Visual kerogen analysis and maceral vitrinite reflectance data from cuttings (2,910' - 13,500') and from core (12,399') of the Union Oil Company of California Trail Ridge Unit No. 1 well.



Received 8 May 1995

Total of 17 pages in report

1

## Alaska Geologic Materials Center Data Report No. 244

#### VISUAL KEROGEN ANALYSIS SUMMARY

Fourteen whole rock samples were analyzed with kerogen microscopy. The samples contain a mixture of sandstone and coaly material, except for samples 95R1015 and 1016, which contain no organic material at all. The mean reflectance ranges between 0.30 to 0.46%, indicating a very low thermal maturity. However, the indicated maturity is probably too low due to vitrinite suppression because all of the coals are dominated by lipid-rich vitrinite such as desmocollinite and they contain a significant amount of resinite and sporinite. Most of the measured reflectance values are on telocollinite but a few of the lower values are believed to be on desmocollinite. Good examples of suberinite were noted in several samples and cell structure in corpohuminite is very well displayed in two samples. The Visual Kerogen Analysis tables provide the details.

## VISUAL KEROGEN ANALYSIS TECHNIQUES

Visual kerogen analysis employs a Zeiss Universal microscope system equipped with halogen, xenon, and tungsten light sources or a Jena Lumar microscope equipped with halogen and mercury light sources. Vitrinite reflectance and kerogen typing are performed on a polished epoxy plug of unfloated kerogen concentrate using reflected light from the halogen source. In certain situations, the whole rock is used for analysis. This approach is used for coals, where acid treatment is unnecessary ,in studies of solid bitumen and graptolites where preservation of rock structure is important, and in samples too small for acid treatment. The digital indicator is calibrated using a glass standard with a reflectance of 1.02% in oil. This calibration is linearly accurate for reflectance values ranging from peat ( $R_0 0.20\%$ ) through anthracite ( $R_0 4.0\%$ ).

Reflectance values are recorded only on good quality vitrinite, including obvious contamination and recycled material. The relative abundance of normal, altered, lipidrich, oxidized, and coked vitrinite is recorded. When good quality, normal vitrinite is absent, notations are made indicating how the maturity is affected by weathering, oxidation, bitumen saturation, or coking. When normal vitrinite is absent or sparse, other macerals may be substituted. Solid bitumen, for example is present in many samples. Although solid bitumen has a different reflectance than vitrinite, Landis and Castaño's calibration chart can be used to obtain an estimated vitrinite reflectance equivalent. Graptolites have a slightly higher reflectance than vitrinite and can often be used to obtain maturity data in Paleozoic rocks that have no vitrinite.

Unstructured lipid kerogen changes in texture and color during the maturation process. Typically, unstructured kerogen at low maturity is reddish brown and amorphous. Somewhere between  $R_0$  0.50 to 0.65%, the kerogen takes on a massive texture and is gray in color. At higher maturity, generally above  $R_0$  1.30%, unstructured kerogen is light gray and micrinized.

Kerogen typing and maturity assessments from the polished plug are enhanced by utilizing fluorescence from blue light excitation. The xenon or mercury lamp is used with an excitation filter at 495 nm coupled with a barrier filter of 520 nm. With the Jena microscope we also have the option of observing fluorescence under ultraviolet excitation. The intensity of fluorescence in the epoxy mounting medium (background fluorescence) correlates well with the onset of oil generation and destruction. The identification of structured and unstructured liptinite is also enhanced with the use of fluorescence in those samples having a maturity less than  $R_0$  1.3%. The relative abundance and type of pyrite is also recorded.

TAI is performed using tungsten or halogen light source that is transmitted through a glass slide made from the unfloated kerogen concentrate. Ideally, TAI color is based on sporinite of terrestrial origin. When sporinite is absent, TAI is estimated from the unstructured lipid material. Weathering, bitumen admixed with the unstructured material and micrinization can darken the kerogen and raise the TAI value. The character of the organic matter in transmitted light is correlated with observations made in reflected light for kerogen typing. Kerogen typing and maturity assessments from the slide preparation are also reinforced by using different light sources. The slide is first observed in transmitted light to obtain TAI color and organic matter structure or type. The light is then switched to reflected halogen light to observe structure and amount of pyrite and finally to reflected blue light excitation from the xenon or mercury source for fluorescence. The fluorescence of structured and unstructured liptinite is not masked by the epoxy fluorescence as it is in the reflected light mode because the mounting medium is nonfluorescent. Remnant lipid structures (e.g. sporinite and alginite) within the unstructured kerogen can often be identified in blue light.

Maturity calculations are made from the vitrinite reflectance histograms. Decisions as to which reflectance measurements indicate the maturity of the sample are based not only on the histogram but on all of the kerogen descriptive elements as well. Because it is not done at the time of measurement, alternate maturity calculations can be made if kerogen data and geological information dictate.

In summary, vitrinite reflectance measurements are performed on a polished plug in reflected light, TAI is performed on a slide in transmitted light, and kerogen typing is estimated from both preparations using a combination of reflected, transmitted, and fluorescent light techniques. Fluorescence in blue light is used to enhance the identification of structured and unstructured lipid material, solid bitumens, and drilling mud contaminants. Fluorescence also correlates with the maturity and state of preservation of the sample. Maturity calculations from measured reflectance data are made from the histograms and are influenced by all of the kerogen data.

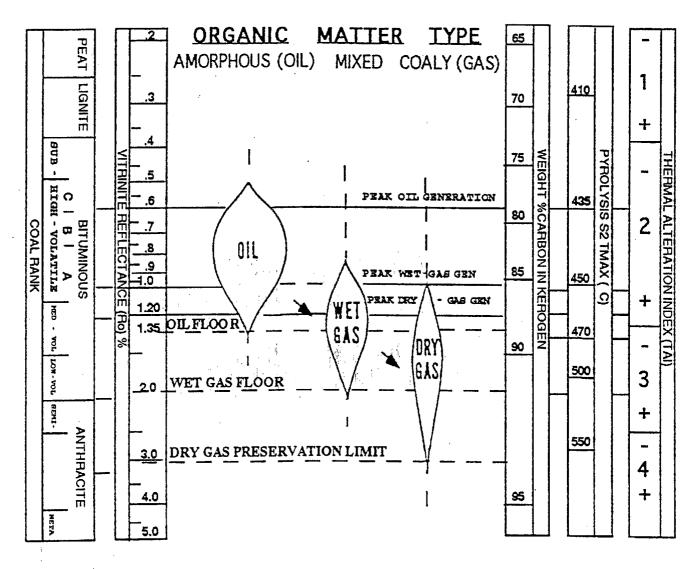
### VISUAL KEROGEN ANALYSIS GLOSSARY

Several key definitions are included in this glossary in order to make our reports more self-explanatory. In our reports, we refer to organic substances as macerals. Macerals are akin to minerals in rock in that they are organic constituents that have microscopically recognizable characteristics. However, macerals vary widely in their chemical and physical properties and they are not crystalline.

1. UNSTRUCTURED KEROGEN is sometimes called structureless organic matter (SOM) or bituminite. It is widely held that unstructured kerogen represents the bacterial breakdown of lipid material. It also includes fecal pellets, minute particles of algae, organic gels, and may contain a humic component. As described on the first page of this section, unstructured lipid kerogen changes character during maturation. The three principal stages are amorphous, massive, and micrinized. Amorphous kerogen is simply without any structure. Massive kerogen has taken on a cohesive structure, as the result of polymerization during the process of oil generation. At high maturity, unstructured kerogen becomes micrinized. Micrinite is characterized optically by an aggregation of very small (less than one micron) round bodies that make up the kerogen.

- 2. STRUCTURED LIPID KEROGEN consists of a group of macerals which have a recognized structure, and can be related to the original living tissue from which they were derived. There are many different types, and the types can be group follows:
  - a. Alginite, derived from algae. It is sometimes very useful to distinguish the different algal types, for botryococcus and pediastrum are associated with lacustrine and non-marine source rocks, while algae such as tasmanites, gloecapsomorpha, and nostocopsis are typically marine. Acritarchs and dinoflaggelates are marine organisms which are also included in the algal category.
  - b. Cutinite, derived from plant cuticles, the remains of leaves.
  - c. Resinite, (including fluorinite) derived from plant resins, balsams, latexes, and waxes.
  - d. Sporinite, derived from spores and pollen from a wide variety of land plants.
  - e. Suberinite is derived from the corky tissue of land plants.
  - f. Liptodetrinite is that structured lipid material that is too small to be specifically identified. Usually, it is derived from alginite or sporinite.

The algae are an important part of many oil source rocks, both marine and lacustrine. Alginite has a very high hydrogen index in Rock-Eval pyrolysis. Resins, cuticles, and suberinite contribute to the waxy, non-marine oils that are found in Africa and the Far East. At vitrinite reflectance levels above  $R_0$  1.2 - 1.4%, structured lipid kerogen changes structure and it becomes very difficult to distinguish them from vitrinite.


- 3. SOLID BITUMEN also is called migrabitumen and solid hydrocarbon. In 1992, the International Committee for Coal and Organic Petrology (ICCP) decided to include solid bitumen in the Exsudatinite group. Solid bitumens are expelled hydrocarbon products which have particular morphology, reflectance and fluorescence properties which make it possible to identify them. They represent two classes of substances: one which is present at or near the place where it was generated, and second is a substance which is present in a reservoir rock and may have migrated a great distance from its point of origin. The solid bitumens have been given names, such as gilsonite, impsonite, grahamite, etc., but they represent generated heavy hydrocarbons which remain in place in the source rock or have migrated into a reservoir and mature along with the rock. Consequently, it is possible to use the reflectance of solid bitumens for maturation determinations when vitrinite is not present.
- 4. HUMIC TISSUE is organic material derived from the woody tissue of land plants. The most important of this group are vitrinite and inertinite:
  - a. Vitrinite is derived from woody tissue which has been subjected to a minimum amount of oxidation. Normally it is by far the most abundant maceral in humic coals and because the rate of change of vitrinite reflectance is at a more even pace than it is for other macerals, it offers the best means of

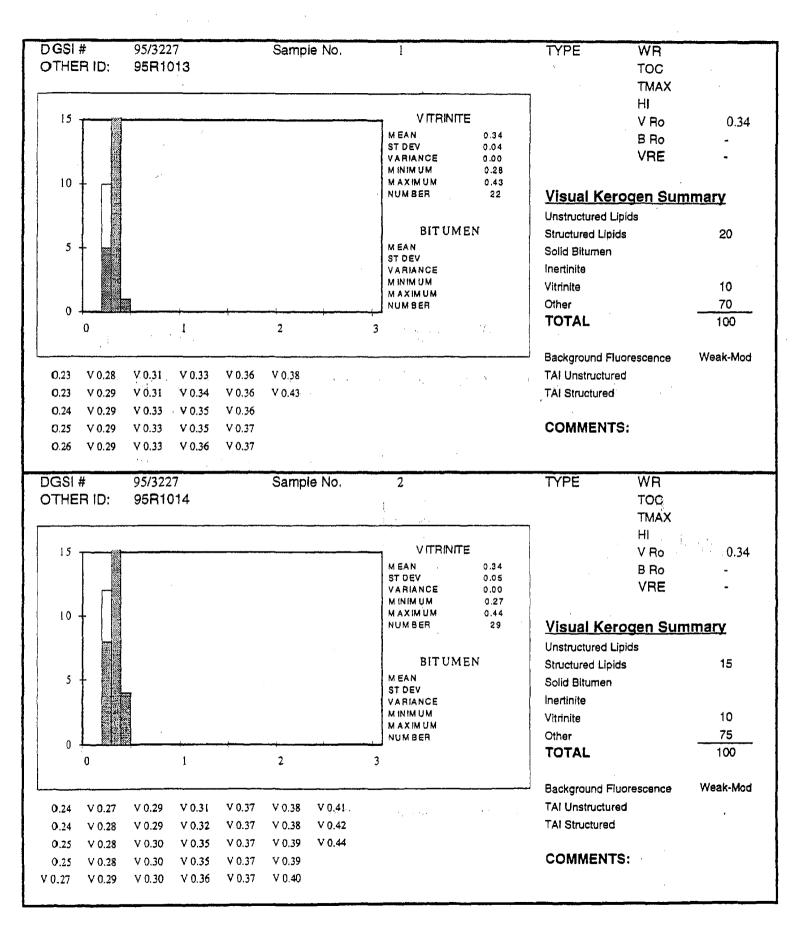
obtaining thermal maturity data in coals and other types of sedimentary rocks.

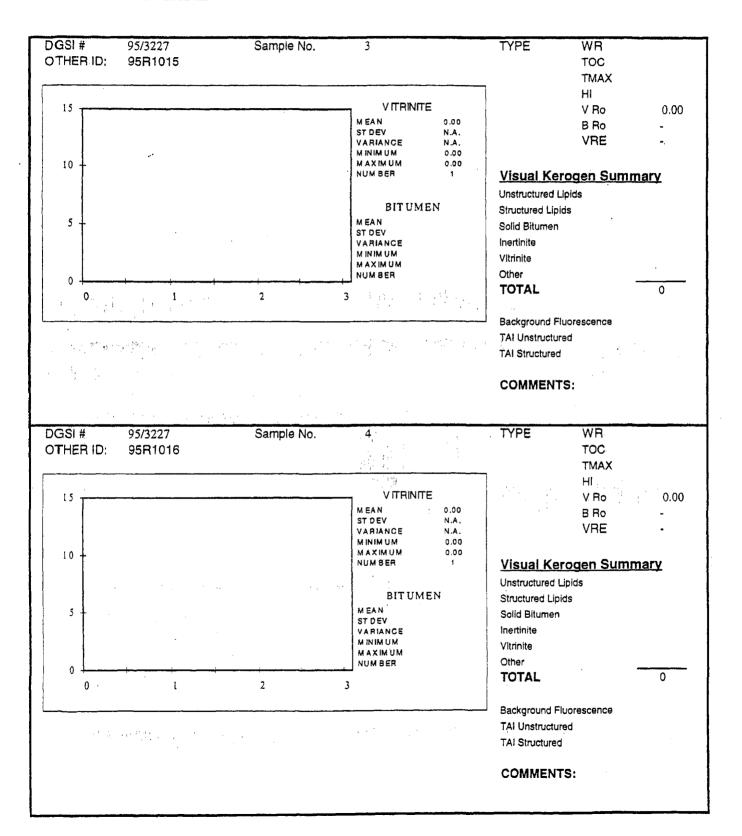
Because the measurement of vitrinite is so important, care is taken to distinguish normal (fresh, unaltered) vitrinite from other kinds of vitrinite. Rough vitrinite does not take a good polish and therefore may not yield good data. Oxidized vitrinite may have a reflectance higher or lower than fresh vitrinite; this is a problem often encountered in outcrop samples. Lipid-rich vitrinite, or saprovitrinite, has a lower reflectance than normal vitrinite and will produce an abnormally low thermal maturity value. Coked vitrinite is vitrinite that has structures found in vitrinite heated in a coke oven. Naturally coked vitrinite is the product of very rapid heating, such as that found adjacent to intrusions. Where it is possible to do so, vitrinite derived from an uphole portion of a well will be identified as caved vitrinite. Recycled vitrinite is the vitrinite of higher maturity which clearly can be separated from the indigenous first-cycle vitrinite population. Often, the recycled vitrinite merges in with the inert group.

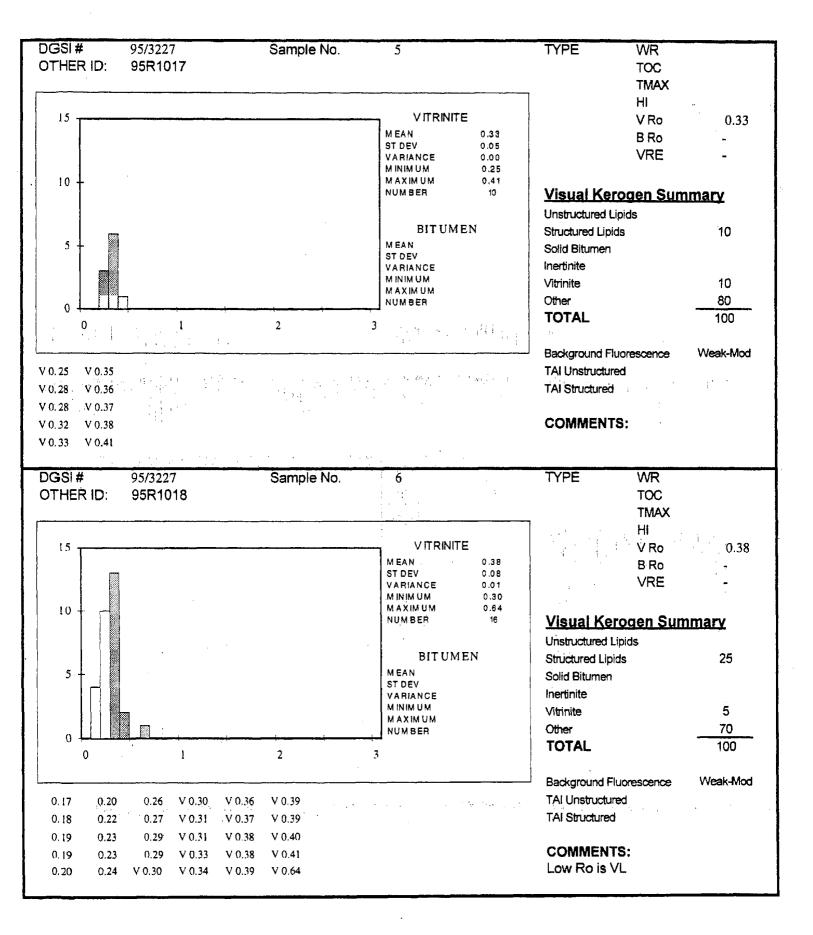
- b. Inertinite is made up of woody tissue that has been matured by a different pathway. Early intense oxidation, usually involving charring, fungal attack or biochemical gelification, creates the much more highly reflecting fusinite and semi-fusinite. Sometimes the division between vitrinite and fusinite is transitional. Sclerotinite, fungal remains having a distinct morphology, are considered to be inert. An important consideration is that the inerts, as the name implies, are largely non-reactive "dead carbon" and they have an extremely low hydrogen index in Rock-Eval pyrolysis.
- 5. OTHER ORGANIC MATERIAL
  - a. Lipid-rich, caved and recycled vitrinite. These are put in this section so we can show the percentages of these macerals; they are described above.
  - b. Exsudatinite. Oil and oily exudates fall in this group. Exsudatinite differs from the solid bitumens on the basis of mobility and solubility. We prefer to maintain this distinction although the ICCP has now included the solid bitumens in with the Exsudatinite group.
  - c. Graptolites are marine organisms that range from the Cambrian to the lower Mississippian; it has been found that they have a reflectance slightly higher than vitrinite. Because vitrinite is lacking in early Paleozoic rocks, the proper identification and measurement of graptolites is important in these sediments.
- 6. PYRITE. Various forms of pyrite can be readily identified under the microscope. Euhedral is pyrite with a definite crystalline habit. Framboidal is pyrite in the form of grape-like clusters which are made up of euhedral to subhedral crystals. Framboidal pyrite is normally found in sediments with a marine influence; for example, coals with a marine shale roof rock usually contain framboidal pyrite. Massive pyrite is pyrite with no particular external form. Often this is pyrite that forms rather late in the pore spaces of the sediment. Replacement/infilling is selfexplanatory.

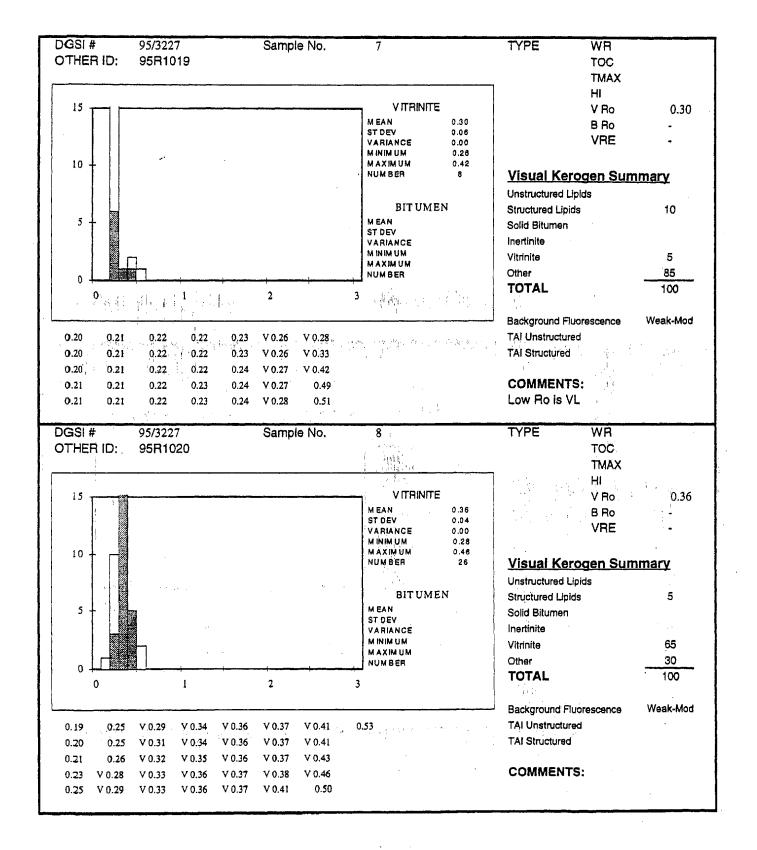
# ZONES OF PETROLEUM GENERATION AND DESTRUCTION

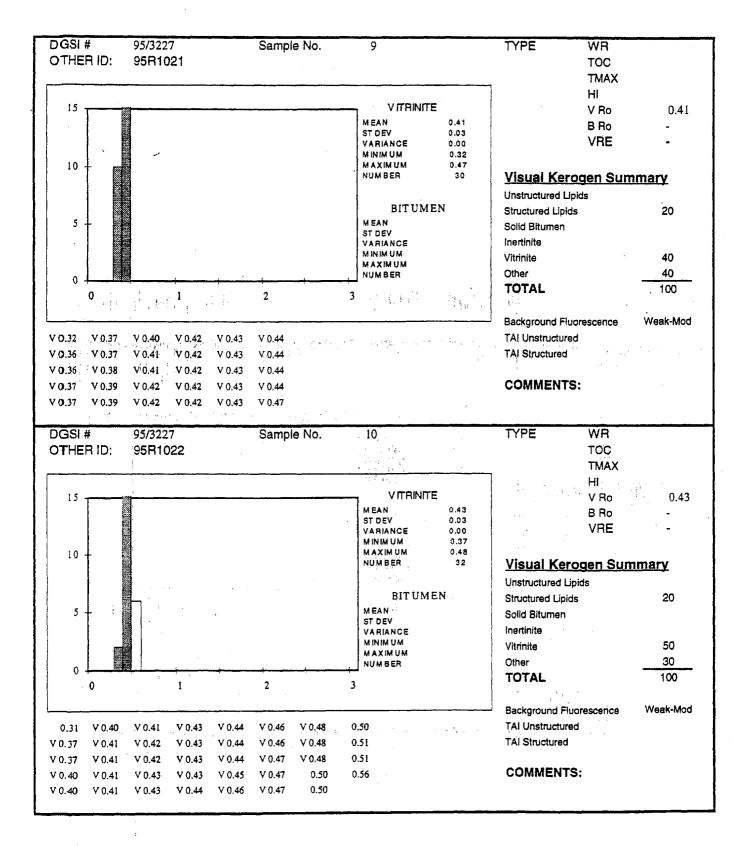


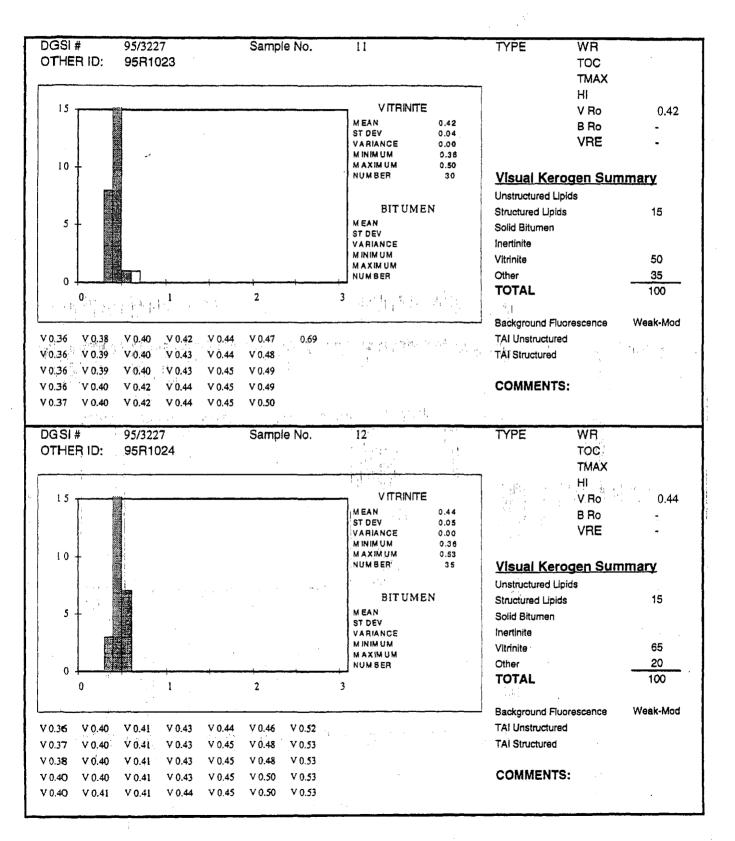

CORRELATION OF VARIOUS MATURATION INDICES AND ZONES OF PETROLEUM GENERATION AND DESTRUCTION.


6/17

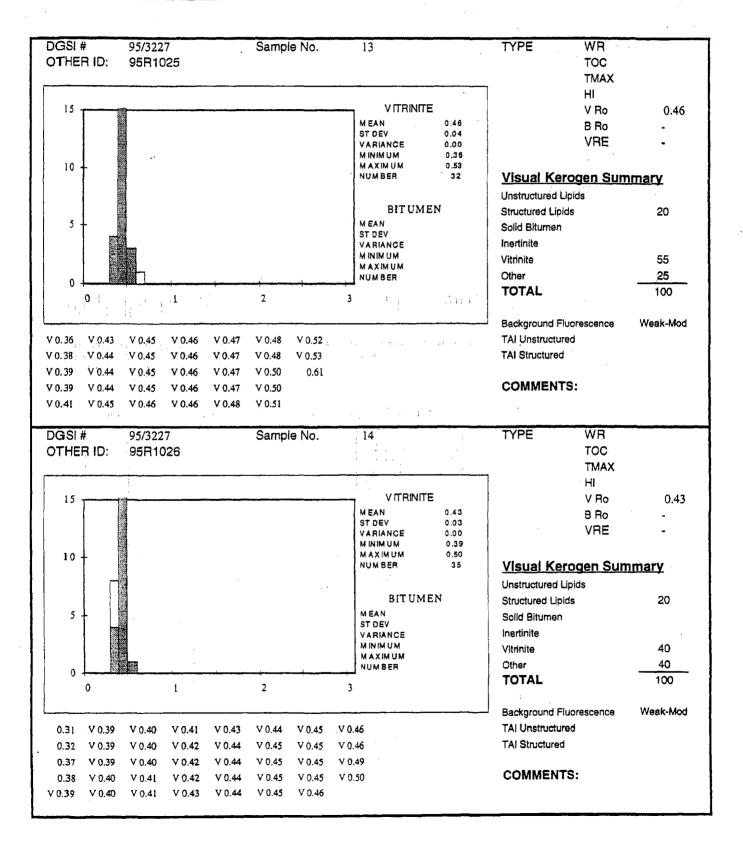

|             |             | A           |                  |               |                  |               |              |                 |            |           |                   |                         |               | 95                           | R1(         | )13         | - 10        | 026             | j        |                                        |            |          |               |         |           |                                                                                                                |                   |               |       |        |                |              |                                            |                 |                                                 |
|-------------|-------------|-------------|------------------|---------------|------------------|---------------|--------------|-----------------|------------|-----------|-------------------|-------------------------|---------------|------------------------------|-------------|-------------|-------------|-----------------|----------|----------------------------------------|------------|----------|---------------|---------|-----------|----------------------------------------------------------------------------------------------------------------|-------------------|---------------|-------|--------|----------------|--------------|--------------------------------------------|-----------------|-------------------------------------------------|
|             |             |             |                  |               |                  |               |              |                 |            |           |                   | C                       | DGS           | I P                          | RO.         | JE(         | CT:         | 95/             | 322      | 27                                     |            |          |               |         |           |                                                                                                                |                   |               |       |        |                |              |                                            |                 |                                                 |
|             |             |             |                  |               |                  |               |              |                 |            |           |                   |                         |               | 2 - 1 - 1 - 1<br>- 1 - 1 - 1 |             |             |             |                 |          |                                        |            |          |               |         |           | the second s | the second second | _             | _     | _      |                | /TA          |                                            |                 |                                                 |
|             |             |             | ORGANIC MAT      |               |                  |               |              | TTE             | _          | - 110     | T                 |                         |               | REL                          |             | -           | ABU         |                 |          | _                                      | _          | REFI     |               | _       | )         |                                                                                                                | _                 |               | MIT   |        | 0              | Ro           |                                            |                 |                                                 |
| DOOT        |             | •           | TING             |               | CTURE            | LIPI          |              | 97101           | UCIUR      | orn       | <u> </u>          | HUMIC OTH               |               |                              |             | ł           |             |                 |          |                                        | RUN        |          |               | UNS     |           | 1DS<br>STRI                                                                                                    | _                 |               |       | LIP    |                | PIDS<br>STRU |                                            |                 | [                                               |
|             | DGSI        |             | 0143             | ,             | TIORE            |               |              |                 |            |           |                   |                         |               |                              |             |             |             |                 |          |                                        |            |          |               | 01.5    |           | 5110                                                                                                           |                   |               |       | FLU    |                | TAI          |                                            | OR.             |                                                 |
|             | DATE:       |             | (X) Q            |               |                  |               |              |                 |            |           |                   |                         |               |                              |             |             |             | MATTER          |          |                                        | -          |          |               |         |           |                                                                                                                |                   | NTENSITY      |       |        |                |              |                                            |                 | FANCE<br>alent                                  |
| DOBI NUMBER |             | SAMPLE TYPE | UNDIFFERENTIATED | (%) SNOHANOWY | MASSIVE (%)      | MICRNIZED (%) | TYPE / (%)   | TYPE/(%)        | TYPE / (%) | TYPE/ (%) | (%) NEMUTIR GLIOS | INERTINITE (%)          | VITRINATE (%) | TYPE / CK)                   | TYPE ( (%)  | PYRUTE TYPE | PYRITE      | TOTAL ORGANIC M | NORMAL   | ROUGH                                  | LIPID-RUCH | oxidized | COKED         | COLOR   | INTENSITY | coloR                                                                                                          | INTENSITY         | CKGROUND I NT | VALUE | COLOR  | INTENSITY      | VALUE        | COLOR                                      | INTENSITY       | VITRINITE REFLECTANCE<br>Maturity of Equivalent |
|             | ID OR DEPTH |             | 3                | 3             | 1 ×              | ž             | 14           |                 |            | 1         | 12                | ž                       | 5             |                              | 1.2         | <u>ء</u>    | 3           | 2               | £        | 8                                      |            | ŏ_       | 8             | 8       | ++        |                                                                                                                | Ĩ                 | BĂ            | *     | 8      | ž              | ×            | 8                                          | ž               | 5                                               |
| _           | 95R1013     | WR          |                  |               | coal a           |               | 5            | R<br>10         |            |           | 1 rod             | <u> </u>                | 10            | VL<br>70                     |             | MA          | -           | +               | ++       |                                        | itris      | -100     |               |         |           | 0<br>Y                                                                                                         | 1-<br>3           | 1 2           |       | -41-11 |                |              |                                            |                 | 0.34                                            |
| 느           | omments:    |             | icies            | 010           | iour a           | <u>mu</u> 3   | k            | R               | C          | I         | deu.              | <u></u>                 |               | VL                           |             | I           | The states  |                 | 14-1     |                                        | 111 67     | liie u   |               | luces   |           | o [                                                                                                            | 1-                | 1             | or ci | lini   | <u>e no</u>    | lea.         |                                            |                 |                                                 |
| 2           | 95R1014     | WR.         |                  |               |                  |               | 4            | 8               | 1 1        | <u> </u>  |                   | r                       | 10            |                              |             | MA          | T           | +               | ++       | -                                      |            |          |               |         |           | r                                                                                                              | 3                 | 2             |       |        |                |              |                                            |                 | 0.34                                            |
| C           | omments:    | Simi        | ilar t           | o pr          | eviou            | is sa         | mple         | e               |            |           |                   |                         |               |                              |             |             |             |                 |          |                                        |            |          |               |         |           |                                                                                                                |                   |               |       |        |                |              |                                            |                 |                                                 |
| 2           | 95R1015     | WR          |                  |               |                  |               |              |                 |            |           |                   |                         |               |                              |             |             |             |                 |          |                                        | Ŀ.         |          |               |         |           |                                                                                                                |                   |               |       |        |                |              |                                            |                 |                                                 |
|             |             |             | ren o            | of or         | ganic            | c ma          | tter.        | L               | L          | L         | J                 | <b>I</b>                |               | I                            | -I          | <u>ka</u>   | 1           | لا              | L        | <b>اا</b>                              |            | 1        | إنسا          | L4      | L         | ł                                                                                                              | 1                 |               |       |        |                | L            | l                                          | L]              |                                                 |
| Ī           |             | Π           | Π                | ľ.            | 1                |               |              | Γ               | Γ          | Γ         | T                 | Γ                       | T.            | Γ                            | T           | Γ           | Γ           |                 |          |                                        |            | T        |               |         | $\square$ | T                                                                                                              |                   | ٦             |       |        |                | $\square$    |                                            |                 |                                                 |
| _           | 95R1016     | WR          |                  | L             |                  |               |              | L               | <u> </u>   | 1         |                   | L                       | L             | L                            | <u> </u>    | МА          |             |                 |          |                                        |            |          | إيسا          |         |           |                                                                                                                |                   |               |       |        |                |              |                                            |                 |                                                 |
| <u>_</u>    | comments:   | <u>As a</u> | <u>ibove</u>     | <u>;</u>      | <del>7</del> 7   |               | <u>Б</u>     | s               | C          | 1         | <u></u>           | <del>.</del>            | <del></del>   | Tur                          | <del></del> | <u> </u>    | <del></del> | <del>7</del> 1  | i        | ا ــــــــــــــــــــــــــــــــــــ |            | T        |               | <b></b> | <u> </u>  |                                                                                                                |                   |               |       |        |                | <u> </u>     | r                                          |                 |                                                 |
| 5           | 95R1017     | WR          |                  |               |                  |               | ľ,           | 3               | ľ,         | 1.        |                   | ŀ                       | 10            | VL<br>80                     |             | MA<br>F     |             |                 | ++       | .                                      |            |          |               |         |           |                                                                                                                |                   | 2             |       |        |                |              |                                            |                 | 0.33                                            |
| -           | comments:   |             | ·                | ·             | ·                |               | ىتىكە<br>مەر |                 |            | 1         | -l                | .E                      |               | 1                            |             | K           |             | ·               |          | ·                                      |            |          | LB            |         | t-        |                                                                                                                |                   |               |       |        |                | نے۔<br>      | نــــــا<br>ــــــــــــــــــــــــــــــ |                 | 0.00                                            |
|             |             |             |                  | SAMI          |                  |               |              |                 | TURI       | ED        | Γ                 |                         | THER          |                              |             | P           | YRITI       | E               | AB       | UND.                                   |            |          | UOR           |         |           |                                                                                                                | EFLE              |               |       |        | noi            |              | •                                          | CO              |                                                 |
|             | ANALYST     | -           |                  | YPE/          | PREP             | <u></u>       |              | LIP             | -          | _         | -                 |                         | VIC M         |                              | 'ER         | Ē           | Euhed       |                 |          | None                                   |            | -        | TENS.<br>Nono | -       | _         | DUIV.<br>Bitume                                                                                                | ALE               | VCE           |       |        | OLO<br>White   | _            | _                                          | LUE             |                                                 |
|             | X Castano   | ļ           |                  |               | tings<br>w. Core |               | 1            | Algini<br>Suber |            |           | 1                 | Grapi                   |               |                              |             | 1           | Frank       |                 | 1        | None<br>Trace                          |            |          | None<br>Weak  |         |           | Bitume<br>Grapto                                                                                               |                   |               | 1     |        | White<br>Green | - 1          |                                            | Straw<br>Pale Y |                                                 |
|             | O'Connor    |             |                  |               | WallCo           |               |              | Cutin           |            |           |                   | -                       | i-Rich V      | Vitrini                      | to          |             | Massi       |                 |          | Small /                                | Amt.       | 1        | Moder         | nto     |           | -                                                                                                              | Rich Vi           | trinite       |       |        | L'ellow        |              |                                            | Yellow          |                                                 |
|             |             | 1           | ос               | Outo          | crop             |               |              | •               | detrini    | ite       |                   |                         | niteCor       |                              |             | RI          | Repla       | co-             | м        | Med. A                                 | Amt.       | 3        | Strong        |         | VC V      | /itrini                                                                                                        | te Cont           | am.           |       | 0      | Orang          | .            | 2- `                                       | Yellow          | -Orango                                         |
|             |             | 1           | м                | Min           |                  |               |              | Undif           |            |           | VR                | Recy                    | cled Vi       | trinite                      | , *         |             | ألعا        | <b>a</b>        | 1        | Largo                                  |            | 4        | Intense       | •       | VR P      | lecycle                                                                                                        | ed Vitr           | inite         |       | RI     |                |              |                                            | Golden          |                                                 |
|             | MICROSCOPE  | : '         | Q                | Quan          | •                |               | •            | Sport           |            |           |                   |                         |               |                              |             |             |             | ļ               | ++       | Abund                                  | lant       |          |               |         | l i       |                                                                                                                |                   |               |       |        | Brown          | 1            |                                            | Amber           |                                                 |
|             | MICROSCOL   | •           | NI               | N9 1          | Inform.          |               | 1            | Resin<br>Other  |            |           | -                 |                         |               |                              |             | L           |             |                 | <b>I</b> |                                        |            | <b>I</b> |               |         | i         | -                                                                                                              | _                 |               |       | BL 1   | Black          |              |                                            |                 | h Brown<br>n Brown                              |
|             | X Jena      |             | к                | Ker           | ogen             | ł             | ľ            | ••••            |            |           |                   |                         |               |                              |             |             |             |                 |          |                                        |            |          |               |         |           | Dark F                                                                                                         |                   |               |       |        |                |              |                                            |                 |                                                 |
|             | Zeiss       |             | WR               | Whe           | olo Roci         | k             | 1            |                 |            |           |                   | VISUAL KEROGEN ANALYSIS |               |                              |             |             |             |                 |          |                                        |            |          | LI            | 1       |           | -Black                                                                                                         |                   |               |       |        |                |              |                                            |                 |                                                 |
| i           |             |             | с                | Coal          |                  | 1             |              |                 |            |           |                   |                         |               |                              |             | 7           | 「otal       | Qu              | ality    | Geo                                    | ochi       | emis     | atry          |         |           |                                                                                                                |                   |               |       | DI     | Dark           |              | 4 3                                        | Black           |                                                 |
|             |             |             | h.d.             | Not P         | Doterm.          |               | 1            |                 |            |           |                   |                         |               |                              |             |             |             |                 |          |                                        |            |          |               |         |           |                                                                                                                |                   |               | -     |        |                | - 1          | 4+ 1                                       | Black-          | Opaque 🚺                                        |


|             |                 | A                 |                      |                         |                         |                |             |                         |                     |           |               |                |               | 95         | R1       | 013         | - 1                  | 026           | 3      |                        |                                          |         |                           |           |              |                             |                                |              |          |             |                          |       |                     |                              |                                                 |
|-------------|-----------------|-------------------|----------------------|-------------------------|-------------------------|----------------|-------------|-------------------------|---------------------|-----------|---------------|----------------|---------------|------------|----------|-------------|----------------------|---------------|--------|------------------------|------------------------------------------|---------|---------------------------|-----------|--------------|-----------------------------|--------------------------------|--------------|----------|-------------|--------------------------|-------|---------------------|------------------------------|-------------------------------------------------|
|             |                 | {                 |                      |                         |                         |                |             |                         |                     |           |               |                |               |            |          |             | •                    |               |        |                        |                                          |         |                           |           |              |                             |                                |              |          |             |                          |       |                     |                              |                                                 |
|             |                 |                   |                      |                         |                         |                |             |                         |                     |           |               | 0              | GS            | SI P       | RO       | JEC         | CT:                  | 95            | /32    | 27                     |                                          |         |                           |           |              |                             |                                |              |          |             |                          |       |                     |                              |                                                 |
|             |                 | 1.4.484<br>1.1.1  |                      |                         |                         |                |             |                         |                     |           |               |                |               | <u></u>    |          |             | 1                    | 11.<br>Navana |        |                        |                                          |         |                           |           |              |                             |                                |              | ES       |             |                          | /TA   |                     |                              |                                                 |
|             |                 | ]                 | · · ·                |                         |                         |                |             | GA                      | NIC                 | MA        | TTE           |                |               | от         | TIPP     |             | REI                  |               | _      | AB                     |                                          | _       | CE                        | _         |              | LEC                         | _                              | D            | <b> </b> | TR/         | all states of            | MIT   | -                   | )                            | Ro                                              |
|             | DGSI            | بر از<br>مرتبع وا | TIN                  | STRU                    | čni                     | LIP            |             | SIDI                    | ICTU                | ED        |               | HO             | MIC           | 101        | HER      |             |                      | •             | -      |                        |                                          |         |                           | UN        | UII<br>STR.  | STR                         | _                              |              | ┣-,      | NSTR        | _                        | IDS   | TRU.                |                              |                                                 |
|             | DG91            |                   | 0/1                  | SIRU                    |                         |                |             |                         |                     |           |               | ŀ              |               |            |          |             | 4.                   |               |        |                        | 2                                        |         |                           |           |              |                             |                                |              |          | FLU         |                          | TAI   |                     | OR.                          |                                                 |
| R           | DATE:           |                   | TED (%)              |                         |                         |                |             |                         |                     |           | (%)           |                |               |            |          |             |                      | MATTER        |        |                        | 14 14 14 14 14 14 14 14 14 14 14 14 14 1 |         |                           |           |              |                             |                                | NTENSITY     |          |             |                          |       |                     |                              | REFLECTANCE<br>or Equivation(                   |
| DOSI NUMBER | 3/14/95         | SAMPLETY          | UNDIFFERENTIATED (%) | AMORPHOUS (%)           | MASSIVE (X)             | MICRUNIZED (%) | TYPE / (%)  | TYPE / (%)              | TYPE / (%)          | TYPE/ (%) | SOLID BITUMEN | INERTINITE (%) | VITRINITE (%) | TYPE / (%) | TYPE/(%) | PYRITE TYPE | PYRUTE               | TOTAL ORGANIC | NORMAL | Rough                  | LPID-RICH                                | oxdized | COKED                     | COLOR     | INTENSITY    | COLOR                       | INTENSITY                      | BACKGROUND I | VALUE    | COLOR       | INTENSITY                | AALUE | COLOR               | INTENSITY                    | VITRINITE REFLECTANCE<br>Maturity of Equivalent |
| 6           | 95R1018         | WR                |                      |                         |                         |                | R<br>10     | S<br>5                  | U<br>8              | C<br>2    |               | r              | . 5           | VL<br>70   |          | МА          | r                    | м             | +      | -                      |                                          |         | 1 1 8 4<br>1 8 4<br>1 8 4 |           |              | о<br>Ү                      | 1-<br>4                        | 1            |          |             |                          |       |                     | _                            | 0.38                                            |
| C           | omments:        | Iner              | 15- I                | <u>Ro 0.</u>            | 649                     | 6+. L          | <u>]= L</u> |                         |                     | 18-       | 0,22)         | bar            | ds o          |            | low      | bron        | <u>n-fl</u>          | uor.          | Flu    | or sti                 | onge                                     | er th   | an V                      | <u>L.</u> |              |                             |                                |              | _        | ~ <b>-</b>  |                          |       |                     | _                            |                                                 |
|             | 95R1019         | ₩R                |                      | ŀ                       |                         |                | R<br>5      | S<br>3                  | U<br>2              |           |               | r              | -<br>         | VL<br>85   | ;        | МЛ          | T                    | М             | +      | -                      | +                                        | 1.2     |                           |           |              | 0<br>Y                      | 1-<br>4                        | 1<br>2       |          |             |                          |       |                     |                              | 0.30                                            |
|             | omments:        | Iner              | 15- I                | <u>Ro 0.</u>            | 519                     | <u>%+. [</u>   |             |                         |                     | <u></u>   | 1             | T              | <del>.</del>  | Tur        | 1        | 1           | <u></u>              | 1             | 1      | T                      | P==                                      |         |                           |           | <del></del>  |                             |                                |              |          |             | r                        |       |                     |                              |                                                 |
| 8           | 95R1020         | WR                |                      |                         |                         |                | SB<br>T     | S<br>2                  | R<br>3              |           |               | <u>r</u>       | 65            | 1          | E<br>T   | МЛ          | T                    | ++            | +      | -                      | M.                                       |         |                           |           |              | GY<br>Y                     | 1-<br>3                        | · 2          |          |             |                          |       |                     |                              | 0.36                                            |
|             | Comments:       | VL                | des                  | moc                     | ollli                   | nite .         |             | ¥                       |                     |           | <u>Y.</u>     | <del>1</del>   |               | 1          |          | 1           |                      |               | 1      | <del></del>            |                                          | <u></u> |                           |           |              |                             |                                |              |          |             |                          |       |                     |                              |                                                 |
| 9           | 95R1021         | WR                |                      |                         |                         |                | 5B<br>1     | S<br>6                  | 10                  |           |               | F              | 40            | VL<br>0 40 |          | ИЛ          | T                    | +             | +      | -                      | +                                        |         | ې<br>بې د د د ا           |           |              | GY<br>Y                     | 1-<br>4                        | 1-<br>2      |          |             |                          |       |                     |                              | 0.41                                            |
|             | Comments:       | As a              | <u>ibov</u>          | ve. H                   | ligh                    | er Ro          |             | -                       | 1                   | T         | mple          | <u>s.</u>      |               | 1          |          |             | <del></del>          |               | T      | <del></del>            | <del> -</del>                            |         |                           |           |              |                             |                                |              |          |             |                          |       |                     |                              |                                                 |
| 10          | 95R1022         | WR                |                      |                         |                         |                | 5B<br>1     | S<br>6                  | J                   | LD<br>3   |               | r              | 50            | U<br>30    |          | МА          | T                    | +             | +      | -                      | +                                        |         |                           |           |              | GY<br>Y                     | 1-<br>4                        | 1-<br>2      |          |             |                          |       |                     |                              | 0.43                                            |
| _           | Comments:       | Iner              |                      |                         |                         | lar to         |             | _                       |                     |           | 1             | -              |               |            |          | 1 5         |                      |               | 1      | TININ                  |                                          |         |                           |           | <b>1</b>     |                             |                                |              | _        |             |                          |       |                     | _                            |                                                 |
|             | ANALYST         |                   |                      | SAM<br>ГҮРЕ             |                         |                | 51          | RUC<br>LIP              | TURI<br>IDS         | ED        | OF            |                | THE<br>VIC I  | R<br>MATI  | FER      | R.          | YRIT                 | LE            |        | BUND                   | • •                                      | 1       | UOR<br>FENS               |           |              | 'IT. R<br>QUIV              |                                |              |          |             | LUO)<br>OLO              |       |                     | COL                          |                                                 |
|             | X Castano       | •                 | сто<br>сс<br>sw      | G Curl<br>Con<br>C Side | tings<br>av. Co<br>Wall |                | SB<br>C     | Algin<br>Suber<br>Cutin | ite<br>inite<br>ite |           | G<br>VL       | Grag<br>Lipid  |               | Vitrini    |          | F<br>Ma     | Eube<br>Fran<br>Mass | nbeid<br>tive | Т<br>- | None<br>Trace<br>Small | Amt.                                     | 1<br>2  | None<br>Wesk<br>Moder     |           | B<br>G<br>VL | Bituma<br>Grapte<br>Lipid-I | r <b>a</b><br>olites<br>Rich V | itrinite     |          | W<br>G<br>Y | White<br>Green<br>Yellow |       | 1- 8<br>1 1<br>1+ 3 | Straw ]<br>Fale Ye<br>Kellow | čeilow<br>ilow                                  |
|             |                 | ÷.                | ос<br>м<br>о         | Mir                     | icrep<br>16<br>17       |                | U           | Lipto<br>Undii<br>Spori |                     | te        |               |                |               | itrinite   |          | RI          | Repl<br>in           | ace-<br>dill  | ÷      | Mod.<br>Large<br>Abun  | Amt.                                     |         | Strong<br>Intense         |           | 1            | Vitrini<br>Recyci           |                                |              |          | R           | Orang<br>Red<br>Brown    |       | 2 (                 | Yellow-<br>Golden<br>Amber   | Orange                                          |
|             | MICROSCOPE      |                   | NI                   | -                       | Infer                   | <b>m.</b>      | R           | Rentin                  | ite                 |           | -             |                |               |            |          |             |                      |               | L      |                        |                                          |         |                           |           |              |                             |                                | ·····        |          |             | Biack                    |       | 3- F                | Reddisł                      | Brown<br>Brown                                  |
|             | X_Jena<br>Zeiss |                   | K<br>WR<br>C         |                         | rogen<br>Iole R         |                |             |                         |                     |           |               |                |               |            | V        |             |                      | KE<br>al Qu   |        |                        |                                          |         |                           | IS        |              |                             |                                |              |          |             | Light<br>Dark            |       | 3+ I                | Jark B<br>Brown-             | rown                                            |
| L           |                 |                   | h.d.                 |                         |                         | m              |             | _                       |                     |           |               | _              |               |            |          |             |                      |               |        |                        |                                          |         |                           |           |              |                             |                                | _            |          |             | Larg                     |       |                     | Hack<br>Black-O              | paque                                           |


|             |                       |             |                      |               |                         |                |            |            |                |           |                                               |                | _                  | 05         | <u>D4</u> | 012         |                     | 0.26                 |          | ·         |                                        |          |               |          |           |                   |          |            |          |          |                 |       |          |                  |                                                 |
|-------------|-----------------------|-------------|----------------------|---------------|-------------------------|----------------|------------|------------|----------------|-----------|-----------------------------------------------|----------------|--------------------|------------|-----------|-------------|---------------------|----------------------|----------|-----------|----------------------------------------|----------|---------------|----------|-----------|-------------------|----------|------------|----------|----------|-----------------|-------|----------|------------------|-------------------------------------------------|
|             |                       | *           |                      |               |                         |                |            |            |                |           |                                               |                |                    | 90         | RI        | 013         | - 1                 | UZO                  | )        |           |                                        |          |               |          |           |                   |          |            |          |          |                 |       |          |                  |                                                 |
|             |                       |             |                      |               |                         |                |            |            |                |           |                                               | 0              | DGS                | SI P       | RO        | JEC         | CT:                 | 95/                  | /32      | 27        |                                        |          | ,ř            |          |           |                   |          |            |          |          |                 |       |          |                  |                                                 |
|             |                       |             |                      |               |                         | ·              |            |            |                |           |                                               |                |                    | -          |           |             |                     |                      |          |           |                                        |          | -             |          |           |                   | FLU      | JOF        | ES       | CEN      | ICE             | / T/  | N.       |                  | <u> </u>                                        |
| V           |                       |             |                      |               | •                       | · -            | <u>OF</u>  | RGA        | NIC            | M/        | ATTE                                          |                | 2.77               |            | 1<br>     |             | REI                 | ATI                  |          |           |                                        |          | CE            | ]        | REF       | LEC               | TE       | D          |          | TR       | ANS             | MI    | TE       | D                | Ro                                              |
|             |                       |             |                      |               |                         | LIP            | DS         |            |                |           |                                               | HU             | MIC                | OT         | HEF       | 2           |                     |                      | L        | VIT       | RIN                                    | ITE      | -             |          | LIP       | _                 |          | Į          |          |          | _               | PIDS  |          |                  |                                                 |
|             | DGSI                  |             | U                    | NSTRU         | CTU                     | RED            |            | STR        | UCIU           | RED       |                                               | 1              |                    |            |           |             |                     |                      | 1        |           | ] .                                    |          | ··            | UNS      | TR.       | STR               | U.       |            |          | FLU      |                 |       | FLU      | OR               |                                                 |
|             |                       |             | t                    | 1             | 1                       | T              | 1          | 1          | T              |           |                                               | 1              |                    |            |           |             |                     |                      | t i      |           |                                        |          |               |          |           |                   |          | 1          |          |          | Ť               |       |          | Ĭ                | 1.                                              |
| <b>6</b>    | DATE:                 |             | red (%)              |               |                         |                |            |            |                |           | 8                                             |                |                    |            |           |             |                     | MATTER               |          |           |                                        |          | a start.      |          |           |                   |          | TENSITY    | I        |          |                 |       |          |                  | CTANCE<br>velont                                |
| DOSI NUMBER | 3/14/95               | SAMPLE TYPE | UNDIFFERENTIATED (%) | AMORPHOUS (%) | MASSIVE (%)             | MICRUNIZED (%) | TYPE / (%) | TYPE / (%) | TYPE / (%)     | TYPE/ (%) | SOLID BITUMEN                                 | INERTINITE (%) | VITRINITE (%)      | TYPE / (%) | TYPE/ (%) | PYRUTE TYPE | . 31                | TOTAL ORGANIC MATTER | N.       | E         | LIPIO-RICH                             | GED      |               | Я        | INTENSITY | Я                 | ks⊓≺     | BACKGROUND | w.       | R        | λL19            | u.    | н        | INTENSITY        | VITRINITE REFLECTANCE<br>Maturity or Equivalent |
|             | ID OR DEPTH           | Ϊ.,         | ign                  | AMO           | MAS                     | MICH           | Ĕ          | 4XL        | 1YPE           | ١         | SOLI                                          | INER           | VTR                | ۳.         | TYPE      | BYR         | PYRITE              | TOTA                 | NORMAL   | ROUGH     | 01417                                  | OXIDIZED | COKED         | COLOR    | INTE      | COLOR             | INTENSIT | BACK       | VALUE    | COLOR    | INTENSITY       | VALUE | COLOR    | NTE:             | NTR N                                           |
|             |                       |             |                      |               |                         | -              | R          | S          | C              | LD        |                                               |                |                    | VL         | E         |             |                     |                      |          | 1         |                                        |          |               |          |           | 0                 | 1-       | 1          |          |          |                 |       |          |                  |                                                 |
| _           | 95R1023               | WR          | L                    |               |                         |                | 10         | 1          | 11             | r         | <u> </u>                                      | ¥.             | 50                 | 35         | T         | MA          | <u> </u> <u>T</u> . | +                    | 1+       | <u> </u>  | +                                      | L        | L             |          | L         | Y                 | 3        | 2          | I        | I        | L               | L     | 1        |                  | 0.42                                            |
|             | comments:             | <b>r</b>    | T                    | -             | 7                       | - <u></u>      | k          | s          | SB             | L         | <u>,                                     </u> | T              | <u> </u>           | VL         | E         | Т           | 1                   | T                    | 1        | 1         | <u> </u>                               | <b></b>  | 1.3           |          |           | 0                 | 1        | <u> </u>   | <b>—</b> | T        | T               | T     |          | r—               | <u> </u>                                        |
| 12          | 95R1024               | IV R.       |                      |               | 1                       |                | 10         |            | 1              |           |                                               | r              | 65                 |            |           | MA          | T                   | +                    | +        | -         | +                                      |          |               |          |           | Y                 | 3        | 2          |          |          |                 | 1     |          |                  | 0.44                                            |
|             | comments:             | _           | l str                | uctui         | re in                   | ı vitri        | nite       | exce       | ption          | nall      | y wel                                         | l pre          | serv               | ed.        |           |             |                     |                      |          | · · · · · |                                        |          | 7             |          |           | ·                 |          | <b>-</b>   |          |          |                 |       | 1        | Li               |                                                 |
|             |                       | Γ           | Γ                    | T             | Т                       | 1              | R          | 5          | LD             | Τ         |                                               | Т              | T                  | VL         | E         |             |                     |                      | I I      | T         |                                        |          | ·             |          |           | 0                 | 1        | 1          |          |          | 1               | Γ     |          |                  | 1                                               |
|             | 95R1025               | WR          |                      |               |                         |                | 12         | -L         | 5 2            |           |                                               | <u>r</u>       | 55                 | 25         | T         | МЛ          | T                   | +                    | +        | <u> </u>  | +                                      | ب        |               |          |           | Y                 | 4        | 2          |          |          | <u> </u>        |       |          |                  | 0.46                                            |
|             | comments:             | Sim         | ilar                 | to p          | revi                    | ous s          | ampl       |            | 1              | -<br>     |                                               | <b>T</b>       |                    |            | T         | - <u></u>   | <del></del>         |                      | -        |           |                                        |          |               | i        |           |                   |          |            |          |          |                 |       | ,        | . <u> </u>       |                                                 |
|             | 0504000               |             |                      |               |                         | -              | R.         | S          |                |           | 1                                             | <b>"</b>       | 40                 | VL<br>40   |           | MA          | T                   |                      | Ι.       |           | 1                                      |          |               |          |           | 0<br>V            | 1        |            |          |          |                 | 1     |          |                  | 0.43                                            |
| ·           | 95R1026               | WR          | _                    | <0.3          | <u> </u>                | 1              | 8          | 1 10       | 2              | 1         | 1                                             | ¥              | 40                 | 40         | 1         | 111         | 1                   | 1 +                  | 1+       | 1         | 1 +                                    | 1        | 1. <u></u>    | L        | L         | <u> </u>          |          | 1 2        | I        | L        | L               | I     | L        | L                | 0.43                                            |
|             | Comments:             | T           | I                    | <u> 1</u>     | <u>,</u><br>T           |                | 1          | Τ-         | <u> </u>       | T         | T                                             | Г              |                    | 1          | T         |             | T                   | T                    | 1        | T         | T-                                     | Ť        | T I           |          | <u> </u>  |                   |          | <u> </u>   | <b>—</b> | T        | <u> </u>        | T     | <u> </u> |                  |                                                 |
|             | 1                     |             | -                    |               |                         |                |            |            |                |           |                                               |                | ·                  |            |           | :           |                     | ·]                   |          | 1         |                                        |          | 1             |          |           |                   |          |            |          |          |                 |       |          |                  |                                                 |
| -           | Comments:             | · · · · ·   |                      |               |                         | I              |            | -          | · I            |           |                                               | •              |                    | - الم      | <u> </u>  |             |                     |                      |          | .L        | ـنــــــــــــــــــــــــــــــــــــ | <br>-    | <u> </u>      | <b></b>  |           | <b>.</b>          |          | l          |          | <b>1</b> | <b>.</b>        | ·     | L        | L                | <b>.</b>                                        |
|             |                       |             | Т                    | SAM           | IPLE                    | 6              | <b>S</b> 1 | RUG        | TUR            | ED        | T                                             | 0              | THE                | R.         |           | P           | YRIT                | ΈE                   | A        | BUNE      | ). :                                   | FI       | JUOF          | ι.       | v         | IT. R             | EFL      | ECT        |          | F        | LUO             | R.    | TA       | i CO             | LOR                                             |
|             | ANALYST               |             |                      | TYPE          | _                       |                | 1          |            | PIDS           |           |                                               |                | NIC                |            | ER        |             |                     |                      | Ļ        |           |                                        | _        | TENS          | <u>.</u> |           | QUIV              |          | NCE        |          | -        | OLO             | _     |          | LUE              |                                                 |
|             | N. Oratana            |             |                      | G Cu          | -                       |                |            | . Algi     |                |           | E                                             |                | datinit            |            |           | E           | Enbe                |                      |          | None      |                                        | 1        | None          |          |           | Bitum             |          |            |          |          | White           |       |          |                  | Yellow                                          |
|             | X Castano<br>O'Connor |             | CC<br>SW             |               | nv. Co<br>eWall         |                |            | Cuti       | erinite        |           |                                               |                | ptolites<br>1-Rich |            |           | F           | Fran<br>Mass        |                      | ľ        | Trace     |                                        |          | Weak<br>Modes |          |           | Grapte<br>Lipid-l |          | 14-1-14    |          | •        | Green<br>Yellov |       |          | Pale X<br>Yellow |                                                 |
|             | 0.000000              |             | oc                   | -             | tcrop                   |                |            |            | nne<br>odetrin | ite       |                                               | -              | initeCo            |            |           |             | Repl                | -                    | м        | Mod       |                                        |          | Strong        |          |           | Vitrini           |          |            | •        |          | Oranj           |       |          |                  | r<br>-Orange                                    |
| l           |                       |             | M                    | М             | •                       |                |            | Und        |                |           |                                               |                | rcled V            |            |           |             | -                   | 68                   | +        | Large     |                                        | 1 °      | Intens        | · 1      |           | Recycl            |          |            |          |          | Red             | -     |          | Golder           |                                                 |
| 1           |                       |             | Q                    | Qu            | arry                    |                | s          | Spo        | inite          |           |                                               |                |                    |            |           | 1           |                     |                      | ++       | Abun      | dant                                   |          |               |          |           | -                 |          |            |          | в        | Brown           | 1     | 2+       | Amber            | r                                               |
| l           | MICROSCOPE            |             | NI                   | No            | inter                   | ш.             | R          |            |                |           |                                               |                |                    | _          |           | <u> </u>    |                     | _                    | <u> </u> |           | _                                      | L        |               |          |           |                   |          |            |          | BL       | Black           |       |          |                  | nh Brown                                        |
| [           | X long                |             |                      |               |                         |                | °          | Оњ         | er             |           |                                               |                |                    |            |           |             |                     |                      | •        |           |                                        |          |               |          |           |                   |          |            |          |          |                 |       |          |                  | m Brown                                         |
| 1           | X Jena<br>Zeiss       |             | W                    |               | rogen<br>ha <b>lo</b> R |                | 1          |            |                |           |                                               |                |                    |            | v         | ารบ         | AL                  | KE                   | RO       | GEI       |                                        | NAI      | _YS           | IS       |           |                   |          |            |          | 1.       | Light           |       | -        | Dark I<br>Brown  | Brown<br>-Black                                 |
| 1           | 20133                 |             | c                    | C •           |                         |                |            |            |                |           |                                               |                |                    |            |           |             |                     | I Qu                 |          |           |                                        |          |               |          |           |                   |          |            |          |          | Dark            |       |          | Black            |                                                 |
| 1           |                       |             | L.d.                 |               | Deter                   | rm.            |            |            |                |           |                                               |                |                    |            |           |             |                     |                      |          |           |                                        |          | -             |          |           |                   |          |            |          |          |                 |       |          |                  | Opaque                                          |












SAMPLES: 95R1013 - 1226



| STEM BOURCE      | id number<br>5.029                   | (1) BEOCHEM   | CRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ••• • •             | (2) OPERATOR                            | (Z) OPERATOR                          |               |  |  |  |  |  |  |  |  |
|------------------|--------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------|---------------------------------------|---------------|--|--|--|--|--|--|--|--|
| WELL NAME OR     | FIELD PARTY<br>rail Ridge            | 1             | يهم مناري المراجعين الممم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * * * * * * * * * * | (4) LEASE OR SI                         | EASON                                 | · · ·         |  |  |  |  |  |  |  |  |
| FIED             | 1411 11.00                           | (8) BASIN     | i internet sometime i sometime i som                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                   | (7) GEOGRAPHIC                          |                                       |               |  |  |  |  |  |  |  |  |
| DATTUDE IN DI    | EGREES                               | (9) LONGITL   | IDE IN DEGREES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | (13) COUNTY                             |                                       |               |  |  |  |  |  |  |  |  |
| O BECTION        | (11) TOWNBHIP                        | (12) RANGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | (14) STATE                              |                                       |               |  |  |  |  |  |  |  |  |
|                  |                                      |               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | (15) COUNTRY                            |                                       | · · · ·       |  |  |  |  |  |  |  |  |
| SAMPLE<br>NUMBER | (20) DEPTH OR<br>(19) OUTCROP NUMBER | (1) FORMATION | (2) GEOLOGIC AGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TYPE                | n Depositional<br>Environment           | (11) LITHOLOGY                        | (18) COMMENTS |  |  |  |  |  |  |  |  |
|                  | 2910 - 2940                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27                  |                                         |                                       |               |  |  |  |  |  |  |  |  |
| 1014             | 4440 - 4470'<br>5160 - 5190'         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
| 1016             | 8550 - 8580                          |               | and the second s       | ┥╸┼┼╌               | · · · · · · · · · · ·                   |                                       |               |  |  |  |  |  |  |  |  |
| 1017             | 8940-8970                            |               | <ol> <li>A. M. S. M.</li></ol> |                     | a ay go antar o an                      | · · · · · · · · · · · · · · · · · · · |               |  |  |  |  |  |  |  |  |
| 1018             | 9570-9600                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | ، ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰ |                                       | · ·           |  |  |  |  |  |  |  |  |
| 1019             | 9960-9990<br>11430-11460             |               | a second a second a second a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ╾╂╾┠╌╂╍             | · · · · · · · · · · · · · · · · · · ·   |                                       |               |  |  |  |  |  |  |  |  |
| 1021             | 11970-12000                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
| 1022             | 12390 -12420<br>12960 - 12990        |               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | <i>x</i>                                |                                       |               |  |  |  |  |  |  |  |  |
| 1023             | 12960 - 12990                        |               | and the second s       |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
| 1024             | 13320-13350                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
| 1026             | 12399'                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO                  |                                         |                                       | Core chips    |  |  |  |  |  |  |  |  |
|                  |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
|                  |                                      |               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
|                  |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
|                  |                                      | -1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | · · · · · · · · · · · · · · · · · · ·   |                                       |               |  |  |  |  |  |  |  |  |
|                  |                                      |               | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
|                  |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       | ·             |  |  |  |  |  |  |  |  |
|                  |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       | ·             |  |  |  |  |  |  |  |  |
|                  |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
|                  |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
|                  |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
|                  |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
| 2                |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |
| 7.1.7            |                                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                         |                                       |               |  |  |  |  |  |  |  |  |