Analytical results of K-Ar geochronology studies on biotite concentrates from the following two NPRA core tuff samples:

U.S. Navy Umiat Test No. 1 (510.5'), and U.S. Navy Umiat Test No. 11 (488').

TO:

Dr. John Reeder, ADGGS

Geological Materials Center, Fish Hatchery Road

PO Box 772116

Eagle River, Alaska 99577

FROM:

Steve Bergman PRC D3136

Arco Oil and Gas Co. 2300 Plano Pkwy.

Plano, TX 75075, 214-754-6264 (fax 754-3691)_{Div. of Geological Survey}

RECEIVED

NOV 2 8 1939

Eagle River

DATE:

19 November 1989

SUBJECT: NPRA core X-ray and K-Ar data

It was good to visit with you last week. First, please accept my sincere apologies for not getting these results to you sooner. This memo provides a summary of analytical results of x-ray diffraction and 40Ar/39Ar geochronology studies on tuff beds from several NPRA cores from the Simpson, North Simpson, Fish Creek, and Umiat wells. Enclosed please find x-ray diffraction spectra on the <2 micron fraction of 10 samples of the bentonitic tuffs. The spectra are for air dried (designated NARSA...) and ethylene glycol solvated (designated NARSG...) samples and were generated with a SINTAG PAD V X-ray diffractometer (Mike Kelton, analyst) with the following operating conditions: 45 kV, 40 mA, Cu Ka radiation, solid state crystal detector, 1 degree/min=scan rate, 0.03 degree=step size. The sample names give the well name (eg. SIMP), core number (eg. 27), and depth or depth range (eg. 167).

Also enclosed are K-Ar analytical results (Tom Bills, analyst) on biotite concentrates from two tuff samples (Umiat-#1-510.5' and Umiat-#11-488'). These two samples were the only two for which we were able to separate enough sufficiently pure and unaltered biotite for conventional K-Ar work.

I thank you for your cooperation in permitting these analyses and we look forward to future cooperative endeavors.

Sincerely Yours,

Steven C. Bergman Principal Research Geologist

Sample #UMIAT-1/510.5, biotite tuff. Sample Description & Locality:

Material Analyzed: Biotite concentrate, -80/+200 mesh.

AGE = 92.9 +/- 3.5

Argon Analyses:

⁴⁰ *Ar, ppm	⁴⁰ *Ar/Total ⁴⁰ Ar	Ave. ⁴⁰ *Ar, ppm
.03930	.689	.03985
.04040	. 660	

Potassium Analyses:

% K	Ave. % K	⁴⁰ K, ppm
6.010	6.032	⁴⁰ K, ppm 7 . 196
6.053		

$$\lambda_{\beta} = 4.962 \times 10^{-10} / \text{year}$$

 40 K/K = 1.193 × 10 $^{-4}$ g/g

Note: 40*Ar refers to radiogenic 40Ar. M.Y. refers to millions of years.

Sample #UMIAT-11/488, biotite tuff core. Sample Description & Locality:

Material Analyzed: Biotite concentrate, -200 mesh.

40
*Ar/ 40 K = $^{.006103}$ AGE = 102 +/- 4 M.Y.

Argon Analyses:

⁴⁰ *Ar, ppm	⁴⁰ *Ar/Total ⁴⁰ Ar	Ave. ⁴⁰ *Ar, ppm
.03524	•500	.03507
.03490	. 599	

Potassium Analyses:

% K	Ave. % K	⁴⁰ K, ppm 5 • 747
% K 4.816	Ave. % K 4.817	5.747
4.818	·	- , ,

Constants Used:
$$\lambda_{\beta} = 4.962 \times 10^{-10}/\text{year}$$

$$(\lambda_{e} + \lambda_{e}') = 0.581 \times 10^{-10}/\text{year}$$

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{e} + \lambda_{e}')} \text{ In } \left[\frac{\lambda_{\beta} + (\lambda_{e} + \lambda_{e}')}{(\lambda_{e} + \lambda_{e}')} \times \frac{40^{\circ} \text{Ar}}{40 \text{ K}} + 1 \right]$$

$$(\lambda_{e} + \lambda_{e}') = 0.581 \times 10^{-10}/\text{year}$$

$$40 \text{ K/K} = 1.193 \times 10^{-4} \text{ g/g}$$

Note: 40 *Ar refers to radiogenic 40 Ar. M.Y. refers to millions of years.