

STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES

Alaska Geologic Materials Center Data Report No. 374

No. 374: 1968 Duval Corporation drill logs for the Orange Hill Property,
Nabesna Quadrangle, Alaska: Drill holes Duval #1 and Duval #3

- A) DUVAL No. 1 (Assay-Geology Composite Drill log, Assay Log, and Drill Log.)
- B) DUVAL No. 3 (Assay Log and Log of Drill Hole)

All data reports may be downloaded free of charge from the <u>DGGS website</u>.

PROJECT	αn	ANGE HI	т.т.	AREA	AIA	SKV		
HOLE NO.	-	VAL No.		SCALE: 1	''=50'	DATE	7/12/6	68
COORDINA	res N	91,680	E	ELEVATIO	N _3540	O' (Apr	orox)	
Rock Type		Ass	oz.	Rock Type			Assays	
0	%Cu		Ag.		400,		·	
				*	1			
		-		1.000	-		$\dashv \dashv \dashv$	
				427° Т.D.	-			
50		_			450			_
				<u></u>				
	.07	Tr	Tr					
100	•07	Tr	Tr		500			
100	•06	.01	Tr					_
	.05	.01	.15		_			
	.06	Tr	Tr		_			
	.06	.02	.17					-
130	.05	.01	Tr		550			
	.04	.02	Tr		}-			
	.04	.03	.19		-			-
	.08	Tr	Tr		-			
	 		1		F			-
200			+	*	600			-
					<u> </u>			-
			+		<u> </u>			
			1	1				
		_			650			Γ
250					- 30			
					-			
	.08	Tr	Tr					
200	.06	Tr	16		700			_
300	.10	Tr	20					
	.10	Tr-	.19					_
•	.07	Tr	.18					
	.08	.01	.15					
350	.10	Tr	•20	9	750			-
350	.11	Tr	.23		_			_
	.10	Tr	.19		_			_
	.09	Tr	.19					

PROJ	ECT		ORANCE HI	CLL			AREA AL	SKA			
HOLE	NO.	-	DUVAL No.	3			SCALE: 1"=	50'	DATE	7/21/	′ 68
COOR	TAMIC		N 95,090		E 80,190		ELEVATION				
Rock Type			***************************************	says						Angari	
ROCK Type		% C11	%MoS ₂	says		7	Rock Type	V. 100 miles		Assay	5
	٥ ر	<i>b</i> 0 <i>a</i>	701002	T	1		4	00			T
	t			1	1.						
]						
35' - 40'		.18	.008]			_			-
		.14	.017				4	50			
	L	.25	.017	 				-			┼-
		.25	.050	-	-						+
		.16	.025	 	- 1			-			-
	1-	.17	.017	 	-			-			-
	100	.16	.017	 			:	500		_	·}
	}	.14	.017	-	-		\$0	-			
	ŀ	.19	.017	-	·						1
	7	26	.017	1							1
		.19	.017		1						
	150	.24	.008	1	1			550			1
		.28	.033	1				L			
	Ì	.27	.017								<u> </u>
		.19	.008					_			
	200	.13	.008		_		•	00 -			 -
	200	.40	.025					_			
		.32	.033					_			
		.41	.058					-			-
		.31	.050					-	_		-
	250	.27	.017		-		,	550 -			+
	1	.23	•008	-	4			}			-
		.26	.017		-			-			+
	}	1.00	1		-				-		+-
		.25	017		-			}			-
	300	.27	.033	-	-	W.	7	roo-		-	+
		.24	.033	-	-{			·		 	+
•		.13	800.	-	-					_	1
		•91 •35	.100	 	-			-			+
				_	-						T
Andesite Porph	3 50	.29	.008	_	1		9 m	750			1
Dike		.02	.008	+	7 1	W.					T
3691. T.D.		•02		1	1		···				1
				1	7. 1						1

LOG OF DIAMOND DRILL HOLE DUVAL # 1 ORANGE HILL, ALASKA

Logged by Dr. Fred L. Humphrey-1969

The rocks cut by this vertical drill hole are dominantly a mixture of metavolcanics and hornfelsed fine grained sediments that were probably mostly black mudstone and greywacke. Some thin beds with high epidote were probably limy. While the pyrite content is relatively high (2-10%) there is very little chalcopyrite. Some of the pyrite could be from syngenetic pyrite in black mudstone, mobilized and recrystallized during metamorphism. There is very little metasomatic orthoclase or silicification, although this is a dominant feature in metasediments to the south and west. Pyrite decreases to generally less than 5% in lower half of hole.

Box # 2 - 50-60 Ft.

Cemented fragments of dark hornfels and andesite porphyry dike.

Box # 3 - 60-70 Ft.

Dark fine grained hornfels, probably mostly metavolcanics or meta tuffs. Many pyrite seams, mostly at angles of 45 to 70 degrees to core axis but a few are parallel to core axis. Very little diss. pyrite. Pyrite 5-10%.

Box # 6 - 89-98 Ft.

Fine grained hornfels. Some is recrystallized breccia, could be sedimentary breccia. Pyrite 5-10%, dominantly on fractures with traces of chalcopyrite. Traces of black sphalerite at 96' on vertical fracture. Traces of galena in quartz veinlet near the sphalerite.

Box # 8 - 108-115 Ft.

Fine grained hornfels but more silicious than above; probably grey-wacke. Pyrite 5-10% dominantly in fractures and veinlets.

Box # 10 - 125-133 Ft.

Dark fine grained hornfels. Probably this section is mostly metaandesite or andesitic tuff mixed with black mudstone. Pyrite 5 to 10% in fractures but very little diss. Traces of orthoclase along a few fractures. Some hematite in these fractures.

Box # 12 - 143-151 Ft.

Silicious light colored fine grained hornfels. Generally mottled light and dark. Possibly originally greywacke and mudstone. Pyrite 5%. The more silicious bands are usually low in pyrite. Traces of chalcopyrite in pyrite seams.

Box # 14 - 158-165 Ft.

Similar hornfels to above but higher pyrite, 5-10%. Dominantly in fractures and not diss. Few quartz veinlets 1/16 to 1/8 inch.

Box # 16 - 173-182 Ft.

Dark to medium grey fine and very fine grained hornfels. High pyrite in fractures, practically none diss. Fractures commonly parallel to core axis but a few at 30 to 45 degrees to axis. Traces of pink orthoclase with quartz on a few vertical fractures, and in one fracture at 45 degrees to axis.

Box # 17 - 182-192 Ft.

Dark to black very fine grained hornfels. Pyrite less than 5% contained in tight fractures at 30 to 45 degrees to core axis. No vertical fractures.

Box # 20 - 210-220 Ft.

Very fine grained, dark to black hornfels. (Intervening section same). Pyrite 1-3% in tight fractures between vertical and 45 degrees. Few thin vitreous quartz seams on vert. fractures with only traces of pyrite.

Box # 22 - 220-231 Ft.

Core much broken or brecciated. This section more silicious than above. Few quartz seams with silvery pyrite and traces of molybdenite and chalcopyrite. Pyrite mostly in fractures 1-4%. Many vertical fractures and a few at 30 degrees to axis. Traces of orthoclase in quartz veinlets.

Box # 23 - 231-241 Ft.

Massive, dark fine grained hornfels. Near middle of box, core highly fractured with thin milky quartz and gypsum veinlets containing traces of orthoclase and molybdenite.

Box # 24 and # 25 - 241-257 Ft.

241-246 is dark, fine grained hornfels. Epidote common in fractures 242-246. At 246 to 256, is diorite altered, probably a dike or sill. No quartz veinlets, pyrite low 1-4% dominantly in fractures that are vertical and 45 to 70 degrees to axis.

Box # 26 - 257-267 Ft.

Dark, fine grained hornfels. Pyrite 2-4% confined to fractures. At 265 seam of gypsum or anhydrite at 30 degrees to axis but no sulfides.

Box # 28 - 276-285 Ft.

Dark, fine grained hornfels. Scattered gypsum or anhydrite veinlets but no sulfides in them. Few fractures have traces of orthoclase and some apparently later epidote but not in the anhydrite seams. Pyrite overall low, 2-3%.

Box # 30 - 294-304 Ft.

294-298 black, dence, very fine grained hornfels. Pyrite in fractures. At 298 changes to light grey with much alteration to epidote and chlorite. Some of this latter part is brecciated as a sedimentary breccia and thus more permeable. Low pyrite in fractures and diss. overall 1-3%

Box # 31 - 304-312 Ft.

Sed. breccia stops at about 306 Ft. rock going back to dark, fine grained hornfels. Pyrite in vertical fractures, overall 2-3%. Thin alteration bands (bleaching) along pyrite fractures.

Box # 32 - 312-320 Ft.

Mostly dense, dark, fine grained hornfels with scattered spots of silicified hornfels. Strongly fractured with core loss. Pyrite low, in variable oriented fractures.

Box # 34 - 330-338 Ft.

At 329 strong silicification begins with 12 to 15 per cent of orthoclase to 336. Scattered veinlets of pyrite with traces of chalcopyrite. At 336 back into dark fine grained hornfels and grey silicic hornfels. Pyrite 3-5%.

Box #35 - 338-348 Ft.

338-340 altered hornfels with some silicification. 340-346 altered porphyritic diorite. Pyrite 3-5% on fractures.

Box # 36 - 357-366 Ft.

At 346 back into dark fine grained hornfels, but with bands containing high epidote; probably limy beds.

Box # 38 - 366-376 Ft.

Starting at 365 is conglomerate of small, rounded pebbles of dark siltstone and/or very fine grained sandstone (now meta.) Matrix very fine grained sandstone with "spots" of epidote. At 369 pass into "sandy" type hornfels with continued spots of epidote. At 372 back into dense, dark, fine grained silicic hornfels. Pyrite 2-3% on vertical fractures.

Box # 39 and on to bottom of hole - 380-427 Ft.

At 380 pass into highly altered diorite, or more probably an altered (meta) porphyritic andesite with pyrite 2-4% on fractures; then becomes at 410 Ft. shear zone of mostly dark hornfels and variable amounts of meta porphyritic rock. At 425-427 Ft. is fine grained silicic hornfels with much diss. epidote (probably was a limy fine grained sandstone). Pyrite 4 to 5% mostly in fractures.

427 Ft. bottom of hole.

Dural

ASSAY-GEOLOGY COMPOSITE DRILL LOG

FORM # 355 REVISED 10-62

REVISED 10-62					*. I	Dip of	str	uctures s	hown Sheet 1 of 8
PROJECT ORANGE HILL			100	ADING		in geo norizo	logy	HOLE Nº	re measured from
Coörd, : N 443N E 532E				ARING	ERTIC	CAL		COLLAR	
START 7.5.68 COMPL. 7	.12.6	58						DEPTH	427'
DESCRIPTION	/ §/	3 5/0	/R Cu	% Oz Au.	Aq.	%	01.	°2 % EQUIV	GROUPING — RMKS.
$0-63.4$ ' overburden $\underline{63.4}$ ' $\underline{-70.0}$ ' Hornfels - pyritized, sil.chl rock is light grey-green fg - mg py - 2% - 4% in narrow stringers - cpy - tr - associated with py. veinlets. Qtz. veins $1/8$ " to $\frac{1}{2}$ ".		10	00%						faults sulfide on fra qtz.sulfide ve
$70.0' - 80.0'$ Rx - darker green - more chi.8 mag 2 - 3% - looks like a breccia, with larger $(\frac{1}{4} - \frac{1}{2}")$ fragments being darker colored - lighter colored at 77' - increase in py. to 4% - still tr-cpy.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	00%						70'
80' - 90' K-feld. chl - 6" - then increase in sil. and mag. and py same as described above - psuedo bxwith darker fragments - $\frac{1}{4}$ - $\frac{1}{2}$ " diameter - sulfides - 1.5-3% - 0.1 cpy mag 1-2%.	1		.0	7 Tr.	Tr.				63.4' - 80' NQ Co. below 80' - BQ Co
90.0' - 100' - finer textured rx - lacking pseudo bx py. increase to 3-4% (95-97') - cpy - tr. little change in rx. except greater silicification * - gal. present and ass.with increase in cpy.% - to 0.2% and qtz. stringers. 100' - 110' Rx. similar to above - sil. hf.	1/x////x//		00%	07 Tr	Tr				100'
Flt. zn. at 105-106 pre-mineral - sulfides have not been broken Tr gal. cpy. py - 2 - 3%			.(06 .0	l Tr				110'
	<u></u>					0000	a. M	Dearborn	DATE 7.12.68.
1					L	JGGED	BYIN	DOGINOIN	_ UAIE

Sheet 2 of 8

PROJECT___ORANGE HILL

Coord.: N 443N						RING				9	E Nº	
E 532E					INC	VE	RTICA	<u>L</u>			LAR I	ELEV. 427.
START COMPL.	7	:7	3/.	$\overline{}$	%	WOZ	% 0z.	1%	02		1%	
DESCRIPTION	/ 3	<u>}</u>	3 3/	C/R	Cu	XOZ Au.	Aq.				EQUIV.	GROUPING - RMKS.
<pre>110' - 120' - increase in chl. decrease in fracturing and sulfide content - rx. is coarser textured, darker gn.</pre>				100	%							
-sulfides - 1-2% tr cpy. mag 2-3% very fine.					.05	.01	.15					120'
120' - 130' Similar to above - somewhat	\setminus		1	LOC								
finer texture.	1				.06	Tr.	Tr.					÷
T T	X											130'
130' - 140'	7	,	1	LOC	%				-			
Similar to above less frac more chl. and mag. py 1.5 - 3%.	X	g.			.06	.02	.17					
140'- 150'	Y]	100	%							140'
Similar to above	1				.05	.01	Tr.					
	\setminus											
<u>150'- 160</u> '	χ		1	00	%							150'
Increase in cpy 150-152-0.3% py 1-3%. Fn. gr. Hf mag 1-2%, low grade alteration - chl. feld.	$\langle \rangle$											
py. more fracturing and increase in sulfides near 156'	X				.04	.02	Tr.					160'
							LO	GED	BY			DATE

Sheet 3 of 8

PROJECT ORANGE HILL

PROJECT CHARGE TIBE			105	101110	-			1101 E N	
Coörd.: N 443N E 532E				ARING L.	VERT	ICAI		HOLE NO	
START COMPL.			1110	· La .	V 11.1.	LOTTE	\dashv	DEPTH	
	1 3/	3 2/6	%	₩ Oz	% OZ	%	02.	02:1%	T
DESCRIPTION	/ 3/	3 5/0	/R Cu	Au.	Ag.	<u> </u>	_	EQUIT	GROUPING - RMKS.
160' - 170'		1	00%						
Similar to above	K X								
Sulfides - 4% Cpy tr.	IXI	\vdash					-		-
1.7	XI								
	W			1	-		十		1 .
	NI								_
,	IN		0.4	00	10	1.			1701
	NI		.04	.03	.19		_		170'
<u>170'- 180'</u>	K	1	00%						
Similar to above.	M								1
each and the second sec	MI						_		
				1					
		-	-	 			\dashv		
							\neg		
			.08	Tr.	Tr.		+		180'
180' - 190'	$ \setminus $		00%						
Slight increase in cpy. 0.3-5%	M		00/0	+		 	\dashv		1
py 2-3%	ΛI								
hf chl qtz med. fn. gr.	$ \lambda $		i		/				
chl. is increasing mag 1-2%.	V			N.A.	(Not	Assaye	<u>d) </u>		4
	MI								
			1				寸		
	11								190'
1001 - 0001		Η,	00%						
<u>190' - 200'</u> Similar to above cpy - Tr2%		1	00%	 		 	+		-
Similar to above opy - 112/0									
									1
	KI						_		4
			_				十		1
	NI			N.A.					200'
0001 0101	N								
200' - 210' Similar to above	M	1	00%	ļ			+		-
	M								
Py 1 - 2% Mag 2%	M		1				\top		1
1910 9 · - 2/0	1			_			\perp		
•	KI								1
	1		+	+		 	\dashv		1
				N.A.					210'
	Wignest Control		WEDGERS DESIGNATION		LOC	GED BY_			DATE

FORM # 355 REVISED 10-62

Sheet 4 of 8

LOGGED BY_____DATE

PROJECTORANGE HILL					•				Sheet
Coord, : N 443N			BE	ARING				HOLE Nº	l.
E 532 E				CL. V	ERTI	CAL.		COLLAR	ELEV.
START COMPL.								DEPTH	427'
DESCRIPTION	/ §/	* * E	c/R Cu.	%Oz.	% Oz Ag.	%	oz.	°2 % EQUIV	GROUPING — RMKS.
210' - 220' Similar to above slightly more chl slicken side on frac. surface. sulfides - 2-3%	777		100%						
0.3 cpy. mag. 1-2%	\mathcal{Y}			N.A.					220'
220' - 230' Similar to above epidote present - occurs as small masses. tr Gal. in quartz vein			100%						
230' - 240' Similar to above - small fault	a *t.		100%						230'
238' probably post mineral.				N.A.					240'
240' - 250' Similar to above - not as well fractured.			100%						
250' 260' Similar to above.			100%	N.A.					250'
	X			N. 6					

Sheet 5 of 8

_ DATE___

LOGGED BY_____

PROJECT___ORANGE HILL Coord. : N 443 BEARING HOLE Nº COLLAR ELEV. **E** 532 INCL. 427 DEPTH COMPL. START % Oz % Oz % Oz % Oz % Oz % 02 % EQUIV. GROUPING - RMKS. DESCRIPTION 260' - 270' Similar to above. N. A. 270' 270'-280' Similar to above 280' N. A. 280'-290' More silicification sulfides - 3-4%. Tr-cpy. slightly more frac. 290' Tr. .08 Tr. 290'-300' Intersection of faultbreccia cemented with silicavery little sulfide min.present. 3001 .16 . 06 Tr. 300'-310' Hornfels-sulfide stringer 305' 2" Qtz.bearing sulfide vein best cpy in hole - + 1% over - 18". .10 Tr. .20 310'

. .

REVISED 10-62 Sheet 6 of 8 PROJECT ORANGE HILL. HOLE Nº Coord. : N 443 BEARING E 532. INCL. COLLAR ELEV. 427. DEPTH COMPL. START % % % % Oz . % Oz . % Cu. Au. Ag. 02 % EQUIV. GROUPING - RMKS. DESCRIPTION 100% 310'-320' Similar to above-hornfels - slightly silicified with stringers of sulfides py.-3-5% - Tr.-Cpy, note- one stringer associated with small pod of epidote (318'). .19 .10 Tr. 320' 320'- 330' 100% Similar to above 3301 .07 Tr. .18 100% 330'-340' Premineral fault # 15" wide - rx is sheared and crushed, more silicified and bleached out. Grades back into hornfels similar to above. 340' .08 .01 .15 100% 340'-350' - rx less fractured, increase in feldspar size $(1/16-\frac{1}{4}")$ xlls.sulfides decreasing - 1-2%-Tr-cpy. .10 Tr. .20 350' 100% 350'-360' chl. increasing-feldspar decrease sulfides- 2-4%-tr-cpy.

.23

LOGGED BY_____

.11 Tr.

3601

DATE

FORM # 355 REVISED 10-62

Sheet 7 of 8

PROJECTORANGE HILL						•					
Coord, : N 443.					RING					E Nº	
E 532.				INCL	•					LAR E	
START COMPL.	7.7	3	7	0/_	% Oz	%07	1%	02	02	TH 42	21.
DESCRIPTION	18/	3 5	C/R	Cu.	% Oz Au.	Ag.				EQUIV.	GROUPING - RMKS.
360'- 370' 361-365->sil, bleaching but no significant change in sulfide content. fault breccia - 366' - 368.5	× / N		100	%							
<u>370'-380</u> '	717		100	.10 %	Tr.	.19					370'
hornfels similar to above - sulfides 3-5% - tr.cpy. slight increase in feldspars and becoming less fractured.	1/1										
	X		1.00		Tr.	.19					380'
380'-390' Quartz veins a little wider-pyrite 5-7% - but no change in cpy (tr.) -rx is bleached a little more bedding approx. 45°.			100	% 							
*					N.	Α.					390'
390'-400' Similar to above.		-	100	%							
# K =											
,					N.	Α.					400'
400-410' Similar to above - becoming finer grained above 407 - and more chl.	X		100	%							
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										
a a					N.	A.	GGED B	Y			410'

ASSAY-GEOLOGY COMPOSITE DRILL LOG

FORM # 355 REVISED 10-62

TITE .

Sheet B_of_B_

PROJECTORANGE HILL					•				
Coord. : N 443			BEA	RING				HOLE	
E 532			INC	<u>L.</u>				COLLA	R ELEV.
START COMPL.			1	· · · · · · · · · · · · · · · · · · ·				DEPTH	
DESCRIPTION	8	3 3/01	R Cu	% Oz Au.	% Oz Ag.	%	02	°2 % EQ	OUTV. GROUPING - RMKS.
410' - 420' - fault - 2 feet - back into finer grained hornfels dark green-(chl), stringers sulfides (3-5%) Tr. cpy.		100	%						
<u>'420' - 427'</u> Similar to above	X	100	0%	N.	Α.				420'
				N.	Α.				430'
. 45									
					100	GGED E	av.		DATE

FORM # 355 REVISED 10-62

ASSAY-GEOLOGY COMPOSITE DRILL LOG

DUVAL NO. 3

OLD COOPDINATES

Sheet 1 of 7

ORANGE HILL.

ſ	Coord. : N468N					RING	RTIC	ΔΤ			E Nº	3
-	E500.4E.			J	INC	VE	K I I U	WL		DEP	LAR E	369'
	START COMPL.		7	3 . 7	1%	1%	%	1%	OZ-		M	
	DESCRIPTION	\s\\ \s\\	4	# /c/	R Cu	Mo.	,,,	"			EQUIV.	GROUPING — RMKS.
					1							
3	Overburden - 35'		-	100	76			-				
	35' - 40'				1				i			
	diorite cut by qtz -	11	L		-				ļ			— fault
lfide	stringers 1/8"- 3/8"			1					ĺ			
y<0.5	%, py. 3% - 5%, chl.3%,											sulfide on f
ot	3%, hb. 20%, ep tr.		1	1								qtz.sulfide
eld.	- 35%, qtz-stringers-15	%							<u> </u>	ļ		
. Gyp	. str 1/16".			1								
aneti	te - tr.				.18	.005						40'
J			Γ		T .							
	4 <u>0' - 50'</u>			10	00%]
z. su	4 <u>0' - 50'</u> ulfide vein (3/4") 60°di	p										
epi.	10-15% top 3 ft. associ	a ted										
th th	ne wider qtz. vein.											
	np.qtz 20-25%, pl-feld.											
%. ch	11,-hb15-20%, bio											
4%.	Syp1%, Py:5% cpy. ±0.5%	$\langle \cdot \rangle$							1			
.,,, tr	One good seam of Mc	s	-		1	1						1
·One	good seam of MoS on fl	a 2			.14	.01						50'
pping	good seam of MoS on fl qtz. vein @ 48 2. on fl		1	1		1.01					T	
	<u>50' - 60'</u>	1,1		10	0%							
flat	dipping qtz.sul.vein		ŀ		1							1
2')Ci	,Moqtz-30%-pl-feld				1							
	15% py.≤4% cpy.≤0.5%			_		1			1		1	1
	Tr.chl.2%,ep1-2%,bio			- 1								
·3%, gy	7p1%. MoS ₂ is found wi	th /	}			-	 			†	1	1
z.vei	ins $\frac{1}{4}$ " or greater in wid	th/				1						
	borders of the vein R		+		-	+	 		-	+	1.	1
			- 1		OF	01						60'
ig (3	cly solid, with recovery segments of core comm	non.		_	.25	.01	+	_	+	+	+	Ť
	60' - 70'			9	7%							
	20%, bio2%, Plfeld		1	-+-		+	+	-	-	+	1	1
-100/	gtz20-25%, epidote-3%								1			
0 70	qtz20-25%, epidote-3/ $)$ py~4%, cpy. \leq 0.5%,	2				+	+		-	+	+	┥
		//					1					
52-11	GGypsum-1%-as stringer	.5 /	-			-	+	-	-	+	-	-
cn1.	- 3%								1			
					-		-			+	+	-
		$ \psi\rangle$			OF	.03						70'
	TO 001	1			.25	.03	-		-	-	-	⊣ ′ ັ
	70-80' se in chl6-7% (?),ep			19	4%		1					
creas	se in chi6-7% (?), ep.						+		+	-	+	-
. ру	3-4%, cpy.≤ 0.5%, Mo.	cr /					1					
	tringers < 2%, bio3% .						-			-	-	-
earin	ng at bottom of interval	L•			1				1			
										-		_
		V							1			
												_ ×
					•		_				1	
					.16	.01						_Bo'
							over 10 Giller			-	1	DATE July 21st,

Sheet $\frac{2}{2}$ of $\frac{7}{2}$

PROJECT___ORANGE HILL

Coord. : N 468N				RING	D. T C	A.T.			E Nº	
E 500.4 E.			INCL	. VE	KIIC	AL.			LAR	<u>ELEV.</u> 369'
START COMPL.					Ta/	10/	02.	DEF	1%	309'
DESCRIPTION -	/ §/	JE C/R	% Cu.	% Mo.	%	%	02	02	EQUIV.	GROUPING - RMKS.
80' - 90'	1	100							1	
Qtz20 - Pl, - feld, 20, hb	1									
40 - 15, chl 2%, bio 2% py.										
∠4%, cpy. 0.5%, epi ∠3% mafic	6									
decrease towards bottom of the										
section, as do sulfides to about										
> 2% py < 0.5% cpy.	- 10									
2,0 p1. 010,0 1p1.										
			, ,	01				1		90'
			-	.01	-			-	-	90
90' - 100'		100	%			Į.				
Less qtz. veining, about same %					-			-	-	*
sulfides, possibly more cpy-0.5%	1									
maybe. Rxqtz-25%, - Pl-feld-35%	1	 		-	+	_	+	+	-	1
Hb-30%-epidote-2%-py-45%, cpy ~				1						
0.5%.	[+		+	-		1
N.B. Red mineral on surface of							ļ			
some qtz veins - all the way dow	h;				+					
the hole (possibly zeolite-			.16	.01						100'
R.E. Gale).				1.01	+		_	-		
100' - 110'		100	1 %				1			
Similar to above - potash felds-			-		†			1		1
par introduced along one qtz	1							Ì		
vein at (103') - possibly a			 		_		1			7
slight decrease in sulfides.		1	1	S.	ļ					ĺ
- decrease in qtz. veining.			 							1
										7
	Α.		.14	.01						110'
110' - 120'		959	6							
Similar to above - 113' - brecci	a									_
dike-fragments of altered grn.										
rk. included . lft. wide-										
contacts irregular -pre mineral	1. \									
fragments - grn.stone,qtz,Hf. 119'- dark grn.fn.grained rk.										_
				İ		İ				
chl., k-feld,qtz stringers-										_
sulfides ->3%,cpy. >.5%.			1		_					120'
**			The second second	.01			_		_	- 120
<u> 120' - 130'</u>		80	%							
Lost core 121' to 123'. dark gr	J L							-		-
at top of section then grading	1									
It. col. rx. with larger feldspa	ar	-	 	+	+			+	+	\dashv
xtls. qtz. stringers are narrow	er									
and more abundant than in	.`\		-	-	+	_		+	+	-
granodiorite - looks like	1/4								1	
sulfides are decreasing to ~ 3%, cpy. < 0.5% - no MoS ₂ is visible	A	-	+	-	+-		_	+-	\dashv	
chy. 0.0% - 110 MO32 15 VISIBLE			.17	.0.	1				1	130'
										DATE

Sheet 3 of 7

PROJECT_ORANGE HILL

E 500.4E. START COMPL. DESCRIPTION DESCRIPTION 130' - 140' Rx. is finer grained and more highly silicified near fault bx at 133'. qtz veins are narrower but carry 4-5% sulfides with \$\frac{2}{2}\cdots \frac{2}{2}\cdots \fr	Coord. : N 468N			BEAR						E Nº	3
DESCRIPTION DESCRIPTION 130' - 140'				INCL	. VE	RTIC	AL.				LEV.
DESCRIPTION S Cu. Mo. EQUIV GROUPING—RMKS.			¥ /	10/	0/	10/	10/	02.			309
130' - 140' 98% 98% 98%	DESCRIPTION		Z C/R	Cu.	Mo.	70	70		-		GROUPING - RMKS.
Rx. is finer grained and more highly silicified near fault bx at 133'. qtz vein sare narrower but carry 4-5% sulfides with \$\frac{\sigma}{2}\cdot 0.5% cpy Tr. of MoS_2, chl.is increasing 10%. qp2-3%, qtz730% - possible of fault zone being wider through interval. \frac{150'}{150'} - 150' Rk. is slightly coarser grained, qtz. veins are wider and more abundant, and carry both Cpy and Py> 4% cpy> 0.5%, TrMoS_Comp Hb 35%, - Plrfeld -2 35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% \frac{150'}{150'} - 160' Hb decreasing to \(\frac{1}{2}\) 20% -, Pl-feld35%, qtz25-30%, -epidote 2%, chl3%, qty> 0.5%, Py \times 4\times 4\times 6\times 6		T		Г Т			T				
highly silicified near fault bx at 133'. qtz veins are narrower but carry 4-5% sulfides with \$\frac{\sqrt{0.5\%}{0.5\%} \text{ cpy.} - \text{ Tr. of MoS}_2, \text{ chl. is increasing } 10\%. ep2-3\%, qtz. 730\% - possibite of fault zone being wider through interval. \frac{150'}{150'} - 150' Rk. is slightly coarser grained, qtz. veins are wider and more abundant, and carry both Cpy and Py>4\% \text{ cpy.} -> 0.5\%, \text{ TrMoS}_2 \text{Comp Hb 35\%, - Pl-feld -2} 35\%. \text{ Qtz20\%, Ep. \pm 1\% biotite - 1-2\%, \text{ chl 2\%} \text{Hb decreasing to \pm 20\% - pl-feld -2} 35\%, \text{ qtz25-30\%, -epidote } 2\%, \text{ chl3\%, cpy.} -> 0.5\%, \text{ Py.} -\text{ 4\%-}, \text{ Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. \frac{100'}{100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%} \text{ 100\%}			100								
at 133'. qtz veins are narrower but carry 4-5% sulfides with \$\frac{\pmu_0.5\pmu_converts}{\pmu_0.5\pmu_converts} \frac{\pmu_0.5\pmu_converts}{\pmu_0.5\pmu_converts} \frac{\pmu_0.5\pmu_converts}{\pmu_0.5\pmu_0.5\pm_0.5\pmu_converts} \frac{\pmu_0.5\pmu_0.5\pmu_converts}{\pmu_0.5		?									
but carry 4-5% sulfides with 60.5% cpy. Tr. of MoS2, chl.is increasing 10%. ep2-3%, qtz. 730% - possibing of fault zone being wider through interval. 150' - 150' Rk. is slightly coarser grained, qtz. veins are wider and more abundant, and carry both Cpy and py> 4%, cpy> 0.5%, TrMoS Comp Hb 35%, - Pl-feld - 35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% -, Pl-feld 35%, qtz25-30%, -epidote 2%, chl3%, cpy> 0.5%, Py 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%		L									
±0.5% cpy Tr. of MoS2, chl.is increasing 10%. ep 2-3%, qtz. ₹30% - possibit of fault zone being wider through interval. 180' - 150' Rk. is slightly coarser grained, qtz. veins are wider and more abundant, and carry both Cpy and Py> 4%, cpy> 0.5%, TrMoS Comp Hb 35%, - Pl-feld -² 35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% -,Pl-feld35%, qtz25-30%, -epidote 2%, chl3%, cpy> 0.5%, Py											
increasing 10%. ep 2-3%, qtz. > 30% - possibity of fault zone being wider through interval. 150' - 150' Rk. is slightly coarser grained, qtz. veins are wider and more abundant, and carry both Cpy and Py>4%, cpy> 0.5%, TrMoS Comp Hb 35%, - Pl-feld -2 35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% -, Pl- feld35%, qtz25-30%, -epidote 2%, chl3%, cpy> 0.5%, Py 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med. to fn.gr. quartz diorite cpy. > 0.5%		-						ļ		-	
of fault zone being wider through interval. 150' - 150' Rk. is slightly coarser grained, qtz. veins are wider and more abundant, and carry both Cpy and Py > 4% cpy > 0.5%, TrMoS Comp Hb 35%, - Pl-feld - 25%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% - pl-feld35%, qtz25-30%, -epidote 2%, chl3%, cpy > 0.5%, Py ~ 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%	increasing 10%.										
through interval. 180' - 150' 100% Rk. is slightly coarser grained, qtz. veins are wider and more abundant, and carry both Cpy and py> 4%, cpy> 0.5%, TrMoS Comp Hb 35%, - Pl-feld - 235%. Qtz20%, Ep. + 1% biotite - 1-2%, chl 2% 150' - 160' 100% 150' - 160' 100% 150' - 160' 100% 150' - 160' 100% 150' - 160' 100% 150' - 160' 100% 150' - 160' 100% 150' 100%	ep 2-3%, qtz. > 30% - possibility	1 h					-	-		-	
through interval. 150' - 150' Rk. is slightly coarser grained, qtz. veins are wider and more abundant, and carry both Cpy and Py>4%, cpy>0.5%, TrMos Comp Hb 35%, - Pl-feld - 35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% -,Pl- feld35%, qtz25-30%, -epidote 2%, chl3%, cpy>0.5%, Py ~ 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med. to fn.gr. quartz diorite cpy.>0.5%				26	\cap 1						140'
Rk. is slightly coarser grained, qtz. veins are wider and more abundant, and carry both Cpy and py> 4%, cpy> 0.5%, TrMoS Comp Hb 35%, - Pl-feld -2 35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% -, Pl-feld35%, qtz25-30%, -epidote 2%, chl35%, qtz. vein that may by repeatedly intersected. 2%, rho-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd, 1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%					.01	<u> </u>	_				110
qtz. veins are wider and more abundant, and carry both Cpy and Py> 4%, cpy> 0.5%, TrMoS Comp Hb 35%, - Pl-feld - 35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% Hb decreasing to ± 20% -, Pl-feld35%, qtz25-30%, -epidote 2%, chl3%, cpy> 0.5%, Py 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%			100	1%							
abundant, and carry both Cpy and No Py>4%, cpy>0.5%, TrMoS Comp Hb 35%, - Pl.feld - 35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% -, Pl- feld35%, qtz25-30%, -epidote 2%, chl3%, cpy>0.5%, Py ~4%-, Mo-Tr., qtz veining is increasing, r*. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med. to fn.gr. quartz diorite cpy.>0.5%									1		
Py>4%, cpy>0.5%, TrMoS 2											
Comp Hb 35%, - Pl-feld -2 35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% - Pl-feld35%, qtz25-30%, epidote 2%, chl3%, cpy >0.5%, Py ~ 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%		P									
35%. Qtz20%, Ep. ± 1% biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% -,Pl- feld35%, qtz25-30%,-epidote 2%, chl3%, cpy >0.5%, Py	Py > 4% cpy > 0.5% Ir MOS 2										
biotite - 1-2%, chl 2% 150' - 160' Hb decreasing to ± 20% -,Pl- feld35%, qtz25-30%,-epidote 2%, chl3%, cpy >0.5%, Py ~ 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%											200
Hb decreasing to ± 20% -,Pl- feld35%, qtz25-30%,-epidote 2%, chl3%, cpy >0.5%, Py ~ 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%								-			
Hb decreasing to ± 20% -,Pl- feld35%, qtz25-30%,-epidote 2%, chl3%, cpy >0.5%, Py ~ 4%-, Mo-Tr., qtz veining is increasing, rx. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%	Diocite = 1-2/0, Oili: 2/0			10	01						1501
Hb decreasing to ± 20% -,Pl- feld35%, qtz25-30%,-epidote 2%, chl3%, cpy >0.5%, Py ~ 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	170		•01	-			-	-	150
feld35%, qtz25-30%, -epidote 2%, chl3%, cpy >0.5%, Py ~ 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%	150' - 160' ± 000' P1		10.	100		=1					
2%, chl3%, cpy >0.5%, Py ~ 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%	Hb decreasing to - 20% -,PI-	ŀ				-	+	+	†	 	
~ 4%-, Mo-Tr., qtz veining is increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%	feld35%, qtz25-30%, -epidote										
increasing, rk. is coarser grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%	2%, CIII3%, Cpy 0.5%, Fy					1					
grained. seems to be a prominent steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%											
steep dipping sulfide bearing qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%											
qtz. vein that may by repeatedly intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%											
intersected. July 22nd,1968. 160'-170' Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%	gtz. vein that may by repeatedly.										
Similar to above. Med.to fn.gr. quartz diorite cpy. > 0.5%	intersected.				.005	5	_	-			160'
quartz diorite cpy. > 0.5%			10	φ%							
quartz diorite cpy. > 0.5% py ~ 4%, MoS ₂ Tr		1 }				+		+	+		-
py ~ 4%, MoS ₂ Ir	quartz diorite cpy. > 0.5%						-	1			
	py ~ 4%, MoS ₂ Ir	1	_	-		-		+	+	-	1
	f					l I					
	· .	1	\dashv			+		+	 	+	1
						1					1
.28 .02 170'	1	1		.28	.02						170'
<u>170' - 180'</u>	170' - 180'	1							T]
Similar to above. Cpy. ≤ 1.0%	Similar to above. Cpy. ≤ 1.0%										
py < 5%, epidote < 3%, pre-	py < 5% epidote < 3%, pre-	li							į.		
mineral fault cemented by fine		4		ļ		-			-		_
matrix and sulfides. Below fault	1										
stringers of epidote are associ-			_	+		+	-	+-	+	+	-
ated with sulfides.	ated with sulfides.	1								i	
	1	1		+		+-		1	+	1	1
				.27	.01		1				
LOGGED BYDATE						,	OGGED	RY			

REVISED 10-62 PROJECT ORANGE HILL										Sheet $\frac{4}{2}$ of $\frac{7}{2}$
Coord. : N 468N.				RING	- >TT	CAL.			E Nº	3
E 500.4E.			INCL	V EI	7.1.10	JAL •		DEP	LAR E	369'
	/ š/ ¥	i/c/R	% Cu.	% Mo.	%	%	oz.		% EQUTV.	GROUPING — RMKS
180' - 190' Similar to above. steep dipping qtz. vein carrying Cu, Mo, sulfide Epidote - 3%, py. 45%, cpy. ±1% - Mo-tr, H6-25%, Qtz25, Pl-feld 35%, chl 5%. 190' - 200' Similar to above. 5½" post mineral dike at 191' flat dipping cuts off the sulfide stringers - epidote 5%, cpy>0.5%, py. 3%, MoS₂-Tr. Major quartz veining still steep dip. 200' - 210' Increase in qtz. veining near 200' also increase in cpy, then decreases below 202. R★. is becoming finer grained, darker green and slightly porphyritic with feldspar :★1s 1/8" in diam.cpy. <1.0%, py3-5%, MoS₂ tr.in the wider qtz. veins. 210' - 220' Similar to above. Looks like a significant increase in MoS₂ near 215-220. Cpy <1.0%, py. <4%, Hb 35%-, Pl-feld-30%, qtz25% epidote- 1%-, chl?, Gypsum stringers still present.		97%	.13	.005		96				220'
Similar to above. Increase in MoS_2 at 228.5' - 230.5'	人		7							

230'

_ DATE__

LOGGED BY_____

Coord. : N 468		RING				HOLE Nº 3 COLLAR ELEV. DEPTH			
E 500.4	INCL	VE	RTIC	CAL.					
START COMPL.				10/	OZ.				
DESCRIPTION	\$ 2 /c/R	% Cu.	% Mo.	%	%	0.	52	EQUIV.	GROUPING - RMKS.
$\frac{230'-240'}{\text{Hb}25-30\%, \text{Pl.Feld-}30\%, \text{qtz}}$ $25\%-, \text{epidote-}3-4\%, \frac{\text{cpy-}>1\%}{\text{py}\sim4\%, \text{MoS}_2>0.1\%, \text{stringer}}$ $\frac{1}{4}\text{"- massive cpy.}$ $\text{qtz veins up to 1"- steeply dip-}$ $\text{ping-}MoS_2 \text{ and Cu. increasing.}$	100	%							
$\frac{240' - 250'}{\text{Epidote } 42\%, \text{ qtz } - 35\%, \text{ Hb.30\%}}$ $\text{pl-feld } - 25\%, \text{ sulfides } -\sim 5\%,$ $\text{cpy. } - \leq 1\%, \text{ MoS}_2 - > \text{Tr.}$ $- \text{ some fair stringers of cpy.} - 1/8 - \frac{1}{4}\text{" wide associated with larger qtz. vein.}$	100	.31	.03						240'
- rk. is more silicified towards base of section. 250' - 260' Good cpy to 251 (>1.0%) then total sulfides decrease and cpy.		•27 %	.01						250'
<pre>decrease, Epidote - 2%, chl.5% (?), Hb. 30%, pl-feld - 35%, qtz. 20%, Gypsum - 1%.Stringers gyp. consistant throughout hole.</pre>		.23	.005						260'
July 23rd,1968. 260-270' Py ≺4%, cpy 0.5%, MoS ₂ Tr rk. similar to above.	959								
<u>270' - 280'</u> 272-274 - broken veins of massive	100	.26	.01						270'
cpy. 270-276 finer grained darker grn. rk. with - 4% epidote - (chl.Hb) - 45% - then grades into lighter colored, coarser grained qtz. diorite. Qtz. veins decreas as well as Cu-cpy< 0.5%. py. 4%.		1.0	00.00	5					280'

LOGGED BY______ DATE__

Sheet 6 of 7

PROJECT_ORANGE HILL

Coord, : N 468N						BEARING						HOLE Nº 3			
€ 500.4E.					IN	INCL. VERTICAL						COLLAR ELEV.			
START COMPL.											DEPTH				
	DESCRIPTION			# i /	/ % :/R Cu	. M	0.	%	%	oz.	02	% EQUTV.	GROUPING-	- RMKS.	
Py42 Qtz. su narrowe	280' - 290' ilar to above 4%, Cpy 40.5% ulfide stringers er and not as abmainly py. rock	are undant, a	d		.00%										
40.5%	290' - 300' r to above. py 4 , Mo-Tr, narrow ers carrying mai	qtz.		1	.2	5 .	01						290'		
Pl-fel - Tr	300' - 310' r to above. Hb d 40%,qtz.25%, gypsum 1%, cpy. 4%. One ½" qtz. others are 1/8"	epidote <pre>< 0.5%,</pre> -sulfide			00%	7	.02						300'		
cpy.∠ increa	310' - 320' r to above - py. 0.5%, MoS ₂ -Tr. A se in epidote (3 to 3%.	. ∠ 4%, At 277' 3-4%) and	1-11/00		8%		.02						310'		
epidot 4 0.5% - veins 327'.	320' - 330' %, Pl-feld-40%, te tr, gypsum - 10. MoS ₂ -Tr, py wider - more such 327-330' 7 1% cpt Tr, MagTr.(in	1% cpy 4%., qtz. lfides at y, py.74%	1			01							320'		
					1.	91 •	.06	1					_]330'		
1								L	OGGED	BY			_ DATE		

ASSAY-GEOLOGY COMPOSITE DRILL LOG

FORM # 355 REVISED 10-62

Sheet $\frac{7}{2}$ of $\frac{7}{2}$

PROJECTORANGE HILL					•					
Goörd, : N 468	BEA	RING				HOLE Nº 3 COLLAR ELEV.				
E 500.4	INCL	V	ERTI	CAL						
START COMPL.	7 39	. 7	19/-	T 0/_	%	1%	oz.	DEP1		
DESCRIPTION / &	1	2/c/R	% Cu.	Mo.					EQUTV.	GROUPING — RMKS.
330' - 340' Finer grained - increase in epidote and chl. py~4%, cpy. ≤0.5%, MoTr., fault breccia at 337' - pre-mineral fault.		100	%							
340' - 350' More bleaching and silicification - increase in cpy. and MoS ₂ - cpy. 41.0%, MoS ₂ -Tr. Py4% Qtz 40%, Pl.feld25%, Hb.25% epidote- 1%, MagTr.Gyp-1%-349'		95	.35	.02						340'
contact w/ andesite porphyry - and - 349'-350' - 360'		98	.29	.01						350'
Breccia for l' - then into dense barren andesite porphyry. Looks like contact may be at about 40° - but if surface is irregular then it could be any angle. Massive, little visible structure fine py. <1%, Tr. cpy, no qtz										,
veining. <u>360' - 369'</u>	-		.02	.00	5		-			360'
Barren andesite porphyry.										
Bottom 369'			.02	.00	5					3701

LOGGED BY______ DATE__

LOG OF DIAMOND DRILL HOLE DUVAL # 3 ORANGE HILL, ALASKA

Logged by Dr. Fred L. Humphrey-1969

The rock section cut by this vertical hole at the northwest edge of Orange Hill is hydrothermally altered diorite and quartz diorite, except for a large inclusion of fine grained hornfelsed sediments and volcanics between 119 and 180 feet and a mixture of hornfelses and altered fine grained diorite between 180 and 263 feet.

Biotite and hornblende (?) are commonly chloritized and plagioclase is commonly partly epidotized, although some is sericitized and argillized.

Metasomatic orthoclase, confined to fractures, is scarce down to a depth of about 290 feet where it increases, both along fractures and in quartz veinlets to a range of 1 to 10%. Chalcopyrite increases from an average of about 1/2% to about 1% in the lower 50 feet of the hole. Molybdenite also has a relative increase in the lower portion of the hole.

Box # 2 - 41-42 Ft. (Rock inplace starts at 41')

Fine to medium grained chloritized diorite. Epidote spotty but common along fractures. Pyrite 5%, mostly on fractures but some disseminated. Chalcopyrite less than 1%, generally in quartz veinlets.

Box # 3 - 42-51 Ft.

Fine grained altered diorite, some almost hornfels texture. Chlorite 10-15%. Epidote 5% diss. and fracture coatings. Pyrite +5%. Chalcopyrite -1%, mostly on fractures and in quartz veinlets.

Box # 4 - 51-60 Ft.

Fine to medium grained chloritized diorite. Chlorite 20%, biotite (?) -5%, epidote 5%, pyrite +5%, chalcopyrite -1% in fractures and in scattered quartz veinlets. This medium grained altered diorite has a ratio of about 70-30 light to dark minerals.

Box # 5 - 60-70 Ft.

Similar to above but less epidote. Few glassy quartz veinlets. ±5% pyrite and -1% chalcopyrite mostly in quartz veinlets.

Box # 6 - 70-80 Ft.

Fine grained altered diorite. Chlorite +20%. Rock highly fractured and "healed" by quartz and pyrite. Pyrite ‡5% and only traces of chalcopyrite.

Box # 7 - 80-89 Ft.

Fine to medium grained altered diorite. Chlorite 5-10%. Epidote 5-10% diss. At 80' traces of molybdenite in 1/4 inch quartz veinlet with "blobs" of silvery pyrite. Pyrite 4-5%, traces of chalcopyrite. Many tight fractures vertical to 30 degrees to core axis but only few quartz veinlets.

Box # 8 - 89-98 Ft.

Medium grained chloritized diorite, traces of epidote. Pyrite 5% mostly in fractures and quartz veinlets. Chalcopyrite -1/2%. Few milky quartz veinlets with traces of molybdenite. Few traces of pink orthoclase in scattered fractures.

Box # 9 - 98-108 Ft.

Similar to above. Med. grained diorite, 30-40% ferro mag mineral, now mostly chlorite, but some biotite that may be biotitized chlorite. No recognizable hornblende. No epidote, but traces of orthoclase on fracture walls. Pyrite 5-8% in fractures and on walls of thin quartz veinlets. Chalcopyrite $\frac{1}{2}$ 1/2%.

Box # 10 - 108-117 Ft.

108 to 113 similar to above.

113-114 brecciated with epidote, chlorite and traces of orthoclase.

114-117 chloritized diorite. Pyrite ± 5%, chalcopyrite -1/2%. Highly fractured, mostly steep dips.

Box # 11 - 117-129 Ft.

At 119 change from above to "hybrid" mixture (not brecciated) of

probable hornfelsed inclusion and altered fine grained diorite. Pyrite 2-4%, only traces of chalcopyrite.

Box # 12 - 129-138 Ft.

Similar to above but dominantly hornfels. Some brecciation. Pyrite 2-4% mostly in fractures. Chalcopyrite sparsely scattered in fractures -1/2%. Traces of molybdenite on slip surfaces.

Box # 13 - 138-146 Ft.

Similar to above hornfels type but are a few scattered plagioclase "phenocrysts". So possibly some chilled diorite in inclusion or meta-andesite. (This is proving to be a pretty large inclusion). Very few thin quartz veinlets. Pyrite +5% mostly in fractures with chalcopyrite ‡ 1/2%.

Box # 14 - 146-155 Ft.

Same as above. Pyrite +5% in fractures with scattered chalcopyrite $\pm 1/2\%$. Very little diss. sulfide.

Box # 15 - 155-165 Ft.

Same dark fine grained hornfels but again scattered plagioclase "phenocrysts" or metacrysts. Latter are saussuritized or epidotized. Traces of orthoclase on fractures. Increase in quartz veinlets at about 160 ft. with increase in chalcopyrite to about 1%. Pyrite ‡ 5%. Traces of magnetite on fractures.

Box # 16 - 165-174 Ft.

Similar to above. Chalcopyrite in thin quartz veinlets 1/2 to 1%. Pyrite 5%.

Box # 17 - 174-183 Ft.

Probable mixture of chilled fine grained diorite with small plagioclase phenocrysts and fine grained hornfels. Phenocrysts are epidotized and also epidote along fractures. Pyrite 5%, chalcopyrite ±1/2%.

Box # 18 - 183-192 Ft.

Has igneous texture but much finer grained than the ordinary diorite. Phenocrysts are epidotized. Pyrite 3-4% on fractures and in quartz veinlets. Chalcopyrite $\pm 1/2\%$.

Box # 19 - 192-202 Ft.

Similar to above - looks like chilled diorite. Sulfides same as above. At 200-202 rock is bleached, hydrothermally altered, with some orthoclase on fractures and in thin quartz-gypsum veinlets. Chalcopyrite 1/2-1%.

Box # 20 - 202-212 Ft.

Similar fine grained rock to above. Is darker than above but has igneous texture and sericitized or argillized plagioclase phenocrysts, but very little epidote. Pyrite 4-5% in fractures and in their quartz seams. Chalcopyrite 1/2%.

Box # 21 - 212-221 Ft.

Similar to above but more silicified and traces of orthoclase in fractures. Some molybdenite "smears" in steep quartz veinlets. Chalcopyrite 1/2-1%. Pyrite 5%.

Box # 22 - 221-229 Ft.

Similar to above and certainly a very fine grained diorite. Some epidote in plagioclase phenocrysts. Ferromagnesian minerals in fine grained ground mass appear to be chloritized. Sulfides same as above.

Box # 23 - 229-236 Ft.

Similar to above. Rock much fractured and broken on mostly vertical fractures. Striations commonly show vertical slippage. Gypsum common in fractures. Traces of moly in some very thin quartz veinlets in vertical fractures. Other sulfides about same as above. Some of the rock is more similar to hornfels than to fine grained diorite, so is still a mixture.

Box # 24 - 236-244 Ft.

Very fine grained dark rock, appears to be mostly hornfels. Highly fractured with many vertical quartz veinlets. Chalcopyrite, pyrite and traces of moly in the quartz. Most of the quartz containing moly is milky white with gypsum.

Box # 25 - 244-253 Ft.

Mixed very fine grained hornfels and fine grained altered diorite. Some plagioclase epidotized. Traces of orthoclase along fractures. Pyrite +5% with chalcopyrite 1/2 to 1%. (all in fractures and quartz veinlets.) Very little disseminated sulfides. Traces of moly on surfaces of some quartz veinlets.

Box # 26 - 253-263 Ft.

Similar down to 260 then brecciated, apparently post mineral.

Box # 27 - 263-272 Ft.

Below brecciated zone is coarse grained altered diorite with 20% chlorite. Plagioclase shows broad twinning and some is "glassy". Few phenocrysts are epidotized. Quartz and gypsum veinlets up to 1/2 inch wide. Traces of orthoclase on fractures. Pyrite 5%, chalcopyrite +1%. Beginning to get more diss. sulfides.

Box # 28 - 272-282 Ft.

272-274 highly fractured, mostly vertical. Remainder same rock as above. Fragments in breccia zone show some molybdenite smears. Chalcopyrite $\pm 1\%$ as above.

Box # 29 - 282-291 Ft.

Medium grained diorite. Biotite is chloritized and some epidote in plagioclase. At 288-291 increase in quartz veinlets with chalcopyrite and molybdenite. Pyrite 5%, chalcopyrite 1/2 to 1%. Sulfides in fractures, in quartz veinlets and some diss. Some milky quartz.

Box # 30 - 291-301 Ft.

Coarse grained altered diorite. Biotite chloritized. Traces of orthoclase. Chalcopyrite mostly in fractures and quartz veinlets 1/2%. Pyrite +5%.

Box # 31 - 301-311 Ft.

Similar chloritized diorite. Orthoclase-quartz-gypsum veining at 306-307 with silvery pyrite and some molybdenite. Orthoclase also with quartz-gypsum at 309. Pyrite 5-6¢, chalcopyrite 1/2%.

Box # 32 - 311-320 Ft.

311 to 316 coarse grained diorite very weak fracturing. Biotite and hornblende not all chloritized. At 316 again strong fracturing with orthoclase up to 10% on vertical fractures and disseminated. Pyrite 3-4%, chalcopyrite to +1/2%