Vitrinite Reflectance Data

Well: David River (Additional Data)
Location: Bristol Bay, Alaska

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Reflectance Values ($%R_o$)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7130</td>
<td>0.69(14), 0.54(7)</td>
<td>STR BW+S BS/PL V PAR+W/PL COAL FR (LT-M O FL)</td>
</tr>
<tr>
<td>7130</td>
<td>0.86(1)</td>
<td>STR BW+S BS/PL V PAR+W/PL COAL FR (LT-M O FL)</td>
</tr>
<tr>
<td>7250</td>
<td>0.7(20)</td>
<td>BW+S BS/PL COAL FR+WV IN SLT/OX (M O FL)</td>
</tr>
<tr>
<td>7380</td>
<td>0.74(20)</td>
<td>BW/PL VST+W+PAR (M O FL)</td>
</tr>
<tr>
<td>7530</td>
<td>0.92(7), 0.8(3)</td>
<td>BW+BS/PL VW+PAR (M O FL)</td>
</tr>
<tr>
<td>7530</td>
<td>0.71(9)</td>
<td>BW+BS/PL VW+PAR (M O FL)</td>
</tr>
<tr>
<td>7680</td>
<td>0.78(20)</td>
<td>BW+S BS/V PAR+W (M O FL)</td>
</tr>
<tr>
<td>7870</td>
<td>0.47(9), 0.76(11)</td>
<td>S BS+W/LOW Ro-LGN/HIGH Ro-VW IN SLT/OX</td>
</tr>
<tr>
<td>8000</td>
<td>0.67(5), 0.75(15)</td>
<td>S BS+PL W/V PAR+W</td>
</tr>
<tr>
<td>8320</td>
<td>0.97(20)</td>
<td>BW+S BS/PL VST+W+PAR/OX</td>
</tr>
<tr>
<td>8580</td>
<td>0.92(4), 0.76(2)</td>
<td>BW+S BS/PL GOOD VST (M O FL)</td>
</tr>
<tr>
<td>8580</td>
<td>1.07(14)</td>
<td>BW+S BS/PL GOOD VST (M O FL)</td>
</tr>
<tr>
<td>8750</td>
<td>0.91(3), 1.03(18)</td>
<td>SH-STR BS/PL GOOD VST/COAL-V (M O FL)</td>
</tr>
<tr>
<td>8900</td>
<td>0.82(4), 0.99(17)</td>
<td>BW+BS/GN VW+PAR/OX (M O FL)</td>
</tr>
<tr>
<td>9400</td>
<td>0.98(4), 0.75(5)</td>
<td>STR BW+S BS/VW+PAR-VARIABLE Ro/OX (M O FL)</td>
</tr>
<tr>
<td>9400</td>
<td>0.86(11)</td>
<td>STR BW+S BS/VW+PAR-VARIABLE Ro/OX (M O FL)</td>
</tr>
<tr>
<td>9600</td>
<td>1.19(23)</td>
<td>STR BS IN SH/PL VST IN CARB/S COAL/OX</td>
</tr>
<tr>
<td>10050</td>
<td>1.01(2), 1.48(19)</td>
<td>SH-HEAVY BS/COAL-STRUCTURELESS/OX (M O FL)</td>
</tr>
<tr>
<td>10610</td>
<td>0.96(11), 1.21(10)</td>
<td>OBS+BW/VW+PAR</td>
</tr>
<tr>
<td>11300</td>
<td>1.25(20)</td>
<td>BW+S BS/VST+W/S COAL PAR</td>
</tr>
<tr>
<td>11800</td>
<td>0(0)</td>
<td>NDP</td>
</tr>
<tr>
<td>12140</td>
<td>0(0)</td>
<td>NDP</td>
</tr>
<tr>
<td>12780</td>
<td>1.75(21)</td>
<td>STR BS/V+I PAR-SMALL</td>
</tr>
<tr>
<td>13660</td>
<td>1.32(5)</td>
<td>STR OBS/TR SP V+I</td>
</tr>
</tbody>
</table>

Figures in parentheses indicate number of readings.
Table 1

Vitrinite reflectance data

Well: David River-1A
Location: Bristol Bay, Alaska

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Reflectance Values (%Ro)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>.28 (24)</td>
<td>BW/S BS/low content V W+PAR (Y/O FL)</td>
</tr>
<tr>
<td>1170</td>
<td>.25 (22)</td>
<td>G Clean LGN/RES rich</td>
</tr>
<tr>
<td>1500</td>
<td>.3 (19)</td>
<td>S BW/TR V PAR IN SH/ S OX (Y/O FL)</td>
</tr>
<tr>
<td>2210</td>
<td>.33 (14), .23 (1)</td>
<td>BW/TR V PAR+W PAR/S OX</td>
</tr>
<tr>
<td>2210</td>
<td>.48 (1)</td>
<td>BW/TR V PAR+W PAR/S OX</td>
</tr>
<tr>
<td>2660</td>
<td>.45 (17), .35 (3)</td>
<td>BW/S VW+PAR/S OX (Y/O FL)</td>
</tr>
<tr>
<td>2660</td>
<td>.56 (1)</td>
<td>BW/S VW+PAR/S OX (Y/O FL)</td>
</tr>
<tr>
<td>3320</td>
<td>.45 (14), .59 (4)</td>
<td>PL BW/VW+PAR (Y/O FL)</td>
</tr>
<tr>
<td>3320</td>
<td>.34 (2)</td>
<td>PL BW/VW+PAR (Y/O FL)</td>
</tr>
<tr>
<td>3710</td>
<td>.64 (16), .45 (7)</td>
<td>V PAR+W-GN/VARIABLE Ro (y-o LT 0 FL)</td>
</tr>
<tr>
<td>4050</td>
<td>.57 (14), .46 (3)</td>
<td>PL BW/V PAR+W (Y-LT 0)</td>
</tr>
<tr>
<td>4050</td>
<td>.7 (5)</td>
<td>PL BW/V PAR+W (Y-LT 0)</td>
</tr>
<tr>
<td>4320</td>
<td>.53 (21), .36 (1)</td>
<td>S BS+W IN SH/COAL-LGN (LT 0 FL)</td>
</tr>
<tr>
<td>4590</td>
<td>.56 (14), .7 (7)</td>
<td>STR BS+W IN SH/PL V PAR+ST/COAL FR/S OX (LT 0 FL)</td>
</tr>
<tr>
<td>4590</td>
<td>.44 (1)</td>
<td>STR BS+W IN SH/PL V PAR+ST/COAL FR/S OX (LT 0 FL)</td>
</tr>
<tr>
<td>4980</td>
<td>.64 (16), .53 (3)</td>
<td>STR OBS+W/COAL FR+PL VST+W+PAR/OX (LT-M 0 FL)</td>
</tr>
<tr>
<td>4980</td>
<td>.84 (3)</td>
<td>STR OBS+W/COAL FR+PL VST+W+PAR/OX (LT-M 0 FL)</td>
</tr>
<tr>
<td>5310</td>
<td>.61 (8), .49 (10)</td>
<td>STR BS+W/VST+PAR/CTGS OX (DULL M 0 FL)</td>
</tr>
<tr>
<td>5310</td>
<td>.74 (1)</td>
<td>STR BS+W/VST+PAR/CTGS OX (DULL M 0 FL)</td>
</tr>
<tr>
<td>5480</td>
<td>.71 (11), .55 (6)</td>
<td>S BS+PL W/V PAR+W-PL LGN FR (M 0 FL)</td>
</tr>
<tr>
<td>5800</td>
<td>.67 (20)</td>
<td>STR BS/PL CPAL FR/OX</td>
</tr>
<tr>
<td>5990</td>
<td>.69 (17), .54 (3)</td>
<td>STR BS+W/PL VST+PAR/OX (M 0 FL)</td>
</tr>
<tr>
<td>5990</td>
<td>.42 (1)</td>
<td>STR BS+W/PL VST+PAR/OX (M 0 FL)</td>
</tr>
<tr>
<td>6250</td>
<td>.63 (8), .52 (13)</td>
<td>STR BS+BW/R COAL FR+VW+PAR (M 0 FL)</td>
</tr>
<tr>
<td>6460</td>
<td>.71 (17), .63 (6)</td>
<td>STR BS+W/PL COAL FR+V PAR/OX</td>
</tr>
<tr>
<td>6630</td>
<td>.75 (17), .65 (3)</td>
<td>PL STR BW+S BS/PL V PAR+W-COAL FR/OX (M 0 FL)</td>
</tr>
<tr>
<td>6700</td>
<td>.64 (11), .77 (9)</td>
<td>S BS+W/PL V PAR+W/PL COAL FR/OX (M 0 FL)</td>
</tr>
<tr>
<td>6700</td>
<td>.88 (1)</td>
<td>S BS+W/PL V PAR+W/PL COAL FR/OX (M 0 FL)</td>
</tr>
<tr>
<td>6840</td>
<td>.76 (10), .64 (7)</td>
<td>STR BS+PL W/PL COAL FR+PL VW+PAR/OX (M 0 FL)</td>
</tr>
</tbody>
</table>

Figures in parentheses indicate number of readings
See list of abbreviations overleaf
TABLE 1A

VITRINITE TABLE ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS</td>
<td>ANISOTROPIC</td>
</tr>
<tr>
<td>BS</td>
<td>BITUMEN STAINING</td>
</tr>
<tr>
<td>BAR</td>
<td>VIRTUALLY BARREN</td>
</tr>
<tr>
<td>CARB</td>
<td>CARBARGILITE</td>
</tr>
<tr>
<td>CTGS</td>
<td>CUTTINGS</td>
</tr>
<tr>
<td>DMA</td>
<td>DRILLING MUD ADDITIVE</td>
</tr>
<tr>
<td>F</td>
<td>FEW</td>
</tr>
<tr>
<td>FR</td>
<td>FRAGMENTS</td>
</tr>
<tr>
<td>GN</td>
<td>GNARLED</td>
</tr>
<tr>
<td>I</td>
<td>INERITINE</td>
</tr>
<tr>
<td>IGN</td>
<td>IGNEOUS TRACES</td>
</tr>
<tr>
<td>L</td>
<td>LOW ORGANIC CONTENT</td>
</tr>
<tr>
<td>LOW</td>
<td>LOWEST REFLECTANCES MEASURED</td>
</tr>
<tr>
<td>MOD</td>
<td>MODERATE ORGANIC CONTENT</td>
</tr>
<tr>
<td>NTV</td>
<td>NO TRUE VITRINITE</td>
</tr>
<tr>
<td>OCC</td>
<td>OCCASIONAL</td>
</tr>
<tr>
<td>P</td>
<td>POOR</td>
</tr>
<tr>
<td>PL</td>
<td>PLENTIFUL-PLENTY</td>
</tr>
<tr>
<td>R</td>
<td>REWORKED</td>
</tr>
<tr>
<td>RO</td>
<td>REFLECTANCE MEASUREMENT</td>
</tr>
<tr>
<td>RICH</td>
<td>RICH-HIGH ORGANIC CONTENT</td>
</tr>
<tr>
<td>SC</td>
<td>SCRUFFY</td>
</tr>
<tr>
<td>SLT</td>
<td>SILTSTONE</td>
</tr>
<tr>
<td>SP</td>
<td>SPECKS</td>
</tr>
<tr>
<td>STC</td>
<td>STRUCTURE</td>
</tr>
<tr>
<td>TB</td>
<td>TURBO-DRILLED</td>
</tr>
<tr>
<td>TEL</td>
<td>TELINITIC</td>
</tr>
<tr>
<td>VL</td>
<td>V.LOW ORGANIC CONTENT</td>
</tr>
<tr>
<td>VAR</td>
<td>VARIABLE (HIGH) RO</td>
</tr>
<tr>
<td>W</td>
<td>WISPS-WISPS</td>
</tr>
<tr>
<td>%</td>
<td>ALLOCTHONOUS</td>
</tr>
<tr>
<td>?</td>
<td>QUESTIONABLE</td>
</tr>
<tr>
<td>BL</td>
<td>BLEBS</td>
</tr>
<tr>
<td>B</td>
<td>BITUMEN</td>
</tr>
<tr>
<td>BW</td>
<td>BITUMEN WISPS</td>
</tr>
<tr>
<td>CAV</td>
<td>CAVED</td>
</tr>
<tr>
<td>COR</td>
<td>CORRODED</td>
</tr>
<tr>
<td>DD</td>
<td>DIFFERENTIATION DIFFICULT</td>
</tr>
<tr>
<td>DOM</td>
<td>DOMINANT</td>
</tr>
<tr>
<td>FL</td>
<td>FLUORESCENCE</td>
</tr>
<tr>
<td>G</td>
<td>GOOD</td>
</tr>
<tr>
<td>GRAN</td>
<td>GRANULARITY</td>
</tr>
<tr>
<td>INST</td>
<td>INTERSTITIAL</td>
</tr>
<tr>
<td>IRON</td>
<td>IRON OXIDES</td>
</tr>
<tr>
<td>LGN</td>
<td>LIGNITE</td>
</tr>
<tr>
<td>M</td>
<td>MOSTLY</td>
</tr>
<tr>
<td>NDP</td>
<td>NO DETERMINATION POSSIBLE</td>
</tr>
<tr>
<td>OBS</td>
<td>OVERALL BITUMEN STAINING</td>
</tr>
<tr>
<td>OX</td>
<td>INDICATIONS OF OXIDATION</td>
</tr>
<tr>
<td>PAR</td>
<td>PARTICLES</td>
</tr>
<tr>
<td>POS</td>
<td>POSSIBLY</td>
</tr>
<tr>
<td>RM</td>
<td>REWORKED MATERIAL</td>
</tr>
<tr>
<td>RES</td>
<td>RESIN</td>
</tr>
<tr>
<td>S</td>
<td>SOME</td>
</tr>
<tr>
<td>SH</td>
<td>SHALE</td>
</tr>
<tr>
<td>SML</td>
<td>SMALL</td>
</tr>
<tr>
<td>SUB</td>
<td>SUBORDINATE</td>
</tr>
<tr>
<td>STR</td>
<td>STRONGLY</td>
</tr>
<tr>
<td>TR</td>
<td>TRACE</td>
</tr>
<tr>
<td>V</td>
<td>VITRINITE</td>
</tr>
<tr>
<td>VW</td>
<td>VITRINITE WISPS</td>
</tr>
<tr>
<td>VST</td>
<td>VITRINITE STRINGERS</td>
</tr>
<tr>
<td>WH</td>
<td>WHOLLY</td>
</tr>
<tr>
<td>=</td>
<td>EQUAL PROPORTIONS</td>
</tr>
<tr>
<td>PHY</td>
<td>PHYTOCLASTS (CONTENT)</td>
</tr>
</tbody>
</table>

"(SPORE FLUORESCENCE COLOURS UNDER U.V. LIGHT)"

<table>
<thead>
<tr>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>GREEN</td>
</tr>
<tr>
<td>O</td>
<td>ORANGE</td>
</tr>
<tr>
<td>LT</td>
<td>LIGHT</td>
</tr>
<tr>
<td>D</td>
<td>DEEP</td>
</tr>
<tr>
<td>Y</td>
<td>YELLOW</td>
</tr>
<tr>
<td>R</td>
<td>RED</td>
</tr>
<tr>
<td>M</td>
<td>MID</td>
</tr>
<tr>
<td>P</td>
<td>PALE</td>
</tr>
</tbody>
</table>
TABLE 2

VISUAL KEROGEN DESCRIPTIONS

- **WELL**: DAVID RIVER-1A
- **LOCATION**: BRISTOL BAY ALASKA

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Spore Colour</th>
<th>Estimated Source Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>1/2</td>
<td>MODERATE-GOOD GAS</td>
</tr>
<tr>
<td>1170</td>
<td>1/2</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>1750</td>
<td>2</td>
<td>NONE-POOR GAS</td>
</tr>
<tr>
<td>2210</td>
<td>2-2/3</td>
<td>NONE-POOR GAS</td>
</tr>
<tr>
<td>3320</td>
<td>2/3-3</td>
<td>MODERATE-GOOD GAS</td>
</tr>
<tr>
<td>3710</td>
<td>3-3/4</td>
<td>MODERATE GAS</td>
</tr>
<tr>
<td>4320</td>
<td>3</td>
<td>GOOD GAS/SUB OIL</td>
</tr>
<tr>
<td>4770</td>
<td>3</td>
<td>MODERATE-GOOD GAS</td>
</tr>
<tr>
<td>5310</td>
<td>3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>5800</td>
<td>3-3/4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>5990</td>
<td>3-3/4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>6460</td>
<td>3-3/4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>6630</td>
<td>3-3/4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>6840</td>
<td>3/4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>7250</td>
<td>3/4-4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>7350</td>
<td>3/4-4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>7680</td>
<td>3/4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>8000</td>
<td>3/4-4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>8580</td>
<td>3/4-4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>9750</td>
<td>3/4-4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>9900</td>
<td>3/4-4</td>
<td>MODERATE-GOOD GAS</td>
</tr>
<tr>
<td>9400</td>
<td>3/4-4</td>
<td>MODERATE-GOOD GAS</td>
</tr>
<tr>
<td>9600</td>
<td>3/4-4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>10030</td>
<td>4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>10610</td>
<td>4</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>11300</td>
<td>3/4-4</td>
<td>MODERATE-GOOD GAS</td>
</tr>
<tr>
<td>11800</td>
<td>4/5</td>
<td>POOR GAS</td>
</tr>
<tr>
<td>12250</td>
<td>4/5</td>
<td>NONE-POOR GAS</td>
</tr>
<tr>
<td>12780</td>
<td>4/5</td>
<td>NONE</td>
</tr>
<tr>
<td>13350</td>
<td>4/5</td>
<td>NONE</td>
</tr>
<tr>
<td>13660</td>
<td>5-5/6</td>
<td>NONE</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>MEGAPORES</td>
<td>Abundant</td>
<td>Trace/Rare</td>
</tr>
<tr>
<td>other Microfossils</td>
<td>Trace/Rare</td>
<td>Common</td>
</tr>
<tr>
<td>Trace/Rare</td>
<td>Abundant</td>
<td>Trace/Rare</td>
</tr>
<tr>
<td>Frequent</td>
<td>Abundant</td>
<td>Trace/Rare</td>
</tr>
<tr>
<td>Inertinite</td>
<td>Abundant</td>
<td>Trace/Rare</td>
</tr>
<tr>
<td>Inertinite Only</td>
<td>Abundant</td>
<td>Trace/Rare</td>
</tr>
<tr>
<td>Other Tissues</td>
<td>Frequent</td>
<td>Abundant</td>
</tr>
<tr>
<td>Other Micropores</td>
<td>Abundant</td>
<td>Trace/Rare</td>
</tr>
<tr>
<td>FORAM LININGS</td>
<td>Abundant</td>
<td>Trace/Rare</td>
</tr>
<tr>
<td>Other Micropores</td>
<td>Abundant</td>
<td>Trace/Rare</td>
</tr>
</tbody>
</table>

Conting...
<table>
<thead>
<tr>
<th>Type</th>
<th>Amount of Organic Matter</th>
<th>Trace/Rare</th>
<th>Common</th>
<th>Frequent</th>
<th>Abundant</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYTOPLANKTON EXCLUDING TASMANITIDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TASMANITIDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORAM LININGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEGASPORES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER MICROFOSSILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUTICLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER TISSUES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROWN'WOOD': LIGNITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLACK 'WOOD': VITRINITE + INERTINITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLACK 'WOOD': INERTINITE ONLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINELY DISSEMINATED PARTICLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMORPHOUS VASCULAR PLANT MATERIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMORPHOUS MATTER OF ALGAL ORIGIN. MARINE (M) / NON MARINE (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>good</td>
<td>PRESERVATION STATE</td>
<td>poor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reworking</td>
<td>undiff. mat.</td>
<td>ENVIRONMENT</td>
<td>open mar. OF DEPOSITION</td>
<td>restricted mar.</td>
<td>nr shore mar./strong terrig. inf.</td>
</tr>
<tr>
<td>COLOUR/MATURATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURCE POTENTIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3
ROCK-EVAL AND PYROLYSIS DATA

WELL: DAVID RIVER-1A
LOCATION: BRISTOL BAY ALASKA

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>P1 KG/Tonne</th>
<th>P2 KG/Tonne</th>
<th>GOGI</th>
<th>TOC (%wt)</th>
<th>HYDROGEN INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>0</td>
<td>1.1</td>
<td></td>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td>1170</td>
<td>0</td>
<td>.3</td>
<td></td>
<td>.85</td>
<td>35</td>
</tr>
<tr>
<td>1500</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2210</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2660</td>
<td>0</td>
<td>.6</td>
<td></td>
<td>1.5</td>
<td>40</td>
</tr>
<tr>
<td>2660 COAL</td>
<td>1.6</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3320</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1.5</td>
<td>66</td>
</tr>
<tr>
<td>3710</td>
<td>0</td>
<td>.2</td>
<td></td>
<td>.78</td>
<td>25</td>
</tr>
<tr>
<td>4050</td>
<td>0</td>
<td>.9</td>
<td></td>
<td>1.6</td>
<td>56</td>
</tr>
<tr>
<td>4140</td>
<td>0</td>
<td>1.2</td>
<td></td>
<td>2.1</td>
<td>57</td>
</tr>
<tr>
<td>4140 COAL</td>
<td>1.4</td>
<td>55.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4590</td>
<td>0</td>
<td>.7</td>
<td></td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>4590 COAL</td>
<td>.2</td>
<td>21</td>
<td></td>
<td>.88</td>
<td></td>
</tr>
<tr>
<td>4770</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4770 COAL</td>
<td>.3</td>
<td>21.3</td>
<td></td>
<td>.99</td>
<td></td>
</tr>
<tr>
<td>4980</td>
<td>.1</td>
<td>15.5</td>
<td></td>
<td>.63</td>
<td>17.1</td>
</tr>
<tr>
<td>5310</td>
<td>0</td>
<td>.5</td>
<td></td>
<td>1.6</td>
<td>31</td>
</tr>
<tr>
<td>5480</td>
<td>0</td>
<td>.5</td>
<td></td>
<td>1.2</td>
<td>41</td>
</tr>
<tr>
<td>5480 COAL</td>
<td>1.7</td>
<td>45.7</td>
<td></td>
<td>.65</td>
<td></td>
</tr>
<tr>
<td>5710</td>
<td>0</td>
<td>.8</td>
<td></td>
<td>1.8</td>
<td>44</td>
</tr>
<tr>
<td>5800</td>
<td>.7</td>
<td>20.6</td>
<td></td>
<td>.65</td>
<td>14.6</td>
</tr>
<tr>
<td>5900</td>
<td>0</td>
<td>.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6130</td>
<td>0</td>
<td>.7</td>
<td></td>
<td>2.4</td>
<td>29</td>
</tr>
<tr>
<td>6130 COAL</td>
<td>.6</td>
<td>41.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6250</td>
<td>.6</td>
<td>31.8</td>
<td></td>
<td>.87</td>
<td>26</td>
</tr>
<tr>
<td>6460</td>
<td>.1</td>
<td>2.7</td>
<td></td>
<td>.94</td>
<td>5.7</td>
</tr>
<tr>
<td>6630</td>
<td>0</td>
<td>.8</td>
<td></td>
<td>3.1</td>
<td>25</td>
</tr>
<tr>
<td>6630 COAL</td>
<td>1.1</td>
<td>69.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6700</td>
<td>.1</td>
<td>3.1</td>
<td></td>
<td>.99</td>
<td>4</td>
</tr>
<tr>
<td>6840</td>
<td>.1</td>
<td>1.8</td>
<td></td>
<td>3.3</td>
<td>54</td>
</tr>
<tr>
<td>6970</td>
<td>0</td>
<td>.6</td>
<td></td>
<td>1.9</td>
<td>31</td>
</tr>
<tr>
<td>7130</td>
<td>.1</td>
<td>2.4</td>
<td></td>
<td>.81</td>
<td>3.2</td>
</tr>
<tr>
<td>7250</td>
<td>0</td>
<td>1.4</td>
<td></td>
<td>2.3</td>
<td>60</td>
</tr>
<tr>
<td>7380</td>
<td>.1</td>
<td>2.5</td>
<td></td>
<td>.85</td>
<td>3</td>
</tr>
</tbody>
</table>
TABLE 3

ROCK-EVAL AND PYROLYSIS DATA

WELL: DAVID RIVER (ADDITIONAL DATA)
LOCATION: BRISTOL BAY ALASKA

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>P1 (kg/tonne)</th>
<th>P2 (kg/tonne)</th>
<th>GOCI</th>
<th>TOC (%wt)</th>
<th>Hydrogen Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>7530</td>
<td>0</td>
<td>1.2</td>
<td>.92</td>
<td>2.3</td>
<td>52</td>
</tr>
<tr>
<td>7680</td>
<td>0.1</td>
<td>2.9</td>
<td>.92</td>
<td>2.2</td>
<td>131</td>
</tr>
<tr>
<td>7810</td>
<td>0</td>
<td>1</td>
<td></td>
<td>2.3</td>
<td>43</td>
</tr>
<tr>
<td>8000</td>
<td>0</td>
<td>.6</td>
<td></td>
<td>2.1</td>
<td>28</td>
</tr>
<tr>
<td>8320</td>
<td>0</td>
<td>.6</td>
<td></td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>8450</td>
<td>0.1</td>
<td>2.5</td>
<td></td>
<td>16.5</td>
<td>15</td>
</tr>
<tr>
<td>8580</td>
<td>0.1</td>
<td>2.2</td>
<td></td>
<td>2.3</td>
<td>95</td>
</tr>
<tr>
<td>8680</td>
<td>0</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8680 COAL</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8750</td>
<td>0</td>
<td>1.6</td>
<td></td>
<td>1.9</td>
<td>84</td>
</tr>
<tr>
<td>8750 COAL</td>
<td>0.7</td>
<td>30</td>
<td>.84</td>
<td>22.7</td>
<td>132</td>
</tr>
<tr>
<td>8800</td>
<td>0</td>
<td>.3</td>
<td></td>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>9070</td>
<td>0</td>
<td>.5</td>
<td></td>
<td>.84</td>
<td>59</td>
</tr>
<tr>
<td>9400</td>
<td>0</td>
<td>.1</td>
<td></td>
<td>.92</td>
<td>10</td>
</tr>
<tr>
<td>9600</td>
<td>0</td>
<td>.9</td>
<td></td>
<td>1.6</td>
<td>56</td>
</tr>
<tr>
<td>9600 COAL</td>
<td>0.2</td>
<td>7.5</td>
<td>1.08</td>
<td>15.8</td>
<td>47</td>
</tr>
<tr>
<td>9750</td>
<td>0</td>
<td>.3</td>
<td></td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>9750 COAL</td>
<td>0.4</td>
<td>26.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9950</td>
<td>0.1</td>
<td>1.9</td>
<td></td>
<td>2.4</td>
<td>79</td>
</tr>
<tr>
<td>10050</td>
<td>0.2</td>
<td>3.1</td>
<td>1.45</td>
<td>12.9</td>
<td>24</td>
</tr>
<tr>
<td>10300</td>
<td>0</td>
<td>1</td>
<td></td>
<td>2.8</td>
<td>35</td>
</tr>
<tr>
<td>10300 COAL</td>
<td>6</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10610</td>
<td>0</td>
<td>.3</td>
<td></td>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>10900</td>
<td>0</td>
<td>.4</td>
<td></td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td>10900 COAL</td>
<td>0.2</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11300</td>
<td>0</td>
<td>.3</td>
<td></td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>11580</td>
<td>0.1</td>
<td>2</td>
<td></td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>11580 COAL</td>
<td>1.1</td>
<td>19.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11800</td>
<td>0.1</td>
<td>.7</td>
<td></td>
<td>1.7</td>
<td>41</td>
</tr>
<tr>
<td>12140</td>
<td>0</td>
<td>.1</td>
<td></td>
<td>.4</td>
<td>25</td>
</tr>
<tr>
<td>12250</td>
<td>0</td>
<td>.1</td>
<td></td>
<td>.1</td>
<td>6</td>
</tr>
<tr>
<td>12520</td>
<td>0.1</td>
<td>.2</td>
<td></td>
<td>.91</td>
<td>21</td>
</tr>
<tr>
<td>12780</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13060</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13350</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13660</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4

Lithology and TOC Data

WELL: DAVID RIVER-1A

LOCATION: BRISTOL BAY ALASKA

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Age/FM</th>
<th>Picked Lithology</th>
<th>%TOC</th>
<th>%Carbonate</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>Quart/Milk RVR</td>
<td>C-Mudstone</td>
<td>2</td>
<td>18.6</td>
</tr>
<tr>
<td>1170</td>
<td>Quart/Milk RVR</td>
<td>C-Sandstone</td>
<td>0.85</td>
<td>21</td>
</tr>
<tr>
<td>1500</td>
<td>Quart/Milk RVR</td>
<td>C-Sandstone</td>
<td>0.13</td>
<td>14.4</td>
</tr>
<tr>
<td>1950</td>
<td>Eocene/Bear L</td>
<td>C-Sandstone</td>
<td>0.06</td>
<td>16.5</td>
</tr>
<tr>
<td>2210</td>
<td>Eocene/Bear L</td>
<td>C-Mudstone</td>
<td>0.12</td>
<td>18.4</td>
</tr>
<tr>
<td>2660</td>
<td>Eocene/Bear L</td>
<td>C-Mudstone</td>
<td>1.5</td>
<td>24</td>
</tr>
<tr>
<td>3320</td>
<td>Eocene/Bear L</td>
<td>C-Siltstone</td>
<td>1.5</td>
<td>10.8</td>
</tr>
<tr>
<td>3710</td>
<td>Eocene/Bear L</td>
<td>C-Siltstone</td>
<td>0.78</td>
<td>15.8</td>
</tr>
<tr>
<td>4050</td>
<td>Eocene/Bear L</td>
<td>C-Siltstone</td>
<td>1.6</td>
<td>13</td>
</tr>
<tr>
<td>4140</td>
<td>Eocene/Bear L</td>
<td>C-Siltstone</td>
<td>2.1</td>
<td>18.7</td>
</tr>
<tr>
<td>4320</td>
<td>Eocene/Bear L</td>
<td>C-Siltstone</td>
<td>2.4</td>
<td>21.8</td>
</tr>
<tr>
<td>4590</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>1</td>
<td>18.72</td>
</tr>
<tr>
<td>4770</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>1.4</td>
<td>17.2</td>
</tr>
<tr>
<td>4960</td>
<td>Eocene/Stepovak</td>
<td>C-Coal</td>
<td>17.1</td>
<td>15.2</td>
</tr>
<tr>
<td>5310</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>1.6</td>
<td>24.3</td>
</tr>
<tr>
<td>5480</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>1.2</td>
<td>23</td>
</tr>
<tr>
<td>5710</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>1.8</td>
<td>19.2</td>
</tr>
<tr>
<td>5800</td>
<td>Eocene/Stepovak</td>
<td>C-Coal</td>
<td>14.6</td>
<td>19.5</td>
</tr>
<tr>
<td>5950</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>1.3</td>
<td>26.5</td>
</tr>
<tr>
<td>6130</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>1.1</td>
<td>14.2</td>
</tr>
<tr>
<td>6250</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>2</td>
<td>15.3</td>
</tr>
<tr>
<td>6250</td>
<td>Eocene/Stepovak</td>
<td>C-Coal</td>
<td>26</td>
<td>11.7</td>
</tr>
<tr>
<td>6460</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>5.7</td>
<td>13</td>
</tr>
<tr>
<td>6630</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>3.1</td>
<td>10.9</td>
</tr>
<tr>
<td>6780</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>4</td>
<td>20.1</td>
</tr>
<tr>
<td>6840</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>3.3</td>
<td>17.7</td>
</tr>
<tr>
<td>6970</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>1.9</td>
<td>12.5</td>
</tr>
<tr>
<td>7130</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>3.2</td>
<td>14.3</td>
</tr>
<tr>
<td>7250</td>
<td>Eocene/Stepovak</td>
<td>C-Siltstone</td>
<td>2.3</td>
<td>17.8</td>
</tr>
<tr>
<td>7380</td>
<td>Eocene/Tolstoi</td>
<td>C-Siltstone</td>
<td>3</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Sample Types:
- N-CORE SAMPLE
- O-OUTCROP
- S-SIDEWALL CORE
- C-CUTTINGS
<table>
<thead>
<tr>
<th>DEPTH(ft)</th>
<th>AGE/FM</th>
<th>PICKED LITHOLOGY</th>
<th>%TOC</th>
<th>%CARBONATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7530</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2.3</td>
<td>15</td>
</tr>
<tr>
<td>7680</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2.2</td>
<td>16.9</td>
</tr>
<tr>
<td>7810</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2.3</td>
<td>14.3</td>
</tr>
<tr>
<td>8000</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2.1</td>
<td>14.4</td>
</tr>
<tr>
<td>8320</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2</td>
<td>11.2</td>
</tr>
<tr>
<td>8450</td>
<td>EOCENE/TOLSTOI</td>
<td>C-COAL/SILTST</td>
<td>16.5</td>
<td>25.8</td>
</tr>
<tr>
<td>8580</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2.3</td>
<td>22.5</td>
</tr>
<tr>
<td>8750</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>1.9</td>
<td>15.7</td>
</tr>
<tr>
<td>8750</td>
<td>EOCENE/TOLSTOI</td>
<td>C-COAL</td>
<td>22.7</td>
<td>28.1</td>
</tr>
<tr>
<td>9000</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>1.5</td>
<td>18.5</td>
</tr>
<tr>
<td>9070</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>0.84</td>
<td>16.4</td>
</tr>
<tr>
<td>9400</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>0.92</td>
<td>19.3</td>
</tr>
<tr>
<td>9600</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>1.6</td>
<td>24.9</td>
</tr>
<tr>
<td>9600</td>
<td>EOCENE/TOLSTOI</td>
<td>COAL/SILTST</td>
<td>15.8</td>
<td>19.6</td>
</tr>
<tr>
<td>9750</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>9950</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2.4</td>
<td>18.5</td>
</tr>
<tr>
<td>10050</td>
<td>EOCENE/TOLSTOI</td>
<td>C-COAL/SILTST</td>
<td>12.9</td>
<td>13.1</td>
</tr>
<tr>
<td>10300</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2.8</td>
<td>14.4</td>
</tr>
<tr>
<td>10610</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>1.5</td>
<td>14.7</td>
</tr>
<tr>
<td>10900</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>1.2</td>
<td>15.2</td>
</tr>
<tr>
<td>10900</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>1.2</td>
<td>15.2</td>
</tr>
<tr>
<td>11300</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2</td>
<td>15.7</td>
</tr>
<tr>
<td>11580</td>
<td>EOCENE/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>2</td>
<td>15.5</td>
</tr>
<tr>
<td>11800</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>1.7</td>
<td>12.8</td>
</tr>
<tr>
<td>12140</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>0.4</td>
<td>8.4</td>
</tr>
<tr>
<td>12250</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>0.73</td>
<td>15.6</td>
</tr>
<tr>
<td>12520</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>0.91</td>
<td>13.5</td>
</tr>
<tr>
<td>12780</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>0.4</td>
<td>12.3</td>
</tr>
<tr>
<td>13060</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>0.53</td>
<td>11.5</td>
</tr>
</tbody>
</table>

SAMPLE TYPES :-
N-CORE SAMPLE D-OUTCROP
S-SIDEWALL CORE C-CUTTINGS
for well: DAVID RIVER

M = 1.36648E-04
C = .286802

OIL FLOOR - 1.3% Ro
OGT - 0.55% Ro
GGT - 0.7% Ro
AV. VALUES FOR OIL-PRONE KEROGEN

LINE OF BEST FIT TO DATA
WITH THRESHOLD ERROR RANGES
R^2 = .81
Depth (ft)

[fig. 2]
SAC FRACTION GAS CHROMATOGRAM

SAMPLE: 4146-4255ft
SAMPLE: 8465-8520ft
SAMPLE: 11058-11098ft

SAMPLE: 4058-5165ft
SAMPLE: 7196-7230ft

SAMPLE: 5888-5935ft
SAMPLE: 7350-7440ft

GEOCHEMISTRY BRANCH BP SUNBURG
OPERATIONS GROUP
GEOLOGICAL AND WELL DATA

<table>
<thead>
<tr>
<th>STRATIGRAPHY</th>
<th>Depth Drilled ft & m</th>
<th>Graphic Log</th>
<th>Picked Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATERNARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MILK RIVER FORMATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEAR LAKE FORMATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIEVRAK FORMATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TERTIARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSSIBLE EOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORMATION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOURCE ROCK QUALITY

- TOTAL ORGANIC CARBON %
- VISUAL KEROGEN
- PYROLYSIS DATA
 - SOURCE TYPE
 - ROCK EVAL
 - PRODUCTS
 - MAX YIELD kg/t
 - OIL YIELD kg/t
 - GAS YIELD kg/t

COMMENTS

- BETWEEN 1500'- 2210'
 - P2 x 0

SCALE = 1: 10,000

Petrochemical Log

- **Date Spudded:** 11/6/68
- **Date Completed:** 31/6/69
- **TO:** 13769 ft
<table>
<thead>
<tr>
<th>5% coal</th>
<th>15% coal</th>
<th>25% coal</th>
<th>35% coal</th>
<th>45% coal</th>
<th>55% coal</th>
<th>65% coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol. %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Index of Pet.

Ratings for PGC and Rock Evaluation: 20% yields are critical.
TABLE 1

VITRINITE REFLECTANCE DATA

WELL: MOODOO LAKE UNIT 2
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>REFLECTANCE VALUES (%Ro)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>780</td>
<td>.24(8)</td>
<td>BAR/F BW+VW+VPAR/ONE LGN CTG - NO FL</td>
</tr>
<tr>
<td>1800</td>
<td>.37(5).53(4)</td>
<td>OCC BW/TR PHYT/F PAR V+I - NO FL</td>
</tr>
<tr>
<td>2160</td>
<td>.52(5).68(6)</td>
<td>LIGHT BS+W/TR PHYT/F VW/NOX - LT 0</td>
</tr>
<tr>
<td>2520</td>
<td>.42(6).63(2)</td>
<td>BAR/OCC BW/F COR V SP - NO FL</td>
</tr>
<tr>
<td>2910</td>
<td>.5(2).77(5)</td>
<td>BW/TR VPAR+W-VAR - NO FL</td>
</tr>
<tr>
<td>3300</td>
<td>.42(1).8(4)</td>
<td>BAR/BW/F COR VW+PAR-VAR - DO</td>
</tr>
<tr>
<td>3660</td>
<td>.5(1).73(5)</td>
<td>BAR/OCC BW/F VPAR-VAR - NO FL</td>
</tr>
<tr>
<td>4020</td>
<td>.55(2).74(5)</td>
<td>BAR/BW/F VW+PAR - NO FL</td>
</tr>
<tr>
<td>4400</td>
<td>.54(1).71(11)</td>
<td>BW+LIGHT BS/TR VPAR+WPAR - M-DO</td>
</tr>
<tr>
<td>4780</td>
<td>.74(12)</td>
<td>BW+LIGHT-MOD S/F IPAR=VW - NO FL</td>
</tr>
<tr>
<td>5280</td>
<td>.8(21)</td>
<td>LIGHT-MOD BS+W/F VPAR+W/L PHYT - NO FL</td>
</tr>
<tr>
<td>5520</td>
<td>.88(22)</td>
<td>LIGHT-MOD BS/VW+PAR/L PHYT</td>
</tr>
<tr>
<td>5800</td>
<td>.94(23)</td>
<td>LIGHT BS+W/F VW+PAR/L PHYT - NO FL</td>
</tr>
<tr>
<td>6000</td>
<td>1.07(23)</td>
<td>STR OBS/PL LARGE VST+PAR/MOD PHYT</td>
</tr>
<tr>
<td>6200</td>
<td>1.12(21)</td>
<td>STR BS/LARGE VW+PAR/F COAL FR/MOD PHYT</td>
</tr>
<tr>
<td>6400</td>
<td>1.27(23)</td>
<td>MOD-STR OBS/LARGE VST+PAR/COAL FR</td>
</tr>
<tr>
<td>6600</td>
<td>1.12(22)</td>
<td>STR BS/VST+PAR/COAL CTGS/MOD PHYT</td>
</tr>
<tr>
<td>6750</td>
<td>1.4(22)</td>
<td>STR BS/LARGE VST+PAR/F COAL FR/MOD PHYT - NO FL</td>
</tr>
<tr>
<td>7100</td>
<td>1.37(22)</td>
<td>STR OBS/VPAR+W/L-MOD PHYT</td>
</tr>
<tr>
<td>7540</td>
<td>1.36(23)</td>
<td>VAR BS/VST+W+PAR/L-MOD PHYT - NO FL</td>
</tr>
<tr>
<td>7980</td>
<td>1.78(5)</td>
<td>BAR/TR B/F VPAR</td>
</tr>
<tr>
<td>8050</td>
<td>2.14(23)</td>
<td>STR BS/PL COAL FR</td>
</tr>
<tr>
<td>8250</td>
<td>2.19(21)</td>
<td>VAR BS/VST+W+PAR/MOD-RICH PHYT - NO FL</td>
</tr>
<tr>
<td>8500</td>
<td>2.15(20)</td>
<td>MOD BS+W/F V+IPAR+VPAR/L PHYT</td>
</tr>
<tr>
<td>8350</td>
<td>2.37(4)</td>
<td>BAR/VAR BS/F ORGANIC SP - NO FL</td>
</tr>
<tr>
<td>9450</td>
<td>1.74(2)</td>
<td>BAR/OCC MOD BS/F INST B AREAS - NO FL</td>
</tr>
<tr>
<td>9700</td>
<td>2.31(12)</td>
<td>MOD BS+W/TR HIGH RO PAR - NO FL</td>
</tr>
<tr>
<td>9900</td>
<td>2.05(21)</td>
<td>MOD BS/TR VPAR+LOOSE FR/L B - NO FL</td>
</tr>
<tr>
<td>10700</td>
<td>2.23(1)</td>
<td>BAR/OCC BW/F PHYT SP - NO FL</td>
</tr>
<tr>
<td>11010</td>
<td>2.39(9)</td>
<td>VAR MOD BS/TR HIGH RO PHYT - NO FL</td>
</tr>
</tbody>
</table>

Figures in parentheses indicate number of readings

See list of abbreviations overleaf
TABLE 1A

VITRINITE TABLE ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS</td>
<td>ANISOTROPIC</td>
</tr>
<tr>
<td>BS</td>
<td>BITUMEN STAINING</td>
</tr>
<tr>
<td>BAR</td>
<td>VIRTUALLY BARREN</td>
</tr>
<tr>
<td>CARB</td>
<td>CARBARGILITE</td>
</tr>
<tr>
<td>CTGS</td>
<td>CUTTINGS</td>
</tr>
<tr>
<td>DMA</td>
<td>DRILLING MUD ADDITIVE</td>
</tr>
<tr>
<td>F</td>
<td>FEW</td>
</tr>
<tr>
<td>FR</td>
<td>FRAGMENTS</td>
</tr>
<tr>
<td>GN</td>
<td>Gnarled</td>
</tr>
<tr>
<td>I</td>
<td>INERTINITE</td>
</tr>
<tr>
<td>IGN</td>
<td>IGNEOUS TRACES</td>
</tr>
<tr>
<td>L</td>
<td>LOW ORGANIC CONTENT</td>
</tr>
<tr>
<td>LOW</td>
<td>LOWEST REFLECTANCES MEASURED</td>
</tr>
<tr>
<td>MOD</td>
<td>MODERATE ORGANIC CONTENT</td>
</tr>
<tr>
<td>NTV</td>
<td>NO TRUE VITRINITE</td>
</tr>
<tr>
<td>OCC</td>
<td>OCCASIONAL</td>
</tr>
<tr>
<td>P</td>
<td>POOR</td>
</tr>
<tr>
<td>PL</td>
<td>PLENTIFUL-PLENTY</td>
</tr>
<tr>
<td>R</td>
<td>REWORKED</td>
</tr>
<tr>
<td>RO</td>
<td>REFLECTANCE MEASUREMENT</td>
</tr>
<tr>
<td>RICH</td>
<td>RICH-HIGH ORGANIC CONTENT</td>
</tr>
<tr>
<td>SC</td>
<td>SCRUFFY</td>
</tr>
<tr>
<td>SLT</td>
<td>SILTSTONE</td>
</tr>
<tr>
<td>SP</td>
<td>SPECKS</td>
</tr>
<tr>
<td>STC</td>
<td>STRUCTURE</td>
</tr>
<tr>
<td>TB</td>
<td>TURBO-DRILLED</td>
</tr>
<tr>
<td>TEL</td>
<td>TELINITIC</td>
</tr>
<tr>
<td>VL</td>
<td>V. LOW ORGANIC CONTENT</td>
</tr>
<tr>
<td>VAR</td>
<td>VARIABLE (HIGH) RO</td>
</tr>
<tr>
<td>W</td>
<td>WISPS-WISPY</td>
</tr>
<tr>
<td>*</td>
<td>ALLOCTHONOUS</td>
</tr>
<tr>
<td>?</td>
<td>QUESTIONABLE</td>
</tr>
<tr>
<td>BL</td>
<td>BLEBS</td>
</tr>
<tr>
<td>B</td>
<td>BITUMEN</td>
</tr>
<tr>
<td>BW</td>
<td>BITUMEN WISPS</td>
</tr>
<tr>
<td>CAV</td>
<td>CAVED</td>
</tr>
<tr>
<td>COR</td>
<td>CORRODED</td>
</tr>
<tr>
<td>DD</td>
<td>DIFFERENTIATION DIFFICULT</td>
</tr>
<tr>
<td>DOM</td>
<td>DOMINANT</td>
</tr>
<tr>
<td>FL</td>
<td>FLUORESCENCE</td>
</tr>
<tr>
<td>G</td>
<td>GOOD</td>
</tr>
<tr>
<td>GRAN</td>
<td>GRANULARITY</td>
</tr>
<tr>
<td>INST</td>
<td>INTERSTITIAL</td>
</tr>
<tr>
<td>IRON</td>
<td>IRON OXIDES</td>
</tr>
<tr>
<td>LGN</td>
<td>LIGNITE</td>
</tr>
<tr>
<td>M</td>
<td>MOSTLY</td>
</tr>
<tr>
<td>NDP</td>
<td>NO DETERMINATION POSSIBLE</td>
</tr>
<tr>
<td>OBS</td>
<td>OVERALL BITUMEN STAINING</td>
</tr>
<tr>
<td>OX</td>
<td>INDICATIONS OF OXIDATION</td>
</tr>
<tr>
<td>PAR</td>
<td>PARTICLES</td>
</tr>
<tr>
<td>POS</td>
<td>POSSIBLY</td>
</tr>
<tr>
<td>RM</td>
<td>REWORKED MATERIAL</td>
</tr>
<tr>
<td>RES</td>
<td>RESIN</td>
</tr>
<tr>
<td>S</td>
<td>SOME</td>
</tr>
<tr>
<td>SH</td>
<td>SHALE</td>
</tr>
<tr>
<td>SML</td>
<td>SMALL</td>
</tr>
<tr>
<td>SUB</td>
<td>SUBORDINATE</td>
</tr>
<tr>
<td>STR</td>
<td>STRONGLY</td>
</tr>
<tr>
<td>TR</td>
<td>TRACE</td>
</tr>
<tr>
<td>V</td>
<td>VITRINITE</td>
</tr>
<tr>
<td>VW</td>
<td>VITRINITE WISPS</td>
</tr>
<tr>
<td>VST</td>
<td>VITRINITE STRINGERS</td>
</tr>
<tr>
<td>WH</td>
<td>WHOLLY</td>
</tr>
<tr>
<td>=</td>
<td>EQUAL PROPORTIONS</td>
</tr>
<tr>
<td>PHY</td>
<td>PHYTOCLASTS (CONTENT)</td>
</tr>
</tbody>
</table>

(SPORE FLUORESCENCE COLOURS UNDER U.V. LIGHT)

<table>
<thead>
<tr>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>GREEN</td>
</tr>
<tr>
<td>O</td>
<td>ORANGE</td>
</tr>
<tr>
<td>LT</td>
<td>LIGHT</td>
</tr>
<tr>
<td>D</td>
<td>DEEP</td>
</tr>
<tr>
<td>Y</td>
<td>YELLOW</td>
</tr>
<tr>
<td>R</td>
<td>RED</td>
</tr>
<tr>
<td>M</td>
<td>MID</td>
</tr>
<tr>
<td>P</td>
<td>PALE</td>
</tr>
</tbody>
</table>
TABLE 2
VISUAL KEROGEN DESCRIPTIONS

WELL: HOODOO LAKE UNIT 2
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Spore Colour</th>
<th>Estimated Source Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>780</td>
<td>2</td>
<td>POOR GAS</td>
</tr>
<tr>
<td>1800</td>
<td>2/3</td>
<td>NONE-POOR GAS</td>
</tr>
<tr>
<td>2160</td>
<td>3</td>
<td>POOR-?MOD GAS</td>
</tr>
<tr>
<td>2520</td>
<td>3</td>
<td>POOR-?MOD GAS</td>
</tr>
<tr>
<td>3300</td>
<td>3</td>
<td>NONE-POOR GAS</td>
</tr>
<tr>
<td>3660</td>
<td>3-3/4</td>
<td>POOR GAS</td>
</tr>
<tr>
<td>4020</td>
<td>3-3/4</td>
<td>POOR GAS</td>
</tr>
<tr>
<td>4780</td>
<td>3-3/4</td>
<td>POOR GAS</td>
</tr>
<tr>
<td>5280</td>
<td>3-3/4</td>
<td>POOR GAS</td>
</tr>
<tr>
<td>5800</td>
<td>3-3/4</td>
<td>GOOD GAS/SUB OIL?</td>
</tr>
<tr>
<td>6100</td>
<td>3-3/4</td>
<td>GOOD GAS/SUB OIL?</td>
</tr>
<tr>
<td>6300</td>
<td>3-3/4</td>
<td>GOOD GAS/SUB OIL?</td>
</tr>
<tr>
<td>6500</td>
<td>3-3/4</td>
<td>GOOD GAS/SUB OIL?</td>
</tr>
<tr>
<td>6600</td>
<td>3-3/4</td>
<td>GOOD GAS/SUB OIL?</td>
</tr>
<tr>
<td>6960</td>
<td>3-3/4</td>
<td>GOOD GAS/SUB OIL?</td>
</tr>
<tr>
<td>7100</td>
<td>3-3/4</td>
<td>GOOD GAS/SUB OIL?</td>
</tr>
<tr>
<td>7240</td>
<td>3/4-4</td>
<td>GOOD GAS/SUB OIL?</td>
</tr>
<tr>
<td>8050</td>
<td>4-4/5</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>8250</td>
<td>4/5-5</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>8500</td>
<td>4/5-5</td>
<td>MOD GAS</td>
</tr>
<tr>
<td>8950</td>
<td>5</td>
<td>POOR GAS</td>
</tr>
<tr>
<td>9700</td>
<td>5</td>
<td>MOD GAS</td>
</tr>
<tr>
<td>9900</td>
<td>5</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>10700</td>
<td>5/4-4</td>
<td>NONE-POOR GAS</td>
</tr>
</tbody>
</table>
TABLE 3
ROCK-EVAL AND PYROLYSIS DATA

WELL: HOODOO LAKE UNIT 2
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>P1</th>
<th>P2</th>
<th>COGI</th>
<th>TOC (%wt)</th>
<th>Hydrogen Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>780</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.21</td>
</tr>
<tr>
<td>1410</td>
<td>0</td>
<td>.2</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>1800</td>
<td>0</td>
<td>.1</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>2160</td>
<td>0</td>
<td>.1</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>2520</td>
<td>0</td>
<td>.1</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>2910</td>
<td>0</td>
<td>.1</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>3300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>3660</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>4020</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>4400</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>4780</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>5280</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>5520</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>5880</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.03</td>
</tr>
<tr>
<td>5900</td>
<td>.1</td>
<td>1.6</td>
<td>1.21</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td>.1</td>
<td>1.8</td>
<td>1.21</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>6100</td>
<td>.3</td>
<td>3.9</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6200</td>
<td>.1</td>
<td>3.8</td>
<td>1.03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6300</td>
<td>.3</td>
<td>3.5</td>
<td>1.03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6400</td>
<td>.1</td>
<td>3.1</td>
<td>1.03</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6500</td>
<td>.6</td>
<td>8.2</td>
<td>.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6600</td>
<td>.6</td>
<td>5.2</td>
<td>1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6760</td>
<td>1</td>
<td>14.4</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6960</td>
<td>.6</td>
<td>4.3</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7100</td>
<td>.2</td>
<td>2.7</td>
<td>.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7360</td>
<td>1.4</td>
<td>11.9</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7540</td>
<td>0</td>
<td>.5</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7620</td>
<td>.1</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7980</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8050</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8150</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8250</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8500</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8950</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9450</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9700</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9900</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10700</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11010</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4

LITHOLOGY AND TOC DATA

WELL: HOODOO LAKE UNIT 2
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>DEPTH(ft)</th>
<th>AGE/FM</th>
<th>PICKED LITHOLOGY</th>
<th>%TOC</th>
<th>%CARBONATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>780</td>
<td>TERT/BEAR LAKE</td>
<td>C-CLAY</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>1410</td>
<td>TERT/BEAR LAKE</td>
<td>C-CLAY</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>1800</td>
<td>TERT/BEAR LAKE</td>
<td>C-CLAY</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>2160</td>
<td>TERT/BEAR LAKE</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>2520</td>
<td>TERT/STEPOVAK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>2910</td>
<td>TERT/STEPOVAK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>3300</td>
<td>TERT/STEPOVAK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>3660</td>
<td>TERT/STEPOVAK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>4020</td>
<td>TERT/STEPOVAK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>4400</td>
<td>TERT/STEPOVAK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>4780</td>
<td>TERT/STEPOVAK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>5280</td>
<td>TERT/STEPOVAK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>5520</td>
<td>TERT/STEPOVAK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>5800</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>5900</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6000</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6100</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6200</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6300</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6400</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6500</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6600</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6760</td>
<td>TERT/TOLSTOI</td>
<td>C-COALY SLTST</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>6960</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>7100</td>
<td>TERT/TOLSTOI</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>7360</td>
<td>CRET/CHIGNIK</td>
<td>C-COALY SLTST</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>7540</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>7620</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>7980</td>
<td>CRET/CHIGNIK</td>
<td>C-CALC SLTST</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>8050</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>8150</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>8250</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>8500</td>
<td>CRET/CHIGNIK</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>8950</td>
<td>CRET/HERENDEEN</td>
<td>C-LIMESTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>9450</td>
<td>CRET/HERENDEEN</td>
<td>C-LIMESTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>9700</td>
<td>JURASSIC</td>
<td>C-CALC SLTST</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>9900</td>
<td>JURASSIC</td>
<td>C-CALC SLTST</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>10700</td>
<td>JURASSIC</td>
<td>C-CALC SLTST</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>11010</td>
<td>JURASSIC</td>
<td>C-SILTSTONE</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:

- N-CORE SAMPLE
- S-SIDEWALL CORE
- O-OUTCROP
- C-CUTTINGS
<table>
<thead>
<tr>
<th>Depth in metres / feet</th>
<th>Type</th>
<th>Amount of Organic Matter</th>
<th>Trace/present</th>
<th>Common</th>
<th>Frequent</th>
<th>Abundant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DINOFLAGELLATE CYSTS AND ACORITARCHS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TASMANITIDS AND LEIOSPHERES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FORAM LININGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEGASPORES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER MICROFOSSILS 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER MICROFOSSILS 2, MISCELLANEOUS PHYTOCLASTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CUTICLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER TISSUES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BROWN 'WOOD' HUMINITE + VITRINITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLACK 'WOOD' VITRINITE + INERTINITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLACK WOOD INERTINITE ONLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINELY DISSEMINATED PARTICLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMORPHOUS VASCULAR PLANT MATERIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMORPHOUS MATTER OF ALGAL ORIGIN, MARINE (M) NON MARINE (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>good preservation state</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fair preservation state</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>poor preservation state</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reworking (✓ = present)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>undiff. mar. ENVIRONMENT OF DEPOSITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>open mar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>restricted mar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nr.shore.mar./strong terrig. infl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>some mar. influence/brackish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-mar./freshwater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COLOUR/MATURATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SOURCE POTENTIAL FOR OIL (O) AND GAS (G)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vitrinite Reflectance Analysis
for well: HOODOO LAKE UNIT 2

M = 2.87750E-04
C = 1.88868

- OGT - 0.55% Ro
- GGT - 0.7% Ro
- OIL FLOOR - 1.3% R

AV. VALUES FOR OIL-PRONE KEROGEN

LINE OF BEST FIT TO DATA
WITH THRESHOLD ERROR RANGES

R^2 = .88
Depth (ft)
SAMPLE: BEAR LAKE FM 1888-1208 FT

SAMPLE: TOLSTOI FM 5040-5888 FT

SAMPLE: CHIGNIK FM 8100-8220 FT

SAMPLE: STEPOVAK FM 2018-2078 FT

SAMPLE: TOLSTOI FM 8840-8740 FT

SAMPLE: HERENDEEN FM 8540-8570 FT

SAMPLE: STEPOVAK FM 5820-5860 FT

SAMPLE: CHIGNIK FM 7240-7350 FT

GEOCHEMISTRY BRANCH, BP SUNBUR
OPERATIONS & DEVELOPMENT GROUP

NORMALISED n-ALKANE DISTRIBUTION
WELL: HOODOO LAKE UNIT #2
LOCATION: BRISTOL BAY, ALASKA
OPERATOR: SOCAL

Date Spudded: 13-2-70
Date Completed: 21-4-70
TD: 11,243 ft

BP RESEARCH CENTRE, SUNBURY OPERATIONAL SERVICES GROUP.
PETROLEUM GEOCHEMICAL LOG

<table>
<thead>
<tr>
<th>SPOROCOL</th>
<th>NITRINITE</th>
<th>REFLECTANCE %</th>
<th>GENERATION INDICES %</th>
<th>CARBON PREFERENCE INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPORE TYPE</td>
<td>MATURE</td>
<td>REFINED</td>
<td>OIL PLOW</td>
<td>OIL PLOW</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>0.05-0.5</td>
<td>0.12</td>
<td>0.80</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>0.5-1.0</td>
<td>0.20</td>
<td>0.50</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>1.0-2.0</td>
<td>0.10</td>
<td>0.40</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>2.0-4.0</td>
<td>0.05</td>
<td>0.30</td>
<td>0.005</td>
<td>0.05</td>
</tr>
</tbody>
</table>

GEOLOGICAL AND WELL DATA

GEOMETRIC DATA | NUMERICAL LOG | VISUAL KEROGEN | SOURCE ROCK | QUALITY | PRODUCTS | COMMENTS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATIGRAPHY</td>
<td>GRAVITY</td>
<td>LOG</td>
<td>PLEATED</td>
<td>DEG</td>
<td>MAX YIELD</td>
<td>OIL</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
<td>0.1</td>
<td>1.0</td>
<td>5</td>
<td>10</td>
<td>100</td>
</tr>
</tbody>
</table>

SOURCES ROCK | QUALITY | PYROLYSIS DATA | COMMENTS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL ORGANIC CARBON %</td>
<td>VISUAL KEROGEN</td>
<td>SOURCE TYPE</td>
<td>ROCK EVAL</td>
</tr>
<tr>
<td>POOR</td>
<td>DEEP</td>
<td>OIL</td>
<td>GAS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

KEY
- PROBABLE AUTOCHTHONOUS
- POSSIBLE ALLOGENOUS
- MUTHER STAINING AND OR WISP

NOTES
1. Average Generation Threshold for Oil from Ternupine.
4. Saturated Carbon.
WELL: HOODOO LAKE UNIT #2
LOCATION: BRISTOL BAY, ALASKA.
OPERATOR: SOCAL

Date Spudded: 13-2-70
Date Completed: 21-4-70
TD: 11,243 ft

MATURITY INDICATORS

<table>
<thead>
<tr>
<th>Spore Colour</th>
<th>Vitrinite Reflectance %</th>
<th>Generation Indices</th>
<th>Carbon Preference Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMMATURE</td>
<td>MATURE</td>
<td>IMMATURE</td>
<td>PEAK OIL</td>
</tr>
<tr>
<td>1,2,3,4,5,6,7</td>
<td>.02</td>
<td>.06</td>
<td>.08</td>
</tr>
</tbody>
</table>

GEOLOGICAL AND WELL DATA

<table>
<thead>
<tr>
<th>Stratigraphy</th>
<th>Depth Drilled (ft & m)</th>
<th>Graphic Log</th>
<th>Picked Log</th>
</tr>
</thead>
</table>

TOTAL OIL CARBON CONTENT:

- **POOR:** 0.5
- **MODERATE:** 1.5
GEOLOGICAL AND WELL DATA

<table>
<thead>
<tr>
<th>Stratigraphy</th>
<th>Depth Oiled</th>
<th>Graphic Picked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ft & m</td>
<td></td>
</tr>
</tbody>
</table>

SOURCE ROCK QUALITY

<table>
<thead>
<tr>
<th>Total Organic Carbon (%)</th>
<th>Visual Kerogen</th>
<th>Pyrolysis Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Source Type</td>
<td>Rock Eval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Products</td>
</tr>
</tbody>
</table>

COMMENTS

- Source Type: ____________
- Rock Eval: ____________
- Products: ____________

SP RESEARCH CENTRE, SUNBURY. OPERATIONAL SERVICES GROUP.

PETROLEUM GEOCHEMICAL LOG

SCALE = 1:10,000

SP RESEARCH CENTRE, SUNBURY.
Rock potential Ratings for PGC:
- Ratings: Poor (<1.5), Good (1.5-5), Very Good (>5).

Hydrocarbon yields:
- Rock-EW (Oil + Gas), (Oil only).

Hydrocarbon Yield:
- From 250 to 550°C.

Migration of hydrocarbons reaching the reservoir may be only 10% of the total yield.
TABLE I

VITRINATE REFLECTANCE DATA

WELL: SANDY RIVER-1
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>DEPTH (FT)</th>
<th>REFLECTANCE VALUES (%RO)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2820</td>
<td>43(20)</td>
<td>F COAL CTGS /S BS - NO FL</td>
</tr>
<tr>
<td>3420</td>
<td>0(0)</td>
<td>NDP</td>
</tr>
<tr>
<td>3630</td>
<td>24(3)</td>
<td>EAR - Y/O (SPORES+HC SP)</td>
</tr>
<tr>
<td>4290</td>
<td>27(20)</td>
<td>LT BS+EW/WW+W PAR - Y/O+LTO</td>
</tr>
<tr>
<td>4860</td>
<td>3(21)</td>
<td>PL COAL CTGS V/VAP RO - FL HC SP</td>
</tr>
<tr>
<td>5100</td>
<td>37(21)</td>
<td>FULL RANGE MACERALS - Y/O</td>
</tr>
<tr>
<td>5320</td>
<td>31(22)</td>
<td>COAL V - Y/O</td>
</tr>
<tr>
<td>5710</td>
<td>3(20)</td>
<td>V - Y+Y/O (SPORES+HC SP)</td>
</tr>
<tr>
<td>6010</td>
<td>32(22)</td>
<td>V - Y/O</td>
</tr>
<tr>
<td>6310</td>
<td>29(20)</td>
<td>LIGNITE/F DIRTY CTGS - Y/O</td>
</tr>
<tr>
<td>6520</td>
<td>32(23)</td>
<td>COAL FULL RANGE MACERALS - Y+Y/O</td>
</tr>
<tr>
<td>6760</td>
<td>31(23)</td>
<td>M LIGNITE V/VAP RO - Y/O</td>
</tr>
<tr>
<td>7150</td>
<td>33(22)</td>
<td>EW/L PHY/WW+W PAR - LTO</td>
</tr>
<tr>
<td>7600</td>
<td>20(4)(3)</td>
<td>EAR F SP HIGH RO - NO FL</td>
</tr>
<tr>
<td>9075</td>
<td>35(22)</td>
<td>LIGNITE V/SH WW BS - Y/O</td>
</tr>
<tr>
<td>9270</td>
<td>37(21)</td>
<td>V - Y/O+LTO</td>
</tr>
<tr>
<td>9645</td>
<td>36(22)</td>
<td>MOD/BS+EW/WW PAR V+VST - LTO</td>
</tr>
<tr>
<td>9975</td>
<td>39(22)</td>
<td>V - L/MO</td>
</tr>
<tr>
<td>10305</td>
<td>57(21)</td>
<td>VAR RO - DULL LTO+MO</td>
</tr>
<tr>
<td>10515</td>
<td>61(22)</td>
<td>LIG V/SH PL WW+VST - Y(PES) Y/O (SPORES)</td>
</tr>
<tr>
<td>10755</td>
<td>65(21)</td>
<td>V/SH BS VST - L+MO</td>
</tr>
<tr>
<td>11055</td>
<td>62(22)</td>
<td>COAL V/SH BS+VST - MO</td>
</tr>
<tr>
<td>11300</td>
<td>64(22)</td>
<td>WW+VST - LTO+MO</td>
</tr>
<tr>
<td>11550</td>
<td>63(22)</td>
<td>WW+VST - LTO</td>
</tr>
<tr>
<td>12000</td>
<td>67(21)</td>
<td>WW+VST - LTO+MO</td>
</tr>
<tr>
<td>12220</td>
<td>66(22)</td>
<td>EW+BS/L/WW+W PAR/TR I PAR - LTO</td>
</tr>
<tr>
<td>12790</td>
<td>66(22)</td>
<td>PL EW+BS/L/WW+W PAR/TR I PAR - MO</td>
</tr>
<tr>
<td>-13050</td>
<td>63(7) 1.17(6)</td>
<td>EW+BS/L/V PAR/VAR RO CTG TO CTG - LTO/XO</td>
</tr>
</tbody>
</table>

Figures in parentheses indicate number of readings -
See list of abbreviations overleaf.

(P) RINT ANOTHER REPORT, (P) ETURN TO MAIN DATA ENTRY,
(A) SSIGN A NEW FILE OR (C) UIT ?
TABLE 1A

VITRINITE TABLE ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS</td>
<td>ANISOTROPIC</td>
</tr>
<tr>
<td>BS</td>
<td>BITUMEN STAINING</td>
</tr>
<tr>
<td>BAR</td>
<td>VIRTUALLY BARREN</td>
</tr>
<tr>
<td>CARB</td>
<td>CARBARGILITE</td>
</tr>
<tr>
<td>CTGS</td>
<td>CUTTINGS</td>
</tr>
<tr>
<td>DMA</td>
<td>DRILLING MUD ADDITIVE</td>
</tr>
<tr>
<td>F</td>
<td>FEW</td>
</tr>
<tr>
<td>FR</td>
<td>FRAGMENTS</td>
</tr>
<tr>
<td>GN</td>
<td>GNARLED</td>
</tr>
<tr>
<td>I</td>
<td>INERTINITE</td>
</tr>
<tr>
<td>IGN</td>
<td>IGNEOUS TRACES</td>
</tr>
<tr>
<td>L</td>
<td>LOW ORGANIC CONTENT</td>
</tr>
<tr>
<td>LDW</td>
<td>LOWEST REFLECTANCES MEASURED</td>
</tr>
<tr>
<td>MOD</td>
<td>MODERATE ORGANIC CONTENT</td>
</tr>
<tr>
<td>NTV</td>
<td>NO TRUE VITRINITE</td>
</tr>
<tr>
<td>OCC</td>
<td>OCCASIONAL</td>
</tr>
<tr>
<td>P</td>
<td>POOR</td>
</tr>
<tr>
<td>PL</td>
<td>PLENTIFUL-PLENTY</td>
</tr>
<tr>
<td>R</td>
<td>REWORKED</td>
</tr>
<tr>
<td>RO</td>
<td>REFLECTANCE MEASUREMENT</td>
</tr>
<tr>
<td>RICH</td>
<td>RICH-HIGH ORGANIC CONTENT</td>
</tr>
<tr>
<td>SC</td>
<td>SCRUFFY</td>
</tr>
<tr>
<td>SLT</td>
<td>SILTSTONE</td>
</tr>
<tr>
<td>SP</td>
<td>SPECKS</td>
</tr>
<tr>
<td>STC</td>
<td>STRUCTURE</td>
</tr>
<tr>
<td>TB</td>
<td>TURBO-DRILLED</td>
</tr>
<tr>
<td>TEL</td>
<td>TELINITIC</td>
</tr>
<tr>
<td>VL</td>
<td>V.LOW ORGANIC CONTENT</td>
</tr>
<tr>
<td>VAR</td>
<td>VARIABLE (HIGH) RO</td>
</tr>
<tr>
<td>W</td>
<td>WISPS-WISPY</td>
</tr>
<tr>
<td>*</td>
<td>ALLOCHTHONOUS</td>
</tr>
<tr>
<td>?</td>
<td>QUESTIONABLE</td>
</tr>
<tr>
<td>BL</td>
<td>BLEBS</td>
</tr>
<tr>
<td>B</td>
<td>BITUMEN</td>
</tr>
<tr>
<td>BW</td>
<td>BITUMEN WISPS</td>
</tr>
<tr>
<td>CAV</td>
<td>CAVED</td>
</tr>
<tr>
<td>COR</td>
<td>CORRODED</td>
</tr>
<tr>
<td>DD</td>
<td>DIFFERENTIATION DIFFICULT</td>
</tr>
<tr>
<td>DOM</td>
<td>DOMINANT</td>
</tr>
<tr>
<td>FL</td>
<td>FLUORESCENCE</td>
</tr>
<tr>
<td>G</td>
<td>GOOD</td>
</tr>
<tr>
<td>GRN</td>
<td>GRANULARITY</td>
</tr>
<tr>
<td>INST</td>
<td>INTERSTITIAL</td>
</tr>
<tr>
<td>IRON</td>
<td>IRON OXIDES</td>
</tr>
<tr>
<td>LGN</td>
<td>LIGNITE</td>
</tr>
<tr>
<td>M</td>
<td>MOSTLY</td>
</tr>
<tr>
<td>NDP</td>
<td>NO DETERMINATION POSSIBLE</td>
</tr>
<tr>
<td>OBS</td>
<td>OVERALL BITUMEN STAINING</td>
</tr>
<tr>
<td>OX</td>
<td>INDICATIONS OF OXIDATION</td>
</tr>
<tr>
<td>PAR</td>
<td>PARTICLES</td>
</tr>
<tr>
<td>POS</td>
<td>POSSIBLY</td>
</tr>
<tr>
<td>RM</td>
<td>REWORKED MATERIAL</td>
</tr>
<tr>
<td>RES</td>
<td>RESIN</td>
</tr>
<tr>
<td>S</td>
<td>SOME</td>
</tr>
<tr>
<td>SH</td>
<td>SHALE</td>
</tr>
<tr>
<td>SML</td>
<td>SMALL</td>
</tr>
<tr>
<td>SUB</td>
<td>SUBORDINATE</td>
</tr>
<tr>
<td>STR</td>
<td>STRONGLY</td>
</tr>
<tr>
<td>TR</td>
<td>TRACE</td>
</tr>
<tr>
<td>V</td>
<td>VITRINITE</td>
</tr>
<tr>
<td>VW</td>
<td>VITRINITE WISPS</td>
</tr>
<tr>
<td>VST</td>
<td>VITRINITE STRINGERS</td>
</tr>
<tr>
<td>WH</td>
<td>WHOLLY</td>
</tr>
<tr>
<td>=</td>
<td>EQUAL PROPORTIONS</td>
</tr>
<tr>
<td>PHY</td>
<td>PHYTOCLASTS (CONTENT)</td>
</tr>
</tbody>
</table>

(SPOR FLUORESCENCE COLOURS UNDER U.V. LIGHT)

<table>
<thead>
<tr>
<th>Colour</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>GREEN</td>
</tr>
<tr>
<td>O</td>
<td>ORANGE</td>
</tr>
<tr>
<td>LT</td>
<td>LIGHT</td>
</tr>
<tr>
<td>D</td>
<td>DEEP</td>
</tr>
<tr>
<td>Y</td>
<td>YELLOW</td>
</tr>
<tr>
<td>R</td>
<td>RED</td>
</tr>
<tr>
<td>M</td>
<td>MID</td>
</tr>
<tr>
<td>P</td>
<td>PALE</td>
</tr>
</tbody>
</table>
TABLE 2

VISUAL KEROCEN DESCRIPTIONS

WELL: SANDY RIVER-1
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Spore Colour</th>
<th>Estimated Source Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>3420</td>
<td>2</td>
<td>NONE</td>
</tr>
<tr>
<td>4290</td>
<td>2</td>
<td>POOR-?MOD GAS</td>
</tr>
<tr>
<td>5100</td>
<td>2</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>5320</td>
<td>2</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>5710</td>
<td>2</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>6010</td>
<td>2</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>6760</td>
<td>2</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>8150</td>
<td>2</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>9270</td>
<td>2</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>9510</td>
<td>2</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>9925</td>
<td>2-2/3</td>
<td>MOD GAS</td>
</tr>
<tr>
<td>10125</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>10305</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>10515</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>11050</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>11170</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>11300</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>11400</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>11820</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>12220</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>12410</td>
<td>2/3</td>
<td>GOOD GAS</td>
</tr>
<tr>
<td>12770</td>
<td>3</td>
<td>MOD-GOOD GAS</td>
</tr>
<tr>
<td>Type</td>
<td>Amount of Organic Matter</td>
<td>Trace/present</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Miospores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinoflagellate cysts and acritarchs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tasmanitids and leiospheres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foram linings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaspores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other microfossils 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other microfossils 2, miscellanous phytoclasts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuticles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2A

<table>
<thead>
<tr>
<th>Depth in metres/feet</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Depth in metres/feet</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPTH (ft)</td>
<td>P1</td>
<td>P2</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>2320</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3180</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3420</td>
<td>.1</td>
<td>0</td>
</tr>
<tr>
<td>3630</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3930</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4080</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4290</td>
<td>.3</td>
<td>.4</td>
</tr>
<tr>
<td>4560</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>4860</td>
<td>.2</td>
<td>.4</td>
</tr>
<tr>
<td>5100</td>
<td>.8</td>
<td>76.1</td>
</tr>
<tr>
<td>5320</td>
<td>1.4</td>
<td>74.6</td>
</tr>
<tr>
<td>5710</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>6010</td>
<td>.3</td>
<td>1.1</td>
</tr>
<tr>
<td>6310</td>
<td>.1</td>
<td>1</td>
</tr>
<tr>
<td>6520</td>
<td>.4</td>
<td>.3</td>
</tr>
<tr>
<td>6760</td>
<td>.2</td>
<td>.7</td>
</tr>
<tr>
<td>7150</td>
<td>.5</td>
<td>.6</td>
</tr>
<tr>
<td>7600</td>
<td>1.3</td>
<td>.9</td>
</tr>
<tr>
<td>8150</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>9075</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9270</td>
<td>.6</td>
<td>1</td>
</tr>
<tr>
<td>9510</td>
<td>.9</td>
<td>.4</td>
</tr>
<tr>
<td>9645</td>
<td>3.6</td>
<td>79.4</td>
</tr>
<tr>
<td>9975</td>
<td>1.1</td>
<td>.8</td>
</tr>
<tr>
<td>10125</td>
<td>2.5</td>
<td>105.4</td>
</tr>
<tr>
<td>10305</td>
<td>1.7</td>
<td>94.8</td>
</tr>
<tr>
<td>10515</td>
<td>.8</td>
<td>108</td>
</tr>
<tr>
<td>10755</td>
<td>2.6</td>
<td>136</td>
</tr>
<tr>
<td>10845</td>
<td>2.1</td>
<td>1.2</td>
</tr>
<tr>
<td>11050</td>
<td>4.9</td>
<td>161.1</td>
</tr>
<tr>
<td>11170</td>
<td>3.3</td>
<td>20.7</td>
</tr>
<tr>
<td>11300</td>
<td>5.7</td>
<td>178.3</td>
</tr>
<tr>
<td>11449</td>
<td>1</td>
<td>5.2</td>
</tr>
<tr>
<td>11550</td>
<td>1.8</td>
<td>4.4</td>
</tr>
<tr>
<td>11820</td>
<td>2.1</td>
<td>15.8</td>
</tr>
<tr>
<td>12060</td>
<td>.5</td>
<td>1.6</td>
</tr>
<tr>
<td>12220</td>
<td>.5</td>
<td>1.4</td>
</tr>
<tr>
<td>12410</td>
<td>.5</td>
<td>1.2</td>
</tr>
<tr>
<td>12790</td>
<td>.4</td>
<td>.9</td>
</tr>
<tr>
<td>13050</td>
<td>6.2</td>
<td>24.4</td>
</tr>
</tbody>
</table>
TABLE 4
LITHOLOGY AND TOC DATA

WELL: SANDY RIVER-1
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Age/Fm</th>
<th>Picked Lithology</th>
<th>TOC</th>
<th>% Carbonate</th>
</tr>
</thead>
<tbody>
<tr>
<td>3420</td>
<td>U.MIO-PLIO</td>
<td>SILTST</td>
<td>0.31</td>
<td>11</td>
</tr>
<tr>
<td>3930</td>
<td>U.MIO-PLIO</td>
<td>SILTST</td>
<td>0.25</td>
<td>7.4</td>
</tr>
<tr>
<td>4560</td>
<td>U.OLIG-M.MIO</td>
<td>MDST</td>
<td>0.63</td>
<td>14.5</td>
</tr>
<tr>
<td>5100</td>
<td>U.OLIG-M.MIO</td>
<td>COAL</td>
<td>47.3</td>
<td>14.9</td>
</tr>
<tr>
<td>5320</td>
<td>U.OLIG-M.MIO</td>
<td>COAL</td>
<td>46.8</td>
<td>18.3</td>
</tr>
<tr>
<td>6310</td>
<td>U.OLIG-M.MIO</td>
<td>SILTST</td>
<td>1.7</td>
<td>13.9</td>
</tr>
<tr>
<td>6760</td>
<td>U.OLIG-M.MIO</td>
<td>SILTST</td>
<td>1.1</td>
<td>11.9</td>
</tr>
<tr>
<td>7600</td>
<td>U.OLIG-M.MIO"</td>
<td>SILTST</td>
<td>1</td>
<td>13.5</td>
</tr>
<tr>
<td>9270</td>
<td>U.OLIG-M.MIO</td>
<td>SILTST</td>
<td>1.3</td>
<td>10.7</td>
</tr>
<tr>
<td>9645</td>
<td>U.OLIG-M.MIO</td>
<td>COAL</td>
<td>44.7</td>
<td>11.2</td>
</tr>
<tr>
<td>10125</td>
<td>U.OLIG-M.MIO</td>
<td>COAL</td>
<td>37.5</td>
<td>3.3</td>
</tr>
<tr>
<td>10305</td>
<td>U.OLIG-M.MIO</td>
<td>COAL</td>
<td>45.1</td>
<td>1.18</td>
</tr>
<tr>
<td>10515</td>
<td>U.OLIG-M.MIO</td>
<td>COAL</td>
<td>41.9</td>
<td>2.5</td>
</tr>
<tr>
<td>10755</td>
<td>U.OLIG-M.MIO</td>
<td>COAL</td>
<td>54.1</td>
<td>2.1</td>
</tr>
<tr>
<td>11050</td>
<td>U.OLIG-M.MIO</td>
<td>COAL</td>
<td>58.2</td>
<td>2.7</td>
</tr>
<tr>
<td>11170</td>
<td>U.OLIG-M.MIO</td>
<td>MDST</td>
<td>5.9</td>
<td>5.2</td>
</tr>
<tr>
<td>11300</td>
<td>U.OLIG-M.MIO</td>
<td>COAL</td>
<td>47.3</td>
<td>2.5</td>
</tr>
<tr>
<td>11440</td>
<td>U.OLIG-M.MIO</td>
<td>MDST</td>
<td>3.3</td>
<td>8.8</td>
</tr>
<tr>
<td>11550</td>
<td>U.OLIG-M.MIO</td>
<td>SILTST</td>
<td>3.2</td>
<td>15.7</td>
</tr>
<tr>
<td>11920</td>
<td>U.OLIG-M.MIO</td>
<td>SILTST</td>
<td>4.2</td>
<td>5.3</td>
</tr>
<tr>
<td>12000</td>
<td>MID-U.OLIG</td>
<td>MDST</td>
<td>1.4</td>
<td>7.1</td>
</tr>
<tr>
<td>13050</td>
<td>MID-U.OLIG</td>
<td>MDST</td>
<td>9.5</td>
<td>4.6</td>
</tr>
</tbody>
</table>
TABLE 5

SEDIMENTS SOLUBLE EXTRACT DATA

WELL: SANDY RIVER-1
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>TOC</th>
<th>TSE/TOC</th>
<th>SAC/TOC</th>
<th>CPI</th>
<th>Asphaltenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10125</td>
<td>37.5</td>
<td>22</td>
<td>7</td>
<td>2.01</td>
<td>9.2</td>
</tr>
<tr>
<td>10725</td>
<td>54.1</td>
<td>15</td>
<td>2</td>
<td>1.88</td>
<td>21.8</td>
</tr>
<tr>
<td>11170</td>
<td>5.9</td>
<td>39</td>
<td>24</td>
<td>1.32</td>
<td>n.d.</td>
</tr>
<tr>
<td>11440</td>
<td>3.3</td>
<td>76</td>
<td>33</td>
<td>1.25</td>
<td>n.d.</td>
</tr>
<tr>
<td>11550</td>
<td>3.2</td>
<td>156</td>
<td>62</td>
<td>n.d.</td>
<td>11.5</td>
</tr>
<tr>
<td>12000</td>
<td>1.4</td>
<td>136</td>
<td>40</td>
<td>n.d.</td>
<td>17.3</td>
</tr>
<tr>
<td>13050</td>
<td>9.5</td>
<td>40</td>
<td>18</td>
<td>n.d.</td>
<td>17.4</td>
</tr>
</tbody>
</table>
TABLE 6
SEDIMENTS SOLUBLE EXTRACT DATA

WELL: SANDY RIVER-1
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>%SAC</th>
<th>ZTSE</th>
<th>PRIST/PHYT</th>
<th>PRIST/C-17</th>
<th>PHYT/C-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>10125</td>
<td>29.4</td>
<td>.8</td>
<td>6</td>
<td>2.13</td>
<td>.57</td>
</tr>
<tr>
<td>10755</td>
<td>14.7</td>
<td>.8</td>
<td>10.6</td>
<td>3.18</td>
<td>.47</td>
</tr>
<tr>
<td>11170</td>
<td>62.1</td>
<td>.2</td>
<td>4.29</td>
<td>1.02</td>
<td>.69</td>
</tr>
<tr>
<td>11440</td>
<td>43.2</td>
<td>.3</td>
<td>4.05</td>
<td>.93</td>
<td>.59</td>
</tr>
<tr>
<td>11550</td>
<td>39.9</td>
<td>.5</td>
<td>3.41</td>
<td>.97</td>
<td>.69</td>
</tr>
<tr>
<td>12000</td>
<td>29.1</td>
<td>.2</td>
<td>4.01</td>
<td>.88</td>
<td>.58</td>
</tr>
</tbody>
</table>
TABLE 7
CARBON ISOTOPES DATA

WELL: SANDY RIVER-1
LOCATION: BRISTOL BAY, ALASKA

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>ISOTOPE RATIO PERMIL</th>
<th>SAMPLE TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10125</td>
<td>-25.4</td>
<td>KEROGEN</td>
</tr>
<tr>
<td>10755</td>
<td>-25.8</td>
<td>KEROGEN</td>
</tr>
<tr>
<td>11170</td>
<td>-25.6</td>
<td>KEROGEN</td>
</tr>
<tr>
<td>11440</td>
<td>-25.5</td>
<td>KEROGEN</td>
</tr>
<tr>
<td>11550</td>
<td>-25.3</td>
<td>KEROGEN</td>
</tr>
<tr>
<td>11820</td>
<td>-25.3</td>
<td>KEROGEN</td>
</tr>
<tr>
<td>12000</td>
<td>-25.1</td>
<td>KEROGEN</td>
</tr>
<tr>
<td>13050</td>
<td>-25.1</td>
<td>KEROGEN</td>
</tr>
</tbody>
</table>

C-13/C-12 ISOTOPE RATIOS RELATIVE TO PDB STANDARD
SECONDARY STANDARD: NBS-22 AT -29.4 PERMIL
WELL: SANDY RIVER No.1
LOCATION: BRISTOL BAY, ALASKA
OPERATOR: GULF OIL CORP.

Date Spudded: 4-9-63
Date Completed: 28-11-63
TD: 13063 ft.

MATURITY INDICATORS

<table>
<thead>
<tr>
<th>SPORE COLOUR</th>
<th>VITRINITE REFLECTANCE %</th>
<th>GENERATION STAGES</th>
<th>CARBON PREFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GEOLOGICAL AND WELL DATA

<table>
<thead>
<tr>
<th>STRATIGRAPHY</th>
<th>Depth (ft)</th>
<th>Oil Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERTIARY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDDLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOWER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOURCE ROCK QUALITY

<table>
<thead>
<tr>
<th>TOTAL ORGANIC CARBON V%</th>
<th>VISUAL KEROGEN</th>
<th>SOURCE TYPE</th>
<th>ROCK EVAL</th>
<th>PYROLYSIS DATA</th>
<th>PRODUCTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS

TOUL ORGANIC VISUAL PYROLYSIS DATA

CARBON NUMBER

KEROGEN

ENL

ROBOTIC PRODUCTS

SCALE = 1:10,000

NOTES:

1. *Autochthonous* indicates the rock is not modified by external processes.
2. *Allochthonous* indicates the rock is modified by external processes.
3. *Probable* or *Possible* indicates the presence of organic matter.
4. *Interpreted* indicates the rock is not affected by external processes.
5. *Possible* indicates the rock is affected by external processes.
6. *Bitumen Staining* and/or *Wet Spots* indicate potential oil source rocks.
Well: Sandy River No. 1
Location: Bristol Bay, Alaska
Operator: Gulf Oil Corp.

Date Spudded: 4-9-63
Date Completed: 28-11-63
TD: 13063 ft.

Maturity Indicators

<table>
<thead>
<tr>
<th>Spore Colour</th>
<th>Vitrinite Reflectance %</th>
<th>Generation Indices %</th>
<th>Carbon Preference Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immature</td>
<td>Maturity</td>
<td>Immature</td>
<td>Maturity</td>
</tr>
<tr>
<td>1, 2, 3, 4, 5, 6, 7</td>
<td>0.2</td>
<td>0.65</td>
<td>0.8</td>
</tr>
<tr>
<td>Differential</td>
<td>Peak Oil</td>
<td>Differential</td>
<td>Total</td>
</tr>
<tr>
<td>TSE</td>
<td>SAC</td>
<td>TOC</td>
<td>Phosphor</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>

Geological and Well Data

<table>
<thead>
<tr>
<th>Stratigraphy</th>
<th>Depth Drilled ft & m</th>
<th>Graphic Log</th>
<th>Picked Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miocene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligocene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Miocene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliocene</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BP Research & Development

PET
GEOLOGICAL AND WELL DATA

<table>
<thead>
<tr>
<th>STRATIGRAPHY</th>
<th>Depth Drilled</th>
<th>Graphic Log</th>
<th>Picked Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERTIARY</td>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDDLE MIOCENE</td>
<td>4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIGOCENE</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPPER MIOCENE TO PLIOCENE</td>
<td>6000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOURCE ROCK QUALITY

- **TOTAL ORGANIC CARBON %**
- **KEROGEN**
- **PYROLYSIS DATA**
 - **OIL**
 - **GAS**
 - **OIL/GAS** RATIO
 - **MAX. YIELD kg/t**
 - **GAS YIELD kg/t**
 - **ROCK EVAL**

COMMENTS

BP RESEARCH CENTRE, SUNBURY. OPERATIONAL SERVICES GROUP.

PETROLEUM GEOCHEMICAL LOG

SCALE = 1 : 10,000
2. Source Rock potential Ratings for PGC and RockEval (P2 only) Yield:
- < 0.5% = Insig.
- 0.5% - 1.5% = Poor
- 1.5% - 5% = Moderate
- 5% - 15% = Good
- < 15% = Very Good.

3. Sample with Oil yields of > 1.5 kg/tonne or Rock Eval Pyrolysis (Rock-py) with Oil yields of 1.5% - 3.5% are indicated to possess sufficient oil to consider commercial exploitation.

4. Samples with TOC values of > 1.5% in the source rock are considered very good.