Apatite fission track data from the Paul G. Benedum Nulato Unit No. 1 well.

Received 8 September 1993

Total of 10 pages in report

Alaska Geologic Materials Center Data Report No. 219

Apatite fission track data from Nulato Unit #1 well, western Alaska John M. Murphy August 1993

The following fission track data sheets summarize apatite fission track age and track length data from the Nulato Unit #1 well in tabular format. The study was part of a Ph.D. Dissertation on the thermal history of the Yukon-Koyukuk Basin and Borderlands. Samples were composited over ~500' intervals from washed ditch cuttings and consited of up to 20 teaspoons, one each 30 feet, until sufficient material was obtained (generally 0.5-1.0 kg). Apatite grains were separated using conventional grinding and mineral extraction techniques. Yields were poor to very poor and the data by itself is of marginal quality. Finished slides, residual materials and unprocessed samples (odd numbers) are stored at the Geologic Materials Center- Eagle River, Alaska.

To reveal spontaneous fission tracks apatite grains were mounted in epoxy resin on glass slides, ground and polished to expose internal surfaces, then etched in 5N Nitric acid for 18-20 seconds. To detect induced fission fragments escaping apatite grains during irradiation Uranium-free muscovite external detectors were attatched to each grain-mount. After irradiation the mica detectors were etched for 18-25 minutes in concentrated hydrofluoric acid to reveal induced fission tracks. Neutron irradiations, performed at the Australian Atomic Energy Commissions HIFAR reactor, were subsidized by a grant to the La Trobe University Fission Track Research Group.

Using facilities of the Fission Track Research Group, La Trobe University, Australia fission tracks were counted and measured at 1250x in transmitted light using a dry 80x objective. Ages were determined using the zeta-calibrated external detector method and appropriately modified fission track age equation (e.g. Hurford and Green, 1982, 1983). Errors, reported as 1-sigma, were calculated using the techniques of Green (1981). Fully-etched and horizontal confined fission tracks were measured using a projection tube and calibrated digitizing pad. Track length data is given in Table 1 (errors are 2-sigma).

The program 'Mactrack', developed by the Melbourne fission track community, was used for age calculations and formatting of the data sheets below. The following page explains categories given on individual age data sheets.

Sample Status

Number	Depth (m)	Status
NU1	76	Unprocessed
NU2	381	Apatite fission track age and length data
NU3	686	Unprocessed
NU4	991	Apatite fission track age data only
NU5	1295	Unprocessed
NU6	1600	No apatite in sample, thus no age or length data
NU7	1905	Unprocessed
NU8	2210	Apatite fission track age and length data
NU9	2515	Unprocessed
NU10	2819	Apatite fission track age data only
NU11	3124	Unprocessed
NU12	3429	Apatite fission track age and length data

Selected References

Green, P.F., 1981, A new look at statistics in fission track dating. Nuclear Tracks, v. 5, p. 77-86.

Hurford, A.J. and Green, P.F., 1982, A users' guide to fission track dating: Earth and Planetary Sci. Letters, v. 59, p. 343-354.

Hurford, A.J. and Green, P.F., 1983, The zeta age calibration of fission-track dating: Chemical Geology (Isotope Geoscience Section), v. 1, p. 285-317.

13

Sample Number MINERAL DATED ELEVATION (depth ft./m)- AREA La Trobe University I.D. NUMBER; All samples analyzed by John M. Murphy (JM)

No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
No. Ns Na RAT U(pp RHO RHO F.T.A	m) s	v(a)	- Num - Num - Num - Ratio - Uran - Spon - Indus	ber of spontar ber of counting of Ns/Ni ium concentr taneous track	neous tracks neous tracks ng areas, wh ation in the density ity (ends of	counted on min counted on min ose area is give mineral grain; tracks escaping	ea detector surf n below; used ppm- parts per	to determine U(ppm)
*	519	1627	7	<u></u>	37.7	1.102E+06	5 3.453E+06	<u>, </u>
Area	(U CF P(c C(V/ V/)ppm, R HI SQU. ((N Chi squa DRREL. ARIAN(ARIAN(CHOs an ARED = Galbrait (EAN A red) = ATION CE OF S CE OF S	d RHOi and F statistical ten h, 1981). >59 GE is reporte less than 5% COEFFICIEN QR(Ns) = 2 QR(Ni) = 8	RHOD st to deterim % is a PAS d because th means non-p T = 0.926 .234059	S, < 5% is a F here were less the poissanian distr Linear regress Currently unu Currently unu	ain ages form AIL; PASS* han 5 grains ibution so ME. sion of single g sed statistic sed statistic	a single population means AN AGE is reported train ages
			0.319 ± ATIO =	0.016 0.356 ± 0.0	29	of sum of Ns, population Ratio used in	Ni (i.e. 519/10 calculating MI	OLED AGE. Mean 527). For single EAN AGE. Average ins. For mixed
	_			$\frac{66.6 \pm 4.0}{74.2 \pm 6.4}$		induced (N _{i)}) <u>Underlined if</u> Calulated usin	rack counts in PASS 1g N _S /N _i ratios	aneous (N _{S)} and the ratio Ns/Ni. s of individual <u>Underlined if FAIL</u>

Ages calculated using a zeta of 350 ± 10 for SRM612 glass (see Appendix A) RHO D = (tracks/cm2); ND = number of tracks counted on mica detector adjacent to dosimetry glass NBS-SRM612; used in determining RHO D.

* Mean age reported due to low (U)ppm, <5; or low numbers of grains, <5.

IRRADIATION LU160-10; COUNTED BY: JM

No.	Ns	Ni Na R		RATIO	U(ppm)	RHOs	RHOs RHOi			
1	9	46	10	0.196	25,6	9.990E+05	5.106E+06	88.7± 32.4		
2	1	5	25	0.200	1.1	4.440E+04	2.220E+05	90.6± 99.3		
3	Õ	1	6	0.000	0.9	0.000E+00	1.850E+05	0.0 ± 0.0		
4	9	56	12	0.161	26.0	8.325E+05	5.180E+06	72.9 ± 26.3		
5	1	12	4	0.083	16.7	2.775E+05	3.330E+06	37.9± 39.5		
6	2	5	10	0.400	2.8	2.220E+05	5.550E+05	180.0±150.7		
7	15	65	15	0.231	24.2	1.110E+06	4.810E+06	104.5 ± 30.1		
8	0	3	9	0.000	1.9	0.000E+00	3.700E+05	0.0± 0.0		
9	3	31	10	0.097	17.3	3.330E+05	3.441E+06	44.0± 26.6		
10	2	17	14	0.118	6.8	1.586E+05	1.348E+06	53.5 ± 40.0		
11	0	0	16	0.000	0.0	0.000E+00	0.000E+00	0.0 ± 0.0		
12	40	259	16	0.154	90.3	2.775E+06	1.797E+07	70.1 ± 12.1		
13	13	45	12	0.289	20.9	1.202E+06	4.162E+06	130.5± 41.3		
*	95	545			19.1	6.632E+05	3.805E+06			

Area of basic unit = 9.009E-07 cm-2

CHI SQUARED = 7.792746 WITH 12 DEGREES OF FREEDOM; PASS P(chi squared) = 80.1 %CORRELATION COEFFICIENT = 0.979VARIANCE OF SQR(Ns) = 3.461296VARIANCE OF SQR(Ni) = 17.92451

Ns/Ni = 0.174 ± 0.019 MEAN RATIO = 0.148 ± 0.033

<u>POOLED AGE = 79.1 ± 9.1 Ma</u> MEAN AGE = 67.3 ± 15.1 Ma

Ages calculated using a zeta of 350 ± 10 for SRM612 glass RHO D = 2.608E+06cm-2; ND = 5868

NU4 APATITE -3000' TO -3500' (average -991m) NULATO WELL

IRRADIATION LU160-11; COUNTED BY: JM

No.	No. Ns Ni Na		RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
1	-	220	25	0.095	49.1	9.324E+05	9.768E+06	43.4± 10.0
2	4	39	16	0.103	13.6	2.775E+05	2.706E+06	46.6± 24.5
3	1	5	49	0.200	0.6	2.265E+04	1.133E+05	90.6± 99.3
4	0	4	49	0.000	0.5	0.000E+00	9.061E+04	0.0 ± 0.0
5	1	2	40	0.500	0.3	2.775E+04	5.550E+04	224.3±274.7
6	0	2	40	0.000	0.3	0.000E+00	5.550E+04	0.0 ± 0.0
7	2	6	64	0.333	0.5	3.469E+04	1.041E+05	150.4±122.9
8	27	92	40	0.293	12.8	7.492E+05	2.553E+06	132.6± 29.3
<u> </u>	56	370			6.4	1.924E+05	1.272E+06	

Area of basic unit = 9.009E-07 cm-2

CHI SQUARED = 17.22372 WITH 7 DEGREES OF FREEDOM; FAIL P(chi squared) = 1.6 % CORRELATION COEFFICIENT = 0.815 VARIANCE OF SQR(Ns) = 3.878117 VARIANCE OF SQR(Ni) = 24.02362

Ns/Ni = 0.151 ± 0.022 MEAN RATIO = 0.191 ± 0.062

POOLED AGE = 68.7 ± 10.1 Ma MEAN AGE = 86.4 ± 28.3 Ma

Ages calculated using a zeta of 350 ± 10 for SRM612 glass RHO D = 2.608E+06cm-2; ND = 5868

IRRADIATION LU160-13; COUNTED BY: JM

No.	No. Ns Ni Na		RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
1	1	7	5	0.143	7.8	2.220E+05	1.554E+06	64.9± 69.4
2	1	3	5	0.333	3.3	2.220E+05	6.660E+05	150.4±173.7
3	22	33	16	0.667	11,5	1.526E+06	2.289E+06	297.3± 82.4*
4	0	1	4	0.000	1.4	0.000E+00	2.775E+05	0.0± 0.0
5	0	5	16	0.000	1.7	0.000E+00	3.469E+05	0.0± 0.0
6	1	9	40	0.111	1.3	2.775E+04	2.498E+05	50.5 ± 53.3
7	6	60	8	0.100	41.8	8.325E+05	8.325E+06	45.5± 19.5
8	0	0	32	0.000	0.0	0.000E+00	0.000E+00	0.0 ± 0.0
9	0	1	9	0.000	0.6	0.000E+00	1.233E+05	0.0 ± 0.0
10	9	86	30	0.105	16.0	3.330E+05	3.182E+06	47.6± 16.7
11	6	11	9	0.545	6.8	7.400E+05	1.357E+06	244.3±124.2*
12	29	49	12	0.592	22.8	2.682E+06	4.532E+06	264.6± 62.5*
13	2	35	16	0.057	12.2	1.388E+05	2.428E+06	26.0± 18.9
14	0	0	8	0.000	0.0	0.000E+00	0.000E+00	0.0 ± 0.0
15	3	10	25	0.300	2.2	1.332E+05	4.440E+05	135.5± 89.3
	80	310			7.4	3.779E+05	1.464E+06	

Area of basic unit = 9.009E-07 cm-2

CHI SQUARED = 48.83725 WITH 14 DEGREES OF FREEDOM; FAIL P(chi squared) = 0.0 % CORRELATION COEFFICIENT = 0.564 VARIANCE OF SQR(Ns) = 2.943743 VARIANCE OF SQR(Ni) = 8.373639

Ns/Ni = 0.258 ± 0.032 MEAN RATIO = 0.197 ± 0.061

POOLED AGE = 116.7 ± 15.1 Ma MEAN AGE = 89.2 ± 27.6 Ma

Ages calculated using a zeta of 350 ± 10 for SRM612 glass RHO D = 2.608E+06cm-2; ND = 5868

*- Anomalous single-grain age reported here, but not in recalculated age NU8R (next page). The stratigraphic age of the deposit is Cretaceous and because paleotemperatures exceeded 225°C (from VR) after that time these fission track ages are impossibly old.

No.	Ns	Ni	Na		RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1	1	7	,	5	0.143	3 7.8	2.220E+05	1.554E+06	64.9± 69.4
2	1	3		5	0.333	3.3	2.220E+05	6.660E+05	150.4±173.7
3	0	1		4	0.000) 1.4	0.000E+00	2.775E+05	0.0 ± 0.0
4	0	5	š	16	0.000) 1.7	0.000E+00	3.469E+05	0.0± 0.0
5	1	9)	40	0.111	l 1.3	2.775E+04	2.498E+05	50.5± 53.3
б	6	ϵ	60	8	0.100) 41.8	8.325E+05	8.325E+06	45.5± 19.5
7	0	C)	32	0.000	0.0	0.000E+00	0.000E+00	0.0 ± 0.0
8	0	1		9	0.000) 0.6	0.000E+00	1.233E+05	0.0 ± 0.0
9	9	8	6	30	0.105	5 16.0	3.330E+05	3.182E+06	47.6± 16.7
10	2	3	5	16	0.057	7 12.2	1.388E+05	2.428E+06	26.0± 18.9
11	0	C)	8	0.000	0.0	0.000E+00	0.000E+00	0.0 ± 0.0
12	3	1	.0	25	0.300) 2.2	1.332E+05	4.440E+05	135.5± 89.3
	23	2	217			6.1	1.289E+05	1.217E+06	

NU8R APATITE	-7000' TO -7500'	(average -2210m) N	NULATO WELL (Recaculated from NU8)	
--------------	------------------	--------------------	---------------	-----------------------	--

Area of basic unit = 9.009E-07 cm-2

CHI SQUARED = 5.416492 WITH 11 DEGREES OF FREEDOM; PASS P(chi squared) = 90.9 % CORRELATION COEFFICIENT = 0.959 VARIANCE OF SQR(Ns) = 1.072261 VARIANCE OF SQR(Ni) = 8.953177

Ns/Ni = 0.106 ± 0.023 MEAN RATIO = 0.096 ± 0.033

<u>POOLED AGE = 48.2 ± 10.7 Ma</u> MEAN AGE = 43.6 ± 15.3 Ma

Ages calculated using a zeta of 350 ± 10 for SRM612 glass RHO D = 2.608E+06cm-2; ND = 5868

NU10 APATITE 9000-9500' (average -2819m) NULATO WELL

IRRADIATION LU107-1; COUNTED BY: JM

No.	Ns	Ni	Na	RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)
1	1 2 17 16		0.118	6.6	1.388E+05	1.179E+06	48.0± 35.9	
	2	17	·····		6.6	1.388E+05	1.179E+06	

Area of basic unit = 9.009E-07 cm-2

CHI SQUARED = 0 WITH 0 DEGREES OF FREEDOM; PASS P(chi squared) = 100.0 % CORRELATION COEFFICIENT = 0.000VARIANCE OF SQR(Ns) = 0VARIANCE OF SQR(Ni) = 0

Ns/Ni = 0.118 ± 0.088 MEAN RATIO = 0.118 ± 0.000

<u>POOLED AGE = 48.0 ± 35.9 Ma</u> MEAN AGE = 48.0 ± 1.5 Ma

Ages calculated using a zeta of 350 ± 10 for SRM612 glass RHO D = 2.338E+06cm-2; ND = 8424

NU12 APATITE 11,000-11,500' (average -3429m) NULATO WELL

IRRADIATION LU107-2; COUNTED BY: JM

No.	Ns Ni Na		RATIO	U(ppm)	RHOs	RHOi	F.T.AGE(Ma)	
1	17	58	40	0.293	9.0	4.718E+05	1.610E+06	118.8± 33.0
2	0	1	40	0.000	0.2	0.000E+00	2.775E+04	0.0 ± 0.0
3	12	72	12	0.167	37.3	1.110E+06	6.660E+06	67.8 ± 21.3
4	0	0	10	0.000	0.0	0.000E+00	0.000E+00	0.0± 0.0
5	0	2	24	0.000	0.5	0.000E+00	9.250E+04	0.0 ± 0.0
6	1	5	50	0.200	0.6	2.220E+04	1.110E+05	81.3 ± 89.1
7	0	3	16	0.000	1.2	0.000E+00	2.081E+05	0.0 ± 0.0
8	1	3	20	0.333	0.9	5.550E+04	1.665E+05	135.0±155.9
9	1	13	25	0.077	3.2	4.440E+04	5.772E+05	31.4± 32.6
10	0	0	9	0.000	0.0	0.000E+00	0.000E+00	0.0± 0.0
11	1	11	9	0.091	7.6	1.233E+05	1.357E+06	37.1 ± 38.8
12	7	25	9	0.280	17.3	8.633E+05	3.083E+06	113.6± 48.7
13	8	52	60	0.154	5.4	1.480E+05	9.620E+05	62.6 ± 23.9
14	0	3	21	0.000	0.9	0.000E+00	1.586E+05	0.0 ± 0.0
15	1	7	25	0.143	1.7	4.440E+04	3.108E+05	58.2 ± 62.2
16	Ō	4	12	0.000	2.1	0.000E+00	3.700E+05	0.0± 0.0
	49	259			4.2	1.424E+05	7.526E+05	

Area of basic unit = 9.009E-07 cm-2

CHI SQUARED = 7.972058 WITH 15 DEGREES OF FREEDOM; PASS P(chi squared) = 92.5 % CORRELATION COEFFICIENT = 0.936 VARIANCE OF SQR(Ns) = 1.907443 VARIANCE OF SQR(Ni) = 6.963639

 $Ns/Ni = 0.189 \pm 0.029$ MEAN RATIO = 0.109 ± 0.030

POOLED AGE = 76.9 ± 12.2 Ma MEAN AGE = 44.3 ± 12.2 Ma; low uramium

Ages calculated using a zeta of 350 ± 10 for SRM612 glass RHO D = 2.338E+06cm-2; ND = 8424

Table I. V	Confined trac	c lengui		samples	ITOILINU	ato Beneu	uni wen.								
Sample #	No. Tracks			Track	Length	Class	Interval	(microns)					Mean Track	Error of	S.D. of Mear
	Total	(6 - 7)	(7 - 8)	(8 - 9)	(9 - 10)	(10 - 11)	(11 - 12)	(12 - 13)	(13 - 14)	(14 - 15)	(15 - 16)	(16 - 17)	Length (microns)	Measurement	(2-Sigma)
NU2	17	1	0	0	0	1	0	2	3	1	7	2	14.12	na	2.62
N4	0														
N8	5	0	1	0	0	1	1	1	0	1	0	0	9.92	0.93	3.72
NU10	0														
NU12	4	0	0	0	0	0	1	0	1	1	0	1	13.16	0.91	1.82