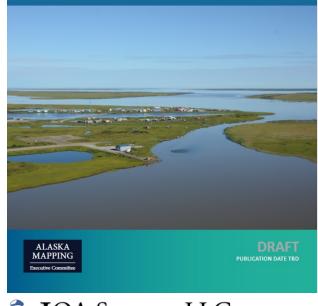
Collecting Water Level and GNSS Observations to Upgrade the National Spatial Reference System in Alaska


Alaska GeoSummit

JOA Surveys, LLC Oct 25, 2023

Project Drivers

ALASKA COASTAL MAPPING STRATEGY

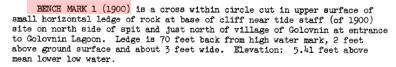
Implementation Plan 2020-2030

Objective 2.2. Upgrade Alaska National Spatial Reference System (NSRS) Components to Support Mapping Data Acquisition

Milestone of Objective 2.2		Performance Indicator	Year/Goal
2.2.4	2.2.4 Establishing comprehensive Alaska VDatum coverage to enable regional transformations and support <u>real-</u> time mapping data acquisition and processing	Short term tidal observations acquired	Oct 2027
		GNSS observations taken on tidal benchmarks	Oct 2027
		Models of transformation grids developed and published for use	Oct 2028

Project Benefits

Project Benefits

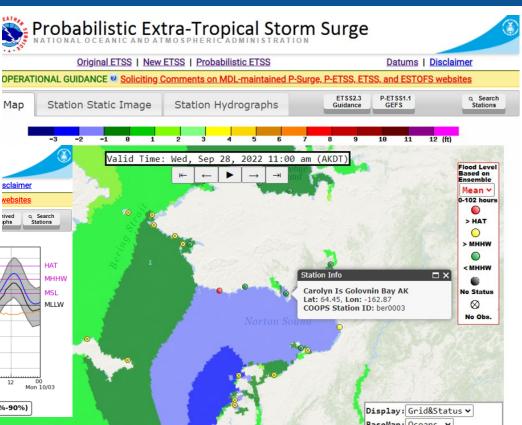

nived

nhs

U. S. COAST AND GEODETIC SURVEY

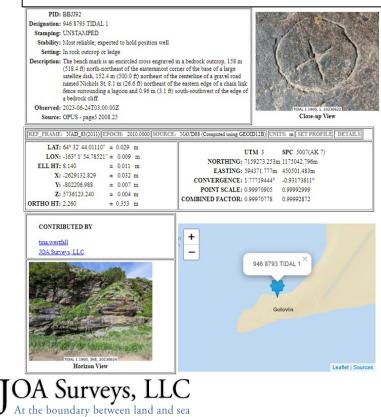
TIDAL BENCH MARKS

Golovnin Lagoon Entrance (North of Golovnin), Golovnin Bay, Norton Sound Lat. 64° 32'.8; Long. 163° 01'.9



Mean lower low water at Golovnin Lagoon Entrance (North of Golovnin), Golovnin Bay, Norton Sound is based on 7 high waters and 8 low waters, August 22-30, 1900. Elevations of other tide planes referred to this datum are as follows:

OA Surveys, LLC the boundary between land and sea


Carolyn Is Golovnin Bay AK ber0003, 09/29/2022 00:01 UTC HAT Height in Feet (MLLW) MSL 00 00 00 Wed 09/28 00 Thu 09/29 00 Fri 09/30 00 Sat 10/01 00 Sun 10/02 12 12 12 12 12 12 12 Mon 09/26 Tue 09/27 Mon 10/03 Time (UTC) Observation Ensemble Uncertainty (10%-90%) Tide Surge -Anomaly -Forecast -

Project Benefits

OPUS Shared Solution

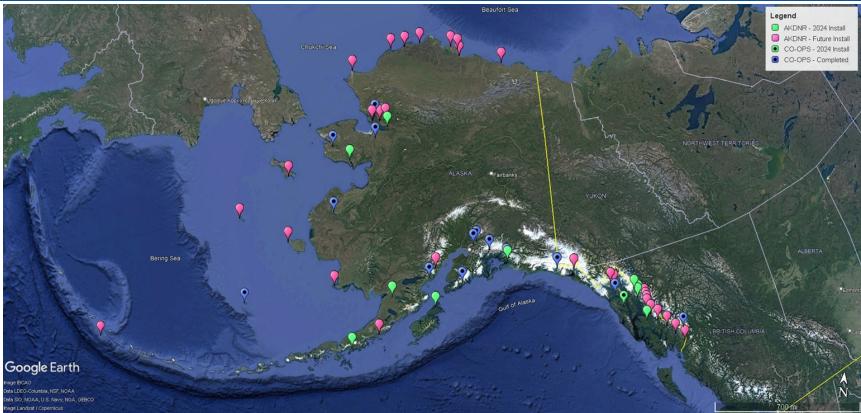
Tidal Benchmark from 1900 recovered in Golovin, AK

Project Team

Project Owner

OFFICE FOR COASTAL MANAGEMENT

Project Owner/Advisor


NATIONAL COASTAL ZONE MANAGEMENT PROGRAM

Project Contributors

Project Map

General Tide Station Requirements

• Recon

- o Desktop recon
- o Field recon
- o Reporting

Install

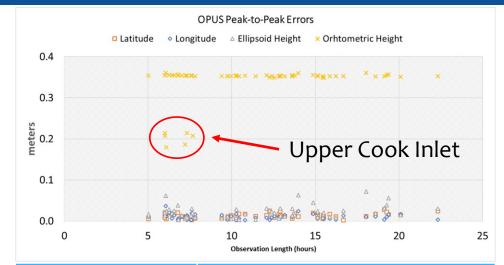
- o Planning
- o Install sensor and benchmarks
- o 2nd Order Class I or 3rd Order differential levels
- GNSS Survey (6 hour static session on 2 marks)
- o Reporting

Removal

- GNSS Survey (6 hour static session on 2 marks)
- o 2nd Order Class I or 3rd Order differential levels
- Remove sensor*
- o Reporting

* If sensor moves more than <u>6mm</u> relative to the Primary Benchmark it must be reinstalled the next year.

Buckland, AK


Tie to the NSRS

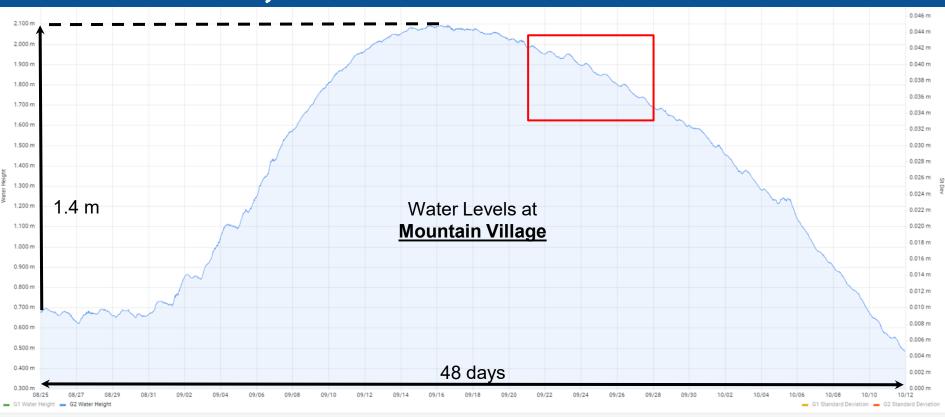
- OPUS Shared on **32 tidal benchmarks**
- Used 42 different CORS stations
- Avg baseline length 205 km

OA Surveys, LLC At the boundary between land and sea

• Avg diff btw repeat obs was <u>4 cm</u>

Peak-to-Peak Errors (m)

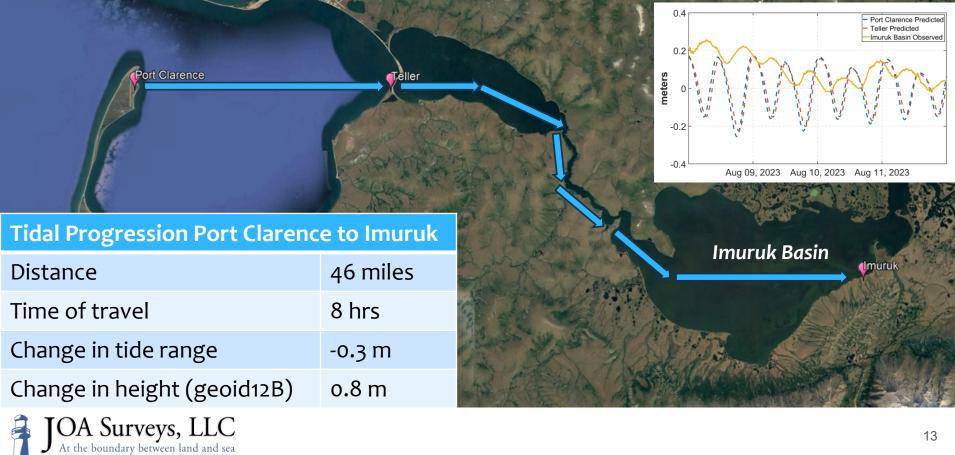
	Max	Avg	Min
Latitude	0.028	0.013	0.002
Longitude	0.037	0.011	0.002
Ellipsoid Ht.	0.072	0.021	0.003
Ortho Ht.	0.361	0.338	0.180


Connecting Tidal Datums to the NSRS

Leveled 82 tidal benchmarks & 27 water level sensors twice approximately 3 months between level runs

OA Surveys, LLC At the boundary between land and sea

	Benchmarks	Primary Sensor
Max	8.8 mm	3.3 mm
Avg	0.9 mm	1.3 mm
RMS	1.7 mm	1.7 mm


Project Data: Yukon River

Project Data: Yukon River

Project Data: Imuruk Basin

Project Data: Imuruk Basin

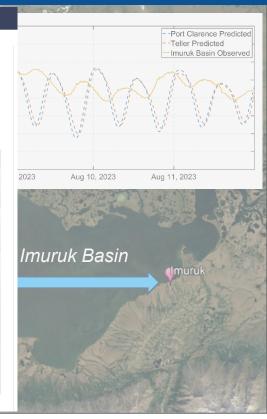
Tidal Progression Port C

Distance

Time of travel

Change in tide range

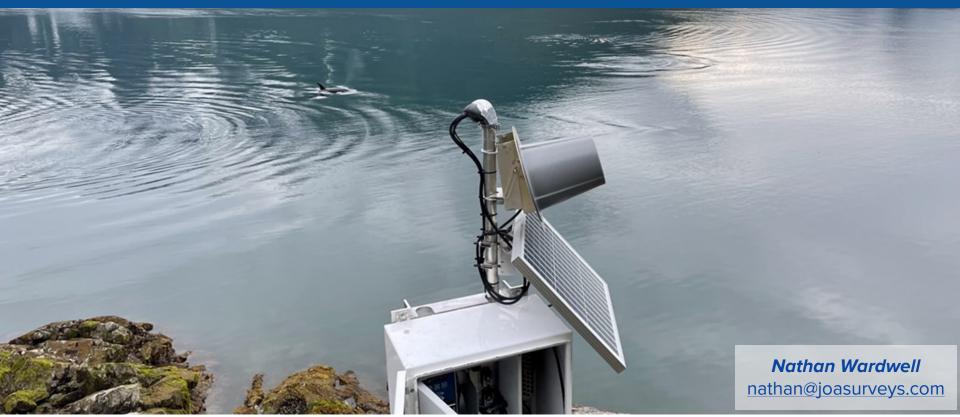
Change in height (geoid


Business/Economy

Department of Defense awards \$37M to Graphite One mining project near Nome

By Riley Rogerson Undated: July 18, 2023 Published: July 17, 2023

Core samples taken from Graphite One's summer 2012 exploration program, (AP Photo/Graphite One Resources, Dean Besserer)



Wrap Up

- October 2007 VDatum software was released. Included coverage of Chesapeake and Delaware Bays, Mobile Bay to Cape San Bias Florida, and New Jersey to Narragansett Bay.
- **2019** VDatum grids for Southeast Alaska were released.
- 2028? Achieving statewide VDatum coverage will be <u>20</u> years in the making!

Thanks!

