50 Billion Measurements of Snow Depth in Arctic Alaska with Fodar

Dr. Matt Nolan
 Fairbanks Fodar

Here is a synthetic 3D visualization of a small drained lake mapped in summer (left) and winter (right) in 2021 using fodar on over 3000 sq. km of NPR-A. The difference between the winter and summer elevations is snow depth, which we can measure in transects (above) or as maps with 25 cm pixels.

I've been mapping snow depths annually in Arctic Alaska for 10 years across 1000s of square kilometers.
Visit www.fairbanksfodar.com to learn about this project (and many more) in great detail.

Project Location
NPR-A

Evaluating Fodar Snow Depth Accuracy

Fodar vs Ground Probe

MagnaProbe

Evaluating Fodar Snow Depth Accuracy

Fodar vs Ground Probe

Evaluating Fodar Snow Depth Accuracy

Fodar vs Ground Probe

Snow Depth
2.25 m

MagnaProbe Measurements

Evaluating Fodar Snow Depth Accuracy

Fodar vs Ground Probe

Fodar can measure a billion points/day and do so more accurately than can be done on the ground.

That snow depth is so accurate means that the precision of a single fodar map (summer and winter) is as good as any lidar.

Evaluating Fodar Precision

ifsar minus fodar

~2000 km2

If both data products were perfect, there would be no color variations.

Evaluating Fodar Precision

If both data products were perfect, there would be no color variations.
Nearly all of the color variation here is due to errors in the IfSAR.
These IfSAR artifacts could only be revealed if the fodar was substantially more precise.

Evaluating Fodar Precision

ifsar minus fodar

Here a large ripple of ifsar topography is seen at $+/-40 \mathrm{~m}$ compared to fodar topography, and ripples much smaller than this are clearly seen in the imagery.

Fodar topography therefore must have a precision substantially better than $+/-40 \mathrm{~cm}$. Nearly all of our studies have found fodar precision to be $8-12 \mathrm{~cm}$ std.

Evaluating Fodar Horizontal Accuracy

Horizontal alignment between summer and winter maps is essentially perfect.

Horizontal alignment between summer and winter maps is essentially perfect.

Wevaluathof fodar Horizontal Accuracy

Horizontal alignment between summer and winter maps is essentially perfect.

Evaluating Limits of Fodar

Evaluating the impact of snow and ice roads on the tundra

A pipeline was being built during my acquisitions, with ice roads surrounding the pipeline corridor and pad (black line).

Evaluating the impact of snow and ice roads on the tundra

Now we can study the impacts of snow/ice roads on the tundra as a function of snow/ice thickness.

Evaluating the impact of snow and ice roads on the tundra
 2. A).

Snow and ice roads clearly have a lasting impact on the tundra.

Understanding the correlation between snow/ice road thickness and these impacts will presumably improve protocols and best practices in the future.

Here ice wedges surrounding polygons are in various stages of decay due to climate warming.

We cannot understand the processes of change without measurements of change on the spatial and temporal scales that they occur.

Thank you for your attention!

So we earth scientists don't need one map of the entire state every 20 years,
we need excellent maps of tens of thousands of square kilometers annually or seasonally at the spatial scale that these processes occur.

Such time-series are possible and affordable - l've been making them on my own for more than a decade, but in terms of advocating this need/solution it's been like bringing a knife to a gunfight in the Wild West I work in..

