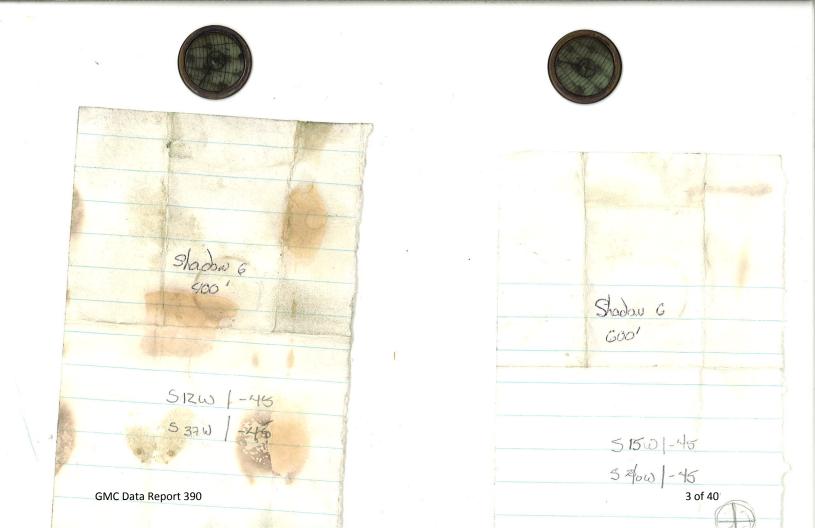


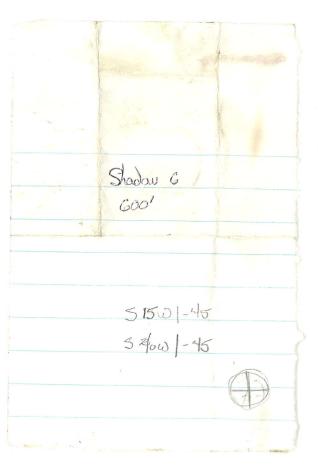
STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES

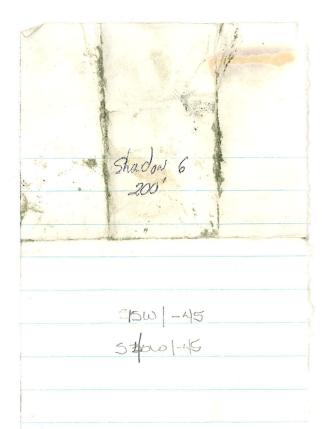

Alaska Geologic Materials Center Data Report No. 390

All data reports may be downloaded free of charge from the **DGGS website**.

Estelle-Timber Creek Drilling	AK-061150-8 Technical		10 m
Upper Discovery DDH-1 1988 Dill Logs	X		
AK Tyonek D-8	map: Tyonek		

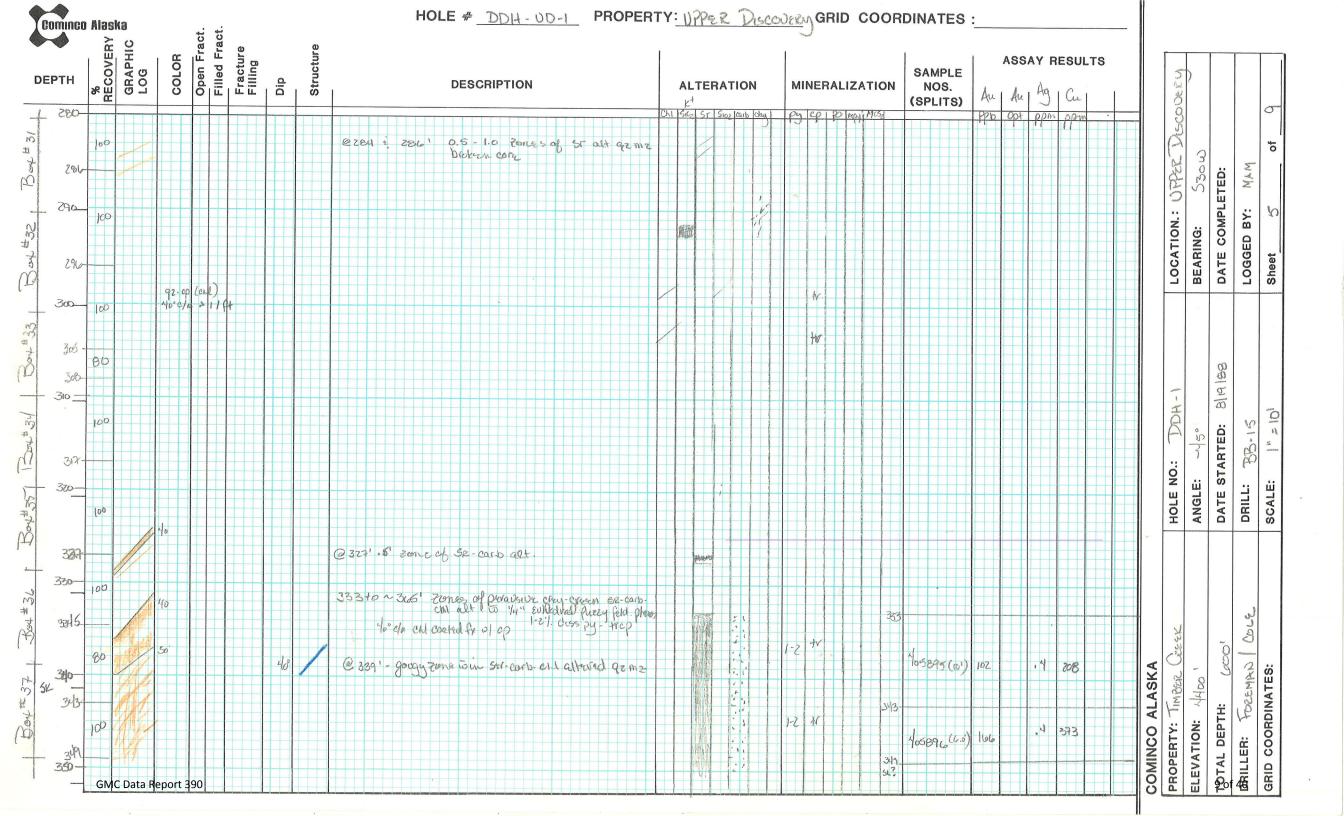
Terioes


Shadow 6 5100'


512W / -45

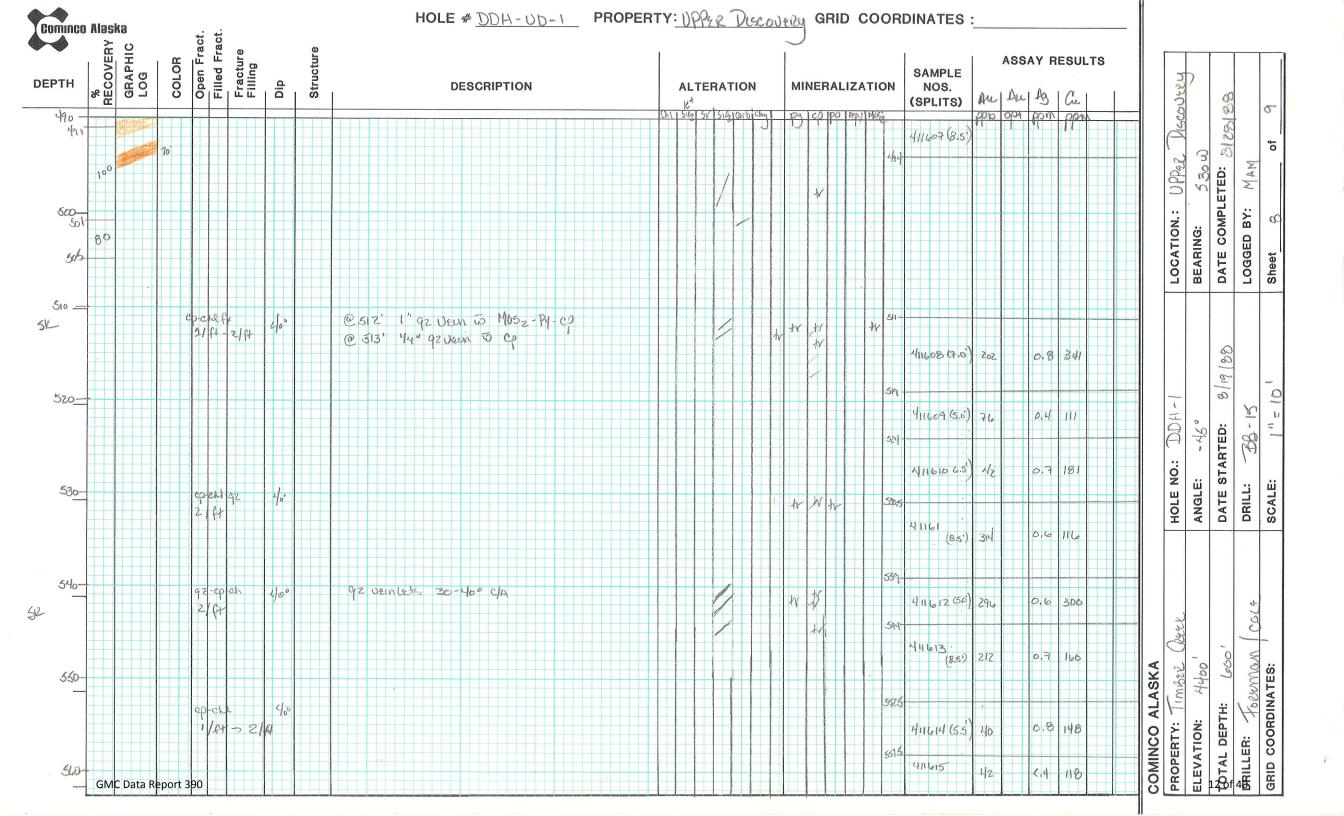
S 37 W -26

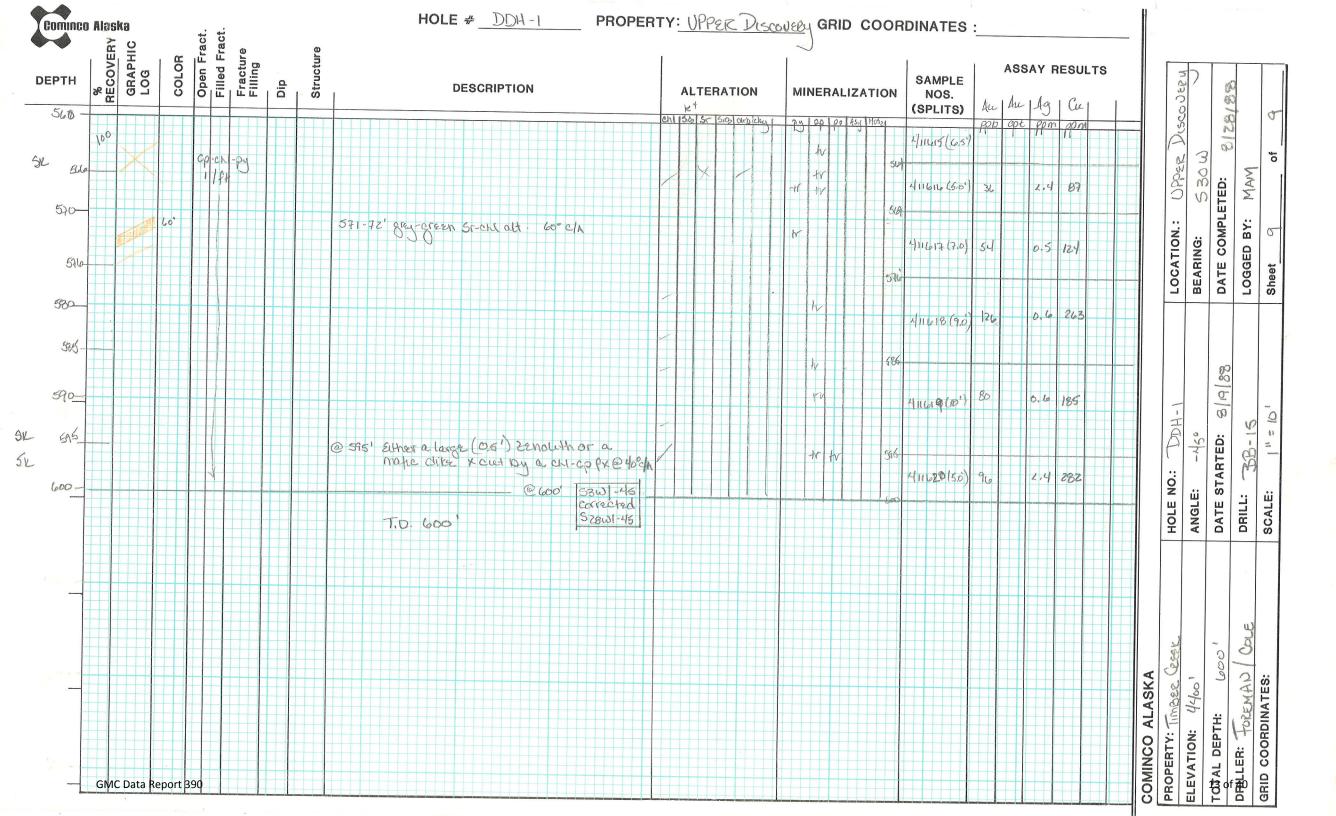
-


-

	Alasi		-	Open Fract.	Fract	9		e				1 1	Acc		ESULT	e	r		1	
тн	% RECOVERY	GRAPHIC LOG	COLOR	en F	led F	Fracture Filling	0.	Structur	DESCRIPTION	ALTERATION	MINERALIZATION	SAMPLE NOS.				5	ē	T	1	
	REC	E G	ö	Ö		цЩ	Dip	St		kt Sr 150 lath Clay	-	(SPLITS)	he				001	29	2	
5-	100	.0.0							OVERBURDEN M.G. Equistrational to use allow felderear perspheritier 5-7% TEREN Bithlie: 3-5% phonetrized matrice in metrice tecally "flow" for users' source solitate at verse as word: 15% 2nm 92 VEW 40° c/a us 1-21% classes	1 302 J JUZ CITO CRA	PU 60 00 1492/ 11988 3- 19%	405949 (1.0) 74	2 opt				Dep Diec	306	D: 812818	14M
8		REDR							HXA 57. 1/3" - 1/2" Dictized Xenoliths NX4								10011		ШЦ	2
	100			Cp.9	2		40.										LOCATION.	BEARING:	DATE COMPLE	LOGGED BY:
17- 17-00	100			5/9			400		@ 20' 5/ft fx è qz veunlats is 11. cp		17,0	405950 (7.0') 18	7	0.5	242		ΓŎ		DA	LO L
24											24.0						-	1-0	8	
30_	100			cp-q	2	/	400		30-34 harring i mm ge very to cp ~ 4/ft		30,0	465870(6.0) 34	0	0.5	247		10	- Ho	819	- 10
24 - 34 -				619	fore	er M'-			30-34 harring i mm ge very to co ~ 41 ft antivation around fr fuzzy drownd mass st altored to fuzzy 14-1/2" feld spars			405871(7.0) 50	z	1.6	997		Ē	1-5.	STARTED:	22-12
10_	100			2/2	ł		40°		weakly follated? To hartly e c2.92 veinlets.		HV 31.0	405872(8.0') 43	6	0.6	433		HOLE NO.:	ANGLE:	DATE STA	DRILL:
45									Spacet cp		15,0						H	AI	D	
50 -	100			56 5	(q0) +	/	400				Ir									el
55 -	146			50-	q2		1/00											825 R	,0	l'ai e
60	14.0			(4) 21			400		make Cartent descences Stinthe Georets1-721		1						ALASKA	Hyloo'	1000,	tops wan
	100			C0-9					matic contrat decreases slightly from 65'-72' 265' close spaced ~ 3'ft		17.	405873(7.0) 23	2	2.4	327		NCO AL RTY: ⊥		Î	
70-	GM	C Data	Report 3	90 190		Ø	1.84				1.1. 70						COMINCO PROPERTY:	ELEVATION:	TOTAL DE	all read

lomineo				ct.	ict.				HOLE # DDH - UD -1 PROPERT	Y:UPPER DISCOUR	GRID COO	RDINATES			
	% RECOVERY	GRAPHIC LOG	COLOR	Open Fra	Filled Fra	Fracture Filling	Dip	Structure	DESCRIPTION	ALTERATION	MINERALIZATION	SAMPLE NOS. (SPLITS)	ASSAY RESULTS An An Ag Cu	1.13	20
70-	100			Cp-q ,1-2	2 ft		40		hairline grep & coatings 1-2/ft Wrek foliation fr? Throughant - Not all mineralized	Ch. 5162 5v 4102 (Carbo Clau)	Py Cp Po 1801/1 1969	90 - No5874 (96)	900 901 0000 0000) 182 2.4 2.49	A 30	X
79 - 80	100										₩ ₩ 17)¶		LOCATION.: ၂၇၇ BEARING: 5 ဒုဝ.	LOGGED BY:
90- 31c 96- 96-	100										ł	11 405875 (5 0	76 <.4 125		88
100-				970	ip Ift		40		Tollation / fix 1: 8/ft some a cp-chl			16 -405876(6.0 52) 200 1.1 520	Ho	RIED: 019
110	100													HOLE NO.: DC ANGLE: - 4	DATE START DRILL:
115_	100								~115' - VEWlets Juniversh to 1/ 10' av so						
	100				1							28			(00) / Pare
130- 151.5- 137' -	100			92. 1/		cp	46				tr Tr Is	405877(10.0) 7/2 <, 4 271	8	BRILLER: DePth: Lee
140-	GM	IC Data I	Report 3	390								28		PROPI ELEVA	


Comine	o Alas	ka			-				HOLE # DDH-UD-1 PROPERT	ry:U	PER	Disco	DERY GF	RID COOR	DINATES	•						
DEPTH	% RECOVERY	GRAPHIC LOG	COLOR	Open Fract.	Fracture	Filling	Dip 	Structure	DESCRIPTION	AL	TERA	TION		ALIZATION	SAMPLE NOS. (SPLITS)	Au	ASSAY F		10000		88	
11/10- 10	100								146'-151.5' - 92.52v. cht-carb bleached é altered 92m2 1-31. py rives large + 2-3" dk ? ign2005 XEnolth - f.g.5			C C C C C C C C C C C C C C C C C C C	₽ <u></u> 1// 27. 17.	(*************************************	405878 (8.0)	1242 380	Ppm ppm 0.6	02 m 55 1 67 6	LOCATION.: 1) Dee 1)	200	DATE COMPLETED: 2/28	3
81 + + + + + + + + + + + + + + + + + + +	100		2,0						168.5 - 169. It gray organ SE-92-CU altered 92 MZ Some Carb Deintets & diss Caloz 2-3.1. diss py @ 164. 97-po Deinlet Some 1-2mm ? clay alt fy > feldspars bleached white				17, 17.	16.9	+105880 (5:5	92	2.4	276	HOLE NO .: DDH DO-I	-450	DATE STARTED: 8 19 88 DRILL: 72, 15	8 = -
But 23 Det # 22 Jour #21 But -012 box 900 -02 -02 -02 -02 -02	90	C Data F	40°		4				188-194 1" to 6" Zongo af pervasively altered watch n' geme. light green - gren; weak acoz Colleb. a 2mm O.CK Green-black David ? cht Corrected 53001-45 Corrected 53001-45				17. 17. W W W	1975	405801 (46) Nos802 (45) 405802 (45)		0.5 (,4	318	COMINCO ALASKA PROPERTY: TUMBAR (2550 HOL	4400 -	xoo'	ATES:


minco		(9	ot.				HOLE # DOH-UD-I PROPERT	Y: ()}	PER	L De	8000	VEICH	GRID	COC	ORD	INATES :		2							
•тн	% RECOVERY	GRAPHIC LOG	Open Fract. Filled Fract.	Fracture Filling	Dip	Structure	DESCRIPTION	AL 12 [†]	TER	ATIO	N		ERALI			SAMPLE NOS. (SPLITS)	Au		3 (r ee			Viscovery	58	3
210 -		1000						Chi Kspa	i sr	S102 Cer	b) chay	Ð	cp pp 1	Aga) Mosz		105284	ppb	of pp	ma	opm		0	Visi	8(28)	
212 -		10													212-								1	3 00	AM
	100						216-218' 20° c/a sr-q2:21.100gran greenalt; 11. py	2	3299630						216								UPPER	ä	X
		1 1/20.					. 0.00		運動		-	1%					1.0	D .		241			5	DATE COMPLETED:	
220 -							@22212 >1mm cp veintets - 10° C/A & 80° C/A						1			405885 (93)	60		0	691			 Z	MPI	LOGGED BY:
×	100	7													23.5-				*****				LOCATION. BEARING:	00 00	ED
		32											12 I										OC/ EAF	ATE	LOGG
202-	80	10-														405926 (9.0')	60	0,	5	54					
230-	90						232.5 - 235 - 1-3" what is altered from spaced ~ 1.2/ft		7																
232-	100								E	-					232,5-									d'	
R	100			-					Ŧ							405887(55)	42	0.	4	63			-	0	4
738 -									114				and Policy and		730						_		00	119	
240=		10														Mos 8888 (4.6	36	0.	5	111				QC	NO (
	90						242' 60° c/a op vicility opposing the No° stattered				1		tr		24/2					1973 (1994) (1994) (1994) (1975) (1974) (1976) (1975)	-		HOD	0	-
							20125 Pap				il					205889 (5,0)	20	٤.	4	58				3TE	R
247-		50													247	9					-	-	NO.:	STARTED:	
250-		70					249-250' - Sr-92-ok altered zone trpg		200			H				405890 (50)	20	0.	.6	55			HOLE N	Ш Ш	DRILL:
	100	The second					fuzzy 1/4" fadspan placings preserved		1999	r.					762-							-	HOLE	DATE	DRILL:
	100						252-2571. palk cry creen sev-cavis (cil) altered			1		11.				405891(5.0)	44	0	.6	88					
257 -									(B)						257-				without appendix						
260-	100																			•					
																							2		Cole
243 -		70					264-269 - Prisasively ser-carb (chil) attend - fin relief Dioktros preservord & fuzzy Yu" fillopar lathes 269-274 secarb & spaced 3/ft C 273 11. cp		Notice						24								arr		3
	100				•		ten relier Dickles preservord & fuzzy			1		tr	tr			405892 (5.0)	20	0	.7	131				-	m /
200		60					249-274 58-carb fr 5, Jaced 31 ft								249-							ALASKA	13-61	100	tokemen
530-							@ 273 1% cp			-						405893 (5.0)	32	<	,4	64		AS	E IN		La
- 273 -													1×		24-						Martin & Provide Internation	AI	: :	PTH	12
-	100															1.5894(6.6)	37		,4	71		COMINCO	PROPERTY:	DE	BRILLER: JOLEMAN
2																1						MIM	OPE	TAL	ILLE
200-	GM	C Data Repor	t 390												-635							8	BR 1	88	f 405

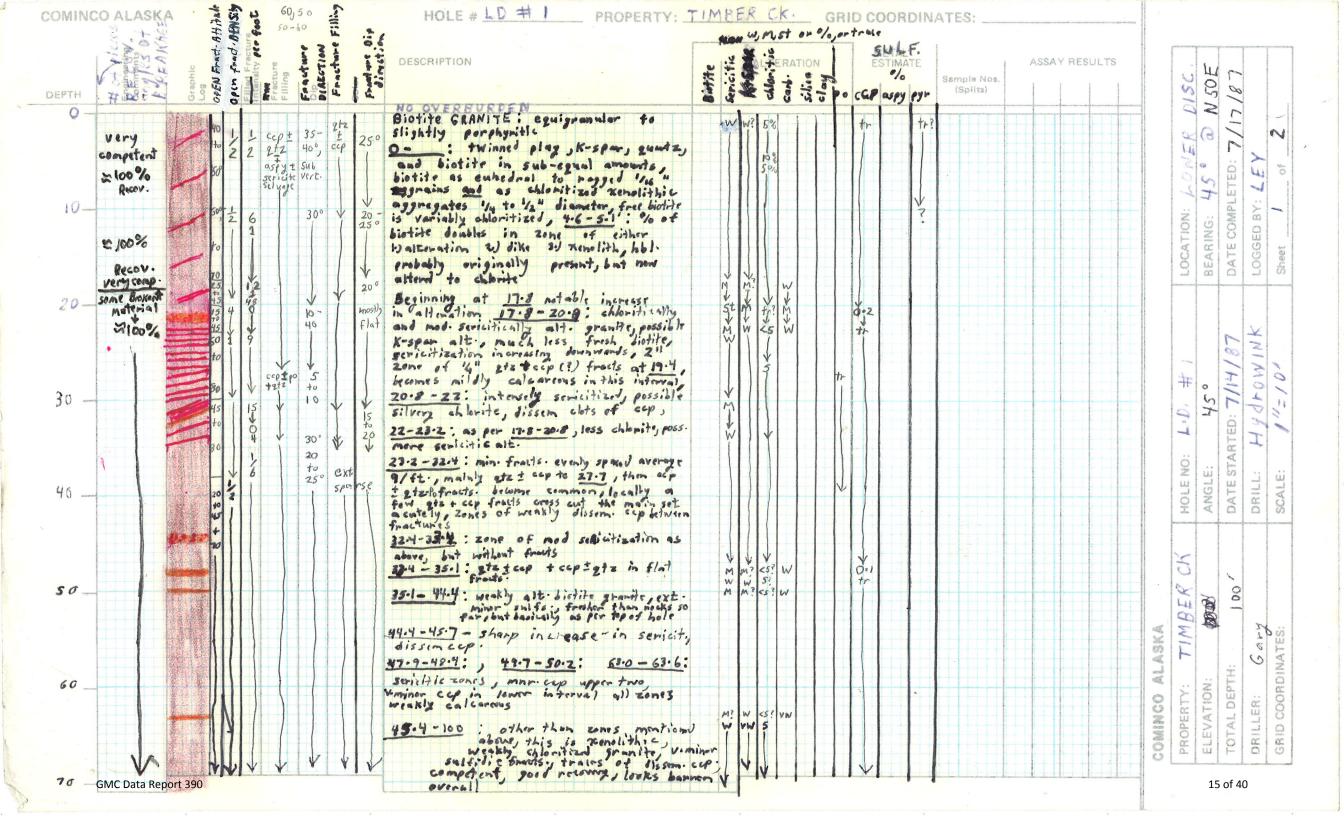
Gon	unco Ala	iska		,	st. et.					HOLE # DDH UD-1 PROPERT	Y: UP	ZR	Dis	<u>, (00)</u>	ERY GR	RID CO	DORI	DINATES		3								
DEP	81	GRAPHIC	COLOR	•	Open Fract. Filled Fract.	Fracture	Filling	Dip	Structure	DESCRIPTION	k ⁴		TION			ALIZAT	ION	SAMPLE NOS. (SPLITS)	Au			ESULTS Cu	8		UER	188		
Dou H 37	350									Zonzes of periods i de st-carb all alt wi 1/4" fildspat pluends highlighted in vf. gray given grownd Marson C 358- Saft & gougy	<u>CA1 510 5</u>				Py (9)	PO 1901) H	34	405898 (50) 405898 (50) 405899 (4.0)	PPD 118		ррт ,9 1.5	157 323			LOCATION : UPPE Discolled BEARING:	DATE COMPLETED: 8/2%	ED BY: MAN	Sheet lo of
0, # 11 / Bon # 40 / Bar #	377 377 800 376(0									Same Equiprica dav to weakly porpluvitie 92 One & 3-5% V2" biotized Xinolithy; 5-7% biotized Chloritized marces 393' 1" 92 Vin w ro, Moge .					+ + 17. 17. 17.		3815	405900 (4.5) 4111.01 (6.0)	Cov 2205			974 678			HOLE NO .: DDH - 1 LI AVE	TARTED: 8) (4 88	20-20-20	SCALE: 1 * < 10 1
Ber # 13 Ber #42	29.5 100 100 100 100 100 100 100 10		a Report	t 39	0					Equiper que (same as about					5%.		399	411602 (6.0")	756			415		COMINCO ALASKA	ELEVATION: JUL .	Ë	DAILLER: FOLOMAN / COLE	

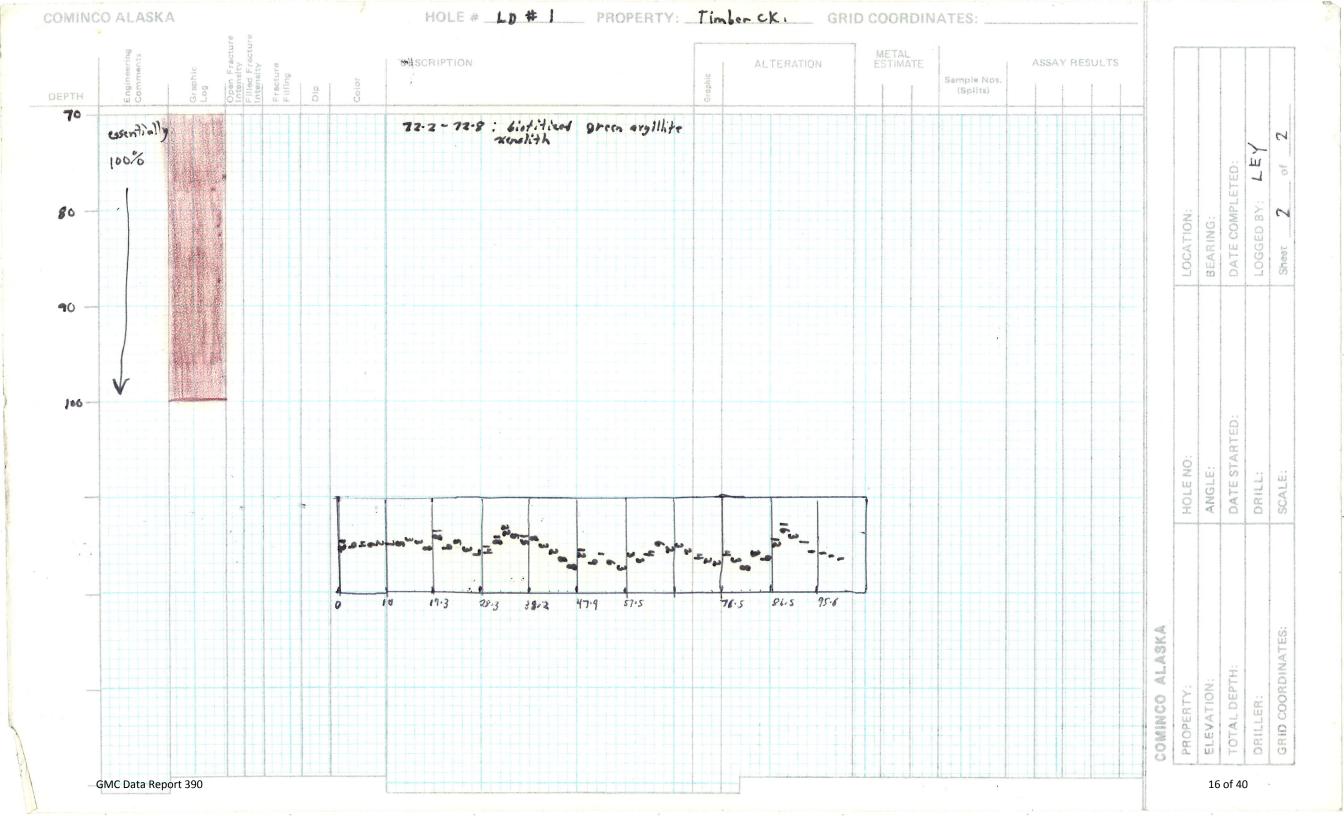
Comine	io Alas	kə		,	ct.				area an th	HOL	E #	DOH	·UD	-1	PRO	PER	TY:	NPP	er D	lisco	NeeyG	irid (000	RDIN	IATES	* •			12						
DEPTH	% RECOVERY	GRAPHIC	COLOR		Upen Fract. Filled Fract.	Fracture Filling	Dip	 1			DESC	RIPTIC	DN				A		ATION	1	MINE	RALIZ	TION		AMPLE NOS. PLITS)	the	ASSA	Α	SULT	s		3		28	5
120 - 120 15- 1- 120 	40			Ci I	p-Asp. 12.ft	1 400			from ~ Al cp-Aspy c 46° c/A	zi to : caturgo	1511 , on	fx 11	z ft	(2 10 f	it)		Chi ac	2 20	500 Caubi	Chu	Py)CP tv	Po Jaspy	11/10/2	1	L. 04 (10.0°)	ppb	004 1	ppin (UPER DISCOJE FY	20	M	of
57 - 130- 58 - 43 () - 442 1- 442	100																				t	₩.			LOSLII.0) 172		5,7	297			LOCATION.:	BEARING:		Sheet 7
441 441 45-44 45-44 45-44	100 100							Le	1)hita cas 51° - 1′ ze			dactu. Green		tesati	Ou-						÷.	ł	45		(o, (9°) 202		5.6	302			NO.: DDH - 1	-450	I AKIEU:	
416.5 	100																															CREEP. HOLE NO.:	ANGLE		Colle Scale:
28 + 70 - 480- + 70 - 15 + 70 - 485		C Data	Report	: 390	0																+r +r		- +[854		1607	172	0	.5 1	67		COMINCO ALASKA	F	ELEVATION: 4400	Depirter: 4	GRID COORDINATES:

Estelle-Timber Creek Drilling Lower Discovery DDH-1 1987 Drill Log AK, Tyonek D-8 AK-061150-8 Technical

map: Tyonek

5.615220


50° st


()

34.2

22

27.7

MT ESTELLE Don PER DPS 9/15/87 TEL: HOLE # 1 20+26= N 29+59=E DRILL HOLE #2/20+635N 29+38E 20+63N 29+335E 19+69N 29+78E #3 4 19+75N 30+05E #5

										AS Colum J	
			1	ower	Disc	overy	L.D). 1		+ ODB	
			/	Assay	-	laton					Este
6	4	11	G	n	1	λ	6	Y	et.		0.24
Hole #	Sample.	Interval	Thickness	Au	At-ppm	Ag	ft :ppin	20 Cu	4.%		FIRE AKON
				m	1101	Ppart	ppier			ł	ortr.
L.D. 1	200301	0-5'	5,0	.920	4.6	2.4		.037			0.0321
	302	5-10	5,0	1.154	5.77	2.4		.025		15 of .022.02/T	0.0381 ··
	303	10-15	5,0	1.304	6.52	1.0		.060			0.042/~
	304	15-17,8	2,8	.684	1.92	0.8		.017			
	305	17.8-20.8	3.0	.724	2,17	2.4		.055			
	306	20.8-22	1.2	.102	0.122	1.4		,001			
	307	22-23,2	1.2	.520	0.62	2,4		.024			
	308	23,2-28,3	5.1	1.584	8.08	0.6		.014			0.046
	309	28.3-30,2	1.9	1.602	3.04	1.3		.050		10' of ,05700	0.052
	310	30.2-32,4	2,2	2.830	6.23	0.5		,099		An	0.094
	311	32,4-33,4	1.0	1.396	1.39	2,4		.034			0.046
	312	33,4-35,1	1. 7	.120	0,20	ζ, 4		1008			
	3/3	35.1-40.1	5,0	.106	0.53	0,4		.005			
	314	40,1-44,4	4.3	.146	0.60	0.8		,006			
	315	44.4-45.7	1.3	.024	0.03	0,4		.001			
	314	45.7 - 47.9	2.2	.080	0.13	0.8		,017			
	3/7	47,9-48,4	0.5	,032	,016	<,4		1001			
	3/8	49.4-49.7	1.3	,054	0.07	0.6		1001			
	39	49.7-50,2	0.5	<10		6.4		.001			
	320	50,2-63	12.8	.024	0.30	0.5		.006			
	321	63-63,6	0.6	.094	0.06	0.5		,006			
	322	63.6-65	1.4	.048	0.07	2.4		.006			
	GMC D	ata Report 300								18 of 40	

-

		,								
										55th
Hole #	Sample #	factage	Thickness'	A	u	Aq	 Cu			Est. grade by fire Assay (PPM) ÷ 34.3) 1.2.
	-11	1-1								Assay (PPM
			71		27					÷34.3)1.2. Y
	200 323	65-70		.074	.37	2.4	.006			
	324	90-80		.046	. 46	2.4	1:003			
	325	20-90		.0212	,21	2.4	1010			
	326	90-100	10'	. MB	, 15	2,4	.006			
							- -	·		
				A LANA	×					
	wither the	200								
	-									
										-
	0110-5								10-5-00	
	GMC Da	ata Report 390							19 of 40	

Recovery Log Dumbe office interval % Recour From Geologic Los Vein sets Nu [Py, Cpy, Po. Veit 0/0 disime 0 Alteration 0% chlorite Try to quartily minerts then give roc GMC Data Report 390 20 of 40

Estelle-Timber Creek Drilling Lower Discovery DDH-2 1987 Drill Log AK, Tyonek D-8

-

AK-061150-8 Technical

map: Tyonek 🛛 🕅

4

COMING :	석 · · · · · · · · · · · · · · · · · ·		ROINATES: SHEET	
//9/87 3 4 DEPTH open fr/f dip filling filling		ALTERATION service to control to		ASSAY RESULTS HEAT
CK: ELENATION DATE STARTED 7/17/8/7 DATE ENDED 7/1/2 IRILLER GARY ORIENTATION 45.9 0.056 0.016 0.01 IRILLER GARY ORIENTATION 45.9 0.056 0.02 0.01 IRILLER GARY ORIENTATION 45.9 0.056 0.02 0.01 IRILLER GARY ORIENTATION 45.9 0.056 0.02 0.01 IRILLER GARY ORIENTATION 45.9 0.02 0.02 0.01 IRILLER GARY ORIENTATION 45.9 0.02 0.02 0.01 IRILLER GARY ORIENTATION 45.9 0.02 0.02 0.01 IRILLER GARY ORIENTATION 45.9 0.01 0.01 0.01 IRILLER GARY ORIENTATION 45.9 0.01 0.02 0.01 IRILE 0.01 0.01 0.01 0.02 0.02 0.01 IRILE 0.01 0.01 0.01 0.01 0.01 0.01 IRILE 0.01 0.01 0.01 0.01 0.02 0.02 IRILE 0.01 0.01 0.01 0.01 0.01 0.02 IRILE 0.01 0.01 0.01	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	Image: Contract of the second seco	200236. 200236. 200236. 200236 200236 200236 200236 200236 200236 200236 200240 200240 200240 200240 200240 2002442 2002445 200246 200246 200246	Au col ba 1.4/6
PROPERTY TIMBER LOGGED BY LEY	to the year, the formation of the second sec	Ø <5 to to	200247	-28

CUMING		L'E LO # 2 PROPERTY: TIMBER CA		ATES: SHEET 2 of 2
N N H H H H H H H H H H H H H H H H H H	<pre>% recove closed fr filling dip, # ft filling dip, # ft closed fr filling dip, # ft.</pre>	COMINCO ALASKA	SULFIDE ESTIMATE	ASSAY RESULTS AND
		$= \frac{1}{2} $		259 70.9 256 20 331 416 20 352 255 337 19 19 200 354 19 200 354 19 200 354 19 200 354 19 200 354 19 200 354 19 200 354 19 200 358 146 200 358 146 200 358 146 200 358 146 200 358 146 200 358 146 200 358 146 200 358 146 200 358 146 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Ag LDZ T j, GMC Data Report 390 24 of 40

Lawer Discoveri Assay Sommary L.D. 2 Leger Contraction

					~ ~ ~					1	ozt
tole #	Sample.	Tlaval	Thickness	Ac	L (+·ppm	Ag	7	Ca			tet grade
	~	Inder our	Thicks	Ppm	ff-ppm	ppm	H-Hm	%	-17- %	0)	Assaul (ppm)
4. D.2		0-10	10	Over	burde	7				1	
	200235	10-10.9	0,9	460	0,414	2.4		,033		.460	
	2.36	10,9-13,5	2.6	1.8.90	4.914	1.8		,094		1,89	,07 Au
	237	13.5-14.8	1.3	6.400	8,320	9.2	11.96	,68	, 88	5.4'00	. 196
	238	14.8-18.9	4.1	2,000	8,200	2.6	10.66	,182	.75	7.09.402/ (.09) AM	.062
	239	18,9-19,8	0,9	.796	0.716	.0.8		.089			
	240	19.8-24.5	4.7	,918	4.315	<,4		, 029			. 014
	241	24.5-25.8	1.3	,142	0.185	2.4		,012			
	242	25.8-28.2	-2.4	,680	1.632	<.4		,041		46.20	
	2.43	28.2-31.1	2.9	1.564	4,536	,6		,092		0,453	0056
	244	31,1-35,2	4.1	.588	2.411	4,4		,029			
	245	35.2-45	9.8	,204	1.999	2.4		,010			
	246	45-55	10	,232	2.320	4.4		,023			
	247	55-64.2	9.2	.280	2.576	2.4		,013			
	248	64.2-65.1	0.9	,246	0.721	2.4		,017			10 Au
	247	65.1-70	4.9	3.240	15,876	2.4		,016		5,8'0\$,023 3,134	. 010
	250	70-70,9	0.9	2,560	2.304	2.4		,006		(09)	.092
	200351	70,9-75	4.1	.160	0.656	2,4		,020,			
	352	75-77,4-	2.4	2.690	6.456	4.4		,007			.088
	353	77,4-78,7	1.3	,812	1.057	2.4		,00 Z		32.40 A21	
	354	78.7-86.1	1.4	,304	2.249	6.4		.013		م المع	
	355	86,1-96	9.9	,190	1.881	4		.019			
	346	96-98,1	2.1	.188	0.395	,5		,03,5			
	357	98.1-98.9	0.8	,094	0.075	16		,012			
	GMC/Da	ta Report 390	4.4	,202,	0.889	, 7		,041		25 of 40	

Internal	Thickness	Ace Ppm c	not Ag	Cu %	
0-10	10	Over	burden		
10-10,9	0.9	,460	TF	TF	
10.9-13.5	2,6	1.890	< D	D	
13,5-18,9	5.4	3.059	4.19	0:30	
18.9-65.1	46.2	.453	< D	D	
65,1-70.9	5,8	3.134	< D	D	
70.9-103.3	32,4	,421	< D	D	
	103,3				

Sommor /

ppr) = Genchem Analysis opt = fire Assay D = Detectable < D = Less Than Detatable Tr = Trace

Estelle-Timber Creek Drilling Lower Discovery DDH-3 1987 Drill Log AK, Tyonek D-8

Sto.

AK-061150-8 Technical

· (1)

N

Ć

map: Tyonek 🗍 🙀

COMI	INC	÷ D		-		1	- 2		ft.		ĥ	Pt.	L.	-	• •	T.H	01	L'E DOH LO-3 PROPERTY			TE		TON		(Carles)	20	State !!	STES:	<u> (</u>	 HE	de la com				2	-lasti	
0110	DEPTH	open fr/1	dīp	GRAPHIC	Tog	d'noon	closed	filling	+-dip-#		CLOSEQ Filling	# din #	closed	filling	f #edip-			DOH LOWER Discovery 3 COMINCO ALASKA DESCRIPTION	Ite	seric.	41	silica	3		% ccb	501 E51	5=1D 10491			371 		A.4	55 A	ri¢≿ I¥ Î	ESU	LTS	SAMPLE
DRILLER GANY ORIENTATION 45.º @550WTOTAL DEPTH			25 70: 50°					4		2	tz.	70° to go par						0-13 a drive build en possibly some mubble crop but difficult to tell 13-26 mode to strongly series tized in trasive, mestly bleacher while, probably det least some company allocation and more childen to probably det to vice the childen to probably the company while an almost in childen the these after the probably intervent of the text uncert text uncert to the probably intervent of the some company the company filling the probably the filling the probably the fractions of 37:0 other septimities fractions of 37:0 other septimities appear and gabon and porphy filling and the filling the probably filling in allows at 38's calor to company filling in allows and the probably filling in allows at 37:0 other septimities appear and gabon and porphy filling in allows at 37:0 other septimities of po-ceptor		No St. We M.								13-0 200327 200327 200328 200328 200329 200329 200330 31 200330 200330 200333				02 N N N 102					
LEY INTLUR		+2	40- 50, 20- 25 700 20			19	o as	11 5	3 ? 50°-5° 65° 65° 70°(1) 10°(1)	2								Some calcarsons fronts: 46.2 + 33.4 sericitization, Sobtle, parallel, gt sericitization, Sobtle, parallel, gt sericitization, Sobtle, parallel, gt sericitization, Space view sericitization, Space view stat and size and view of a portion that and size and view of a portion parallel fronts; and cross fraiter at 55' 56-60:4 - mod, fresh xenolithic but grant, sparse (cp-asgu(1) 1 g) fraits, one 1" serie fracture.	et son	M W W?	5- 10 5 <5 ***5	2		ik .	t1) 0.1			200334 200335 49.8 200336 53.4 200337	1			•66 •83 •92 •61					
LOGGED BY	-6	1 1 1 2 40 1	80- 900 20- 302 700 +0 800 20-			10/0		PL	5,60 Parsi 10°G									fraits, one l'ser fracture. 60.4-79 - Frinky Frish renolution biotiti-granites some scricite atto or Sinctures, possible citay on fractures at 73.6 y. sparse cop on fractures marine pick instruction of fractures	C	V v k	5				tr tr			200338 				•06 •08					

COMING .		े र र	H H H	PROPERTY:	A)	TEP	ATION		RID COO		ATES:	163	SHEE	72	of L	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
DEPTH open fr/i dip	GRAPHIC LOG	<pre>% recov. closed 1 filling dip. # 1</pre>		COMINCO ALASKA DESCRIPTION	biotite seric.	11 2 2 1	silica	- Contraction of the second se	% SULF ESTIM	IDE -					ASSAY	RESULTS	SAMPLE
DRILLER ORIENTATION C TOTAL DEPTH		40°3 100 0369 V449 96 59 1449		19-101: and shade lighter that averlying interval = color change caused by one on combination of histed factors: 1) less gtz - 205/04/19 finer grain size 30 subtle clouding of foldspars due to scenetize ation Hardness tests ingrist this interval is more servertized		5			A second seco		-79 200340 -79 200341 200341 200341 200341	N.					
LOGGED BY				5-0700 WN/W WANNON NN-DONM													

										V	Est ozk
Hole	Sande	- I wal	Thickness	Ace	_	Ag		Cu			Est, grade
#	H	LATONA -	Thidness	ppm	ft.ppm	ppm	A-ppm	%	4.%		by fire Assay (ppm)
											÷34,3)1,2
L.D. 3		0-13	13'	C	Varbe	rden				- Manung	
	200327	13-17,1	4.1			,6		,003			
	32-8	17.1-21.9	4,8	,020	.096	<.4		,001		29,40	
	329	21.9-26	4,1	2.010	,040	<, 4		,00/			
	330	26-31	5.0	2,010	1050	<.4		,002			
	33/	31-36,2	5.2	<,010	,052	<.4		.002			
	332	36.2-37,3	1.1	,020,	,022	<,4		,005			
	333	37,3-42,4	5.1	,080	,408	<,4		,006			
	334-	42.4-46.2	3.8	,666	2.531	chel .		,055			
	335	46.2-49.8	3.6	,828	2.981	,7		,083		27.9@	
	336	49,8-53,4	3.6	,920	3.312	,4-		,058		.688	
	337	53,4-56	2,6	,614	1.596	1.3		,027			
	338	56-60,4	4.4	,060	,264	<.4		,011			
	339	60.4-70.3	9,9	,860	8.510	<.4		.009			
	- 340	70,3-79	8.7	< 10	, 870	<.4		,002		30.7 @	
	1	79-89	. 10,0		1.00			,003		<.10	
	342	89-101	12.0	,040	,480	. < , 4		,003			
			0	Summor	Yn	0	N				
		Interiol	Thickness	Au ppm	opt	H9 ppm	opt	Ca. 90			
		0-13		Oue,	rburder	2					

N.D.

Tr

NO

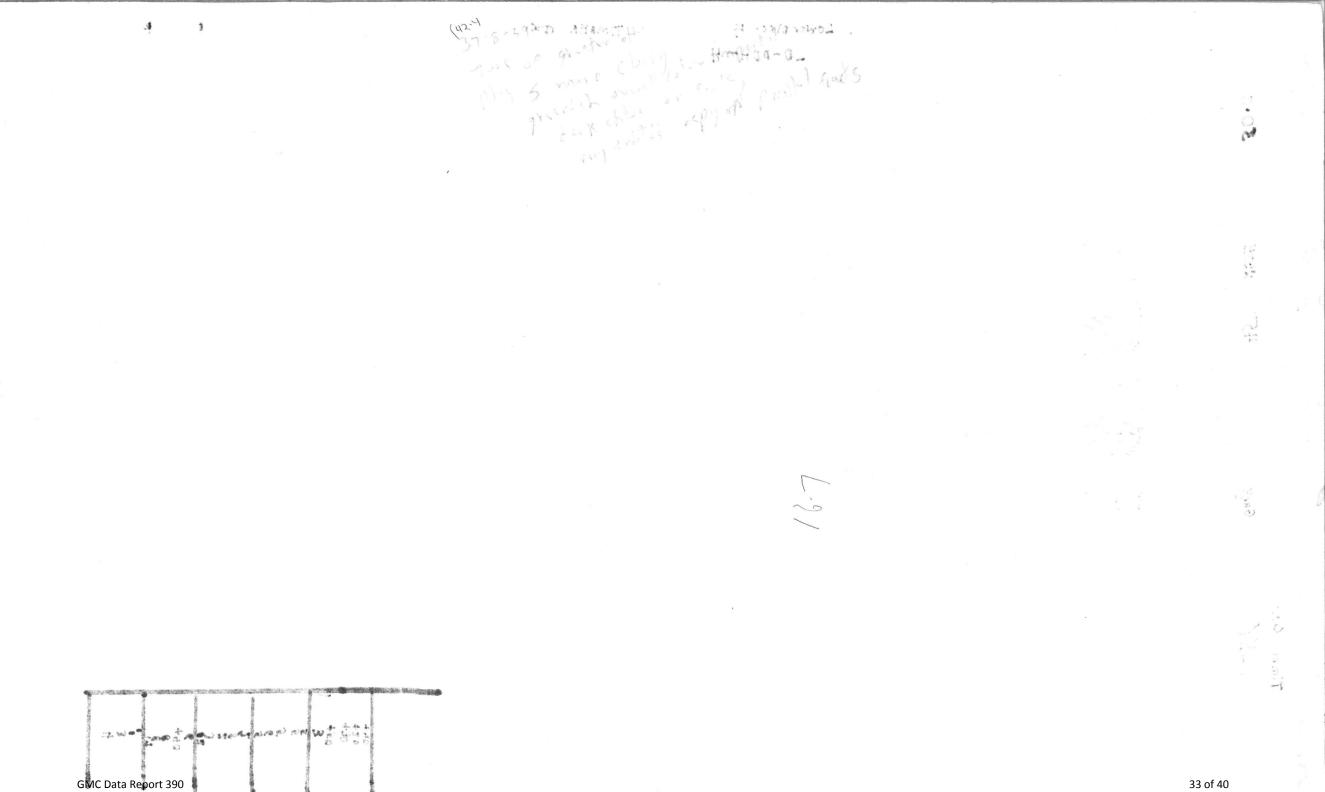
TE

TF

TE

Louier Drscovery Rssay Compilation L.D. 3

13-42.4 29.4 <.10 AZ.4-70,3 27.9 .688 70.3-101 30.7 <.10


GMC Data Report 390 /0/,0

prover 5-4

Estelle-Timber Creek Drilling	AK-061150-8 Technical	87	
Lower Discovery DDH-4			
1987 Drill Log AK, Tyonek D-8	map: Tyonek 🕅	- /	

CUM	NC	نب				1		-Lr.	++	5	fr.	ft.	fr.	ب ب	HO	OL'E LOWER DISC. H PROPERTYS				AT	ION	61	Sec. 1	2	- law		STE	5:			HI	74		_01	Ŧ				
0.	DEPTH	open fr/f	dib		OT HO AT	TOG STUTTO	& recov	H	filling		closed	dip. # f	closed	dip.# f		LD-DDH-4 COMINCO ALASKA DESCRIPTION	e	seric.		silica			% ccb					ا 						As	S AY	R	ESU	LTS	SAMPLE NUMBER
DEPTH SO	9												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			6.5-12.8. pervasiely moderately servicified biotite granite, frequent																							
DATE TOTAL DI	10	#1 70 +2	30 to HO2	ن بینید بینید بینید			25 100	Terp atz		2	utz.	20°	. G.			mulachiti staining - though sulfides appetr minor, more ofte-cop-aspi on froits; Vining gtz veniets; chloritized profiles, strong scricitization at 10:3 With discommender of aspig Vining calcorions (locally)		M 5	2.		Ø to NK		+	¢.															
BN50E	-	SAUSE	60° 70 to		ANN ANN -		100		20° 5 pures 25	+	212	25° Not				1228-14.7. higtilt thill granite, matass, para typically, chloritized, sparse, parallel properties frontiers 14.7-21.0. gs. above, but with mode to about an parallel gtz t ccp - age po sparce 21 to 14, 5, 5, 5, 11, senditized attrated sparse and the senditized tractores, sparse and the mode to its alternation of the sparse and senditized tractores, sparse and the		51 W	5 2-	2			+	r I															
STARTED	20		84		14 W 1		106		18	6	the A	20-2 20-2 Not	5			nod to abundant percelled - 272 to CCP - CXP P. Spared 31. to 1/4 1/1, 5. nb th sendificit introduce is livings on the mission 1/2 of the ctores, sparse angle 1/5. 21:0-23:4. Jense pangiled thereits		Ø-5 W >	+0				+	E		1111										-			
DATE ST	30						10 0	2	15		asput	ont 135				21:0-27:4: Lense panallel freets: Tas a give but gtz-departent teap, non-sec. to weakly securized alt. selveys 23:4:30-7: mixel gtz dominant and po-sep -appy deminant parallel veinles 5 yourialle density		W 2	5				+	121-121															
		+2.	592 70- 80		111-1-11		100	9+2 9+2 P32 +2	5-10	0	*	25-30				30:7-32.0- simler to above many some to cap finders are twite some to cap finders, but also over 32-33-9, as above, but also over 32-33-9, as above, but also over		+on Mtos vit	5 ?		075 M			r															
DRILLER Gary	4K	+2.	10.	- 1.00			160	CCF	15							33.9 - 34.8 : V. Weakly alt. intensive		v wk <	:5				+										•						*
	54)	ocol	80°		「「「「「「「」」」											34.8+38.0 pseudo - microbrillia trature signals changi ta moderatily taintirely sericitized intrasive local diserne py taspy in gonged (3) intensely scricitized with spottag Bass chite stains occurs at 35.5 to 36.5 for parallel 2tz-12 fracts at base of intervel, zone is commonly collectors, sparse po or clp togets.			_					r .				2 1 2 2 2 2 2 2 2 2											
L L										-					-	fracts at base of intervel, zone is commonly collarrows, sporse po or clp asers. 38-40.1 " I" I goved gtz t cop fracts in intrusive visibly less sericitized than above, fracture density decreases away from sericitized interval 40.1-42.9 - dissem, sulfs, on biotite, spotted texture of oxidized solfide/biotite grows,	and the second																						
LOGGED BY																42.9-30 ; relatively frish biotitic granite, backshot xeno liths,			en e								+20	+30	N NU	4.	- sale	P-08	5	+40		•w	e		
	GM	IC Da	ta R	eport	390	-										minor swiftige at biotite sites, v. sparse qtz-po-ccp ± ospj fracts.											0		14-		24			33.6			2 of	0	

m.

4:209

9.250

24-5

A +++ 3

33 of 40

Lower Discovery Assoy Campilation L. D. 4

				100	ver	Discou	iery				t
				As	cont C	Com DI	ilation			P	W
				/	L. D.	4				1/	m
											oz/t
Hale	Sande #	Interiol	Thickness	AL PPM	A-ppm	ppm	A-gpm	Cc. %	4.%	Au ppm (opt)	Est, grock by fire Assay (-pom - 34,3)/12
L.D.4		0-6,5	6.5	Over.	burder	7					
	200359	6,5-10	3.5	1.652	5.78	.5		.068		6.31 of .0460215	. 044 Au
	360	10-12.8	2.8	1.064	2.98	,4		.089		.040001	. 048
	361	12,8-14,7	1.9	1.038	1.97	,5		.064		16,90	
	362,	14.7-16.6	1.9	.618	1.17	,6		.067		1.09	1
	363	16.6-18.6	2.0	,880	1.76	,6		.056		(103)	. 0 . 0
	364	18.6-21	2,4	1.392	3.34	1.8		.112			.050
	365	21-23,4	1.4	1.004	1.41	1.8		,106		0.044021	1034
	366	23 A-24,2	1, 8	,560	1.01	,4	,72	.046		510	
	367	24,2-26,5	2.3	, 572	1.32	,6	1.38	,041		3010	
	368	26,5-28.5	2,0	,122	0,24	E386.5	773.0	,056		(2-2-A9)	
	369	28,5-30,7	2.2	1.094	2,41	1.1	2.42	.066			, 048
	370	30.7-32	1.3	2.520	3.28	5.2	6.76	,100		6.3 00	. 068
	37/	32-33,9	1.9	3.080	5.85	2.7	5.13	.109			.084
	372	33,9-34,8	0.9	1.060	0.95	,6	,54	.026		(,04)	.034
	373	34.8-37.2	2,4	,254	0.61	1.8	4.32	,015		10	
	374-	37.2-38	0.8	,800	6.64	1.4	1.12	,059	k	15,20	
	375	38-38.7	0.7	1,624	1.14	5.5	3,85	.224		Kart	.054
	376	38:7-40,1	1.4	,652	6.91	2.3	3.22	,121			
	377	40,1-92,9	2.8	,136	0.38	<.4	-	,023			
	378	42.9-50	7.1	.084	0,60	<.4	_	,009			

Summary (L.D. 4)

0				
TII	-71 /	Acc	Aq ppm opt	au
Interiol	/ hickness	ppm opt	- DDM ODF	%
0-6.5	6.5	Overbor	den	
615-234	16.9	1.090	TF	Tr
23.4-28.5	5%/	,504	151.98	Tr
28.5-34.8	6.3	1.983	2,36	Tr
34.8-50	15.2	1282	TPa	Tr
or				
26.5-34.8	8.3	1.534	94.92	Tr

Estelle-Timber Creek Drilling Lower Discovery DDH-5 1987 Drill Log AK, Tyonek D-8 AK-061150-8 Technical

map: Tyonek 🛛 🐇

.

.

.

COMING .	- H H H - • [~	IOL'E LOT S PROPERTY:		GRID COORDINATES:	SHEET	of
DEPTH Open fr/r open fr/r dip Log Closed f filling filling	the # no # no €	COMINCO ALASKA DESCRIPTION	Plotite seric. K-spar silica	% SULFIDE ESTIMATE		ASSAY RESULTS HEAVY
НОРЕКТИ МОРЕКТИ DATE CONDECT DATE CONT CONT CONT CONT CONT CONT CONT </th <th>D 58 Q + 4</th> <th>Description of the second of t</th> <th>5 W 5 W? 2</th> <th>tr p.1 tr tr</th> <th></th> <th></th>	D 58 Q + 4	Description of the second of t	5 W 5 W? 2	tr p.1 tr tr		

COM	IN	ۍ C				1		•	ft.	2	• • •	rt.	Ł	د د.	Notes	HC)L'E	Ŀ	Ð	8	5			PRO	PE	RTY	13]				K -	6	RIL	C C	OR	01/	A	res	:		SF	14-	Ť	7	of	2				
	I DEPRH	open fr/f	dib		LOG		SCOV	jn j	***		filling	-dip. #	closed	-dip_# ft.				C		NIN Des			14.77	SK	A		11 180 1 10 1 10 1 10 1 10 1 10 1 10 1	e	chlor.	A-SDBF	4		9 ccb	5	1.5	DE	ŀ	ینی میں ایکی میں ایکی میں ایکی میں		5		ζ.,		and a second	183	Т. АУ	R	su	LTS	SAMPLE
ELEVATION DATE STARTED DATE ENDED DATE ENDED DRILLER ORIENTATION CONTACT OF TOTAL DEPTH			20 10 10														In an. Mo		- list Greg	9/7-1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-						biotite tite																								
ROPERTY LOGGED BY		n	nta	tepo	0													3	57.8		66.	. 6		ι <u>ε</u> .3	1.000 C	85.8	F P							8													3	8 of /	19	

				La	ver Issay L.L	Disco Compile D. 5	etion			Vor	est.
				A	LL .	A	7	Cl	L	(opt)	test. grade
Hde	Sample #	Interval	Thidress		St-ppm		ft-ppin	%	4-%	ppm Ru	by Aire Assay (7917) + 3412) 4,2~
L.D. 5	200379	0-4.6	4.6	, 814	3.79	1.0		,069		8.9'0	, 026
	380	4.6-8.9	4.3	1960	4,13	,7		,073		(.026)	, 030
	381	8.9-10,6	1.7	4.200	7.14	6.7	11.39	,452	, 768		, 190
	382	10,6-13,2	2.6	6.000	15,60	3.3	8.58	,157	. 408	15.8 3	, 130
		13.2-16	2.8	4.980	13.94	6,0	16,80	. 307	,860	4.36	, 140
		16-18	2.0	4,600	9.20	11.6	23.20	.556	1.112	(13) 24.7'sb	.166
		18-20	2.0	4,840	9.68	6.8	13.60	.33.6	,672	94021	. 148
		20-21.9	1.9	4.920	0	3.4	6.46	,186	,353	13' OT 15	. 122
		21.9-24.7	2.8	1.398	3.91	2.2	6.16	,110	,308	out	,054
		24.7-35	10.3	,608	6,26	6.4		,026			
		35-45	10.0	,478	4.78	<.4		,021		35.30	
		45-47	2.0	.578	1.16	5,4		1019		.427	
		47-48,9	1.7	,400		<.4		.011			
	_	48.9-60		,192	2.13	<.4		.030			
		60-70		,024	0,24	2.4		,004			
	394	70-80	10.0	,026	0,26	2,4		.014		3800	
	395	80-82.1	2.1	<,01	0.02	<,4		,008		,018	
		82.1-96		4.01	0.08	<.4		.011			
	397	90-98	8.0	2,01	0.08	<.4		,004			
		L.									

Sconwary (L, D, 5)

Interva/	Thickness	ppm opt	ppm opt	Cu
IMIGVA	1 1110445	ppm opt	ppm opt	76
0-8.9	8,9	,890	TR	Tr.
8.9-24.7	15,8	4,360	5.46	0,28
24.7-60	35,3	,427	N.D.	Tr
60-98	38.0	TR.	N.D.	TF
	98,0			