STATE OF ALASKA

William A. Egan - Governor

DEPARTMENT OF NATURAL RESOURCES

Phil R. Holdsworth - Commissioner

DIVISION OF MINES AND MINERALS

James A. Williams - Director

GEOCHEMICAL REPORT NO. 9

A Geochemical Investigation Along The Taylor Highway, East-Central Alaska

By

R. H. Saunders

Juneau, Alaska

February 1966

TABLE OF CONTENTS

	Page
INTRODUCTION AND SUMMARY	1
GENERAL FEATURES	1
GEOLOGY	2
MINERAL DEPOSITS	3
GEOCHEMICAL INVESTIGATION	3
RESULTS	4
TABLE I. Results of Analyses	8
ILLUSTRATIONS	
Frequency Distribution Graphs for Copper and Zinc	15
Frequency Distribution Graphs for Lead and Molybdenum	16
Diagram Showing Layout of Figures 1 - 13	17
Figures 1 through 13	Appendix

A GEOCHEMICAL INVESTIGATION ALONG THE TAYLOR HIGHWAY, EAST-CENTRAL ALASKA

By

RaH. Saunders

INTRODUCTION AND SUMMARY

This report presents information obtained by a geochemical investigation along the Taylor Highway in east-central Alaska during June 24 to July 8, 1965.

That part of Alaska between the Yukon and Tanana Rivers is commonly called the Yukon-Tanana Region. The Taylor Highway traverses the eastern part of this Region, extending northward from Tetlin Junction on the Alaska Highway in the Tanana valley to Eagle on the Yukon River, a distance by road of 158 miles. Ninety-six miles from Tetlin Junction a branch road leading to Dawson links the highway to the road network of the Yukon Territory. Prior to the completion of the Taylor Highway in 1953, the eastern part of the Yukon-Tanana Region north of the Tanana valley was not accessible by road.

In the past, prospecting in the country now served by the highway was primarily the search for placer gold. The cover of soil and vegetation prevalent over the country is a serious obstacle to prospecting, particularly to prospecting for lode deposits. Geochemistry provides a means by which the prospector can overcome to some degree the disadvantage imposed by the scarcity of outcrops. This report is intended to direct prospectors to specific areas in which chances for the occurrence of ore deposits are better than average.

Two hundred seventeen samples were taken during this investigation, and 84 of these contained one or more metals in anomalous amounts. Data on the samples may be subject to more than one interpretation; the results indicate, however, that about 20 separate areas are worthy of special attention by prospectors.

GENERAL FEATURES

The country along the highway is an area of high topographic relief, the altitudes ranging from about 900 feet above sea level at Eagle (Fig. 13) to over 5000 feet at Mount Fairplay (Fig. 3). In the eastern part of the Yukon-Tanana Region, the drainage divide between the Yukon

and Tanana Rivers is near the Tanana; therefore, the highway, except for the southernmost ten miles, is in the Yukon River watershed. The principal streams draining the country are the Fortymile River and its tributaries.

The major tributaries to Fortymile River are called "forks". Dennison Fork heads against the Tanana River watershed; it is joined by a large easterly flowing tributary, the West Fork of Dennison Fork, which the high-way crosses 50 miles from Tetlin Junction. Near Chicken (Fig. 6) Dennison Fork joins Mosquito Fork to form the South Fork of Fortymile River. A few miles to the north, the South Fork and North Fork join, forming the Fortymile River, which from this confluence flows eastward into Canada and into the Yukon River.

The highway leaves the Fortymile River drainage at the head of King Solomon Creek (Fig. 12), and from this divide it goes northward along American Creek to Eagle. American Creek is a tributary to Mission Creek which flows into the Yukon at the toe of Eagle Bluff (Fig. 13).

GEOLOGY

The geology of the Yukon-Tanana Region has been described by J.B. Mertie, Jr. in U.S. Geological Survey Bulletin 872, THE YUKON-TANANA REGION, ALASKA. The oldest rock unit present is the Birch Creek schist formation, a series of metamorphosed sedimentary and igneous rocks, which Mertie assigned to the pre-Cambrian age. In the country along the highway rocks of this formation constitute the bedrock from lower Logging Cabin Creek to the West Fork of Dennison Fork (Figs. 4-5) and from the South Fork bridge east to Boundary and north almost to the Liberty Fork of O'Brien Creek (Figs. 7-11).

Rocks of Devonian age are found between Chicken and the South Fork bridge (Figs. 6-7) and between Liberty Fork and Eagle (Figs. 11-13). For the most part, these are either non-calcareous rocks of sedimentary origin or basic and ultrabasic intrusives altered to greenstone.

Tertiary lavas - primarily rhyolite and dacite - are present along the highway from the Tanana River divide north to lower Logging Cabin Creek (Figs. 1.3), on Ingle Creek (Fig. 6), and on upper Chicken Creek (fig. 6). Tertiary sedimentary rocks - sandstone, shale, and conglomerate, with some lignite - are present in two small areas, one near lower Chicken Creek and the other near Eagle.

A large granitic intrusive of Mesozoic age forms the bedrock between the West Fork of Dennison Fork and Mosquito Fork (Figs. 5-6). A smaller body of similar rock forms the top of Mt. Fairplay (Fig. 3), and numerous still smaller Mesozoic intrusives are present in the areas where the Birch Creek schist formation is the dominant bedrock.

MINERAL DEPOSITS

Gold was discovered near the mouth of the Fortymile River in Canada in 1886, in the Fortymile drainage in Alaska in 1887, and in the American Creek drainage in 1895. Placer mining has continued in the district since the early-day discoveries. The better known productive streams along the Taylor Highway are Chicken Creek (Fig. 6), South Fork of Fortymile River (Fig. 7), Walker Fork (Figs. 7-9), Wade Creek (Figs. 7-8), Canyon Creek (Fig. 9), Fortymile River (Fig. 10), and American Creek (Figs. 12-13).

The gold mineralization is considered to have been associated with the intrusion of the Mesozoic granitic rocks. Areas in which there are one or more small granitic intrusions are favorable areas in which to prospect for lodes, and streamsdraining such areas are favorable for placers. In the western part of the Yukon-Tanana Region, a second period of mineralization was associated with Tertiary intrusives. Although Tertiary intrusive rocks have not been found in the eastern part of the Region, cinnabar, a mineral indicative of the Tertiary mineralization, has been found in placer concentrates in the Fortymile District. Other minerals that have been identified in the placer concentrates include cassiterite and scheelite. Narrow veinlets carrying copper minerals have been found in a few places in the Chicken area, and copper and nickel have been found in basic Devonian rocks at Eagle Bluff.

GEOCHEMICAL INVESTIGATION

Two hundred seventeen samples of stream sediments were taken during this investigation. They were tested in the field for cold-extractable heavy metals following the procedure given in University of Alaska Mining Extension Bulletin No. 2, ELEMENTARY GEOCHEMICAL PROSPECTING METHODS, by Leo Mark Anthony. One minor departure from this procedure was made; paint thinner was used in place of white gasoline as a solvent for the dye solution. The samples consisted of clay, silt, sand, or fine gravel taken from beneath running water in the stream beds. Where streams cross the highway, samples were taken upstream from the crossings to avoid possible contamination from culverts, fill material, and discarded metallic objects. The samples were dried and screened, and a minus-80-mesh portion of each sample was sent to Rocky Mountain Geochemical Laboratories of Salt Lake City to be analyzed for trace amounts of copper, lead, zinc, and molybdenum. The decision to have the samples analyzed for these four metals was not based on the assumption that deposits of these metals are more likely to occur in the area than other types of deposits. It was based on the probability that a metallic deposit would contain enough of one or more of these metals to form a traceable dispersion pattern, regardless of what metal constituted the chief value in the deposit.

Results of the field and laboratory tests are shown in Table I. The locations where the samples were taken are shown on Figs. 1 through 13. Frequency distribution graphs showing the numbers of samples containing various concentrations of the metals are included in this report. Samples were considered to contain anomalous amounts of metal if they contained as much as 45 parts per million of copper, 25 parts per million of lead, 120 parts per million of zinc, or 4 parts per million of molybdenum.

RESULTS

An anomalous quantity of metal in a stream sediment sample is not, of course, an infallible sign that an ore deposit exists upstream from the sample site. Anomalies can be caused by mineral deposits below commercial grade or by a type of bedrock containing a higher-than-back-ground amount of metal. Geochemical sampling of stream sediments, however, can indicate areas favorable for mineralization and thereby increase a prospector's chances for success.

The first problem confronting the prospector using information in this type of report is the determination of how best to follow up the indicated The solutions to the problem will differ from place to place depending upon the topographic and geologic conditions at each sample site. Probably in every instance some additional stream sediment samples should If the indicated anomaly is far from the headwaters of the stream being sampled, a large number of additional stream sediment samples may be required. The area containing the source of the metal should be delineated as accurately as possible by sampling upstream from anomalous samples and by sampling other streams in the vicinity. Ideally, stream sediment sampling should be continued upstream until a point is reached where the samples contain only background quantities of metal; the place where the anomalous quantities of metal enter the stream would thus be located. next step, in most instances, probably would be the collecting and testing of soil samples in the vicinity of this cutoff point. Of course, any outcrops in the vicinity should be examined in detail. After locating the source as closely as possible by geochemical prospecting the prospector normally would turn to other methods, such as trenching and drilling.

Many samples which in this investigation proved to be anomalous when analyzed in the laboratory gave no indication of high metal content in the field test. The field test used probably is as reliable as any test based on the extraction of metal in a cold water solution (laboratory analyses ordinarily involve fusion or acid digestion). Table I shows how the field tests compare to the laboratory tests for the various samples. Where an anomaly is indicated by laboratory analysis but not by field test, any additional samples taken should be sent to a laboratory for analysis. Where the table indicates that an anomaly was detected by both the laboratory test and the field test, the field test alone probably could be used to

trace the anomaly, but laboratory analyses should be obtained for at least some of the samples.

Probably any sample found to be anomalous in this investigation is worthy of some follow-up work. Comments on a few of the anomalies are included here, but the anomalies discussed are not necessarily considered to be more important than others shown on the maps.

Mt. Fairplay, Figure 3, Samples 38-46

Samples from streams on the east slope of Mt. Fairplay contained anomalous amounts of the four metals, especially copper. Field tests on these samples detected anomalous amounts of heavy metals in only one; therefore, in follow-up work, laboratory analyses will be required. The favorable area could be delineated further by additional sampling to trace the anomaly up the west slope of the mountain and by sampling the streams draining the north, east, and south slopes.

Rock is exposed over much of the high part of the mountain. The core of the mountain is a granitic intrusive of Mesozoic age; it is surrounded by Tertiary volcanic flows. The volcanic rocks - mostly rhyolite and dacite - can be distinguished from the intrusive by their finer grain. relative ages of these rocks tend to make the area unfavorable for ore deposition. The intrusive and any ore deposits that may have been associated with it were emplaced before the volcanic rocks were formed; therefore, the volcanic rocks would not contain any mineral deposits that were contemporaneous with the intrusive. Any deposits formed in the enclosing rocks at the time of intrusion would have been either eroded away or buried under the volcanics. If the possibility of ore deposits buried under the volcanics is eliminated, two other possibilities remain: ore deposits may have been formed within the intrusive core, and (2) ore deposits may have been formed after the volcanic rocks were formed, during a period of mineralization that has not yet been recognized in the eastern Yukon-Tanana Region. Neither of these possibilities is especially attractive. In spite of the unfavorable geology, some additional work on this anomaly seems justified.

> Ridge West of Upper Logging Cabin Creek Figures 3 and 4, Samples 47 ~ 61

Streams draining the ridge west of upper Logging Cabin Creek carry lead in moderately high, anomalous amounts. The favorable area probably could be delineated further by additional stream sediment sampling around the ridge. The field tests on the samples compare rather unfavorably with the laboratory analyses; therefore, the prospector should not rely on field tests in initial follow-up work on this anomaly. So far as is known, the ridge consists of Tertiary volcanic flows, hence, the area, in light of present knowledge, is not a particularly favorable one for ore deposition. In spite of the unfavorable geology some additional follow-up work seems justified.

Head of Baby Creek, Figures 8 and 9, Samples 133, 146, and 147

A sample from one of the headwater forks of Baby Creek carried an extremely large amount of zinc, and two samples from tributaries to Walker Fork carried rather large amounts of copper and zinc. The sample from the tributary to Baby Creek gave a strong reaction in the field test. The favorable area thus indicated is less than one square mile. Follow-up work on this anomaly could be largely soil sampling across the crest of the divide, but a few additional stream sediment samples probably would further delimit the area. Bedrock is Birch Creek schist, and small granitic intrusions have been mapped within eight miles of the anomalous area. The geology is favorable for ore deposition. Contamination from the road is possible but not probable.

Camp Creek, Tributary to Canyon Creek, Figure 9, Sample 153

A sample from Camp Creek near its mouth carried a large amount of zinc and a moderately large amount of lead. Because of dilution, even a weakly anomalous sample from a stream this large might be more important than a strongly anomalous sample from a small headwater branch. Additional stream sediment sampling throughout the Camp Creek drainage would be the logical follow-up work on this anomaly. Field tests should not be relied upon. The geology is favorable. Contamination from old placer mine workings is a possibility.

Columbia Creek, Figure 11, Sample 177

A sample from Columbia Creek near its mouth carried weakly anomalous amounts of zinc and molybdenum. Columbia Creek is a large stream draining an area of several tens of square miles, and, because of dilution, a weakly anomalous sample may be important. An extensive program of stream sediment sampling would be required to trace the anomaly. Laboratory analyses should be obtained on all samples. The geology throughout the drainage area is favorable.

Ridge Between King Solomon Creek and Boundary Creek, Figure 12, Samples 189 - 200

Several samples from streams draining the divide between King Solomon Creek and Boundary Creek carried anomalous amounts of metal. A few additional stream sediment samples from streams draining the divide would further delineate the favorable area. For the most part, initial follow-up work on this anomaly probably would best be soil sampling in the favorable area indicated by the stream sediment samples. Large amounts of quartz in some of the stream sediments indicate that quartz veins have been formed in the ridge.

Discovery Fork of American Creek, Figure 13, Samples 205 - 213

Several samples from Discovery Fork carried anomalous amounts of copper; and, other samples, although containing lesser amounts, carried copper in near anomalous quantities. Basic and ultrabasic igneous rocks commonly contain more copper than most other rock types. Basic igneous rocks - altered to greenstone - are found in this area. Possibly this anomaly is caused by these rocks rather than by any ore deposits; however, no greenstone was noted in the float where samples 205, 206, and 207 were taken. Initial follow-up work here probably would best be the taking of stream sediment and soil samples upstream from samples 206 and 209.

TABLE I RESULTS OF ANALYSES

Map No.	Field No.	Copper	Parts p Lead	er milli Zinc	on Molybdenum	Field Test Milliliters	Fig.
1	5H32	30	10	60	3	1	1
2	33*	35	10	75	2	1	1
3	34	35	15	60	2	7	1
4	36	25	10	60	2	4	1
5	35	25	10	70	2	10	J
6	39	20	15	60	2	12	1
7	38	25	15	75	2	15	1
8	40	25	10	50	2	5	1
9	41	20	10	90	2	1	1
10	42	20	10	60	2	10	1
11	43	30	20	80	2	7	1
12	44	40	35	120	3	1	1
13	45	35	35 25	90	2	2	1
14	46	20	10	50	2	7	1
15	47	20	10	50	2	7	1
16	48	30	10	95	2	1	ı
17	50	25	20	60	2	7	2
18	51	30	15	50	2	5	2 2
19	53	15	10	40	2	7	2 2
20	52	25	10	50	2	6	2
21	54	20	10	50	2	8	2
22	55	35	10	50		5	
23	57	25	10	50	$\frac{4}{3}$	7	2 2
24	56	30	10	50	3	12	2
25	59	55	10	60	3	7	2
26	60	25	15	75	4	7	2
27	61	25	10	50	$\overline{4}$	7	2
28	63	20	15	50	3	8	2
29	62	35		80	4 4 3 5 3	3	2 2 2
30	64	15	<u>35</u> 20	65	3	9	2

^{*}All samples were marked in the field with the prefix "5H".

Table I (Continued)

Map No.	Field No.	Copper	Parts per Lead	millio Zinc	n Molybdenum	Field Test Milliliters	Fig.
31	65	20	5	40	3	6	2
32	66	15 15	10	50	3 2	7	2
33 34	67 68	15 15	15 10	60 65	2	4 1	2
35	70	35	10	115	3	9	3
36	71	20	10	60	2	1	3
37	72	25	10	90	3	2	3
38	73	35	45 50 50	135	3	3	3
39	74	60 75	<u>50</u>	115	$\frac{4}{4}$	1	3
40	75		<u>50</u>	110	<u>4</u>	3	3
41	76	55 55 45 105	20	130	3	3	3
42	77	<u>55</u>	20	100	3	1	3
43 44	78 79	10F	<u>45</u> 15	<u>130</u> 35	$\frac{4}{4}$	1 8	3
45	80	<u>45</u>	9 <u>5</u>	<u>235</u>	$\frac{4}{4}$	10	3 3
42	00	<u> </u>	<u> </u>		3	10	,
46	81	25	<u>60</u>	135	2	2	3
47	82	<u>55</u>	<u>85</u>	190	3	5	3
48	83	20	30	85	3	9	3
49 50	84 85	20 25	60 85 30 30 25	75 90	2 2	4 3	3 3
50	83	25	<u> </u>	90	Z	3	3
51	88	25	<u>35</u>	110	3	9	3
52	87	15	20	65	3	3	3
53	86	30	<u>30</u> 20	90	2	7	3
54	90	25		80	2	5 7	4
55	91	30	<u>30</u>	100	2	7	4
56	92	30	30	100	3	7	4
57	94	25	35 30 25 30	115	2	7	4
58	93	20	30	110	2	8	4
59 60	95	30	<u>25</u>	90 70	2 2	2 3	4 4
60	96	20		, 0	2	3	- '
61	98	20	$\frac{25}{10}$	70	2	7	4
62	99	20		65	2	2	4
63	100	20	10	70	2	9	4
64	101	35	10	95 65	2	9 1	4.
65	103	20	10	65	2	Т	4

Table I (Continued)

Map No.	Field Test	Copper	Parts per Lead	Millior Zinc	n Molybdenum	Field Test Milliliters	Fig.
66	102	20	15	90	2	5	4
67	104	25	20	90	3	7	4
68	105	15	10	70	2	3	4
69	106	15	10	65	2	3	4
70	107	<u>45</u>	<u>30</u>	<u>135</u>	2	1	4
71	108	35	10	80	2	10	4
72	110	20	10	80	2	7	5
73	111	25	10	80	3 3	3	5 5 5
74	112	20	5	75		3	5
75	113	25	10	80	3	3	5
76	114	35	15	95	3	5	5
77	115	20	5	60	2	3	5
78	116	40	15	<u>150</u>	3	3	5
79	121	15	10	80	$\frac{4}{2}$	1	6
80	122	35	10	75	2	1	6
81	123	30	5	70	2	1	6
82	124	30	10	85	3	1	6
83	119	20	10	80	3	1	6
84	120	20	5	80	2	1	6
85	117	10	5	50	3	1	6
86	125	15	15	95	2	1	6
8 7	126	20	10	80	3	7	6
88	128	20	10	85	3	1	6
89	127	20	5	75	3	5	6
90	267	10	5	25	3	1	6
91	266	20	20	7 5	3	6	6
92	130	25	25	330	3	17	6
93	131	40	20	105	3	5	6
94	132	30	20	110	3	1	6
95	133	40	20	130	3	1	6
96	134	20	5	75	3	2	7
97	135	30	10	90	3	1	7
98	136	35	10	90	3	1	7
99	137	40	5	100	3	1	7
100	139	35	10	90	2	2	7

Table I (Continued)

Map. No.	Field Test	Copper	Parts per Lead	Million Zinc	Molybdenum	Field Test Milliliters	Fig. No.
101 102 103 104 105	140 141 143 142 144	45 30 20 55 20	10 10 5 10	85 100 105 130 85	3 4 3 3 2	1 5 7 10 1	7 7 7 7
106 107 108 109	145 146 147 149 150	20 20 35 30 20	10 5 20 5 10	95 45 95 100 95	2 3 3 2 2	1 1 1 1	7 7 7 7
111 112 113 114 115	151 152 153 154 155	25 20 20 20 20	10 5 5 5 10	115 85 105 90 105	3 2 3 2 2	1 1 1 1	7 7 7 7 7
116 117 118 119 120	156 159 157 160 162	35 20 30 25 20	10 10 10 10	115 90 120 130 105	3 2 3 3 3	4 3 2 1	7 7 7 7
121 122 123 124 125	161 163 164 165 166	35 10 25 20 20	10 5 10 5 5	125 60 120 85 80	2 2 3 3 3	3 3 1 1	7 8 8 8
126 127 128 129 130	167 168 169 170 190	20 25 25 25 25	5 10 10 10	85 85 100 80 60	3 3 4 3 3	1 1 1 4	8 8 8 8
131 132 133 134 135	189 188 187 191 192	30 25 50 35 30	10 10 15 15	85 70 130 110 95	3 3 2 3 3	1 1 2 2	8 8 8 8

Table I (Continued)

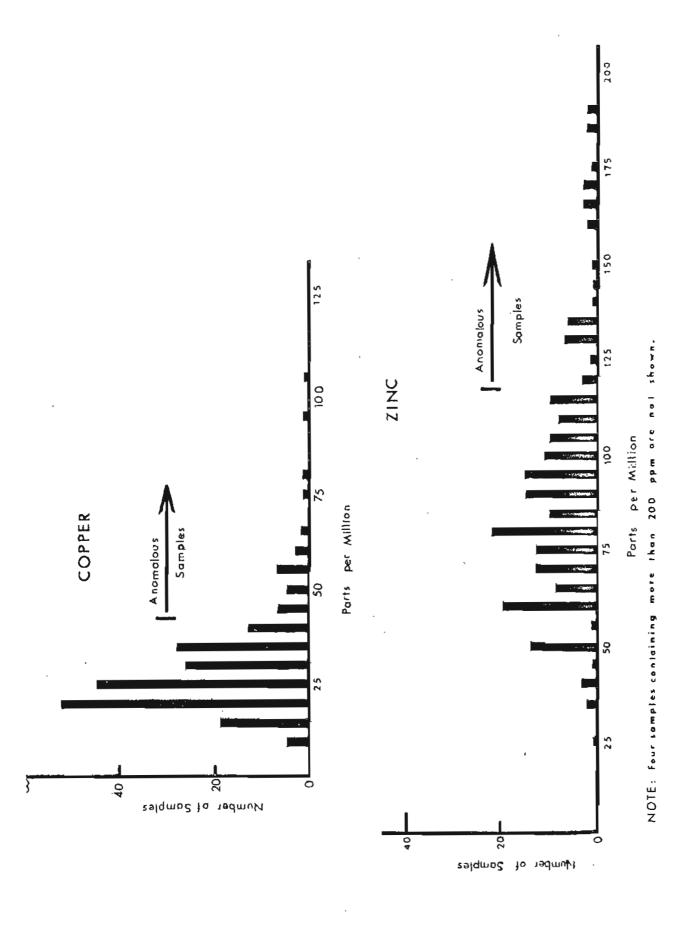

Map No.	Field Test	Copper	Parts per Lead	Million Zinc	Molybdenum	Field Test Millilìters	Fig. No.
136 137 138 139 140	193 194 195 196 199	25 15 10 35 25	10 10 10 25 15	70 35 40 <u>175</u> 165	2 3 2 3 3	1 1 1 5	8 8 8 8
141 142 143 144 145	200 198 201 202 203	15 15 10 20 50	15 20 10 10	75 110 80 95 60	3 2 3 <u>4</u> 3	1 1 2 1	8 8 8 8
146 147 148 149 150	185 186 184 183 182	50 25 35 35 15	10 20 10 10	135 645 100 115 65	3 2 2 2 2	2 17 1 1	9 9 9 9
151 152 153 154 155	181 171 172 173 174	25 20 40 20 35	15 10 25 5 5	100 105 245 90 80	2 4 3 3 2	1 1 3 1 1	9 9 9 9
156 157 158 159 160	175 176 180 177 178	25 55 25 40 40	5 10 10 10 15	80 115 75 <u>145</u> 185	3 3 2 4 2	1 7 1	9 9 9 9
161 162 163 164 165	179 204 205 206 207	35 20 25 15 25	15 10 10 10	130 80 70 60 80	3 2 3 3 3	1 3 1 2	9 10 10 10
166 167 168 169 170	209 210 212 211 213	25 25 30 15 25	10 10 15 10	60 60 75 70 105	3 3 2 3 <u>4</u>	1 1 5 7 1	10 10 10 10

Table I (Continued)

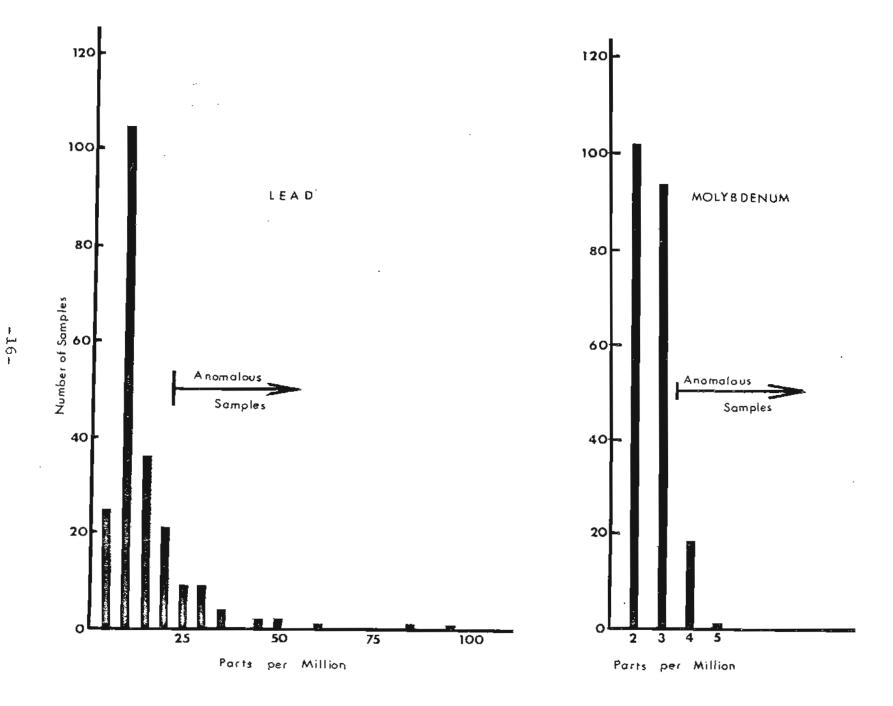
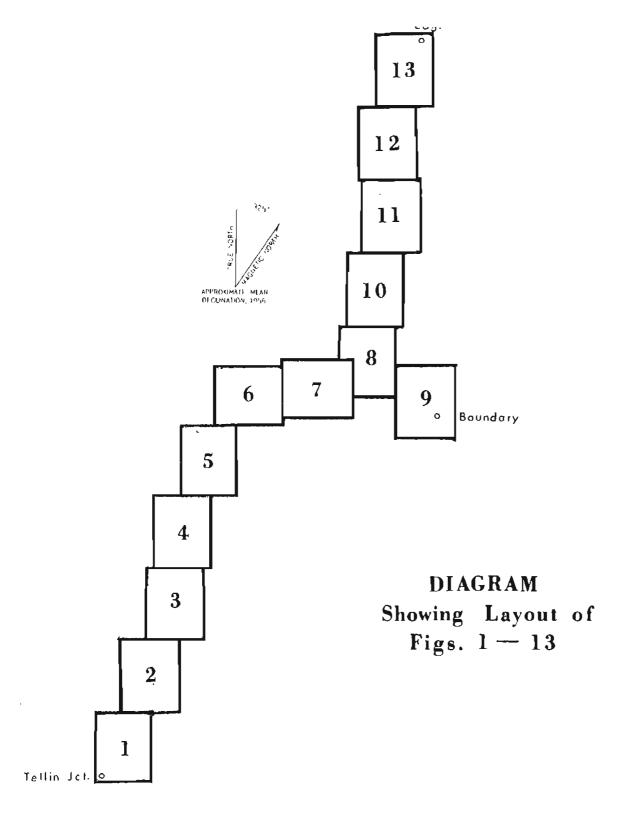
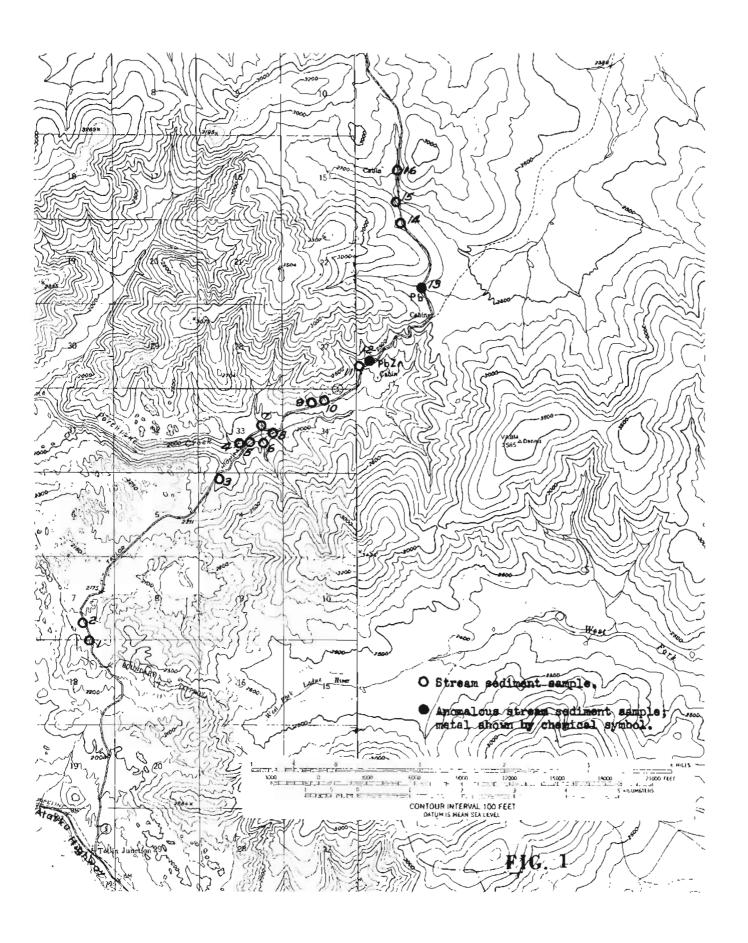
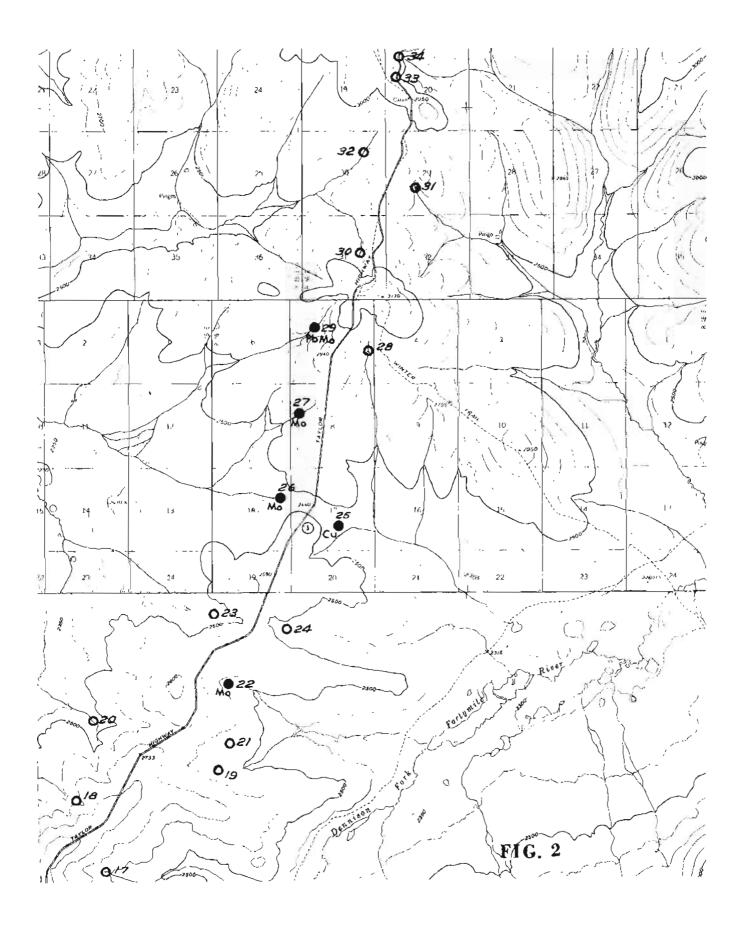
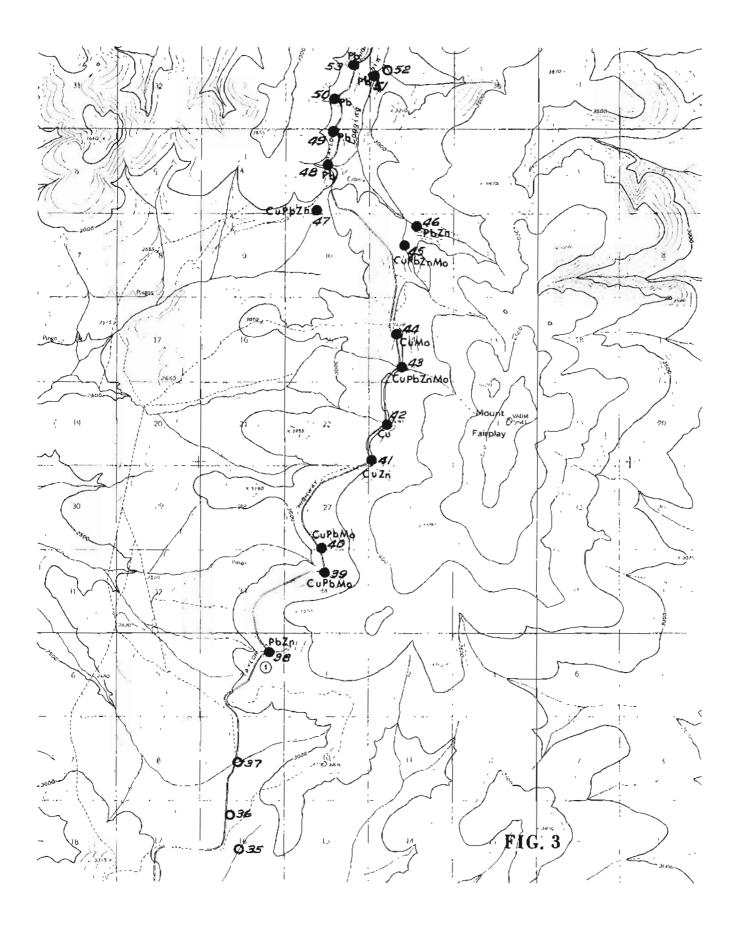

Map No.	Field Test	Copper	Parts per Lead	Million Zinc	n Molybdenum	Field Test Milliliters	Fig. No.
171 172 173 174 175	214 215 216 217 219	25 35 95 30 40	5 10 10 10 20	60 70 90 105 95	2 2 3 2 3	7 6 5 1 9	10 11 11 11
176 177 178 179 180	220 221 222 223 224	20 35 30 40 40	15 20 20 <u>25</u> 15	80 135 190 115	3 4 2 3 2	7 1 5 6 1	11 11 11 11
181 182 183 184 185	225 226 227 228 230	45 25 25 20 30	30 10 15 10 15	110 90 115 80 80	3 2 2 2 2	4 4 5 5 2	11 11 11 11
186 187 188 189	231 232 233 234 235	20 25 15 <u>50</u> 60	20 20 15 15	65 110 70 95 105	2 2 2 4 3	4 5 3 2 1	12 12 12 12 12
191 192 193 194 195	236 238 237 243 240	55 80 65 30 25	15 10 10 10	135 170 90 170 70	3 2 3 3 2	9 9 1 1	12 12 12 12 12
196 197 198 199 200	241 242 244 245 246	25 25 20 40 <u>45</u>	10 15 <u>25</u> 10 15	170 160 165 165 185	2 2 2 2 2	2 1 1 1	12 12 12 12
201 202 203 204 205	247 251 249 250 253	30 20 30 25 35	15 10 10 10	160 75 60 65 95	3 2 4 2	1 1 2 1	12 12 12 12 13

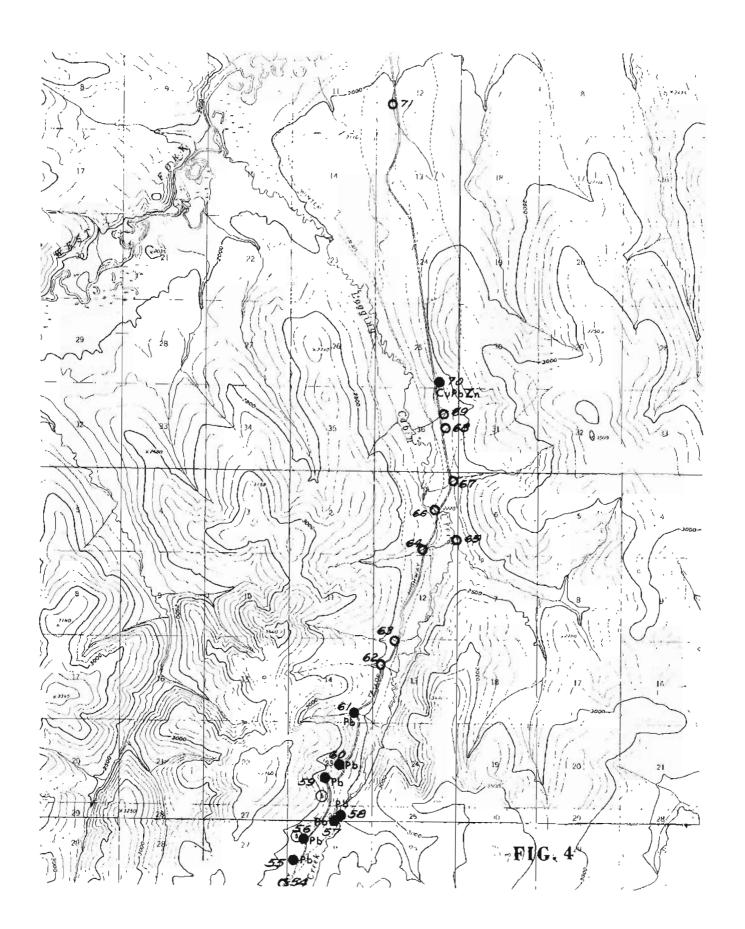
Table I (Continued)


Map	Field	Parts p	er Milli	on	Field Test	Fig.	
No.	Test	Copper	Lead	Zinc	Molybdenum	Milliliters	No.
206	252	60	10	95	2	1	13
207	254	<u>60</u> 35	10	95	2	1	13
208	255	40	15	100		1	13
					<u>4</u> 3	7	
209	256	<u>65</u> 35	15	$\frac{140}{105}$		1	13
210	257	35	15	105	2	1	13
211	258	45	10	100	3	1	13
212	260	<u>45</u> 35	15	95	2	1	13
213	261		15	80	2	1	13
214	262	<u>50</u> 25	10	60	2	1	13
215	263	30	15	55	2	1	13
	200	30	40	33	2	· ·	20
216	264	15	1.0	50	2	1	13
217	265	25	15	65	3	1	13




FRECUENCY DISTRIBUTION GRAPHS FOR COPPER AND ZINC.




FREQUENCY DISTRIBUTION GRAPHS FOR LEAD AND MOLYBDENUM

