOLUTION

- The Alaska Water Level Watch (AWLW) augments existing NWLON information with tiered-quality coastal water level observations and data products through the AWLW Data Portal
- <u>https://aoos.org/alaska-water-level-watch/</u>



AWLW Vision: Fill Gaps in Water Level Observations & Increase Public Access to Water Level Information

Public access point for reference materials, portal links, contacts, meetings, other resources: https://legacy.aoos.org/alaska-water-level-watch/

AWLW Data Portal

AWLW Data Portal map showing active (red) and historical water level stations (white). https://water-level-watch.portal.aoos.org/#map

The AWLW Data Portal Provides Public Access to Alaska Water Level and Information Products

NWLON, non-NWLON and predicted water level information served through the AWLW Portal

Streamlined data ingestion and station page identification procedures allow simplified submission from various providers

Data are qualified as Tier A, B, and C on portal based on accuracy of data and associated NOAA sanctioned uses

Acoustic iGage® in Kotzebue and AWLW Portal Station Page

<complex-block>

Visual of data quality flags

			040 S, 2018	2/0 /00.2/0 /00.2/0 /00.2/0 /00.4
	Tier	Α	В	C
	Minimum Accuracy	10 cm (on tidal datum)	30 cm (on tidal datum)	30 cm Or undetermined
	Benchmarks	5	3	Not required
r	Leveling Order	Annual 2 nd Order Class 1 better	Biannual 3 rd Order or GPS derived ellipsoid based	Not applicable
	Applications	 Real-time navigation Marine boundaries Sea level anomalies Vdatum Hydrodynamic model forcing and skill assessment CO-OPS MAPTITE App 	 Hydrographic surveys Shoreline mapping Marsh restoration Storm surge Exceedance Inundation dashboard 	 Academic research Background oceanographic information Tsunami

AWLW Portal Hosts Other Useful Information

New Flood Event Layer from AKDNR

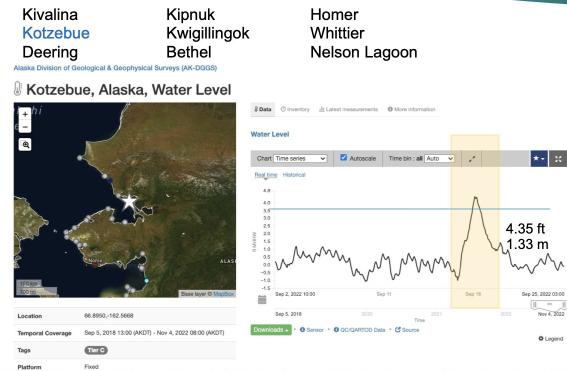
Select stage information & view photos from multiple locations in communities

Storm Surge: August 3, 2019Event typeStorm SurgeFlood impactmoderateHeight (NAVD88)3.35 (m)Water level typestill water

Click to enlarge image

AWLW Observing Updates from Partners

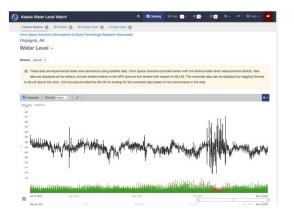
Tununak iGage ™ 2022 (photo courtesy Autumn Poisson, AKDNR-DGGS



Dillingham City Dock Bubbler Water Level Station 2022 (photo courtesy JOA Surveys)

Stebbins/St. Michaels GNSS-R Station, AOOS/UNAVCO (photo courtesy UNAVCO)

AWLW Obs Update with Partner AKDNR-DGGS 9 iGage[™], iRdar [™] Stations were operational during 2022


-

2022 Bering Storm Peak Water Level Kotzebue – September 18, 2022

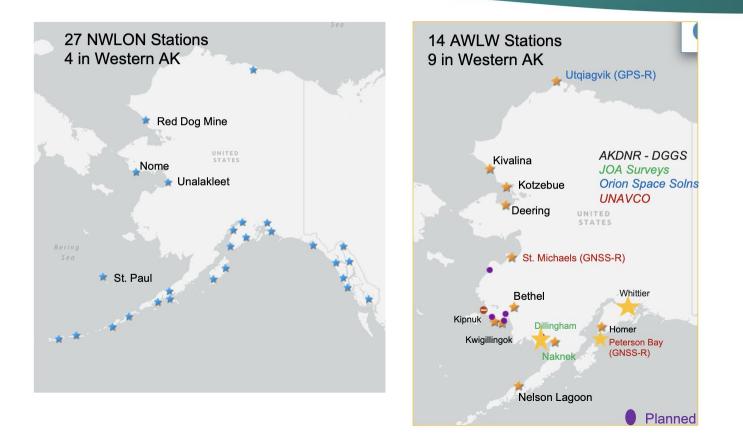
AWLW Obs Update with Partner Orion Space Solutions Utqiagvik GPS-R water level installation & GNSS-R Data Processing

- Oct 2021 Utqiagvik GPS-R installation completed before freeze-up
- Collaborators: North Slope Borough, AOOS, JOA Surveys & Marine Exchange of Alaska
- Onboard processed real time data reporting on the AWLW Data Portal for 1 year
- JOA Surveys providing MLLW based on 5 benchmarks in the area

AWLW Obs Update with Partner JOA Surveys 2 NWLON-Lites, iRadar [™] Installation, and GNSS-R Data Processing

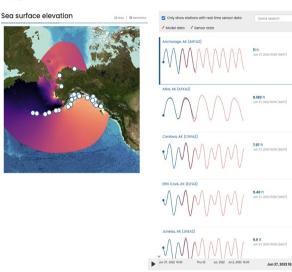
JOA Surveys supports NOAA CO-OPS, AKDNR and AOOS Coastal Hazards Portfolio

Recent projects:


- 2020 Naknek Installed dual bubbler water level station
- 2021 Utqiagvik assist with GPS-R Install
- 2021 Dillingham Installed bubbler & downward looking Radar water level station
- 2022 Whittier Installed iRadar[™] water level station with equipment from AKDNR
- Processing GNSS-R data and datum assessments for 3 UNAVCO GNSS-R stations

Tide Gauge Installation at Whittier City Dock, March 2022, (Photo: Drew Lindow, JOA Surveys)

AWLW Portal Reporting 50% More Water Level Stations Many came online in 2021-22 and captured peak water levels during the 2022 Bering Sea Storm (Merbok)


AWLW Data Inform Alaska Storm Surge Forecasting Models

Current modeling efforts are working to improve water level and storm surge forecasting skill for western Alaska

Modelers have been using AWLW water level stations to compare with model outputs throughout development

A model forecast and in situ observational data comparison tool for the AOOS Data Portal will launch in December 2022

For more information on these efforts: https://legacy.aoos.org/western-alaska-storm-models/ Alaska Storm Surge Forecasting System - ALCOFS - ADCIRC (Post-March 2022)

The ALCOFS-ADCIRC model output comparisons with in situ observational data informs model improvements and also provides a quantitative sense of model accuracy. Red predicted water level, Blue sensor data.

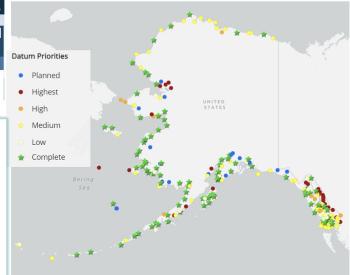
AWLW Tidal Datum and Other Resources & Tools Regular updated priorities reflect Vdatum grid development needs

Market Departments State Employees Department of Natural Resources Search DGGS... Search Department of Natural Resources Search Search Department of Natural Resources Search Search HOME POPULAR GEOLOGY MAPS & DATA PUBLICATIONS GEOLOGIC MATERIALS CENTER LINKS ABOUT US State of Alaska / Natural Resources / Geological & Geophysical Surveys / Geologic Hazards / Coastal Hazards Alaska Tidal Datum Portal Hazards

Alaska Tidal Datum Calculator

This conversion calculator is provided as a convenience to facilitate access to vertical measurements that have been independently verified and are freely available from either NOAA CO-OPS or NOAA NGS. For rigorous emergency, planning or construction purposes, users are strongly advised to consult these original sources to ensure accurate and up-todate transformations. All calculations are based on single tide station offsets, elevations obtained using this method are only valid in the immediate vicinity of the original tide station. Because the relationships between local tidal and geodetic elevations can change with time, the most up-to-date measurement sources must be consulted, independent of this site, to ensure accurate transformations for these high-stakes applications.

The values in this conversion calculator were last updated December 2021.


Location:	Adak Island
-----------	-------------

Geodetic Elevation:

(meters) NAVD88(GEOID12A), Orthorr V Calculate Elevation (Tidal Datum)

Local Tidal Elevation: (meters) MLLW

✓ Calculate Elevation (Geodetic Datum)

Tidal Datum Calculator still undergoing updates, last made December 2021: <u>https://dggs.alaska.gov/hazards/coa</u> stal/ak-tidal-datum-portal.html

The Eye on Alaska's Coast's and Oceans

Join the AWLW email list by contacting Jacquelyn.Overbeck@noaa.gov

End of Presentation

Thank you!

Imagery & Elevation Acquisition Dashboard

Hillary Palmer – Dewberry

End of Presentation

Thank you!

Topobathy Lidar

Karen Hart – Woolpert

Importance of Near Real-time Data Processing for Topo-bathymetric Lidar Operations Karen Hart

Colorized point cloud – Kauai, HI

MARITIME SOLUTIONS

By the Numbers

65

Hydrographic Professionals

20+

Vessels

13+ Aircraft in Fleet 10

Certified Hydrographers

60,000+

Square Miles of Bathymetry Collected Since 2016

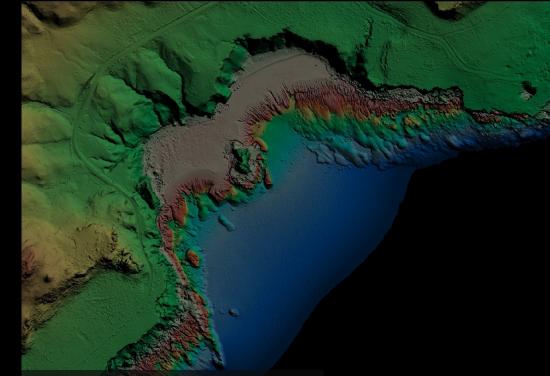
4 (Lidar) Sensors in Use Clients

US Army Corps sci of Engineers

JALBTCX

Woolpert Topo-bathymetric Lidar Operations

• Missions lasting weeks to months

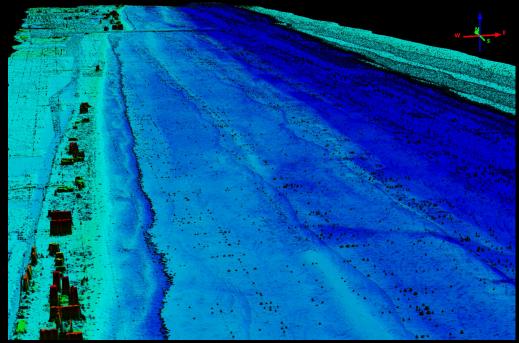

- Deployment of Leica sensors (Chiroptera and HawkEye)
- $\circ~$ CONUS or OCONUS
- Collection of 10s of TBs data

• Field processing

- \circ General corrections
- GPS Trajectory
- Daily coverage
- $\circ~$ Data uploaded to office/servers

Office processing

- Data management
- Coverages made for field
- Fully corrected
- Manual edits and advanced classification
- Products


Topo-bathymetric DEM – Saipan, CNMI

Software to Aid Processing in the Field

- •FLiDAR "Fast lidar" software created to assist field data processing
 - Sensor agnostic
 - \circ Near-realtime

Digital Surface Model (DSM) Coverage

- Generation of multipurpose raster images in seconds
- Various statistics from LAS data based on point data fields
- o Input:
 - One or more LAS files
 - Resolution of surface
 - Raster type

BULLDOG topo-bathy sensor, deep green channel, all flightlines, 5m Minimum DSM, illustrating seafloor

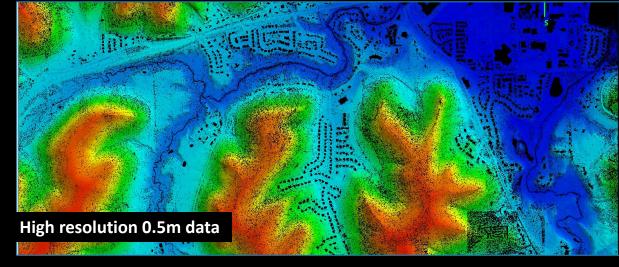
Digital Surface Model Creation Features

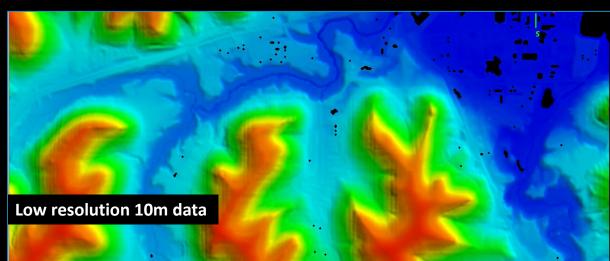
- Processes are run in parallel
 - $\,\circ\,$ Leverage multi-core CPUs and solid-state drives
- •LAS points are indexed prior to rasterization
- •Fast execution of rasters: dozens of files / several hundred GBs of data can be rasterized in less than 2 minutes
- •Software architecture allows handling of large datasets
 - $\,\circ\,$ No need to merge files ahead of time
- •Creates singular output DSMs which can then be tiled
 - Provides advantage over individual tile processing into raster outputs which then must be mosaicked together

Proof of Concept

Testing on multiple sensor types

 BULLDOG topo-bathy sensor testing
 Chiroptera / HawkEye topo-bathy data
 JALBTCX (CZMIL) data

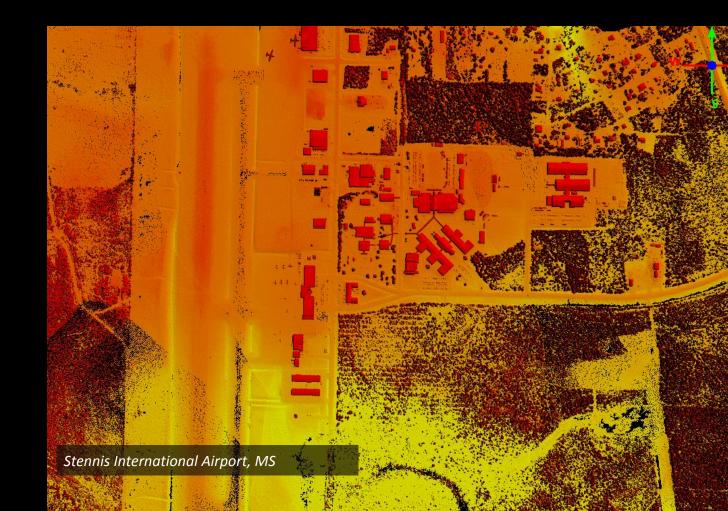

•Field testing during topo-bathy projects : • NOAA NGS FY23 (Chiroptera/HawkEye):


- Hurricane Ida Supplemental Louisiana Coast
- American Samoa
- Chesapeake Bay (IIJA)
- Cook Islands (Chiroptera/HawkEye)

Preliminary field coverage, Chincoteague Sound (NOAA NGS)

High Resolution vs. Low Resolution DSMs

- •High resolution: detailed view of the topology
- •Low resolution: high-level overview of AOI topology
 - $\circ~$ Requires less time to generate
 - Smaller file size
- •Ability to combine High Res DSM with corresponding Low Res DSM to fill the gaps in input data

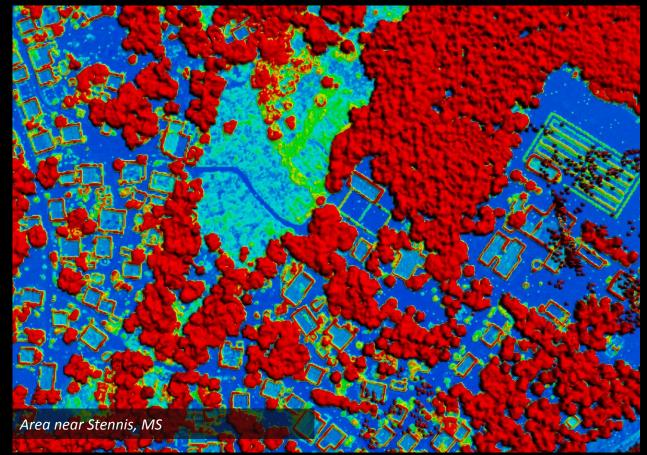

DSM Output – Statistical Surfaces

Statistical Surfaces include:

- Count: overview of the density of input data
- Max/Min: impact of noise data to the output, depth estimates
- Mean: overall average of the resolution-sized area
- Median: indicator of surfaces less sensitive to outliers
- Mode: most common value with an algorithmically chosen bin width comparisons of surface density/reflectivity
- Range: spread of values within a resolution-sized area bathymetry likely to stand out
- Standard Deviation: measure of overall distribution building outlines may stand out
- Skew: measure of the asymmetry of distribution certain noise profiles, building outlines may stand out
- Kurtosis: measure of the 'tailedness' of a distribution certain noise characteristics, shorelines may stand out

Median DSM

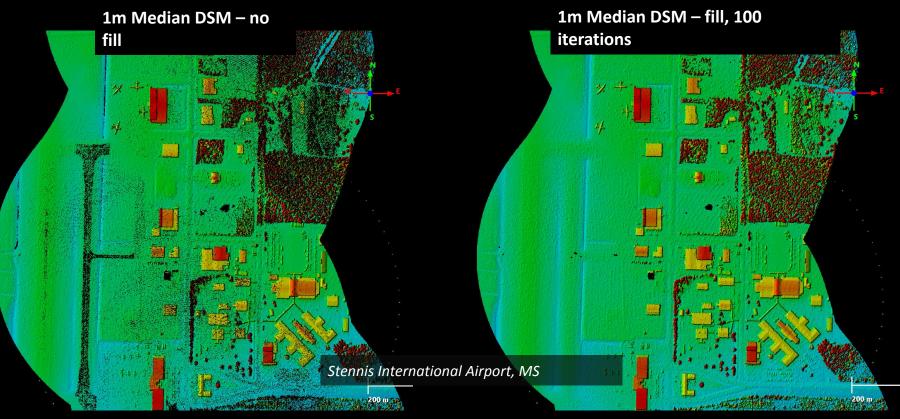
•Merged 1m DSM of BULLDOG data



Count DSM

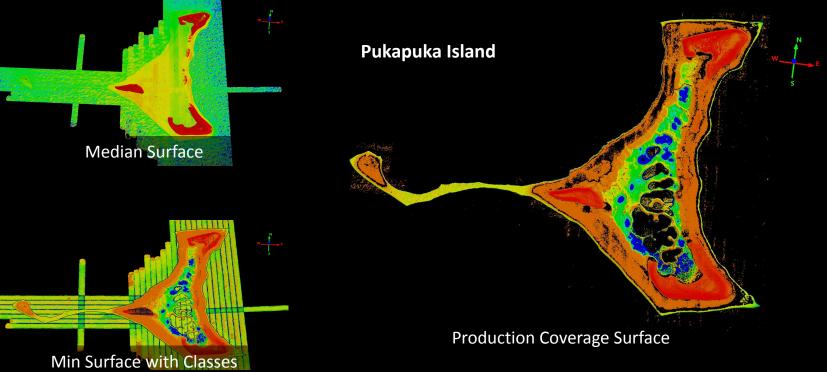
Shows data densityLeica Hawkeye 4X data

Standard Deviation DSM


•Building outlines are prevalent

VA/

•Data collected by BULLDOG sensor


Gap Filling

• Data filling algorithm fills the void contours one pixel depth at a time with multiple iterations as needed

Cook Islands DSMs

• Data courtesy of Infrastructure Cook Islands

Summary and Preliminary Results

•Benefits

- $_{\odot}$ Sensor agnostic
- $\,\circ\,$ Near realtime data processing
- Edge execution / processing (running on collection platforms)
 - Realtime coverage
 - Performance is optimized
 - Meet specifications
 - Mitigate reflight wait time (fly again immediately)

•Preliminary field assessment:

- Quick coverage creation is useful for identifying gaps (voids, sliver, MPIA)
- $\circ\,$ Not yet a replacement in the field as it does not give a good indication of seabed coverage

Further Development

- •Improving capabilities to fill building footprints, find seabed features, remove sea surface, and other advanced processes in order to create deliverable outputs
- •Integrating differencing, adding, masking, and other options between user-selected statistics or resolutions in order to customize outputs
- •Using particular statistical outputs to extract building footprints, vegetated areas, water surfaces, and other features from totally unclassified data with the goal of creating better elevation models or classified data sets
- Integrating GPU processing for even greater speed and parallelization improvements

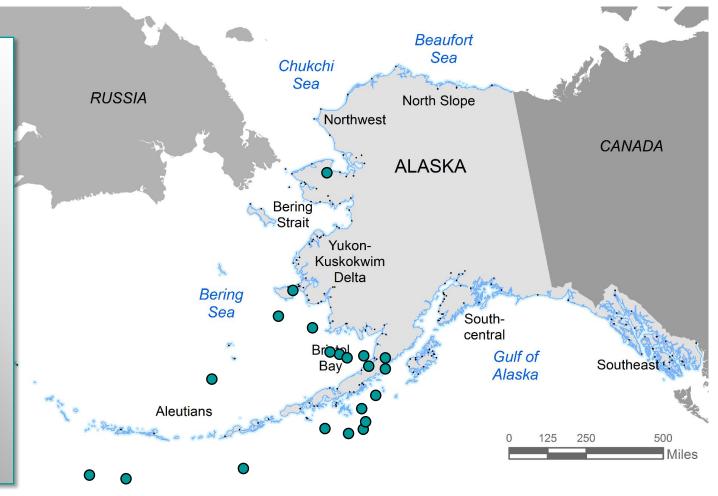
Thank you!

S. Sugarage

Karen Hart <u>karen.hart@woolpert.com</u> Woolpert

Single BULLDOG flight - 1m Stdev DSM – shows building outlines

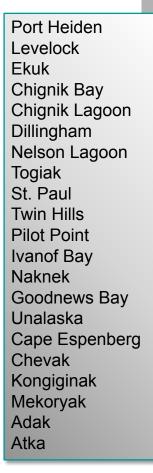
Workforce Development

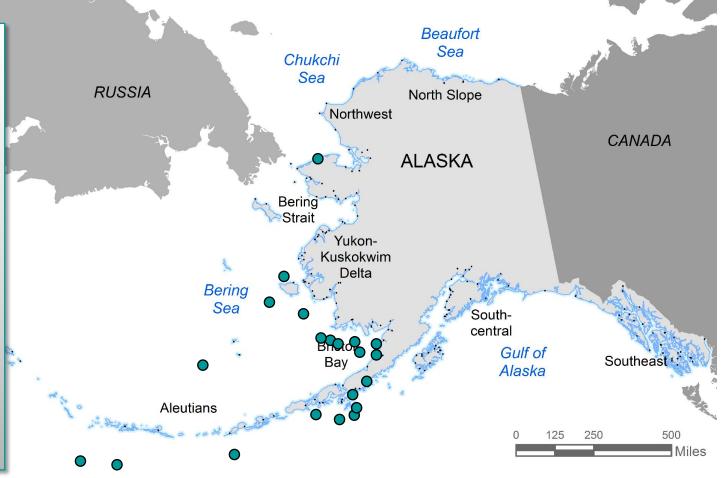

Reyce Bogardus – University of Alaska Fairbanks

WORKFORCE DEVELOPMENT THROUGH COMMUNITY-BASED MAPPING

Reyce Bogardus | UAF Geophysical Institute

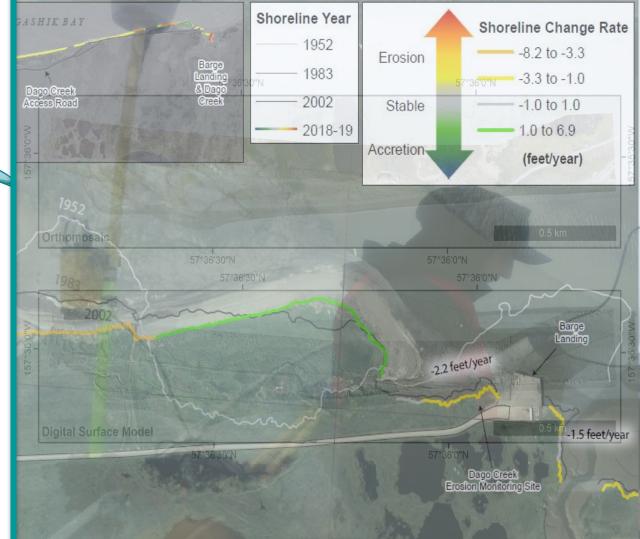
Port Heiden Levelock Ekuk Chignik Bay Chignik Lagoon Dillingham Nelson Lagoon Togiak St. Paul Twin Hills Pilot Point Ivanof Bay Naknek **Goodnews Bay** Unalaska Cape Espenberg Chevak Kongiginak Mekoryak Adak Atka

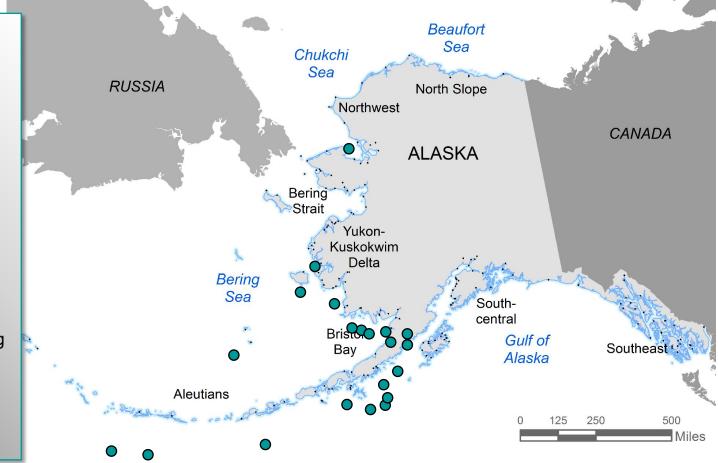



Mapping with Tribal Partners

Nelson Lagoon, AK; others

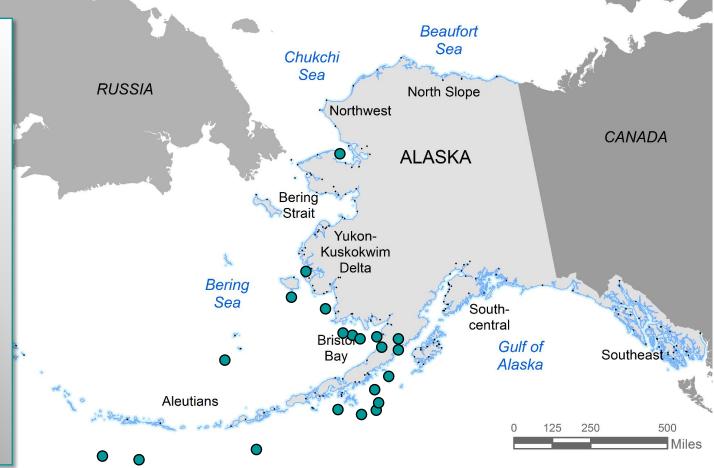
- Unmanned aerial vehicle (UAV) Quality Assurance Project Plans (QAPPs)
 - Event-based change detection
 - Transportation corridor mapping
- Funding synergy through collaborative data collection




Mapping with City Partners

Pilot Point, AK; others

- Working directly with engineering firms
 Project based mapping
- Iterative mapping with community members
 - Identifying areas of interest
 - Cataloging local place names


Mapping with State Partners

St. Paul, AK; others

- Internship(s) with DGGS
 Coastal Hazard Program
- Workforce development through continued collaboration and product-driven mapping
- Integrating academics with real-world needs

Port Heiden Levelock Ekuk Chignik Bay Chignik Lagoon Dillingham Nelson Lagoon Togiak St. Paul Twin Hills Pilot Point Ivanof Bay Naknek Goodnews Bay Unalaska Cape Espenberg Chevak Kongiginak Mekoryak Adak Atka

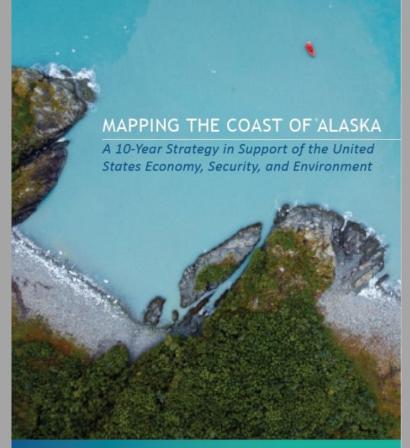
Mapping with K-12 Students

Naknek, AK; others

- Geohazard education modules
- Application-driven workforce development
 - Mapping with Structure-from-Motion (SfM)
 - Geovisualization using Virtual Reality (VR)

Thank You! Questions?

Reyce Bogardus | UAF Geophysical Institute



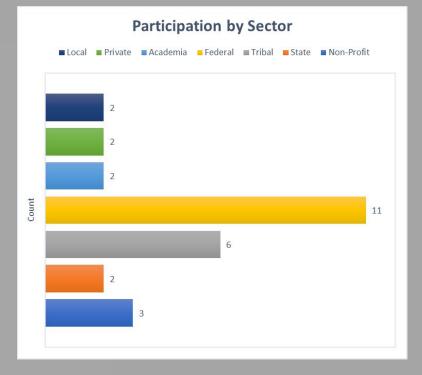
Prioritization Survey Results & Mapping Partner Finder

Hillary Palmer – Dewberry

A Coastal Mapping Strategy for Alaska is Born!

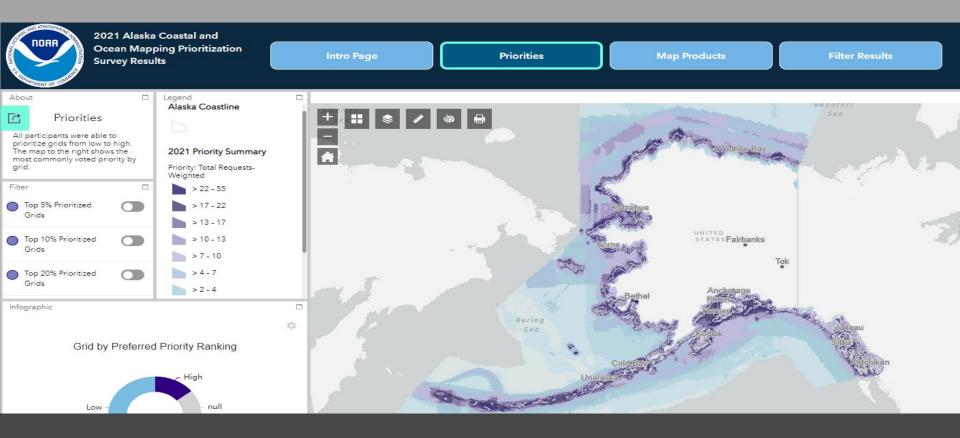
- Imagery
- Elevation
- Shoreline Delineation
- Supporting Positional Control Framework

Feedback Required – Do a Survey!



All NOAA Agencies

All Federal Entities


Alaska Regional Survey

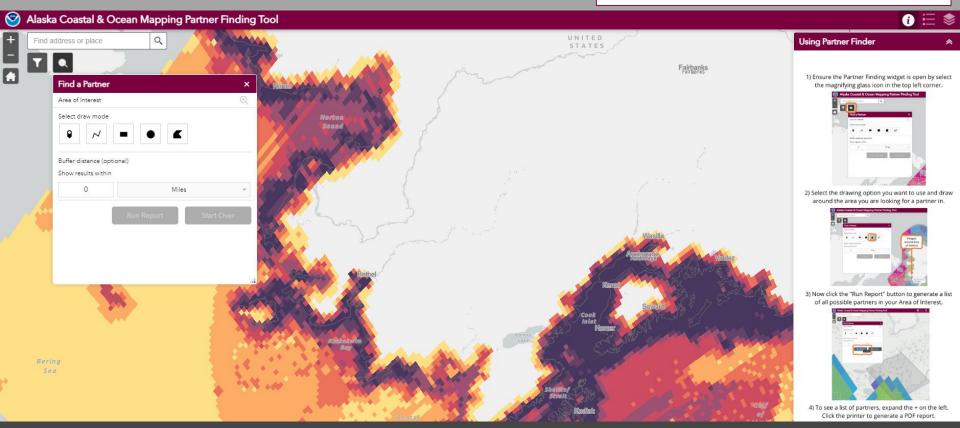
Prioritization Survey Results

akmappingpriorities.com

Demo video of Prioritization Survey Results

How do we find partners to leverage resources?

Alaska is BIG...


 Finding mapping partners is like playing Pin the Tail on the Donkey, blindfolded, on a football field!

•Where's the "easy" button?

Mapping Partner Finder Tool

akmappingpartnerfinder.com

Demo Video of Mapping Partner Finder Tool

Mapping Partner Finder Reports

- I have a list of potential mapping partners... now what?
- Many have a "Contact Us" website form
- If you need help reaching out to these agencies to discuss potential mapping partnerships, send your Partner Finder Report to:

iwgocm.staff@noaa.gov

End of Presentation

Thank you!

Coastal Mapping Plan of Action Dashboard

Hillary Palmer – Dewberry

ACMS PLAN OF ACTION

DATA DEVELOPMENT OVERVIEW

ALASKA COASTAL MAPPING STRATEGY GOAL

Develop a 10-year Mapping Plan of Action!

OPTIONS FOR DEVELOPING A COASTAL MAPPING APPROACH

- No shortage of ways to map Alaska's coast.
- Everybody has a different view of what should be done.
- Try to build consensus using data-driven decisions and transparency.
- Yep, you guessed it! We made ANOTHER dashboard to facilitate this.
- Let's look at some of the options for solving this problem and the pro's and con's for each.

Prioritization Survey

- Some priority areas unpopulated
- Only 28 survey participants

PRO

Community Mapping Areas (CMA)

- **PRO** Equitable
- **CON** Ignores survey results

- **PRO** Best of both worlds
- More complicated

MAPPING APPROACH – THE OPTIONS

DATA DEVELOPMENT DOCUMENTATION

- Prioritization Survey Results available here: <u>https://www.akmappingpriorities.com</u>
- CMA Documentation
 - ACMS mapping area = 2 miles inland and 2 miles seaward or to 10m depth contour (whichever comes first) aka "buffered coastline"
 - Alaska community points clipped to ACMS mapping area, then buffered to 5-mile radius; buffers clipped again by ACMS mapping area
 - CMA's evaluated against complied existing data inventory & designated "mapped" or "unmapped"
 - Unmapped CMA's are a higher priority; Also incorporated Environmentally Threatened Communities ranking to further prioritize amongst Unmapped CMA's

DEVELOPING THE COMMUNITY MAPPING AREAS (CMA'S)

Elevation CMA's

(Goal: QL2/QL2B or better, and 5 yrs old or newer)

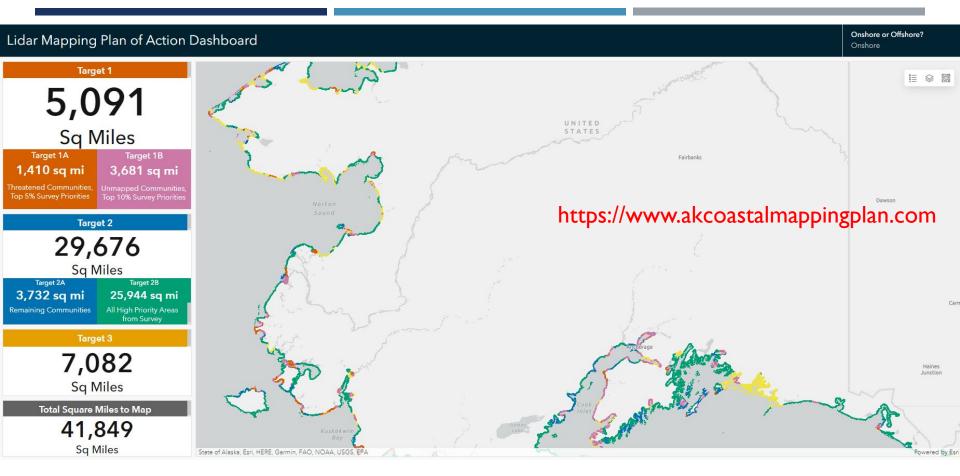
- "mapped" = existing data meets goal
 - Sort by most recent elevation data by age and map CMA's with oldest data first
- "unmapped" = existing data does not meet goal
 OR no data exists
 - Incorporate the Statewide Environmental Threat Assessment ranking to ensure we map "threatened" communities first

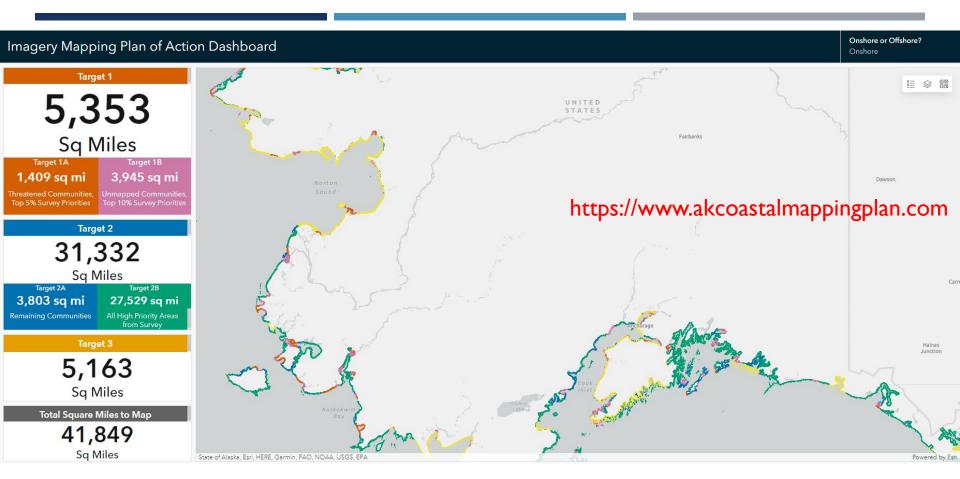
Imagery CMA's

(Goal: 5 yrs old or newer)

- "mapped" = existing data meets goal
 - Sort by most recent elevation data by age and map CMA's with oldest data first
- "unmapped" = existing data does not meet goal
 OR no data exists
 - Incorporate the Statewide Environmental Threat Assessment ranking to ensure we map "threatened" communities first

CREATING THE MAPPING TARGET GROUPS


Combining the prioritization survey results with the CMA's


Target I = top 10% of priority areas + "Unmapped" CMA's

- IA: top 5% of priority areas + Unmapped CMA's that are "Threatened"
- IB: top 10% of priority areas + Unmapped CMA's that are not "Threatened"

Target 2 = remaining CMA's + all high priority cells from survey

Target 3 = remaining unpopulated, lower priority areas

GREAT! WHAT'S IT GOING TO COST?

INITIAL DRAFT COST ESTIMATES

Onshore Elevation Data						
Target ID	Area (sq. miles)	TBL QL2B	Topographic Lidar QL1	Topographic Lidar QL2		
1A	498	\$ 1,245,000	\$ 423,399	\$ 209,160		
1B	4,593	\$ 11,482,500	\$ 3,904,050	\$ 1,929,060		
2A	3,732	\$ 9,330,000	\$ 3,172,200	\$ 1,567,440		
2B	25,944	\$ 64,860,000	\$ 22,052,400	\$ 10,896,480		
3	7,082	\$ 17,705,000	\$ 6,019,700	\$ 2,974,440		
Total	41,849	\$104,622,500	\$ 35,571,650	\$ 17,576,580		

Imagery					
Target	Area (sq. miles)	TCORTHO	ORTHO 3-in	ORTHO 6-in	
1A	1,409	\$ 1,409,000	\$ 1,373,775	\$ 338,160	
1B	3,945	\$ 3,945,000	\$ 3,846,375	\$ 946,800	
2A	3,803	\$ 3,803,000	\$ 3,707,925	\$ 912,720	
2B	27,529	\$ 27,529,000	\$ 26,840,775	\$ 6,606,960	
3	5,163	\$ 5,163,000	\$ 5,033,925	\$ 1,239,120	
Total	41,849	\$ 41,849,000	\$ 40,802,775	\$ 10,043,760	

TBL: Topobathy Lidar

TCORTHO: Tide-controlled orthorectified imagery

NEXT STEPS

- Generalize the piecemeal mapping target groups into 10K sq mi chunks, each a reasonable amount for a single acquisition season.
- NOAA might issue an RFI soon for 2 of these as pilot areas to refine cost estimates.
- We need your help! This initiative will only be successful through collaboration and cost-share partnerships.

AKCOASTALMAPPINGPLAN.COM

DRAFT ALASKA COASTAL MAPPING PLAN OF ACTION

Send us your feedback!

Either use the chat or email me at: hpalmer@dewberry.com alaskacoastalmappingcoordinator@dewberry.com

End of Presentation

Thank you!