1993 lower Cook Inlet geologic field program

Amoco Oil Co.

GMC DATA REPORT 453

This GMC data report from the Amoco Heritage collection has been made available through funding from the FY2018 USGS National Geological and Geophysical Data Preservation Program, Grant Number G18AP00054. This project report is presented in its original format and has not been reviewed for technical content or for conformity to the editorial standards of DGGS. It should not be used or cited as reviewed data.

2019
State of Alaska
Department of Natural Resources
Division of Geological & Geophysical Surveys
GEOLOGIC MATERIALS CENTER

SECTION NAME	CODE	TRS	QUAD	DATE	MEASURED BY
Douglas River	93 KAT 102	TBA	TBA	8/9/93	GFH, Data entered on computer by MAC
3		1	10/1	0,0,00	GITI, Data entered on computer by MAC
		*			
DEPTH	GR1	GR2	GR3	GR AVE.	LITHOLOGY
0	1687	1685	1710	1694.00	Mudstone
5	1137	1095	1128	1120.00	fg ss
10	1456	1505	1521	1494.00	slts
15	1416	1334	1458	1402.67	slts as above
20	1370	1349	1402	1373.67	slts as above
25	1538	1598	1421	1519.00	slts as above
30	1506	1541	1473	1506.67	slts as above
35	1344	1331	1270	1315.00	vfg ss
40	1397	1338	1326	1353.67	vfg ss a.a., ash beds
45	1462	1498	1433	1464.33	slts
50	1233	1261	1257	1250.33	slts a.a.
55	1410	1344	1292	1348.67	sits a.a.
60	1344	1301	1254	1299.67	slts a.a.
65	1244	1233	1201	1226.00	slts a.a.
70	1233	1225	1267	1241.67	slts a.a.
75	1429	1469	1430	1442.67	slts a.a.
80	1121	1102	1065	1096.00	fg ss
85	0	0	0	0.00	covered section
90	1564	1540	1561	1555.00	slts
95	1468	1558	1491	1505.67	slts a.a.
100	1586	1623	1610	1606.33	slts a.a.
105	1581	1515	1616	1570.67	slts a.a.
110	1608	1612	1620	1613.33	slts a.a.
115	1550	1490	1549	1529.67	slts a.a.
120	1614	1655	1684	1651.00	sits a.a.
125	0	0	0	0.00	No gamma ray obtained
130	0	0	0	0.00	No gamma ray obtained

	The Control of the Co				
135	0	0	0.	0.00	No gamma ray obtained
140	0	0	0	0.00	No gamma ray obtained
145	0	0	0	0.00	No gamma ray obtained
150	0	0	0	. 0.00	No gamma ray obtained
155	0	0	0	0.00	No gamma ray obtained
160	0	0	0	0.00	No gamma ray obtained
165	0	0	0	0.00	No gamma ray obtained
170	0	0	0	0.00	No gamma ray obtained
175	0	0	0	0.00	No gamma ray obtained
180	0	0	0	0.00	No gamma ray obtained
185	0	0	0	0.00	No gamma ray obtained
190	0	0	0	0.00	No gamma ray obtained
195	0	0	0	0.00	No gamma ray obtained
200	0	0	0	0.00	No gamma ray obtained
205	0	0	0	0.00	No gamma ray obtained
210	0	0	0	0.00	No gamma ray obtained
215	0	0	0	0.00	No gamma ray obtained
220	0	0	0	0.00	No gamma ray obtained
225	0	0	0	0.00	No gamma ray obtained
230	0	0	0	0.00	No gamma ray obtained
235	0	0	0	0.00	No gamma ray obtained
240	0	0	0	0.00	No gamma ray obtained
245	0	0	0	0.00	No gamma ray obtained
250	0	0	0	0.00	No gamma ray obtained
255	0	0	0	0.00	No gamma ray obtained
260	0	0	0	0.00	No gamma ray obtained
265	0	0	0	0.00	No gamma ray obtained
270	0	0	0	0.00	No gamma ray obtained
275	0 .	0	. 0	0.00	No gamma ray obtained
280	1586	1652	1668	1635.33	slts
285	1460	1425	1495	1460.00	sits
290	1683	1653	1678	1671.33	Mud rich slts
295	1654	1675	1684	1671.00	Mud rich slts a.a.

300	1480	1407	1404	1430.33	sits
305	1583	1628	1671	1627.33	slts a.a.
310	0	0	0	0.00	Covered section
315	. 0	0	0	0.00	Covered section
320	1550	1548	1587	1561.67	sits
325	1551	1585	1530	1555.33	sits a.a.
330	1664	1648	1641	1651.00	Flaggy sity mdst
335	1496	1544	1517	1519.00	sits
340	1517	1601	1501	1539.67	sits a.a.
345	1461	1446	1447	1451.33	vfg ss/sits
350	1510	1589	1570	1556.33	slts
355	1972	1938	1881	1930.33	Highly horizontally bioturb. slts
360	1608	1609	1673	1630.00	sits
365	1512	1629	1605	1582.00	sits a.a.
375	1289	1474	1436	1399.67	sits a.a.
380	1504	1460	1521	1495.00	sits a.a.
385	1628	1604	1695	1642.33	sits a.a.
390	1424	1435	1391	1416.67	v. f. ss, more fossils
395	1444	1469	1465	1459.33	
400	1630	1608	1608	1615.33	v. f. ss, more fossils a.a.
405	1464	1467	1445	1458.67	***
410	1243	1249	1236	1242.67	slst a.a. v.f. ss
415	1334	1304	1348	1328.67	
420	1579	1597	1582		v.f. ss a.a.
425	1373	1366	1372	1586.00 1370.33	sist
430	1535	1530	1562	1542.33	slst
435	1550	1494	1551	1542.33	sist
440	1324	1338	1340		slst
445	1435	1527	1522	1334.00	v. f. ss
450	1336	1391	1314	1494.67	sist
455	1735	1699	1680	1347.00	v. f. ss
460	1412	1478	1487	1704.67	slst
465	1518	1466		1459.00	slst
700	1010	1400	1436	1473.33	slst

470	1348	1367	1395	1370.00	v. f. ss
475	1325	1339	1340	1334.67	slst
480	1624	1547	1560	1577.00	slst
485	1487	1489	1512	1496.00	slst
490	1425	1491	1423	1446.33	slst
495	1524	1536	1532	1530.67	slst
500	1572	1591	1542	1568.33	slst
505	1601	1595	1575	1590.33	slst
510	1614	1580	1580	1591.33	slst
515	1748	1758	1796	1767.33	slst, near ash
520	1318	1360	1334	1337.33	slst
525	1470	1459	1492	1473.67	slst
530	1231	1279	1192	1234.00	v. f. ss
535	1442	1402	1444	1429.33	slst
540	1264	1179	1238	1227.00	slst

4000 L 0-	ala Indat P' : I	d Daniel		T	GR 93lcp	1	
1993 Lower Co	ok inlet Field	d Program		-			10
Section	93LCP1		*****		2	1	
	Saddle Mountai						
Location	27-2S-20W Se						
Measured By	Doherty and Va	an Fleet		-			
Device	GRS 5000						
Background	711						
DEPTH	GR1	GR2	GR3	GR AVE.	LITHOLOGY	COMMENTS	
5	913	1064	1058	1012	sdst		
9	913	1081	1070	1021	sdst		
10	948	964	914	942	sdst		
12	799	866	846	837	sdst		
14	830	810	769	803	sdst		
15	798	849	793	813	sdst		
16	822	803	836	820	sdst		
18	804	866	873	848	sdst		
20	850	832	844	842	sdst		
22	863	867	793	841	sdst		
24	850	851	804	835	sdst		
26	739	769	765	758	sdst		
28	820	821	829	823	sdst		
30	1081	1112	1161	1118	sdst	looks like increase in alter	red feldspar
32	915	1208	998	1040	sdst		
34	1135	1122	1130	1129	sdst		2
36	1049	1126	1076	1084	sdst		
38	1269	1326	1352	1316	sdst		
40	1078	1051	1124	1084	sdst		
42	967	957	952	959	sdst		
44	1066	1153	1119	1113	sdst	,	113.000
46	970	993	1001	988	sdst		

					(SR O'SICE)	
48	1006	999	1092	1032	GH-93lcp1 sdst	
50	1127	1128	1092	1116	sdsť	
52	1262	1189	1242	1231	sdst	
54	1007	982	996	995	sdst	
56	1008	1015	1020	1014	sdst	
58	900	927	874	900	sdst	
60	974	965	911	950	sdst	
62	1058	1081	1112	1084	sdst	
64	1121	1079	1148	1116	sdst	
66	978	975	1057	1003	sdst	
68	1084	1304	1260	1216	sdst	
70	1704	1683	1675	1687	sdst	
72	1188	1151	1174	1171	sdst	
74	1669	1657	1619	1648	sdst	-
76	1868	1882	1857	1869	sdst	
78	1498	1422	1424	1448	sdst	

				GR 93KAT	.03	
ok Inlet Fie	ld Program					
2014 2 7 7 7 7						
		ıd				
	d Kulland					
GRS 5000						
counts/10 sed	conds					
GR1	GR2	GR3	GR AVE.	LITHOLOGY	COMMENTS	
522	518	555	532			
512	480	496	496			
343	362	318				
528	565	542				
622	554	542	573			
600	616	618	611			
532	547	573				
463	460	447	457			
484	510	466	487			
508	510	485	501			
408	414	412	411			
484	497	485	489		large scoored and weathered contact bet	ween 55 and 60
534	527	499	520			0
477	447	439	454			
496	465	505	489	vfg. ss		
574	598	574	582	slst		
448	491	476	472	slst		
412	421	368	400			
529	555	523	536			
695	676	718	696	slst/mdst		
475	494	498	489	slst/mdst		
551	491	554	532			
	93KAT103 Twin Glacier 12-15S-27W Hebertson and GRS 5000 counts/10 sec GR1 522 512 343 528 622 600 532 463 484 508 408 484 534 477 496 574 448 412 529 695 475	Twin Glacier 12-15S-27W Afognak D6 Qual Hebertson and Kulland GRS 5000 counts/10 seconds GR1 GR2 522 518 512 480 343 362 528 565 622 554 600 616 532 547 463 460 484 510 508 510 408 414 484 497 534 527 477 447 496 465 574 598 448 491 412 421 529 555 695 676 475 494	93KAT103 Twin Glacier 12-15S-27W Afognak D6 Quad Hebertson and Kulland GRS 5000 counts/10 seconds GR1 GR2 GR3 522 518 555 512 480 496 343 362 318 528 565 542 622 554 542 600 616 618 532 547 573 463 460 447 484 510 466 508 510 485 408 414 412 484 497 485 534 527 499 477 447 439 496 465 505 574 598 574 448 491 476 412 421 368 529 555 523 695 676 718 475 494 498	93KAT103 Twin Glacier 12-15S-27W Afognak D6 Quad Hebertson and Kulland GRS 5000 counts/10 seconds GR1 GR2 GR3 GR AVE. 522 518 555 532 512 480 496 496 343 362 318 341 528 565 542 545 622 554 542 573 600 616 618 611 532 547 573 551 463 460 447 457 484 510 466 487 508 510 485 501 408 414 412 411 484 497 485 489 534 527 499 520 477 447 439 454 496 465 505 489 574 598 574 582 448 491 476 472 412 421 368 400 529 555 523 536 695 676 718 696 475 494 498 489	93KAT103 Twin Glacier 12-15S-27W Afognak D6 Quad Hebertson and Kulland GRS 5000 Counts/10 seconds GR1 GR2 GR3 GR AVE. LITHOLOGY 522 518 555 532 vfg. sdst 512 480 496 496 vfg. sdst 343 362 318 341 f-m gr sdst 528 565 542 545 v fg sdst/slst 622 554 542 573 v fg sdst/slst 622 554 542 573 v fg sdst/slst 600 616 618 611 v fg sdst/slst 532 547 573 551 v fg sdst/slst 463 460 447 457 v fg sdst/slst 484 510 466 487 v fg sdst/slst 508 510 485 501 v fg sdst/slst 508 510 485 501 v fg sdst/slst 408 414 412 411 fg. ss 484 497 485 489 vfg. ss 534 527 499 520 vfg. ss 574 598 574 598 574 582 slst 496 465 505 489 vfg. ss 574 598 574 582 slst 448 491 476 472 slst 412 421 368 400 fg ss 529 555 523 536 fg ss 695 676 718 696 slst/mdst 475 494 498 489 slst/mdst	93KAT103 Twin Glacier 12-15S-27W Afognak D6 Quad Hebertson and Kulland GRS 5000 Counts/10 seconds GRI GR2 GR3 GR AVE. LITHOLOGY COMMENTS 522 518 555 532 Vfg. sdst 512 480 496 496 vfg. sdst 528 565 542 545 v fg sdst/slst 528 565 542 545 v fg sdst/slst 622 554 542 573 vfg sdst/slst 600 616 618 611 v fg sdst/slst 532 547 573 551 v fg sdst/slst 463 460 447 457 v fg sdst/slst 484 510 466 487 v fg sdst/slst 508 510 485 501 v fg sdst/slst 488 497 485 489 vfg. ss 1arge scoored and weathered contact bet 534 527 499 520 vfg. ss 448 497 447 439 454 vfg. ss 459 574 598 574 582 slst 412 421 368 400 fg ss 599 676 718 696 slst/mdst 475 494 498 489 slst/mdst

					GR 93KAT	1.03			
110	657	660	650	656	slst/mdst	.00			
115	726	705	736	722	slst/mdst				
120	679	691	706	692	mdst	Α.			
125	764	755	760	760	slst/mdst			·	
130	729	752	786	756	slst/mdst	small sd lenses from 130-	150		
135	716	723	707	715	slst/mdst				
140	728	740	721	730	slst/mdst				
145	746	753	758	752	slst/mdst				
150	843	847	825	838	slst/mdst				
155	858	817	856	844	slst/mdst				
160	841	857	868	855	slst/mdst			,	
165	955	957	965	959	slst/mdst				
170	808	863	887	853	slst/mdst				
175	782	780	787	783	slst	82/9s		0	
180	810	817	805	811	slst				
185	861	834	831	842	slst				
190	735	792	777	768	slst				
195	828	827	830	828	slst				
200	912	926	961	933	slst/mdst	93/6s			
205	987	963	899	950	slst/mdst				
210	948	942	991	960	slst/mdst	·			
215	1108	1081	1117	1102	slst/mdst				10
220	930	946	964	947	slst/mdst				
225	445	534	501	493	lmst	inoceramus rich rx			
230	508	546	537	530	Imst	4 .			
235	517	487	506	503	Imst				
240	668	639	624	644	lmst				
245	590	581	568	580	Imst				
250	512	516	565	531	lmst				2
255	507	546	554	536	Imst				
260	471	492	524	496	Imst				
265	550	504	531	528	lmst				
270	494	479	442	472	lmst				

275	665	667	650	661	GR 93KAT	103			
					slty lmst				
280	663	715	773	717	slty Imst				
285	500	511	514	508	Imst				
290	424	411	426	420	lmst				
295	464	499	429	464	Imst				
300	560	488	525	524	lmst				
305	849	863	919	877	slty mdst	Khl/Kk contact?			
310	851	998	985	945	slty mdst				(2)
315	990	984	954	976	slty mdst				
320	1030	1056	1053	1046	slty mdst				
325	628	704	709	680	sity mdst				
330	822	918	915	885	slty mdst				
335	938	868	796	867	slty mdst				-
340	759	720	823	767	slty mdst				
345	724	882	872	826	slty mdst				
350	734	777	708	740	slty mdst				
355	741	751	761	751	slty mdst				
360	815	792	847	818	slty mdst				
370	759	799	879	812	slty mdst			 	
375	881	921	933	912	slty mdst				
380	903	855	862	873	slty mdst				
385	960	947	970	959	slty mdst				
390	910	921	932	921	slty mdst				
395	778	787	808	791	slty mdst	1			
400	538	579	521	546	vfg ss				
405	1045	1022	1038	1035	slty mdst		 	-	
					July moot				
* ×							1	+	
ol started to act	up after this po	int. It was rain	ina.				1		

SECTION NAME	CODE	TRS	QUAD	—— gamma l DATE	ray ms93kat104 MEASURED BY	INSTRUMENT
		***************************************				II 40 I I IOIVILIAI
HALLO GLACIER	93KAT104-A	SW/NE 32-20S-30W	MT. KATMAI B1	32735.00	RK, JVF	SCINTEX GIS-5
						·
		3				
DEPTH	GR1	GR2	GR3	GR AVE.	LITHOLOGY	COMMENTS
0	1111	1124	1089	1108.00	SLTST	dip: 13 deg., S5E, observed conj. shear sets.
5	948	961	915	941.33	SLTST	1
10	1189	1171	1138	1166.00	SLTST	
20	1019	1013	1035	1022.33	SLTST	
25	1079	1044	1090	1071.00	SLTST	acute angle conjugate shears S20W
30	1201	1304	1344	1283.00	SLTST	and angle conjugate check cove
35	1030	998	990	1006.00	SLTST	
40	1023	1000	1045	1022.67	SLTST	conjugate shears S40E
45	1019	1060	1082	1053.67	SLTST	30,000
50	1004	955	950	969.67	SLTST	conjugate shears due S
55	1022	1075	1005	1034.00	SLTST	- sinjugano sinoano auto o
60	998	1008	1024	1010.00	SLTST	conjugate shears S10E
65	1017	962	1020	999.67	SLTST	conjugate shears S5E, adjacent 8" dike
70	977	988	989	984.67	SLTST	dike as above
75	997	967	951	971.67	SLTST	vertical fractures
80	1072	1081	1084	1079.00	SLTST	
85	960	1055	985	1000.00	SLTST	
90	1176	1141	1100	1139.00	SLTST	conjugate shears S20E
95	1018	988	986	997.33	SLTST	end of transect A. 100' estimated missing section
195	1489	1487	1516	1497.33	SLTST	begin transect B, dip 17 deg., S14E
200	1484	1429	1467	1460.00	SLTST	5 , , , , , , , , , , , , , , , , , , ,
205	1371	1352	1412	1378.33	SLTST	
210	1360	1296	1240	1298.67		conjugate shears S10E
215	1370	1317	1302	1329.67	SLTST	, 0
220	1367	1465	1480	1437.33	SLTST	
225	1434	1439	1424	1432.33		densely fractured, blocky
230	1240	1212	1266	1239.33		densely fractured, blocky

				- gamma i	rav ms93kat10	04a
235	1278	1254	1317	1283.00	ray ms93kat10 SLTST	densely fractured, blocky
240	1167	1124	1164	1151.67	SLTST	densely fractured, blocky
245	648	608	588	614.67	SLTST	dike
250	1203	1194	1211	1202.67	SLTST	fractures parallel to dip
255	1271	1252	1301	1274.67	SLTST	densely fractured, blocky
260	1235	1255	1325	1271.67	SLTST	densely fractured, blocky
265	1378	1293	1364	1345.00	SLTST	dip 16 degrees S20E
270	1534	1571	1567	1557.33	SLTST	densely fractured, blocky
275	1297	1321	1315	1311.00	SLTST	densely fractured, blocky
280	1307	1423	1398	1376.00	SLTST	densely fractured, blocky
285	1230	1264	1336	1276.67	SLTST	densely fractured, blocky
290	1439	1396	1456	1430.33	SLTST	densely fractured, blocky
295	1303	1266	1251	1273.33	SLTST	densely fractured, blocky
300	1327	1120	1222	1223.00	SLTST	densely fractured, blocky
305	1229	1222	1255	1235.33	SLTST	densely fractured, blocky
310	1428	1304	1293	1341.67	SLTST	densely fractured, blocky
315	1304	1366	1288	1319.33	SLTST	densely fractured, blocky
320	1310	1333	1303	1315.33	SLTST	densely fractured, blocky
325	1406	1436	1413	1418.33	SLTST	densely fractured, blocky
330	1168	1236	1212	1205.33	SLTST	densely fractured, blocky
335	1224	1230	1305	1253.00	SLTST	dip 15 degrees due S
340	1301	1385	1335	1340.33	SLTST	densely fractured, blocky
345	1226	1241	1185	1217.33	SLTST	densely fractured, blocky
350	1447	1381	1382	1403.33	SLTST	weathers splintery-blocky
355	1206	1214	1255	1225.00	SLTST	densely fractured, blocky
360				0.00		covered section
365	1420	1372	1345	1379.00	SLTST	densely fractured, blocky
370	1330	1325	1360	1338.33	SLTST	densely fractured, blocky
377	1365	1308	1371	1348.00	SLTST	densely fractured, blocky
380	1072	1130	1147	1116.33	SLTST	densely fractured, blocky
386	1371	1325	1256	1317.33	SLTST	densely fractured, blocky
390	1409	1369	1345	1374.33	SLTST	densely fractured, blocky
400	1267	1197	1271	1245.00	SLTST	dip 17 degrees S3E

405	1142	1105	4447	gamma	ray ms93kat ∣SLTST	104a	
	1142	1165	1147	1151.33	SLIST	densely fractured, blocky	
410	1327	1349	1356	1344.00	SLTST	densely fractured, blocky	
415	1119	1116	1174	1136.33	SLTST	densely fractured, blocky	•
				0.00			
				0.00			
				0.00			
				0.00			
				0.00			

er Cook Inlet Fi	ield Program				Gamma Ray 93L	CP4
Section	MS93LCP4					
Geographic Area	Red Glacier					
Location	33-1S-21W Ke	enai A8 Quad				10000
Measured By	Verseput and \	/an Fleet				****
Device	GRS-500					**************************************
Background	290,327					
DEDTIL	07:					
DEPTH	GR1	GR2	GR3	GR AVE.	LITHOLOGY	COMMENTS
0	261	289	287	279	volc	
2.5	407	419	421	416	slst	
5	290	290	251	277	volc	
6.5	336	322	383	347	slst	
7.5	327	308	340	325	shale	
10	479	512	475	489	shale	
15	475	465	479	473	shale	
17	340	350	337	342	volc	
20	664	662	721	682	shale	
25	653	671	649	658	shale	
30	494	509	474	492	shale	
32	504	488	475	489	shale	
32.5	466	419	395	427	clay	
33	423	404	406	411	shale	
35	599	559	626	595	shale	
40	689	645	640	658	shale	
45	592	622	627	614	shale	
50	559	543	558	553	shale	
52.5	553	547	577	559	volc	9
55	532	510	576	539	shale	
60	654	668	678	667	shale	
65	590	635	613	613	shale	

Page 1

214	000	T 655	T	Gamma Ray 90	3LCP4
				volc sd	
			372	volc sd	
			685	shale	
	449	470	467	alt volc	
	593	603	606	shale	
664	607	611	627	shale	
584	587	545	572	shale	
313	320	324	319		
672	640	694	669		
544	521	518	528		
659	645	695			
528	526	561			
550	578				
634	573				
477	533				
646	567				
577	557				
554	536				
535					
529					
441	443				
465					***************************************
564					
543					
590					
623					
791					
586					7.1
711					
	584 313 672 544 659 528 550 634 477 646 577 554 535 529 441 465 564 543 590 623 791 586	282 309 370 386 660 684 481 449 621 593 664 607 584 587 313 320 672 640 544 521 659 645 528 526 550 578 634 573 477 533 646 567 577 557 554 536 535 510 529 543 441 443 465 505 564 588 543 591 590 599 623 642 791 833 586 598 711 717 546 559 613 665	282 309 285 370 386 359 660 684 710 481 449 470 621 593 603 664 607 611 584 587 545 313 320 324 672 640 694 544 521 518 659 645 695 528 526 561 550 578 621 634 573 582 477 533 473 646 567 612 577 557 500 554 536 514 535 510 506 529 543 509 441 443 441 465 505 466 564 588 563 543 591 583 590 599 637 623 642 584 791 833 7	282 309 285 292 370 386 359 372 660 684 710 685 481 449 470 467 621 593 603 606 664 607 611 627 584 587 545 572 313 320 324 319 672 640 694 669 544 521 518 528 659 645 695 666 528 526 561 538 550 578 621 583 634 573 582 596 477 533 473 494 646 567 612 608 577 557 500 545 535 510 506 517 529 543 509 527 441 443 441 442	314 309 308 310 volc sd 282 309 285 292 volc sd 370 386 359 372 volc sd 660 684 710 685 shale 481 449 470 467 alt volc 621 593 603 606 shale 664 607 611 627 shale 584 587 545 572 shale 584 587 545 572 shale 584 587 545 572 shale 672 640 694 669 shale 544 521 518 528 sd 659 645 695 666 shale 528 526 561 538 shale 550 578 621 583 shale 634 573 582 596 sd 477<

Page 2

AN ION WAY					Gamma Ray 931 CDA
185	636	614	666	639	shale
190	594	610	596	600	shale
195	554	570	559	561	shale
200	570	571	595	579	shale
202.5	470	488	490	483	shale
205	632	633	636	634	shale
210	535	522	501	519	shale
				#DIV/0!	
				#DIV/0!	
				#DIV/0!	

ECTION NAME	CODE	TRS	QUAD	DATE	Gamma Ray 93 KAT 105 MEASURED BY	INSTRUMENT
					WE SOURCE !	IIVOTTOIVIEIVI
Mt. Pedmar	93 KAT 105	T25S R34W	Mt. Katmai A-3	8/17/93	MAC, JMVF	SCINTEX GIS-5; Background =679@ 0 Feet
				& 8/19/93	MAC, CDC	
DEPTH	GR1	GR2	000	00.00		
0	899		GR3	GR AVE.	LITHOLOGY	COMMENTS
5		832	863	864.67	Black sandy sltst	App. dip=17 deg, dip dir=S42E
10	848	875	833	852.00	Black sandy sltst	nr corehole;1"sdy bds=2"-6"apart
15	830	843	855	842.67	Thin sdy beds,fresh=grey,weathrs=brown	
	952	886	854	897.33	As above	
20	943	990	1023	985.33	As above	
25	1153	1091	1069	1104.33	Black sandy sltst	
30	1346	1311	1355	1337.33	4" ss, 20%?lithix,tight,occ. sbrd qtz	trudip=12deg,dip dir=S45E;barn.encr.frac
35	930	939	918	929.00	v. black sltst. (=incr. carb. or volc.?)	conj.frac.shears,acute angle=S41E
40	945	920	863	909.33	as above	
45	770	746	714	743.33	fn ss fresh=lt grey, weathers=gy brown	
50	833	834	802	823.00	fn-med ss, weathers=gy	apparent massive ss
55	709	713	714	712.00	cogl:ig(+?met)peb(+cob)+biv;mtx=fn.ss	55=unc?>55:peb.lag12"aprt grd to mass.ss
60	785	751	784	773.33	ss dk gry, tight as above	
65	821	715	769	768.33	ss a.a.,>12"carb.cmt.concret.6"-8"whl.biv.	
70	752	760	818	776.67	ss as above	
75	880	916	840	878.67	ss as above	
80	927	921	883	910.33	ss a.a. carb. lenses 6"clay lam. in ss	12"fault norm@base, rev.@top (=inver?)
85	909	873	894	892.00	thickng upw. dk. gy sltst. abund. snd lam.	dip=14dea.dipdir:S29F:nr.5'normF:dwn-N
90	920	895	955	923.33	ss lt gy w/lam.dk gy volc or carbonac dep.	
95	876	816	848	846.67	ss a.a. w/ 1'long carb.lens w/ shell hash	
100	795	753	744	764.00		conj.frac.sets,1st(regnl?)=S40E;2nd=dueE
105	766	782	824	790.67	fract. ss a.a.	
110	858	843	851	850.67		dens -v. dens fract.prob. adj.fault zone
115	0	0	0	0.00		probable fault zone
120	0	0	0	0.00		probable fault zone
. 125	0	0	0			probable fault zone
130	0	0	0			probable fault zone

135	0	0		0.00	Gamma Ray 93 KAT 105	
	0	0	0	0.00	covered	probable fault zone
140	0	0	0	0.00	covered	probable fault zone
145	0	0	0	0.00	covered	probable fault zone
150	0	0	0 .	0.00	covered	probable fault zone
155	0	0	0	0.00	covered	probable fault zone
160	1437	1475	1465	1459.00	sltst w/concrts:weathr gr/blk-rust=volc?	dip=8.5deg,dipdir131deg; Bckgrd=724@160'
165	1472	1504	1515	1497.00	sltst a.a.	
170	1589	1542	1513	1548.00	sltst weathers gy; densely fractured	unit more brittle than units above &below it
175	1141	1119	1163	1141.00	sltst more silty than units above, bioturb.	dip=11deg; dip dir=149deg
180	1089	1124	1081	1098.00	v.fn.ss abund cly incl; >1'diam.limey concr	t
185	0	0	0 .	0.00	No reading/ lithol: 185-190 due to fault	
195	1043	1068	1040	1050.33	sdy sitst	
200	996	970	1012	992.67	sdy sltst a.a.	
205	807	869	908	861.33	lam. fn ss w/ concret, bedng intensly fract	fract due to poss fault zone (covered)
210	1699	1698	1713	1703.33	dk. gy. blocky slst	
215	1304	1244	1344	1297.33	a.a.	
220	1362	1375	1420	1385.67	a.a.	
225	1758	1781	1852	1797.00	a.a.	
230	1410	1395	1458	1421.00	slst w/ dk gy volc or organic rich deposits	
235	1118	1107	1144	1123.00	a.a.	
240	1042	1068	1026	1045.33	gy slst	
245	988	1024	973	995.00	f-med ss w/ concretions 6"->12" diam	
250	1100	1117	1132	1116.33	gy slst	
255	1239	1160	1223	1207.33	gy slst blocky	
260	1096	1077	1063	1078.67	gy slst	
265	987	1147	1167	1100.33	gy f ss w/ Inoc shells	
270	1077	1078	1188	1114.33	f. ss &slst w/ lnoc shells	
275	1160	1292	1226	1226.00	a.a. + concretions	Fault zone strike slip no vertical displacment
280	1236	1210	1120	1188.67	gy slst w/gy concr(cob sze)&wht1"concr	
285	1126	1078	1128	1110.67	gy slst & minor fine ss	
290	992	1017	1056	1021.67		2' rev. fault down to N
295	1038	978	990	1002.00	gy f ss & sltst	
300	885	1039	991	971.67	gy f-med ss	

305	000	1000	1011		Gamma Ray 93 KAT 105		
	990	1002	1011	1001.00	Gamma Ray 93 KAT 105 gy f ss; slmps>305'(=no effect meas	s.sect.)2' normal f. down to S	
310	915	969	949	944.33	gy f ss w/ gy concretions		
315	968	1141	1029	1046.00	gy f-m ss	rotated block with exotic slump unit	
320	938	921	936	931.67	gy f ss		H-00-2
325	1055	1058	1070	1061.00	gy v-f ss		
330	1037	1053	1043	1044.33	gy f ss		
335	1203	1248	1233	1228.00	gy f-m ss		
345	855	905	972	910.67	green-blk volc rich m-crs ss	slump zone @ 340'hence no reading	
350	908	876	904	896.00	a.a.	Statily 2010 S O to Horido No reading	
355	893	923	977	931.00	a.a.		
360	826	765	770	787.00	a.a.		
365	847	954	920	907.00	a.a.		
370	1288	1214	1329	1277.00	green-gy volc. rich slst	7'-10' normal fault down to S	
375	1115	1143	1092	1116.67	gy slst	7 TO HOLLING ROUTE OF	
380	1084	1148	1146	1126.00	a.a.		
385	1029	1108	1053	1063.33	a.a.		
390	913	1051	938	967.33	a.a.	slump unit @ 389	
395	892	917	942	917.00	a.a.	Sidilip diff. © 505	
400	905	919	865	896.33	a.a.		
405	1088	1082	1074	1081.33	gy slst		
410	987	1089	1017	1031.00	a.a.		
415	1144	1128	1094	1122.00	dk gy slst & f ss		
420	1040	931	906	959.00	a.a.		
425	805	762	741	769.33	a.a. + bivalves & wood frag		
430	768	831	759	786.00	dk gy slst & f ss		
435	823	801	882	835.33			
100	020	001	002	030.33	gy slst		

TABLE 1

Milligal Values for LaCoste & Romberg Model G Gravity Meter #30

		3 X		·	
Counter Reading*	Value in Milligals	Factor for Interval	Counter Reading*	Value in Milligals	Factor for Interval
000 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500	000 104.44 208.86 313.26 417.64 522.01 626.38 730.74 835.09 939.45 1043.80 1148.15 1252.49 1356.84 1461.19 1565.54 1669.89 1774.25 1878.61 1982.99 2087.38 2191.79 2296.21 2400.64 2505.07 2609.51 2713.95 2818.41 2922.87 3027.36 3131.85 3236.36 3340.89 3445.42 3549.97 3654.52	1.04440 1.04420 1.04400 1.04385 1.04365 1.04365 1.04355 1.04350 1.04350 1.04345 1.04345 1.04345 1.04345 1.04360 1.04365 1.04360 1.04365 1.04380 1.04390 1.04405 1.04435 1.04435 1.04435 1.04455 1.04470 1.04480 1.04495 1.04560 1.04560	3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5100 5200 5300 5400 5500 5600 5700 5800 5900 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000	3759.08 3863.65 3968.23 4072.82 4177.42 4282.03 4386.64 4491.27 4595.90 4700.53 4805.17 4909.81 5014.45 5119.09 5223.73 5328.36 5432.99 5537.62 5642.24 5746.85 5851.45 5956.05 6060.64 6165.22 6269.79 6374.35 6478.90 6583.44 6687.97 6792.48 6896.97 7001.44 7105.87 7210.26 7314.61	1.04570 1.04580 1.04590 1.04600 1.04610 1.04615 1.04635 1.04635 1.04640 1.04640 1.04640 1.04640 1.04635 1.04635 1.04635 1.04635 1.04630 1.04655 1.04585 1.04585 1.04580 1.04570 1.04560 1.04570 1.04560 1.04570 1.04540 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530 1.04530

^{*}NOTE: Right hand wheel on counter equals approximately .1 milligal. AWS 7-18-62

Base Station Data for Kamishak Hills Gravity Survey

Base Station	latitude	latitude	longitude	latitude latitude longitude longitude elevation	elevation	meter	observed
	degrees	legrees dec. min.	degrees	degrees dec. min.	ff	reading	gravity
Anchorage Airport Post Office	19	10.53	-149	58.87	87.9	5259 77	5259 77 981906 21
Yugnat	58	21.37	-154	2.60	38.0	5138 49	5138 49 981779 32

Ormmer 1998

station	Vea	ır juliar	timo	المسائلة ا	1 1				*
Station	yea	· ·			latitude	longitude	longitude	elevation	meter
		uate	hrs-min	degrees	dec. min.	degrees	dec. min.	ft	reading
yugnat	93	228	1047	58	21.27	151			7
ia3-01	93	228	1134	59	21.37 3.35	-154	2.60	38.0	5138.39
ia3-04	93	228	1149	59		-153	54.58	814.0	
ia3-05	93	228	1204	59	2.76	-154	1.34	1450.0	5098.74
ia3-03	93	228	1219	59	1.07	-153	57.21	2012.0	5060.42
ia3-02	93	228	1231	59	0.65	-153	55.38	1705.0	
base2	93	228	1249	59	2.20	-153	55.41	1585.0	5089.52
isle	93	228	1349	59	3.87	-153	49.41	5.0	5188.09
ia3-06	93	228	1404	- 59	6.52	-153	52.58	0.0	5194.18
ad6-01	93	228	1415	58	0.20	-153	52.68	1350.0	5100.35
ad6-02	93	228	1413	58	59.56	-153	56.22	1570.0	5087.53
ad6-03	93	228	1433		58.25	-153	56.14	1950.0	5062.15
ad6-04	93	228		58	57.24	-153	59.85	2665.0	5014.09
ad6-05	93	228	1442	58	55.48	-153	59.08	2125.0	5045.11
ad6-07	93	228	1501	58	53.78	-153	56.53	1205.0	5097.00
yugnat	93	228	1511	58	53.98	-153	52.65	1250.0	5099.57
yugnat	93	229	1632	58	21.37	-154	2.60	38.0	5138.45
ad6-06	93	229	947	58	21.37	-154	2.60	38.0	5138.48
ad6-11	93	-	1017	58	52.65	-153	59.92	2065.0	5043.64
base2	93	229	1034	58	59.30	-153	51.68	1230.0	5108.26
ia1-01	93	229	1046	59	3.87	-153	49.41	5.0	5188.09
ia1-01	93	229	1051	59	6.26	-153	43.96	-10.0	5194.63
ia1-02	93	229	1104	59	5.85	-153	43.54	-5.0	5194.01
ia1-04	93	229	1114	59	5.09	-153	42.20	5.0	5192.08
ia1-04	93	229	1122	59	4.26	-153	41.99	10.0	5189.28
ia1-05		229	1129	59	3.72	-153	40.92	10.0	5188.71
ia1-07	93	229	1137	59	2.93	-153	40.08	5.0	5187.32
ia1-07	93	229	1149	59	2.24	-153	39.44		5186.31
ia1-09	93	229	1152	59	1.58	-153	38.58	5.0	5185.80
ia1-09	93	229	1158	59	1.01	-153	37.72	5.0	5184.54
ad5-04	93	229	1205	59	0.47	-153	36.79	5.0	5184.12
ad5-04	93	229	1212	58	59.75	-153	34.85	5.0	5185.20
	93	229	1219	58	59.28	-153	33.41	5.0	5186.92
ad5-06	93	229	1226	58	58.58	-153	32.29		5187.26
ad5-07	93	229	1238	58	58.32	-153	30.16		5184.02
ad5-08	93	229	1243	58	57.31	-153	31.74		5112.66
ad5-09	93	229	1358	58	59.48	-153	30.34		5191.91
ad5-01	93	229	1533	58	55.48	-153	38.77		5050.95
ad5-02	93	229	1541	58	54.28	-153	38.47		5030.93
ad5-03	93	229	1552	58	52.24	-153	34.93		4958.55
ad6-14	93	229	1608	58	57.89	-153	42.44		5173.72
ad6-13	93	229	1618	58	58.37	-153	44.83		5158.61
ad6-12	93	229	1628	58	58.61	-153	48.28		5138.61
base2	93	229	1639	59	3.87	-153	49.41		5142.66
							-2. 1	5.0	2100.03

station year julian time latitude latitude longitude longitude elevation meter date hrs-min degrees dec. min. degrees dec. min. ft reading

ia3-08	93	229	1652	59	1.78	-154	2.71	1980.0	5062.87
ia3-09	93	229	1657	59	1.48	-154	1.44		
ia3-07	93	229	1704	59	0.65	-154	0.68		-
kd1-01	93	229	1715	58	56.21	-154	7.39	1220.0	
kd1-02	93	229	1722	58	55.74	-154	4.75	2470.0	5018.24
kd1-03	93	229	1732	58	54.61	-154	3.70	2915.0	4989.02
kd1-04	93	229	1738	58	54.87	-154	5.46		5018.47
kd1-05	93	229	1749	58	55.09	-154	7.94	1220.0	5096.42
yugnat	93	229	1827	58	21.37	-154	2.60		
yugnat	93	231	947	58	21.37	-154	2.60	38.0	5138.59 5138.59
ia1-11	93	231	1033	59	4.89	-153	43.64	-10.0	5191.89
ia1-12	93	231	1039	59	4.46	-153	44.75	-10.0	5191.89
ia3-10	93	231	1044	59	4.65	-153	47.33	-10.0	5190.89
ia3-11	93	231	1051	59	4.47	-153	48.56	-10.0	5191.77
base2	93	231	1057	59	3.87	-153	49.41	5.0	5188.21
ia3-12	93	231	1102	- 59	3.27	-153	51.50	-5.0	5188.21
ia3-13	93	231	1108	59	3.61	-153	52.91	-5.0	5187.74
ia3-14	93	231	1114	59	3.63	-153	54.49	-5.0	5186.42
ia3-15	93	231	1119	59	3.71	-153	55.52	0.0	5187.84
ia3-16	93	231	1129	59	4.07	-153	56.86	0.0	5186.47
ia3-17a	93	231	1134	59	4.16	-153	57.63	0.0	5185.45
ia3-17b	93	231	1139	59	4.22	-153	58.57	0.0	5186.39
ia3-18	93	231	1144	59	4.35	-153	59.75	0.0	5186.39
ia3-19	93	231	1149	59	4.52	-154	0.94	5.0	5189.60
ia3-20	93	231	1154	59	4.52	-154	2.08	-5.0	5189.25
ia3-21	93	231	1159	59	4.43	-154	3.86	-10.0	5190.25
base2	93	231	1214	59	3.87	-153	49.41	5.0	5188.15
ad6-11	93	231	1232	58	53.73	-153	48.55	495.0	5144.04
ad6-15	93	231	.1239	58	54.50	-153	43.07	815.0	
yugnat	93	231	1515	58	21.37	-154	2.60	38.0	5126.88
							2.00	30.0	5138.49

					GAMMA RA	Y 93KAT 106	
SECTION NAME	CODE	TRS	QUAD	DATE	MEASURED BY	INSTRUMENT	
				· · · · · · · · · · · · · · · · · · ·			
DOUGLAS R. IS.	93KAT 106	V/SW 2-13S-27	LLIAMNA A1/A	8/20/93	ntered on comp	SCINTEX GIS-5; Background =463@ 0 Feet	
				*			
DEPTH	GR1	GR2	GR3	GR AVE.	LITHOLOGY	COMMENTS	
0	483	507	530	507	cgr ss		-
5	501	505	511	506	cgr ss		
10	504	465	516	495	cgr ss		
15	507	502	495	501	cgr ss		
20	548	550	551	550	cgr ss		
25	592	577	547	572	cgr ss		
30	636	661	654	650	mgr ss		
35	647	643	649	646	mgr ss		
40	662	667	664	664	mgr ss		
45	585	589	604	593	mgr ss	Ψ .	
50	715	796	617	709	fgr ss		
55	567	600	601	589	fgr ss		
60	466	497	509	491	fgr ss		
65	499	529	549	526	fgr ss		
70	491	447	479	472	cgr ss		
75	502	499	527	509	cgr ss		
80	515	495	532	514	cgr ss		
85	562	533	520	538	cgr ss		
90	488	555	537	527	cgr ss		
95	560	534	551	548	cgr ss		
100	563	533	530	542	cgr ss		
105	528	561	526	538	cgr ss		*
110	569	530	577	559	cgr ss		
115	597	538	572	569	cgr ss		
120	595	564	538	566	cgr ss		
125	650	670	627	649	cgr ss		
130	572	584	559	572	mgr ss		

					- GAMMA RA	NY 93KAT 106
135	533	503	499	512	mgr ss	
140	557	600	566	574	mgr ss	
145	530	504	486	507	mgr ss	
150	531	510	537	526	mgr ss	
155	516	510	474	500	mgr ss	
160	519	512	520	517	mgr ss	
165	517	520	551	529	mgr ss	
170	508	501	497	502	mgr ss	
180	457	491	492	480	fgr ss	
185	522	448	508	493	fgr ss	
190	504	505	467	492	fgr ss	
195	505	466	474	482	fgr ss	
200	503	470	454	476	fgr ss	
205	534	532	488	518	fgr ss	
210	498	447	518	488	fgr ss	
215	502	478	475	485	fgr ss	
220	508	486	551	515	fgr ss	
225	466	569	535	523	fgr ss	
230	515	527	493	512	SANDSTONE	DIP: 18DEG. S, STRIKE: 220DEG.
235	504	516	517	512	SANDSTONE	X-BEDDED
240	513	550	555	539	SANDSTONE	IN NAKNEK FM.
245	580	572	563	572	SANDSTONE	
250	584	606	540	577	SANDSTONE	
255	681	578	625	628	SANDSTONE	
260	594	612	602	603	SANDSTONE	
265	606	574	604	595	SANDSTONE	UNCONFORMITY. WITH OVERLYING KAGUYAK FM.
270	675	626	668	656	SANDSTONE	FAULT ZONE
275	655	629	658	647	SANDSTONE	MASSIVE SS
280	624	571	661	619	SANDSTONE	CONCRETION ZONE, CARBONIZED WOOD FRAGS.
285	608	594	596	599	SANDSTONE	
290	651	624	678	651	SANDSTONE	LRGE. PACHYDISCUS KAMISHAKENSIS
295	600	558	586	581	SANDSTONE	
300	651	620	609	627	SANDSTONE	

					GAMMA RA	Y 93KAT 106	
305	600	602	575	592	SANDSTONE	35.4.1.755	
310	593	652	610	618	SANDSTONE		
315	651	584	614	616	SANDSTONE	2 SPECIES AMMONITES	
320	632	621	617	623	SANDSTONE		
325	615	567	613	598	SANDSTONE		
330	615	586	589	597	SANDSTONE	SAND COARSENS UPWARD F-M GR.	
335	519	612	577	569	SANDSTONE		
340	630	577	598	602	SANDSTONE	PACHYDISCUS KAMISHAKENSIS	
345	640	614	596	617	SANDSTONE	FAULT ZONE @ END OF SEC.	
				0		END BG GR: 466.	
				0			
				0			
				0			
				0			
				0			
	0 0 50 5 70			0			
н				0			
				0			
				0			
				0			
				0		1	
				0			
				0		4	
	8			0			
				0			
				0			
				0			
				0			
				0			
		-		0			
				0			
				0			
				0			

								Paleocurrent-93 fld	prg					
								Attitude; major	Depth		Paleocurrent		If avg.	
Location	Stratigraphic	Geographic	Sec.	Twnshp	Rng	Quad	Depositional	bedding	in Meas.	Type of current	direction	Quality	# of meas.	Average
	unit	Area					facies	(Dip / Dip dir.)	Section	indicator	(B, = Bidirec.)		(n > 1)	paleocurrent
93KAT1	Kk	Mt. Pedmar	24	25S	34W	Mt. Katmai A3			50' in	trough xbdd	164°	moderate		
93KAT1	Kk	Mt. Pedmar	24	25S	34W	Mt. Katmai A3			meas. sec.	trough xbdd	160°	moderate		
93KAT1	Kk	Mt. Pedmar	24	25S	34W	Mt. Katmai A3			93KAT105	trough xbdd	230°	moderate		
93KAT101	Khl	Kamishak Mountain	23	15S	29W	Mt. Katmai D1			55'	flame	85°	-		
93KAT103	Jn,Khi	Twin Glaciers	12	15S	27W	Afognak D6		9/172	58'	trough xbdd	300°		3	293
93KAT103	Jn,Khl	Twin Glaciers	12	15S		Afognak D6			58'	trough xbdd	285°			
93KAT103	Jn,Khl	Twin Glaciers	12	158		Afognak D6			58'	trough xbdd	295°			
93KAT105	Kp,Kk	Mt. Pedmar	24	25S		Mt. Katmai A3		12/35 at 30'	246'	ripples	194°			
93KAT105	Kp,Kk	Mt. Pedmar	24	25S	34W	Mt. Katmai A3		14/119 at 85'	350'	trough xbdd	175°		4	191
93KAT105	Kp,Kk	Mt. Pedmar	24	25S		Mt. Katmai A3		8/131 at 160'	362'	trough xbdd	150°			
93KAT105	Kp,Kk	Mt. Pedmar	24	258		Mt. Katmai A3		11/149 at 175'	362'	trough xbdd	320°			
93KAT105	Kp,Kk	Mt. Pedmar	24	25S		Mt. Katmai A3			366'	trough xbdd	120°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2		8/155	8'	trough xbdd	110°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			11'	ripple	250°		3	208
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2	1		11'	ripple	269°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			11'	ripple	105°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2	1		12'	trough xbdd	140°		16	230
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			16'	trough xbdd	305°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			17'	trough xbdd	296°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			35'	trough xbdd	260°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			37'	trough xbdd	255°			
93KAT106	Jn	Douglas River Island	2	13S	27W	Iliamna A1&2			37'	trough xbdd	200°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			37'	trough xbdd	245°			1
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			38'	trough xbdd	265°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			41'	trough xbdd	190°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			43'	trough xbdd	220°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			46'	trough xbdd	340°			
93KAT106	Jn	Douglas River Island	2	13S	27W	Iliamna A1&2			46'	trough xbdd	330°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			97'	trough xbdd	175°			
93KAT106	Jn	Douglas River Island	2	13S		Iliamna A1&2			99'	trough xbdd	195°			
93KAT106		Douglas River Island	2	13S		Iliamna A1&2			115'	trough xbdd	10°			
93KAT106		Douglas River Island	2	13S		Iliamna A1&2			117'	trough xbdd	260°			1
93KAT106		Douglas River Island	2	138		Iliamna A1&2		17/159	226'	trough xbdd	95°		13	133
93KAT106		Douglas River Island	2	13S		Iliamna A1&2		18/130	245'	tabular xbdd	270°			1
93KAT106		Douglas River Island	2	138		Iliamna A1&2			245'	tabular xbdd	145°			
93KAT106		Douglas River Island	2	13S		Iliamna A1&2			245'	tabular xbdd	90°			
93KAT106		Douglas River Island	2	13S		Iliamna A1&2			245'	tabular xbdd	240° ·			
93KAT106		Douglas River Island	2	13S		Iliamna A1&2			245'	tabular xbdd	165°			
93KAT106		Douglas River Island	2	13S		Iliamna A1&2			245'	tabular xbdd	130°			
93KAT106		Douglas River Island	2			Iliamna A1&2			258'	tabular xbdd	180°		2	

Page 1

93KAT106	Ks	Douglas River Island	2	138	27\M	Iliamna A1&2	T	Paleocurrent-93 fld p	ra 2611	tabular xbdd	28°			
93KAT106	Ks	Douglas River Island	2	138		Iliamna A1&2	-	account crit oo na p	261'	tabular xbdd	29°			
93KAT106	Ks	Douglas River Island	2	138		Iliamna A1&2					30°			
93KAT106	Ks	Douglas River Island	2	138		Iliamna A1&2	w/in the		261' 267'	tabular xbdd tabular xbdd	170°			
93KAT106	Ks	Douglas River Island	2	138		Iliamna A1&2	channels		267'		170°			
93KAT107	Jn/Ks	Douglas River	10	138		Iliamna A3			267	tabular xbdd	150°			101
93KAT107	Jn/Ks	Douglas River	10	138		Iliamna A3	channel margins			channel margin		fair	10	131
93KAT107	Jn/Ks	Douglas River	10	138		Iliamna A3	in the Jn and			channel margin	137°	poor		
93KAT107	Jn/Ks	Douglas River	10	138		Iliamna A3	filled with Ks			channel margin	106°	good		
93KAT107	Jn/Ks	Douglas River	10	138		Iliamna A3	and directions			channel margin	123°	good		
93KAT107	Jn/Ks	Douglas River	10	138		Iliamna A3	are bidirec.			channel margin	137°	fair	<u> </u>	
93KAT107	Jn/Ks	Douglas River	10	138		Iliamna A3	-			channel margin	134°	poor		
93KAT107	Jn/Ks	Douglas River	10	138						channel margin	149°	poor		
93KAT107	Jn/Ks	Douglas River	10	138		Iliamna A3				channel margin	122°	good		
93KAT107	Jn/Ks	Douglas River	10	138		Iliamna A3				channel margin	109°	fair		
93KAT107	Ks	Douglas River								channel margin	147°	good		
93KAT107	Ks	Douglas River	10	138		Iliamna A3	-			pebble imbrication	165°	-	7	149
93KAT107	Ks	Douglas River	10	13S 13S		Iliamna A3				pebble imbrication	158°			
93KAT107	Ks	Douglas River	_			Iliamna A3				pebble imbrication	155°			
93KAT107	Ks	Douglas River	10	13S 13S		Iliamna A3	-			pebble imbrication	56°			
93KAT107	Ks	Douglas River				Iliamna A3				pebble imbrication	154°			
93KAT107	Ks		10	138		Iliamna A3				pebble imbrication	175°			
93KAT107	Ks	Douglas River	10	138		Iliamna A3				pebble imbrication	181°			
93KAT107	Ks	Douglas River Douglas River	10	138		Iliamna A3	ļ			belemn. lineations	250°		16	158
93KAT107	Ks	Douglas River	10	138		Iliamna A3				belemn. lineations	230°			
93KAT107	Ks	Douglas River	10	138		Iliamna A3				belemn. lineations	232°			
93KAT107	Ks	Douglas River	_	138		Iliamna A3				belemn. lineations	50°			
93KAT107	Ks	Douglas River	10	138		Iliamna A3	-			belemn. lineations	68°	measurme	nts	
93KAT107	Ks		-	138		Iliamna A3				belemn. lineations	250°	in dir. of		
93KAT107	Ks	Douglas River Douglas River	10	138		Iliamna A3				belemn. lineations	237°	pointed en	d	
93KAT107	Ks		10	138		Iliamna A3				belemn. lineations	239°	of belem.		
93KAT107	Ks	Douglas River	10	138		Iliamna A3				belemn. lineations	69°			
93KAT107	Ks	Douglas River Douglas River	10	138		Iliamna A3				belemn. lineations	26°			
93KAT107	Ks		10	138		Iliamna A3				belemn. lineations	74°			
93KAT107	Ks	Douglas River	10	138		Iliamna A3				belemn. lineations	242°			
93KAT107	Ks	Douglas River	10	138		Iliamna A3				belemn. lineations	262°			
93KAT107	Ks	Douglas River	10	138		Iliamna A3				belemn. lineations	71°			
93KAT107 93KAT107	Ks	Douglas River	10	138		Iliamna A3				belemn. lineations	109°			
93KAT107		Douglas River	10	138		Iliamna A3				belemn. lineations	113°			
93KAT110 93KAT3	Ks Kk	N Kamishak hills	31	138		Iliamna A3		¥	94'	ripple	155°	poor		
93KAT3		Mt. Pedmar	17	25S		Mt. Katmai A3				ripple	156°	poor		
93KAT3 93KAT3	Kk	Mt. Pedmar	17	258		Mt. Katmai A3				ripple	180°	poor		
	Kk	Mt. Pedmar	17	25S		Mt. Katmai A3				ripple (Tc)	90°	fair		
93KAT6C	Kk	Mt. Pedmar	17	25S		Mt. Katmai A3			near base	Tcd,Tbc,Tc	105°	good	9	103
93KAT6C	Kk	Mt. Pedmar	17	25\$		Mt. Katmai A3			of cong.	Tcd,Tbc,Tc	100°	good		
93KAT6C	Kk	Mt. Pedmar	17	25S	33W	Mt. Katmai A3			at 430' in	Tcd,Tbc,Tc	116°	good		

93KAT6C	Kk	Mt. Pedmar	17	25S	33W Mt. Katmai A3	Paleocurrent-93 fld prosection	T-4 T- T			
93KAT6C	Kk	Mt. Pedmar	17	258				74°	good	
93KAT6C	Kk		17		33W Mt. Katmai A3	93KAT105	Tcd,Tbc,Tc	88°	fair	
		Mt. Pedmar	17	25S	33W Mt. Katmai A3		Tcd,Tbc,Tc	94°	fair	
93KAT6C	Kk	Mt. Pedmar	17	258	33W Mt. Katmai A3		Tcd,Tbc,Tc	119°		
93KAT6C	Kk	Mt. Pedmar	17	25S	33W Mt. Katmai A3				good	
93KAT6C	Kk	Mt. Pedmar	17	25S	33W Mt. Katmai A3		Tcd,Tbc,Tc	125°	good	
93LCP1	Ksm						Tcd,Tbc,Tc	110°	fair	
OCEO! I	IGIII	Saddle Mountain	27	2S	20W Seldovia D8	45'	trough xbdd	210°		

93KAT107 CLAST TYP	PE COUNT	
LITHOLOGY	TOTAL	PERCENT
Porphyritic Dacite	10	10%
Aphanitic Volcanic	5	5%
Micro-diorite	6	6%
Green Silicic Tuff	28	28%
Silicic Volcanic	3	3%
White Quartz	15	15%
Porphyritic Andesite	19	19%
Red Silicic Volcanic	5	5%
Silicic Volcanic	6	6%
Epidote	1	1%
Volcanic Sandstone	1	1%
Dark Grey Chert	1	1%
Total Count	100	

MPE	LAROR	ATORIES			Г	[1993	Outcrop P&	C Data]A	
Whi	LADUN	ATONIES							
ADOC	AL ACK	TA INC							
	ALASK							FILE: AK1528	
	ACE SAN							DATE: 12-OCT-93	
	ESOZOIC			- wearen				ANALYST: PB, DS, TR	
COOF	(INLEI,	ALASKA							
7544		4514137616							
	-	ANALYSIS							
SURF	ACE SAN	/IPLES							
			Age/Fm	PERMEABILITY	POROSITY		GRAIN		
SAMP		DEPTH		KAIR	(HELIUM)		DENSITY		
NUMB		FT		MD	(%)		GM/CC	DESCRIPTION	
	19	93KAT101B-2	Khl-Ebarr-haut	3.87	10.2		2.69	SS-ltgy,vf-mgr,predfgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,calc	-
	15	93KAT101D-1	Kk	0.18	14.0		2.71	SS-dkyelbrn,vf-fgr,predfgr,wsrtd,rnd,modcmt,qtz,dk mafic gr,mic,tr hem	
	20	93KAT102A-1	Kk	<0.01	5.8		2.72	SS-ltgy,vf-fgr,predfgr,wsrtd,rnd,wcmt,qtz,occ dk mafic gr & calc	
	26	93KAT102C-2	Kk	<0.01	1.4		2.73	Sltst-mdkgy,hd,mass,qtz,tr pyr	
	51	93KAT103A-1	Jn	< 0.01	3.3		2.70		
	49	93KAT103A-2	Ks	< 0.01	1.8		2.70		
	22	93KAT103E-1	Khl/Kk?	< 0.01	2.6		2.67	SS-mdkgy,vf-fgr,predfgr,wsrtd,rnd,vwcmt,qtz,calc,occ pyr,tr chlor	
	61	93KAT104C-1	Kk	< 0.01	1.6		2.71		
	55	93KAT106/C-1	Ks	1.32	9.5		2.70		-
	47	93KAT106A-1	Ks	0.10	4.7		2.57		
	65	93KAT106A-2	Ks	0.86	7.9		2.64		
	82	93KAT106B-1	Jn	5.83	9.4		2.56		
	53	93KAT106B-6	Jn	0.71	6.5		2.60		
	64	93KAT106B4	Jn	2.46	9.2		2.57		
	84	93KAT107A-3			NO PLUG				
	73	93KAT107A-4	Jn	0.45	4.1		2.62		
	72	93KAT107A-5	Ks	3.32	6.8		2.61	·	
	60	93KAT109A-1	Khl	4.32	5.4		2.71		
	30	93KAT10B-1	Kk-emaes	0.07	9.2		2.66	SS-ltgy,vf-fgr,predvfgr,wsrtd,rnd,wcmt,qtz,dk mafic gr,tr chlor	
	28	93KAT10C-1	Kk-emaes	0.06	8.9		2.69	SS-mgy,vfgr,vwsrtd,rnd,vwcmt,qtz,dk mafic gr,occ mic & calc	
	29	93KAT10D-1	Kk-emaes	11.32	9.0		2.62	SS-ltgy,vf-fgr,predvfgr,wsrtd,rnd,wcmt,qtz,dk mafic gr,tr chlor,frac	
	27	93KAT10E-1	Kk-emaes	0.01	7.8		2.71	SS-ltbrngy,vfgr,vwsrtd,rnd,vwcmt,qtz,dk mafic gr,occ mic	
	24	93KAT10F-1	Kk-emaes	43.67	9.3		2.66	SS-mgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk mafic gr,occ mic,frac	
	13	93KAT10G-1	Kk-emaes	0.37	10.8		2.65	SS-ltbrngy,vf-mgr,predfgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,tr calc	

	T	1			[1993 Outcrop P&	K DatalA
33		Kk	0.05		2.71	SS-mdkgy,vf-fgr,predvfgr,wsrtd,rnd,vwcmt,qtz,dk mafic gr,tr calc
31		Kk	0.02	9.4	2.71	SS-mdkgy,vfgr,vwsrtd,rnd,vwcmt,qtz,dk mafic gr,occ mic & calc
32		Khl-ebarr	1.41	18.9	2.67	SS-ltgy,vf-fgr,predvfgr,wsrtd,rnd,wcmt,qtz,calc,dk mafic gr,occ chlor
21		Khl-ebarr	0.57	11.9	2.67	SS-mltgy,fgr,vwsrtd,rnd,vwcmt,qtz,calc,dk mafic gr
18		Khl-ebarr	0.55	11.8	2.67	SS-mltgy,fgr,vwsrtd,rnd,vwcmt,qtz,calc,dk mafic gr
74		Ks	0.02	12.9	2.72	
62		Ks	2.42	9.0	2.68	
79		Kk	<0.01	3.9	2.72	
54		Ks	0.31	12.1	2.73	
87	93KAT112A-4			NO PLUG		
16		Khl-ebarr	0.23	16.1	2.68	SS-brngy,vf-vcgr,psrtd,sbrnd,wcmt,qtz,occ calc & mic
14		Khl-ebarr	0.07	17.4	2.67	SS-mltgy,vf-cgr,predfgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,occ calc
17	93KAT11A-4	Khl-ebarr	2.81	19.9	2.67	SS-ltgy,vf-fgr,predfgr,wsrtd,rnd,wcmt,qtz,occ dk mafic gr & calc
23	93KAT11B-1	Khl-ebarr	0.13	12.0	2.64	SS-ltgy,fgr,vwsrtd,sbrnd,wcmt,qtz,calc,dk mafic gr
4		Khl-ebarr	0.96	15.9	2.61	SS-ltgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk arg gr,occ calc
25	93KAT13C-1	Kk	< 0.01	1.4	2.72	Ls-mdkgy,hd,mass,gran
46	93KAT15A-1	Kk	0.02	11.0	2.74	SS-brngy,vf-fgr,predvfgr,wsrtd,rnd,wcmt,qtz,dk mafic gr,mic
48	93KAT183-1		0.24	3.3	2.74	
50			0.01	11.8	2.76	
10	93KAT1A-2	Jn?	<0.01	7.6	2.75	SS-mdkgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk mafic gr,occ pyr,tr hem
3	93KAT1D-2	Кр	0.19	14.9	2.67	SS-ltolvgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,chlor,occ brn mic,tr calc
71	93KAT20A-1	Jn	0.26	4.4	2.59	
57	93KAT21A-1	Jn	469.22	9.4	2.64	FRAC
58	93KAT22A-1	Jn	1.25	6.2	2.67	
69	93KAT26/A-1	Jn	0.02	5.1	2.54	
5	93KAT3A-2	Kcamp	0.01	3.8	2.78	SS-ltgy,vf-fgr,predvfgr,vwsrtd,rnd,vwcmt,qtz,calc,occ dk arg gr,sid
7	93KAT3A-4	Kcamp	0.61	6.4	2.72	SS-ltgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk arg gr,calc,tr sid
43	93KAT4B-2	Kk	0.48	5.1	2.73	SS-ltgy,vf-vcgr,predmgr,psrtd,sbang,vwcmt,qtz,calc,dk mafic gr
6	93KAT6B-1	Klcamp	0.28	16.3	2.69	SS-ltgy,f-cgr,predmgr,wsrtd,rnd,vwcmt,qtz,dk mafic gr,occ calc
9		Klcamp	0.04	13.2	2.68	SS-mltgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk arg gr,tr calc
35		Kemaes	0.02	12.3	2.70	SS-ltgy,f-cgr,predmgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,lim,calc
44		Jn	1.24	8.4	2.64	SS-ltgy,vf-mgr,predfgr,wsrtd,sbrnd,wcmt,qtz,dk mafic gr,chlor
39		Jn	1.43	6.7	2.64	SS-ltgy,f-cgr,predmgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,chlor
. 40	93KAT8C-1	Jn	0.02	5.6	2.66	SS-ltbrngy,vfgr,vwsrtd,sbrnd,vwcmt,qtz,dk mafic gr,chlor
38	93KAT8D-1	Jn	0.72	7.0	2.64	SS-ltgy,f-cgr,predmgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,calc,occ chlor
41	93KAT8E-1	Jn	0.76	5.9	2.67	SS-mltgy,f-cgr,predmgr,wsrtd,sbrnd,wcmt,qtz,chlor,calc,dk mafic gr
37	93KAT8H-1	Jn	1.29	6.5	2.64	SS-ltgy,f-cgr,predmgr,wsrtd,sbrnd,vwcmt,qtz,chlor,mic

-						[1993 Outcrop P&K	C DatalΔ
120,	42	93KAT8I-1	Jn	0.01	3.6	2.63	SS-ltgy,vf-fgr,predfgr,wsrtd,sbrnd,vwcmt,qtz,occ dk mafic gr,tr chlor
- 1980 es (8)	66	93LCP1/10	Ksm	3.32	13.1	2.70	
~ 725 - 14	86	93LCP1/2	Ksm	1	NO PLUG		
41	68	93LCP1/6	Ksm	0.36	5.5	2.67	
1-	83	93LCP1/7	Ksm	2.57	8.3	2.71	
9	52	93LCP1/8	Ksm	0.26	9.0	2.75	
	63	93LCP1/9	Ksm	1.07	11.0	2.74	
	59	93LCP2/1	Ksm	504.21	8.2	2.48	FRAC
. 5.	70	93LCP3/2	Jrg	0.37	8.9	2.77	
	56	93LCP4/1	Jrg	0.01	3.6	2.73	

						[1993	Outcrop P&	C Data A
CORE LA	ABOR/	ATORIES						
								,
ARCO A								FILE: AK1528
SURFAC								DATE: 12-OCT-93
LCI MES		The state of the s						ANALYST: PB, DS, TR
COOK IN	NLET,	ALASKA						
			ů.					-
		ANALYSIS						
SURFAC	ESAN	MPLES						
			Age/Fm	PERMEABILITY	POROSITY		GRAIN	
SAMPLE		DEPTH		KAIR	(HELIUM)		DENSITY	
NUMBER		FT		MD	(%)		GM/CC	DESCRIPTION
	19	93KAT101B-2	Khl-Ebarr-haut	3.87	10.2		2.69	SS-ltgy,vf-mgr,predfgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,calc
	15	93KAT101D-1	Kk		14.0		2.71	SS-dkyelbrn,vf-fgr,predfgr,wsrtd,rnd,modcmt,qtz,dk mafic gr,mic,tr hem
	20	93KAT102A-1	Kk	<0.01	5.8		2.72	SS-ltgy,vf-fgr,predfgr,wsrtd,rnd,wcmt,qtz,occ dk mafic gr & calc
	26	93KAT102C-2	Kk	< 0.01	1.4		2.73	Sltst-mdkgy,hd,mass,qtz,tr pyr
	51	93KAT103A-1	Jn	< 0.01	3.3		2.70	
	49	93KAT103A-2	Ks	<0.01	1.8		2.70	
	22	93KAT103E-1	Khl/Kk?	< 0.01	2.6		2.67	SS-mdkgy,vf-fgr,predfgr,wsrtd,rnd,vwcmt,qtz,calc,occ pyr,tr chlor
	61	93KAT104C-1	Kk	<0.01	1.6		2.71	
	55	93KAT106/C-1	Ks	1.32	9.5		2.70	
	47	93KAT106A-1	Ks	0.10	4.7		2.57	
	65	93KAT106A-2	Ks	0.86	7.9		2.64	
	82	93KAT106B-1	Jn	5.83	9.4		2.56	
	53	93KAT106B-6	Jn	0.71	6.5		2.60	
	64	93KAT106B4	Jn	2.46	9.2		2.57	
	84	93KAT107A-3			NO PLUG			
	73	93KAT107A-4	Jn	0.45	4.1		2.62	
	72	93KAT107A-5	Ks	3.32	6.8		2.61	
	60	93KAT109A-1	Khl	4.32	5.4		2.71	
	30	93KAT10B-1	Kk-emaes	0.07	9.2		2.66	SS-ltgy,vf-fgr,predvfgr,wsrtd,rnd,wcmt,qtz,dk mafic gr,tr chlor
	28	93KAT10C-1	Kk-emaes	0.06	8.9		2.69	SS-mgy,vfgr,vwsrtd,rnd,vwcmt,qtz,dk mafic gr,occ mic & calc
	29	93KAT10D-1	Kk-emaes	11.32	9.0		2.62	SS-ltgy,vf-fgr,predvfgr,wsrtd,rnd,wcmt,qtz,dk mafic gr,tr chlor,frac
	27	93KAT10E-1	Kk-emaes	0.01	7.8		2.71	SS-ltbrngy,vfgr,vwsrtd,rnd,vwcmt,qtz,dk mafic gr,occ mic
	24	93KAT10F-1	Kk-emaes	43.67	9.3		2.66	SS-mgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk mafic gr,occ mic,frac
	13	93KAT10G-1	Kk-emaes	0.37	10.8		2.65	SS-ltbrngy,vf-mgr,predfgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,tr calc

	T				[1993 Outcrop P&K	C DatalA.
33	93KAT10I-1	Kk	0.05		2.71	SS-mdkgy,vf-fgr,predvfgr,wsrtd,rnd,vwcmt,qtz,dk mafic gr,tr calc
31	93KAT10J-1	Kk	0.02	9.4	2.71	SS-mdkgy,vfgr,vwsrtd,rnd,vwcmt,qtz,dk mafic gr,occ mic & calc
32	93KAT10L-1	Khl-ebarr	1.41	18.9	2.67	SS-ltgy,vf-fgr,predvfgr,wsrtd,rnd,wcmt,qtz,calc,dk mafic gr,occ chlor
21	93KAT10M-1	Khl-ebarr	0.57	11.9	2.67	SS-mltgy,fgr,vwsrtd,rnd,vwcmt,qtz,calc,dk mafic gr
18	93KAT10N-1	Khl-ebarr	0.55	11.8	2.67	SS-mltgy,fgr,vwsrtd,rnd,vwcmt,qtz,calc,dk mafic gr
74	93KAT110A-1	Ks	0.02	12.9	2.72	
62	93KAT110A-2	Ks	2.42	9.0	2.68	
79	93KAT111A-1	Kk	< 0.01	3.9	2.72	
54	93KAT112/A-1	Ks	0.31	12.1	2.73	
87	93KAT112A-4			NO PLUG		
16	93KAT11A-1	Khl-ebarr	0.23	16.1	2.68	SS-brngy,vf-vcgr,psrtd,sbrnd,wcmt,qtz,occ calc & mic
14	93KAT11A-2	Khl-ebarr	0.07	17.4	2.67	SS-mltgy,vf-cgr,predfgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,occ calc
17	93KAT11A-4	Khl-ebarr	2.81	19.9	2.67	SS-ltgy,vf-fgr,predfgr,wsrtd,rnd,wcmt,qtz,occ dk mafic gr & calc
23	93KAT11B-1	Khl-ebarr	0.13	12.0	2.64	SS-ltgy,fgr,vwsrtd,sbrnd,wcmt,qtz,calc,dk mafic gr
4	93KAT11C-1	Khl-ebarr	0.96	15.9	2.61	SS-ltgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk arg gr,occ calc
25	93KAT13C-1	Kk	<0.01	1.4	2.72	Ls-mdkgy,hd,mass,gran
46	93KAT15A-1	Kk	0.02	11.0	2.74	SS-brngy,vf-fgr,predvfgr,wsrtd,rnd,wcmt,qtz,dk mafic gr,mic
48	93KAT183-1		0.24	3.3	2.74	
50	93KAT18A-1		0.01	11.8	2.76	
10	93KAT1A-2	Jn?	<0.01	7.6	2.75	SS-mdkgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk mafic gr,occ pyr,tr hem
3	93KAT1D-2	Кр	0.19	14.9	2.67	SS-ltolvgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,chlor,occ brn mic,tr calc
71	93KAT20A-1	Jn	0.26	4.4	2.59	
57	93KAT21A-1	Jn	469.22	9.4	2.64	FRAC
58	93KAT22A-1	. Jn	1.25	6.2	2.67	
69	93KAT26/A-1	Jn	0.02	5.1	2.54	
5	93KAT3A-2	Kcamp	0.01	3.8	2.78	SS-ltgy,vf-fgr,predvfgr,vwsrtd,rnd,vwcmt,qtz,calc,occ dk arg gr,sid
7	93KAT3A-4	Kcamp	0.61	6.4	2.72	SS-ltgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk arg gr,calc,tr sid
43	93KAT4B-2	Kk	0.48	5.1	2.73	SS-ltgy,vf-vcgr,predmgr,psrtd,sbang,vwcmt,qtz,calc,dk mafic gr
6	93KAT6B-1	Klcamp	0.28	16.3	2.69	SS-ltgy,f-cgr,predmgr,wsrtd,rnd,vwcmt,qtz,dk mafic gr,occ calc
9	93KAT6C-2	Klcamp	0.04	13.2	2.68	SS-mltgy,vf-mgr,predfgr,wsrtd,rnd,vwcmt,qtz,dk arg gr,tr calc
35	93KAT6C-5	Kemaes	0.02	12.3	2.70	SS-ltgy,f-cgr,predmgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,lim,calc
44	93KAT8A-1	Jn	1.24	8.4	2.64	SS-ltgy,vf-mgr,predfgr,wsrtd,sbrnd,wcmt,qtz,dk mafic gr,chlor
39	93KAT8B-1	Jn	1.43	6.7	2.64	SS-ltgy,f-cgr,predmgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,chlor
. 40	93KAT8C-1	Jn	0.02	5.6	2.66	SS-ltbrngy,vfgr,vwsrtd,sbrnd,vwcmt,qtz,dk mafic gr,chlor
38	93KAT8D-1	Jn	0.72	7.0	2.64	SS-ltgy,f-cgr,predmgr,wsrtd,sbrnd,vwcmt,qtz,dk mafic gr,calc,occ chlor
41	93KAT8E-1	Jn	0.76	5.9	2.67	SS-mltgy,f-cgr,predmgr,wsrtd,sbrnd,wcmt,qtz,chlor,calc,dk mafic gr
37	93KAT8H-1	Jn	1.29	6.5	2.64	SS-ltgy,f-cgr,predmgr,wsrtd,sbrnd,vwcmt,qtz,chlor,mic
					Dogo O	

	727 39	,					[1993 Outcrop P&K	C Datal A
- 6- T	42	W	93KAT8I-1	Jn	0.01	3.6	2.63	SS-ltgy,vf-fgr,predfgr,wsrtd,sbrnd,vwcmt,qtz,occ dk mafic gr,tr chlor
1964	66	4 <u>2</u> - =	93LCP1/10	Ksm	3.32	13.1	2.70	
-27. 14	86	No.	93LCP1/2	Ksm		NO PLUG		
120	68	7	93LCP1/6	Ksm	0.36	5.5	2.67	
. 1	83	1	93LCP1/7	Ksm	2.57	8.3	2.71	
	52		93LCP1/8	Ksm	0.26	9.0	2.75	
	63		93LCP1/9	Ksm	1.07	11.0	2.74	
	59		93LCP2/1	Ksm	504.21	8.2	2.48	FRAC
1	70		93LCP3/2	Jrg	0.37	8.9	2.77	
	56		93LCP4/1	Jrg	0.01	3.6	2.73	

COASTAL SCIENCE LABORATORIES, INC.

6000 Mountain Shadows Drive • Austin, Texas 78735 • (512) 288-5533 October 8, 1993

Arco Oil and Gas Company Attn: Mr. Chuck Roberts 2300 West Plano Parkway Plano, TX 75075

Dear Mr. Roberts:

We have completed stable carbon isotope analysis of your samples received recently. The data are reported relative to the PDB standard and are believed accurate to 0.2 per mil.

Y03400	Sample	e -		del ¹³ C _{PDB}
	93R7542	sat aro		-29.9 -28.9
	93R7543	sat aro		-29.9 -28.8
	93R7545	sat aro	9	-29.9 -28.9

Yours truly,

Kenneth Winters Laboratory Manager

É finalist, sectió i ser eléculos filosofilos del cientes i no no los electros contentes come este i escente e

KW:1p

CSL Ref:ATO

.....IP11 NC10 - NC11 IP13 - IP14 --- NC13 - IP15 - NC14 - IP16 - NC15 --- NC16 IP18 NC17 _ NC18 IP20 - NC19 - NC20 - NC22 - NC24 - NC25 - NC26 NC27 NC28 NC29 - NC30 - NC31 - NC32 - NC33 — NC34

- NC35 NC36

NC37

93R7543 Ext FID 1993 LCI MESOZOIC FIELD PARTY

RESULT FILE: E93R7543.RES

				AREA%
NORMAL PARA ISOPRENOIDS RESOLVED UN				20.876 9.107 70.016
NAME	AREA%		NAME	AREA%
N C 9	1.194		NC20	.677
N C 1 O	1.368		N C 2 1	.555
IP11 .	.907		N C 2 2	.466
N C 1 1	1.646		NC23	.435
N C 1 2	1.551		NC24	.394
IP13	.934		NC25	.361
IP14	.697	* 2	NC26	.363
NC13	1.903		NC27	.341
IP15	.898	2.2 year	NC28	.210
N C 1 4	1.940		NC29	.371
IP16	1.366		N C 3 O	.226
N C 1 5	1.964		N C 3 1	.297
NC16	1.438		NC32	.177
IP18	.985		NC33	.134
N C 1 7	1.100		N C 3 4	. 1 4 4
IP19	2.393		NC35	.043
NC18	.762		NC36	.031
IP20	.928		NC37	.025
NC19	.759			

REQUESTED CALCULATIONS USING AREA PERCENT VALUES FROM:

SAMPLE: 93R7543 RESULT FILE: E93R7543.RES

RATIOS:

PRISTANE / PHYTANE = 2.580 NC17 / IP19 = .459 NC18 / IP20 = .821 NC18 / NC19 = 1.004

CPI = 1.219

NORMALIZATION OF NC17, IP19, AND NC21:

NC17 = 27.167 IP19 = 59.124 NC21 = 13.709

GENERAL FILE NAME: E93R7543.GEN

93R7542 Ext FID 1993 LCI MESOZOIC FIELD PARTY

RESULT FILE: E93R7542.RES

				AREA%
NORMAL PARA ISOPRENOIDS RESOLVED UN	FFINS			16.767 10.529 72.704
NAME	AREA%		NAME	AREA%
NC9	.720		IP20	1.127
NC10	1.021		NC19	.611
IP11	. 321		NC20	.552
N C 1 1	1.319		NC21	.513
N C 1 2	1.362	÷	NC22	. 453
IP13	1.000		NC23	.398
IP14	.787		NC24	. 419
NC13	1.189		NC25	.336
IP15	1.056		NC26	.314
NC14	1.631		NC27	.303
IP16	1.551		NC28	.181
NC15	1.635		NC29	.301
NC16	1.270		NC30	.156
IP18	1.189		NC31	.176
NC17	.988		NC32	.088
IP19	2.999		NC33	.097
NC18	.618		NC34	.118

REQUESTED CALCULATIONS USING AREA PERCENT VALUES FROM:

SAMPLE: 93R7542 RESULT FILE: E93R7542.RES

RATIOS:

PRISTANE / PHYTANE = 2.661 NC17 / IP19 = .330 NC18 / IP20 = .548 NC18 / NC19 = 1.011

CPI = 1.233

NORMALIZATION OF NC17, IP19, AND NC21:

NC17 = 21.963 IP19 = 66.637 NC21 = 11.399

GENERAL FILE NAME: E93R7542.GEN

93R7545 Ext FID 1993 LCI MESOZOIC FIELD PARTY

RESULT FILE: E93R7545.RES

			AREA%
NORMAL PARA ISOPRENOIDS RESOLVED UN	FFINS KNOWNS	,	3.361 11.610 85.029
NAME	AREA%	 NAME	AREA%
I P 1 1 I P 1 3 I P 1 4 N C 1 3 I P 1 5 N C 1 4	.434 1.070 .906 .966 1.193 .967	NC15 NC16 IP18 NC17 IP19 IP20	.868 .215 1.405 .345 3.544 1.364
IP16	1.695		

REQUESTED CALCULATIONS USING AREA PERCENT VALUES FROM:

SAMPLE: 93R7545 RESULT FILE: E93R7545.RES

RATIOS:

PRISTANE / PHYTANE = 2.599
NC17 / IP19 = .097
NC18 / IP20 = 0.000
NC18 / NC19 = *******

CPI = ******

NORMALIZATION OF NC17, IP19, AND NC21:

NC17 = 8.874 IP19 = 91.126 NC21 = 0.000

GENERAL FILE NAME: E93R7545.GEN

COASTAL SCIENCE LABORATORIES, INC.

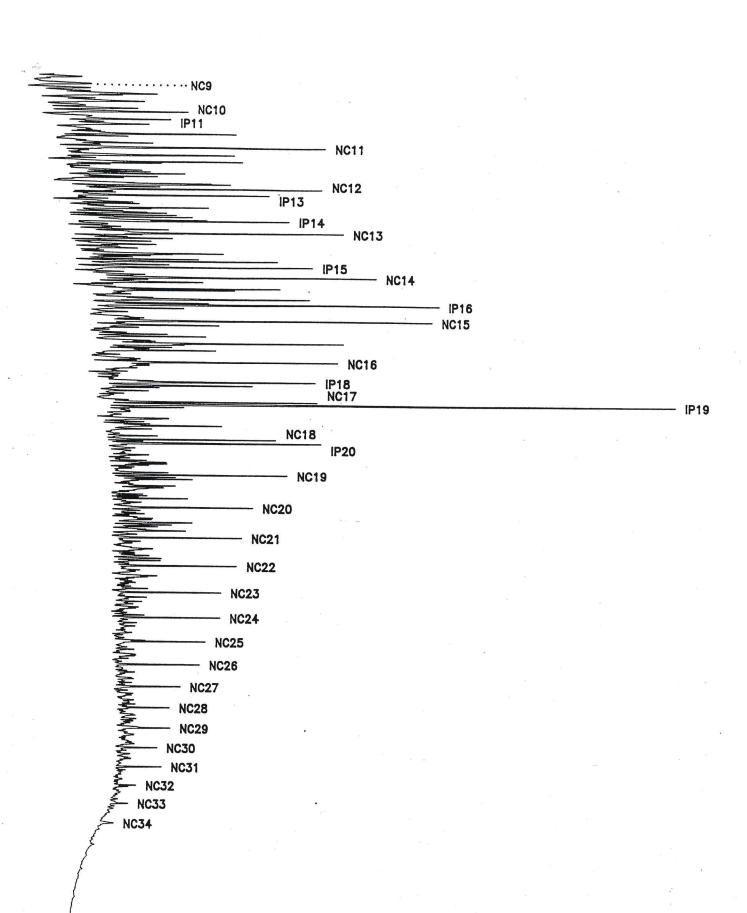
6000 Mountain Shadows Drive • Austin, Texas 78735 • (512) 288-5533 October 8, 1993

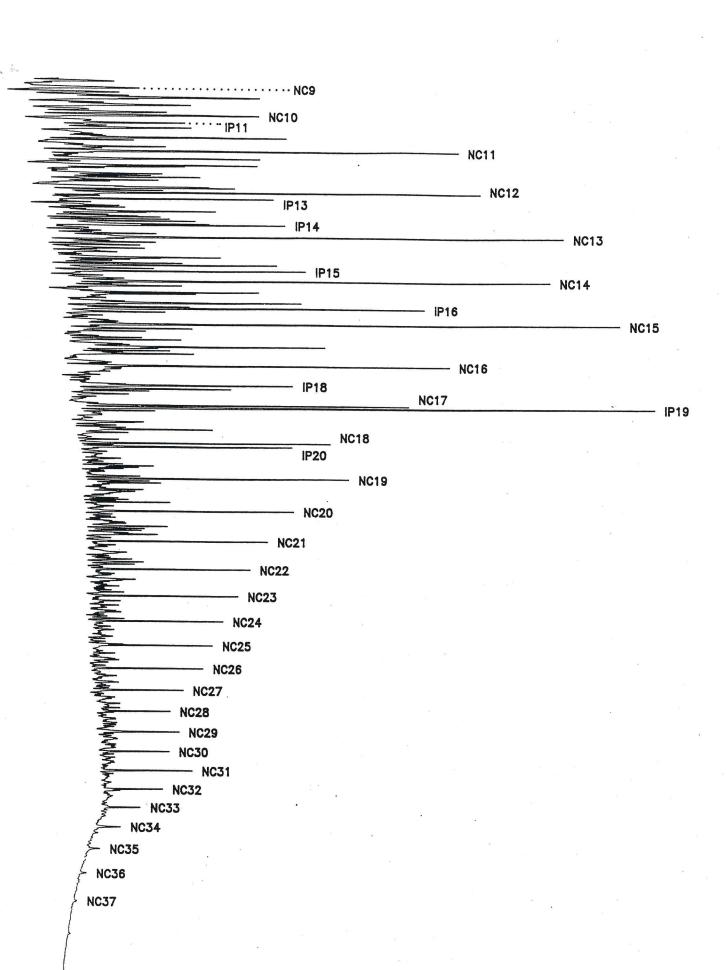
Arco Oil and Gas Company Attn: Mr. Chuck Roberts 2300 West Plano Parkway Plano, TX 75075

Dear Mr. Roberts:

We have completed stable carbon isotope analysis of your samples received recently. The data are reported relative to the PDB standard and are believed accurate to 0.2 per mil.

Y03400	Sample	9	Ţ	•	del ¹³ C _{PDB}
93LCP 1-1	93R7542	sat aro		,	-29.9 -28.9
93 LCP 1-3	93R7543	sat aro			-29.9 -28.8
93LCP 1-5	93R7545	sat aro			-29.9 -28.9


Yours truly,


Kenneth Winters Laboratory Manager

KW:lp

CSL Ref:ATO

> 93R7545 Ext FID 1993 LCI MESOZOIC FIELD PARTY LCP 1-5

93R7543 Ext FID 1993 LCI MESOZOIC FIELD PARTY LCP 1-3

Stop #	Spli	Purpose	Deg	Min	Sec	Latitude	Deg.	Min.	Sec	Longitude	Geographic Area	Scn	Twn	N- Rn	a F	Quad.	Fm.	Coll. By
	†- <u>-</u> -	All paleo,paly, etc. w		_				1	1		acograpmo Aica		1 40 P	14-4111	9 -	Tudu.	F 116.	Coil. By
93KAT106B	5	VIT	59	4	34	59.07611	153	45	39	153.760833	Douglas River Island	3	13	S 27	W	ILIAMNA (A-1&2)	Jn	TDV,BM
93KAT106C	4	VIT	59	4		59.07444				153.7475	Douglas River Island	2				ILIAMNA (A-1&2)	Ks	DD.SK
93KAT10H	2	VITRINITE	58	50	47	58.84639	153	56	40	153.944444	W. DOUGLAS RIVER	28	_		_	AFOGNAK (D6)	Kk	GVK,SK,RT,RK
93KAT10K	2			51	1	58.85028					W. DOUGLAS RIVER	28	_		-	AFOGNAK (D6)	Kk	GVK,SK,RT,RK
93KAT11A	3	VITRINITE	58	51	7	58.85194	153	57	51	153.964167	W. DOUGLAS RIVER		_		_	AFOGNAK (D6)	Kk	avic,orgii,riic
93KAT1A	1	VITRINITE	58	0	9	58.0025	154	47	8	154.785556		-	-	_	_	MT. KATMAI (A3)	Jn?	GVK
93KAT1D	1	VITRINITE	58	0	7	58.00194	154	46	41	154.778056		_			-	MT. KATMAI (A3)	Kk?	GVK
93KAT3A	3	VITRINITE	58	0	46	58.01278	154	44			MT. PEDMAR	_			_	MT. KATMAI (A3)	Kk	- Control - Cont
93KAT4B	1	VITRINITE	58	1	47	58.02972	154	36	39	154.610833	CAPE ILKTUGITAK	7	-		_	MT. KATMAI (A2)	Kk	GVK
93KAT6C	3	VIT.	58	0	9	58.0025	154	46	15	154.770833	MT. PEDMAR	17			_	MT. KATMAI (A3)	Kp/Kk?	GVK
93KAT8G	1A	VITRINITE	58	33	22	58.55611	154	6	26	154.107222	S. KAGUYAK CRATER	5	_		-	MT. KATMAI (C1)	Jn	GVK
93LCP1	1	EXTRACT	59	58	57	59.9825	152	_			SADDLE MOUNTAIN	27			_	SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM
93LCP1	3	EXTRACT	59	58	57	59.9825	152	41	51	152.6975	SADDLE MOUNTAIN	27			_	SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM
93LCP1	4	EXTRACT	59	58	57	59.9825	152	41	51	152.6975	SADDLE MOUNTAIN	27				SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM
93LCP1	5	EXTRACT .	59	58	57	59.9825	152	41	51	152.6975	SADDLE MOUNTAIN	27			_	SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM
93LCP4	2	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33	_		_	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	3	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33	-	_	_	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	4	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33			_	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	5	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33				KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	6	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33	1	S 21	W	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	7	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33	1	S 21	w	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	8	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33	1	S 21	W	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	9	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33				KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4		PALEO, GEOCHEM		_						152.898611		33	1	S 21	W	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	-	PALEO, GEOCHEM			45	60.04583	152	53	55	152.898611	RED GLACIER	33	1	S 21	W	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	12	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33	1	S 21	W	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	_	PALEO, GEOCHEM				60.04583			1.5	152.898611	RED GLACIER	33	1	S 21	W	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4		PALEO, GEOCHEM	200,000	100	45	60.04583	152	53	55	152.898611	RED GLACIER	33	1	S 21	W	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	15	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33	1	S 21	W	KENAI (A-8)	Jrg	DD,SK,TDV,BM
93LCP4	16	PALEO, GEOCHEM	60	2	45	60.04583	152	53	55	152.898611	RED GLACIER	33	1	S 21	W	KENAI (A-8)		DD,SK,TDV,BM

Description & Comments	Lab #	VR	S1	S2	TOC	TMAX	НІ	OI	S3	HC	Stop #
DOUGLAS RIVER ISLAND SECTION	93R7531	0.29	_								93KAT106B
DOUGLAS RIVER ISLAND SECTION	93R7532	0.43							1.000		93KAT106C
	93R7533	0.36									93KAT10H
	93R7534	0.44		,							93KAT10K
	93R7535	0.46									93KAT11A
KAT=KATMAI AREA	93R7536	0.54									93KAT1A
	93R7537	0.71									93KAT1D
	93R7538	0.67									93KAT3A
	93R7539	1.34									93KAT4B
	93R7540	0.72				100					93KAT6C
	93R7544	0.59									93KAT8G
9' IN SADDLE MT. SEC.											93LCP1
'IN SADDLE MT. SEC.											93LCP1
B' IN SADDLE MT. SEC.											93LCP1
20' IN SADDLE MT. SEC.											93LCP1
	93R8212	0.55	0.04	0.33	0.97	499	34	54	0.52	4.1	93LCP4
	93R8213	1	0.1	0.34	1.03	496	33	51	0.52		93LCP4
		No sample									93LCP4
		No sample									93LCP4
	93R8214	1.09	0.2	0.54	1.49	491	36	41	0.61	13.4	93LCP4
	93R8215	1.17	0.18	0.48	1.58	491	30	37	0.59	11.4	93LCP4
	93R8216	1.26	0.13	0.21	1.17	458	18	41	0.48		93LCP4
	93R8217	1.3	0.03	0.17	0.35	490	49	140	0.49		93LCP4
	93R8218	1.04	0.14	0.24	1.07	498	22	41	0.44		93LCP4
	93R8219	1.22	0.02	0.14	0.83	499	17	87	0.72		93LCP4
	93R8220	1	0.01	0.05	0.08	472	63		0.35		93LCP4
	93R8221	0.76	0.16	0.43	1.44	485	30	44	0.63	_	93LCP4
	93R8222	1.15	0.03	0.29	1.39	480	_	112		_	93LCP4
	93R8223	1.32	0.02	0.15	1.24	487	12	70	0.87		93LCP4
	93R8224	1.05	0.02	0.11	0.28	493		111	0.31	-	93LCP4

C C C			93 LCI-paly sample				
Stop # Spl# Purpose	Deg. Min. Sec. Latitude Deg. Min. Sec. Longitude	Geographic Area	Scn Twp N- Rng E- Quad.	Fm.	Coll. By	Description & Comments	Palynology
	will be processed for paly and forams						7 37
93KAT100 Stop	58 44 2 58.73389 153 57 48 153.963333	S. FORK KAMISHAK RIV.	6 17 S 28 W AFOGNAK (C6)				
93KAT101A Stop	58 51 55 58.86528 154 3 27 154.0575	KAMISHAK MTN.	23 15 S 29 W MT. KATMAI (D1)	Khl,Kk		MEASURED SECTION (Kh/Kk)	
93KAT101B 1 PALEO	58 52 0 58.86667 154 3 31 154.058611		23 15 S 29 W MT. KATMAI (D1)	Khl,Kk	TV,BM,GH		E. Barremian
93KAT101B 2 P&P/TS	58 52 0 58.86667 154 3 31 154.058611	KAMISHAK MTN.	23 15 S 29 W MT. KATMAI (D1)	Khl,Kk	TV,BM,GH		E. Daireman
93KAT101B 3 PALEO .	58 52 0 58.86667 154 3 31 154.058611	KAMISHAK MTN.	23 15 S 29 W MT. KATMAI (D1)	Khl,Kk	TV,BM,GH		E. BarrHaut.
93KAT101C 2 PALEO	58 52 3 58.8675 154 3 36 154.06	KAMISHAK MTN.	23 15 S 29 W MT. KATMAI (D1)	Khl,Kk	TV,BM,GH		Not Processed
93KAT101D 1 P&P/TS		KAMISHAK MTN.	23 15 S 29 W MT. KATMAI (D1)	Khl,Kk	TV,BM,GH		1401 1 locessed
93KAT102 Stop	58 54 56 58.91556 153 36 31 153.608611	SPOTTED GLACIER	34 14 S 26 W AFOGNAK (D5)	Kk		DOUGLAS RIVER MEASURED SECTION	-
93KAT102A 1 P&P/TS	58 54 56 58.91556 153 36 31 153.608611	SPOTTED GLACIER	34 14 S 26 W AFOGNAK (D5)	Kk	TV,BM,GH	DOUGLAS RIVER MEASURED SECTION	
93KAT102A 2 PALEO.	58 54 56 58.91556 153 36 31 153.608611	SPOTTED GLACIER	34 14 S 26 W AFOGNAK (D5)	Kk	TV,BM,GH	DOUGLAS RIVER MEASURED SECTION	Therm. Alt.
93KAT102B Stop	58 54 56 58.91556 153 36 31 153.608611	SPOTTED GLACIER	34 14 S 26 W AFOGNAK (D5)	Kk	11,54,611	DOUGLAS RIVER MEASURED SECTION	Therm. Alt.
93KAT102C 1 PALEO.	58 54 48 58.91333 153 36 28 153.607778	SPOTTED GLACIER	3 15 S 26 W AFOGNAK (D5)	Kk	TV,BM,GH	DOUGLAS RIVER MEASURED SECTION	T
3KAT102C 2 TS	58 54 48 58.91333 153 36 28 153.607778	SPOTTED GLACIER	3 15 S 26 W AFOGNAK (D5)	Kk	TV,BM,GH	DOUGLAS RIVER MEASURED SECTION	Therm. Alt.
3KAT102D 1 PALEO.	58 54 42 58.91167 153 36 27 153.6075	SPOTTED GLACIER	3 15 S 26 W AFOGNAK (D5)	Kk	TV,BM,GH		
3KAT103A 1 P&P/TS	58 53 8 58.88556 153 41 42 153.695	TWIN GLACIER	12 15 S 27 W AFOGNAK (D6)	Jn, Khi	TV.BM.GH	DOUGLAS RIVER MEASURED SECTION	Therm. Alt.
3KAT103A 2 P&P/TS	58 53 8 58.88556 153 41 42 153.695	TWIN GLACIER	12 15 S 27 W AFOGNAK (D6)	Jn, Khi	TV,BM,GH	TWIN GLACIERS MEASURED SECTION	
3KAT103B 1 PALEO.	58 53 8 58.88556 153 41 42 153.695	TWIN GLACIER	12 15 S 27 W AFOGNAK (D6)	Jn, Kni Jn, Khi		TWIN GLACIERS MEASURED SECTION	
3KAT103C STOP	58 53 6 58.885 153 41 40 153.694444	TWIN GLACIER	12 15 S 27 W AFOGNAK (D6)	Jn, Khi	TV,BM,GH	TWIN GLACIERS MEASURED SECTION	Therm. Alt.
3KAT103D 1 PALEO.	58 53 5 58.88472 153 41 38 153.693889	TWINGLACIER			TV,BM,GH	TWIN GLACIERS MEASURED SECTION	
3KAT103E 1 P&P/TS	58 53 3 58.88417 153 41 30 153.693689	TWIN GLACIER		Jn, Khi	TV,BM,GH	TWIN GLACIERS MEASURED SECTION	Therm. Alt.
3KAT103E 2 PALEO.	58 53 3 58.88417 153 41 30 153.691667	TWIN GLACIER	18 15 S 26 W AFOGNAK (D6) 18 15 S 26 W AFOGNAK (D6)	Jn, Khi	TV,BM,GH	TWIN GLACIERS MEASURED SECTION	
3KAT104A 1 Paleo	58 24 11 58.40306 154 15 40 154.261111	Hallo Glacier		Jn, Khl	TV,BM,GH	TWIN GLACIERS MEASURED SECTION	Therm. Alt.
BKAT104B 1 Paleo	58 23 56 58.39889 154 16 8 154.268889	Hallo Glacier		Kk	Tdv, JVF, BM	HALLO GLACIER MEASURED SECTION	Therm. Alt.
BKAT104B 2 Paleo	58 23 56 58.39889 154 16 8 154.268889	Hallo Glacier	32 20 S 30 W Mt. Katmai B-1	Kk	Tdv, JVF, BM	HALLO GLACIER MEASURED SECTION	Therm. Alt.
3KAT104C 1 P&P, TS			32 20 S 30 W Mt. Katmai B-1	Kk	Tdv, JVF, BM	HALLO GLACIER MEASURED SECTION	Therm. Alt.
3KAT104C 2 Paleo	58 23 6 58.385 154 16 19 154.271944 58 23 6 58.385 154 16 19 154.271944		1 21 S 31 W Mt. Katmai B-1	Kk	TDV,BM	HALLO GLACIER MEASURED SECTION	
3KAT104C 3 Paleo		Hallo Glacier	1 21 S 31 W Mt. Katmai B-1	Kk	TDV,BM		Therm. Alt.
3KAT105 Stop			1 21 S 31 W Mt. Katmai B-1	Kk	TDV,BM	HALLO GLACIER MEASURED SECTION	Therm. Alt.
SKATTUS Stop	58 0 9 58.0025 154 47 8 154.785556	MI. PEDMAR	24 25 S 34 W MT. KATMAI (A3)	Kp,Kk		Remeas, of section #14 from 1991	
						fld prog. see stop 93KAT1&6	
3KAT106A 1 P&P, TS	59 4 28 59.07444 153 44 51 153 7475					for sample locations.	
BKAT106A 2 P&P, TS	10011110	Douglas River Island	2 13 S 27 W ILIAMNA (A-1&2)	Ks	TDV,BM	DOUGLAS RIVER ISLAND SECTION	
	59 4 25 59.07361 153 44 42 153.745	Douglas River Island	2 13 S 27 W ILIAMNA (A-1&2)	Ks	TDV,BM	DOUGLAS RIVER ISLAND SECTION	
	59 4 25 59.07361 153 44 42 153.745	Douglas River Island	2 13 S 27 W ILIAMNA (A-3)	Ks	TDV,BM	DOUGLAS RIVER ISLAND SECTION	
	59 4 34 59.07611 153 45 39 153.760833	Douglas River Island	3 13 S 27 W ILIAMNA (A-1&2)	Jn	TDV,BM	DOUGLAS RIVER ISLAND SECTION	
KAT106B 2 PALEO	59 4 34 59.07611 153 45 39 153.760833	Douglas River Island	3 13 S 27 W ILIAMNA (A-1&2)	Jn	TDV,BM	DOUGLAS RIVER ISLAND SECTION	Therm. Alt.
SKAT106B 3 FISSION TRACK	59 4 34 59.07611 153 45 39 153.760833		3 13 S 27 W ILIAMNA (A-1&2)	Jn	TDV,BM	57' IN SECTION	7.1.2
KAT106B 4 P&P,TS		Douglas River Island	3 13 S 27 W ILIAMNA (A-1&2)	Jn	TDV,BM	DOUGLAS RIVER ISLAND SECTION	
KAT106B 5 VIT	59 4 34 59.07611 153 45 39 153.760833	Douglas River Island	3 13 S 27 W ILIAMNA (A-1&2)	Jn	TDV,BM	DOUGLAS RIVER ISLAND SECTION	
BKAT106B 6 P&P,TS		Douglas River Island	3 13 S 27 W ILIAMNA (A-1&2)	Jn	TDV,BM	DOUGLAS RIVER ISLAND SECTION	
KAT106C 1 P&P,TS	59 4 28 59.07444 153 44 51 153.7475	Douglas River Island	2 13 S 27 W ILIAMNA (A-1&2)	Ks	DD,SK	DOUGLAS RIVER ISLAND SECTION	
3KAT106C 2 MACRO	59 4 28 59.07444 153 44 51 153.7475	Douglas River Island	2 13 S 27 W ILIAMNA (A-1&2)		DD,SK	DOUGLAS RIVER ISLAND SECTION	
SKAT106C 3 MACRO	59 4 28 59.07444 153 44 51 153.7475	Douglas River Island	2 13 S 27 W ILIAMNA (A-1&2)	Ks	DD,SK	DOUGLAS RIVER ISLAND SECTION	
KAT106C 4 VIT	59 4 28 59.07444 153 44 51 153.7475	Douglas River Island	2 13 S 27 W ILIAMNA (A-1&2)		DD,SK	DOUGLAS RIVER ISLAND SECTION	
KAT107A 1 PALEO FRM CLAS		Douglas River Island	10 13 S 27 W ILIAMNA (A-3)		TDV,BM		Thorm Att
KAT107A 2 PALEO	59 3 46 59.06278 153 45 48 153.763333		10 13 S 27 W ILIAMNA (A-3)	Ks	TDV,BM		Therm. Alt. JR-Tithonian?
KAT107A 3 TS	59 3 46 59.06278 153 45 48 153.763333	Douglas River Island	10 13 S 27 W ILIAMNA (A-3)	_	TDV,BM	Douglas River Ks Channel Complex	on-filmonian?
KAT107A 4 P&P,TS	59 3 46 59.06278 153 45 48 153.763333		10 13 S 27 W ILIAMNA (A-3)		TDV,BM	Douglas River Ks Channel Complex	
SKAT107A 5 P&P,TS		Douglas River Island	10 13 S 27 W ILIAMNA (A-3)		TDV,BM		
SKAT108 Stop		N. KAGUYAK CRATER	5 17 S 29 W MT, KATMAI (C-1)	Khl	1 C 4 JUIN	Douglas River Ks Channel Complex	
BKAT109A 1 P&P,TS			23 17 S 29 W MT. KATMAI (C-1)		TDV, BM	Visual insepction from helicopter	
BKAT109A 2 PALY		N. KAGUYAK CRATER	17 S 29 W MT. KATMAI (C-1)		TDV, BM	Recon measured section of Herendeen	N
SKAT10A Stop P&P,TS	58 51 2 58.85056 153 57 39 153.960833	W. DOUGLAS RIVER	28 15 S 28 W AFOGNAK (D6)	Kk	TOV, BIVI		Not Processed
SKAT10B 1 P&P,TS	58 50 30 58.84167 153 56 10 153.936111	W DOUGLAS DIVED			OVICOR DT DIC		
JORATION II PAP, IS	58 50 30 58.84167 153 56 10 153.936111	W. DOUGLAS RIVER	27 15 S 28 W AFOGNAK (D6)	Kk	GVK,SK,RT,RK		

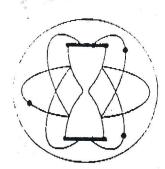
93 LCI-paly sample |58 |50 |36 |58.84333 |153 |56 | 16 | 153.937778 | W. DOUGLAS RIVER 93KAT10C 1 P&P/TS 27 15 S 28 W AFOGNAK (D6) GVK.SK.RT.RK 93KAT10D 1 P&P,TS 58 50 37 58.84361 153 56 20 153.938889 W. DOUGLAS RIVER 27 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10E 1 P&P.TS 58 50 38 58.84389 153 56 24 153.94 W. DOUGLAS RIVER 27 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10F 1 P&P/TS 153 56 30 153.941667 W. DOUGLAS RIVER 58 50 42 58.845 27 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 58 50 45 58.84583 153 56 36 153.943333 W. DOUGLAS RIVER 93KAT10G 1 P&P/TS 27 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK Paleo 58 50 47 58.84639 153 56 40 153.944444 W. DOUGLAS RIVER 93KAT10H 1 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK E. Maestrichtian 93KAT10H 2 VITRINITE 58 50 47 58.84639 153 56 40 153.944444 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10I 1 P&P,TS 58 50 56 58.84889 153 57 6 153.951667 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10J | 1 P&P,TS 58 50 59 58.84972 153 57 12 153.953333 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10K 1 PALEO. 58 51 1 58.85028 153 57 18 153.955 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK E. Barremian 93KAT10K 2 VITRINITE 58 51 1 58.85028 153 57 18 153.955 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 58 51 1 58.85028 153 57 25 153.956944 W. DOUGLAS RIVER 93KAT10L 1 P&P,TS 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10M 1 P&P.TS 58 51 1 58.85028 153 57 25 153.956944 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10N 1 P&P.TS 58 51 1 58.85028 153 57 34 153.959444 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT110A 1 P&P,TS 59 0 47 59.01306 154 1 23 154.023056 N. Kamishak Hills 31 13 S 28 W ILIAMNA (A-3) TDV,BM,JVF,DC **RECONSECTION** 93KAT110A 2 TS 59 0 47 59.01306 154 1 23 154.023056 N. Kamishak Hills 31 13 S 28 W ILIAMNA (A-3) TDV,BM,JVF,DC RECONSECTION 93KAT110A 3 PALEO 59 0 47 59.01306 154 1 23 154.023056 N. Kamishak Hills 31 13 S 28 W ILIAMNA (A-3) TDV,BM,JVF,DC RECONSECTION Indeterminate 93KAT111A 1 TS 58 53 41 58.89472 153 37 12 153.62 SPOTTED GLACIER 9 15 S 26 W AFOGNAK (D5) TDV,BM Cont. of section from 93KAT102 58 58 1 58.96694 153 59 39 153.994167 Kamishak Hills 93KAT112A 1 P&P/TS 17 14 S 28 W AFOGNAK (D6) TDV, BM,DD Kst ? Cret, Channels in Naknek, 93KAT112A 2 MACRO 58 58 1 58.96694 153 59 39 153.994167 Kamishak Hills 17 14 S 28 W AFOGNAK (D6) Kst? TDV, BM,DD Cret. Channels in Naknek. PALEO 58 58 1 58.96694 153 59 39 153.994167 Kamishak Hills 93KAT112A 3 17 14 S 28 W AFOGNAK (D6) Kst ? TDV, BM, DD Cret. Channels in Naknek. Barren 93KAT112A 4 TS 58 58 1 58.96694 153 59 39 153.994167 Kamishak Hills 17 14 S 28 W AFOGNAK (D6) Kst ? TDV, BM,DD Cret. Channels in Naknek. 93KAT11A 1 P&P/TS 58 51 7 58.85194 | 153 | 57 | 51 | 153.964167 | W. DOUGLAS RIVER 28 | 15 | S | 28 | W | AFOGNAK (D6) Kk 58 51 7 58.85194 153 57 51 153.964167 W. DOUGLAS RIVER 93KAT11A 2 P&P/TS 28 | 15 | S | 28 | W | AFOGNAK (D6) Kk 58 51 7 58.85194 153 57 51 153.964167 W. DOUGLAS RIVER 93KAT11A 3 VITRINITE 28 15 S 28 W AFOGNAK (D6) Kk 93KAT11A 4 58 51 7 58.85194 153 57 51 153.964167 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT11A 5 58 51 7 58.85194 153 57 51 153.964167 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk E. Barremian 93KAT11B 1 P&P/TS 58 51 13 58.85361 153 57 59 153.966389 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT11C 1 PALEO 58 51 18 58.855 153 58 8 153.968889 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk E. Barremian 93KAT12A Stop |58 |50 |38 |58.84389 |153 |57 |20 |153.955556 |W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT13A Stop 58 50 30 58.84167 153 56 10 153.936111 W. DOUGLAS RIVER 27 15 S 28 W AFOGNAK (D6) Kk 93KAT13B Stop 58 | 50 | 26 | 58.84056 | 153 | 56 | 7 | 153.935278 | W. DOUGLAS RIVER 34 15 S 28 W AFOGNAK (D6) Kk 93KAT13C | 1 | TS 58 | 50 | 11 | 58.83639 | 153 | 56 | 1 | 153.933611 | W. DOUGLAS RIVER 34 15 S 28 W AFOGNAK (D6) Kk 93KAT13D Stop 58 49 56 58.83222 153 55 55 153.931944 W. DOUGLAS RIVER 34 15 S 28 W AFOGNAK (D6) Kk 93KAT13E 1 PALEO. 58 50 17 58.83806 153 56 4 153.934444 W. DOUGLAS RIVER 34 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK E. Barremian 93KAT14 Stop 58 53 10 58.88611 153 41 55 153.698611 TWIN GLACIERS 12 15 S 27 W AFOGNAK (D6) Jn\Kh GVK,SK,RT,RK 93KAT15 Stop 58 55 23 58.92306 154 1 3 154.0175 N KAMISHAK HILLS 31 14 S 28 W MT. KATMAI (D1) Jn\Kh\Kk GVK,SK,RT,RK 93KAT16 Stop 36 14 S 29 W MT. KATMAI (D1) Jn\Kh\Kk GVK,SK,RT,RK 93KAT17 Stop 58 57 3 58.95083 154 0 30 154.008333 N KAMISHAK HILLS 19 14 S 28 W MT. KATMAI (D1) Jn\Kk GVK.SK.RT.RK 93KAT18 Stop 59 0 17 59.00472 154 0 18 154.005 N KAMISHAK HILLS 31 13 S 28 W Iliamna A-3 Jn\Kk GVK,SK,RT,RK 93KAT19 Stop 58 33 46 58.56278 153 33 35 153.559722 HERENDEEN ISLAND 3 19 S 28 W AFOGNAK C-6 Kh 93KAT1A 1 VITRINITE 58 0 9 58.0025 154 47 8 154.785556 MT. PEDMAR 24 25 S 34 W MT. KATMAI (A3) Jn? GVK KAT=KATMAI AREA 93KAT1A 2 P&P/TS 58 0 9 58.0025 154 47 8 154.785556 MT. PEDMAR 24 | 25 | S | 34 | W | MT. KATMAI (A3) Jn? GVK 93KAT1B Stop 58 0 4 58.00111 154 47 36 154.793333 MT. PEDMAR 24 25 S 34 W MT. KATMAI (A3) Ks? 93KAT1C Stop 58 0 8 58.00222 154 46 51 154.780833 MT. PEDMAR 19 25 S 33 W MT. KATMAI (A3) Ks? 93KAT1D 1 VITRINITE 58 0 7 58.00194 154 46 41 154.778056 MT. PEDMAR 19 25 S 33 W MT. KATMAI (A3) Kk? GVK 93KAT1D 2 P&P/TS 58 0 7 58.00194 154 46 41 154.778056 MT. PEDMAR 19 25 S 33 W MT. KATMAI (A3) Kk? **GVK** 93KAT2 Stop 58 3 19 58.05528 154 49 51 154.830833 MT. PEDMAR 34 24 S 34 W MT. KATMAI (A3) 59 3 53 59.06472 153 49 21 153.8225 Kamishak Bay 93KAT20A | 1 | P&P, TS 8 13 S 27 W Iliamna A-3 JN GVK, DI, MC 93KAT21A 1 P&P. TS 59 6 33 59.10917 153 52 38 153.877222 Kamishak Bay 25? 12 S 28 W Iliamna A-3 JN GVK, DI, MC Samples taken at low tide 93KAT22A 1 P&P, TS 59 6 18 59.105 153 43 48 153.73 Kamishak Bay 26 12 S 27 W Iliamna A1 & A2 JN GVK, DC, DI Samples taken at low tide 93KAT23 Stop 58 27 28 58.45778 154 0 7 154.001944 Hallo Bay 12 20 S 29 W MT. KATMAI (B-1) Jn Niniagik Island 93KAT25A 1 FISSION TRACK 0 0 93KAT26A 1 P&P.TS 59 4 8 59.06889 153 45 15 153.754167 Douglas River Island 10 13 S 27 W ILIAMNA (A-3) SK 93KAT3A 1 PALEO. 58 0 46 58.01278 154 44 15 154.7375 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) Campanian

1 2

										93 LCI-paly sample					
93KAT3A	2 P&P/TS		6 58.01278	154 44 1	5 154.7375	MT. PEDMAR	17	25 5	33	W MT. KATMAI (A3)	Kk			T	
93KAT3A	3 VITRINITE	58 0 4	6 58.01278	154 44 1	5 154.7375	MT. PEDMAR	17	25 5	33	W MT. KATMAI (A3)	Kk				
93KAT4A	Stop		7 58.02972			CAPE ILKTUGITAK	7	25 5	33	W MT. KATMAI (A2)	Kk	2			
93KAT4B	1 VITRINITE	58 1 4	7 58.02972	154 36 3	9 154.610833	CAPE ILKTUGITAK	7	25 5	33	W MT. KATMAI (A2)	Kk	GVK			
93KAT4B	2 P&P/TS	58 1 4	7 58.02972	154 36 3	9 154.610833	CAPE ILKTUGITAK				W MT. KATMAI (A2)	Kk	GVK			
93KAT4C	1 P&P/TS	58 1 4	4 58.02889	154 37 0	154.616667	CAPE ILKTUGITAK	7	25 5	33	W MT. KATMAI (A2)	Kk	GVK			
93KAT5A	1 PALEO.	58 3 2	0 58.05556	154 42 4	1 154.711389	DAKAVAK BAY	32	24 5	33	W MT. KATMAI (A3)	Kk	SK		Barren	
93KAT6A	Stop	58 0 9	58.0025	154 46 1	5 154.770833	MT. PEDMAR	17	25 5	33	W MT. KATMAI (A3)				Burren	
93KAT6B	1 P&P/TS	58 0 9	58.0025	154 46 1	5 154.770833	MT. PEDMAR	17	25 5	33	W MT. KATMAI (A3)	Kp/Kk?	GVK			
93KAT6C	1 PALEO.	58 0 9	58.0025	154 46 1	5 154.770833	MT. PEDMAR				W MT. KATMAI (A3)	Kp/Kk?	SK		L. Campanian	
93KAT6C	2 P&P/TS	58 0 9	58.0025	154 46 1	5 154.770833	MT. PEDMAR				W MT. KATMAI (A3)	Kp/Kk?	GVK	 	E. Gampanian	
93KAT6C	3 VIT.	58 0 9	58.0025		5 154.770833					W MT. KATMAI (A3)	Kp/Kk?	GVK			
93KAT6C	4 PALEO.	58 0 9	58.0025		5 154.770833					W MT. KATMAI (A3)	Kp/Kk?	TV		SantE. Maes.	
93KAT6C	5 P&P/TS	58 0 9	58.0025		5 154.770833			_	_	W MT. KATMAI (A3)	Kp/Kk?	BM	 	SantL. Maes.	
93KAT7	Stop	58 1 4	1 58.02806		0 154.869444					W MT. KATMAI (A3)	TOPACK.		 		
93KAT8A	1 P&P/TS		2 58.55611			S. KAGUYAK CRATER	$\overline{}$	_		W MT. KATMAI (C1)	Jn	GVK	 		
93KAT8B	1 P&P/TS		5 58.55694		2 154.12	S. KAGUYAK CRATER				W MT. KATMAI (C1)	Jn	GVK			
93KAT8C	1 P&P/TS		7 58.5575			S. KAGUYAK CRATER				W MT. KATMAI (C1)	Jn	GVK			
93KAT8D	1 P&P/TS		8 58.55778			S. KAGUYAK CRATER				W MT. KATMAI (C1)	Jn	GVK			
93KAT8E	1		7 58.5575			S. KAGUYAK CRATER				W MT. KATMAI (C1)	Jn		 2		
93KAT8E	2 P&P/TS		7 58.5575			S. KAGUYAK CRATER	_		_	W MT. KATMAI (C1)	Jn	GVK			
93KAT8F	Stop		8 58.55778			S. KAGUYAK CRATER				W MT. KATMAI (C1)	Jn	UVIC			
93KAT8G	1 PALEO					S. KAGUYAK CRATER	_			W MT. KATMAI (C1)	Jn	GVK	 	Jurassic	
93KAT8G	1 A VITRINITE		2 58.55611			S. KAGUYAK CRATER				W MT. KATMAI (C1)	Jn	GVK		Jurassic	
93KAT8H	1 P&P/TS					S. KAGUYAK CRATER	_			W MT. KATMAI (C1)	Jn	GVK			
93KAT8I	1 ?					S. KAGUYAK CRATER	_	_		W MT. KATMAI (C1)	Jn	GVK			
93KAT8J	1 PALEO		0 58.55278			S. KAGUYAK CRATER				W MT. KATMAI (C1)	Jn	GVK	 · ·	luna and a	
93KAT8K		58 33 7				S. KAGUYAK CRATER				W MT. KATMAI (C1)	Jn	GVK		Jurassic	
93KAT9A			3 58.82306			S. FORK KAMISHAK RIV.				W MT. KATMAI (D1)	1011	UVK	 	Barren	
93KAT9B	Stop	58 49 9				S. FORK KAMISHAK RIV.				W MT. KATMAI (D1)			 		
93LCP1			7 59.9825		1 152.6975	SADDLE MOUNTAIN	27 2			W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	 9' IN SADDLE MT. SEC.		
93LCP1	2 TS NEEDS IMPREG.				1 152.6975	SADDLE MOUNTAIN	27 2			W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	 8' IN SADDLE MT. SEC.		
93LCP1	3 EXTRACT		7 59.9825		1 152.6975	SADDLE MOUNTAIN	27 2			W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	 8' IN SADDLE MT. SEC.		
93LCP1			7 59.9825		1 152.6975	SADDLE MOUNTAIN				W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	 8' IN SADDLE MT. SEC.		
93LCP1	5 EXTRACT	59 58 5			1 152.6975	SADDLE MOUNTAIN	27 2			W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	 20' IN SADDLE MT. SEC.		
93LCP1	6 P&P, TS	59 58 5			1 152.6975	SADDLE MOUNTAIN	27 2			W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	28' IN SADDLE MT. SEC.		
		59 58 5			1 152.6975	SADDLE MOUNTAIN				W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	 45' IN SADDLE MT. SEC.		
93LCP1	8 P&P, TS	59 58 5		152 41 51		SADDLE MOUNTAIN	27 2			W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	 52' IN SADDLE MT. SEC.		
		59 58 5			1 152.6975	SADDLE MOUNTAIN	27 2			W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	55' IN SADDLE MT. SEC.		
		59 58 5		152 41 51		SADDLE MOUNTAIN	27 2			W SELDOVIA (D-8)	Ksm	TDV,SK,DD,BM	 67.5' IN SADDLE MT. SEC.	-	
93LCP2		59 56 3		152 49 1		SHELTERCREEK	1 3			W SELDOVIA (D-8)	Ksm	1.0 4,014,010,0101	 OT.O IN SADDLE WIT. SEC.		
		59 56 3		152 49 1		SHELTER CREEK	1 3	_	_	W SELDOVIA (D-8)	Ksm			Damas	
		60 3 1			2 152.897778		33 1			W KENAI (A-8)	Jrg	DD,SK	 	Barren Thorm Att	
93LCP3	2 P&P,TS	60 3 1			152.897778		33 1			W KENAI (A-8)	Jrg	DD,SK		Therm. Alt.	
	1 TS	60 2 4			152.898611		33 1			W KENAI (A-8)	Jrg	DD,SK,TDV,BM			
			5 60.04583		152.898611		33 1			W KENAI (A-8)	Jrg	DD,SK,TDV,BM		- P	
	3 PALEO, GEOCHEM				152.898611		33 1			W KENAI (A-8)	Jrg	DD,SK,TDV,BM	 	Barren	
	4 PALEO,GEOCHEM					RED GLACIER	33 1			W KENAI (A-8)	Jrg	DD,SK,TDV,BM		Therm. Alt.	
						RED GLACIER	33 1	_	_	W KENAI (A-8)	Jrg	DD,SK,TDV,BM		Therm. Alt.	
	6 PALEO,GEOCHEM					RED GLACIER	33 1			W KENAI (A-8)				Therm. Alt.	
	7 PALEO,GEOCHEM					RED GLACIER	33 1			W KENAI (A-8)	Jrg	DD,SK,TDV,BM	 	Therm. Alt.	
	8 PALEO, GEOCHEM					RED GLACIER	33 1	_		W KENAI (A-8)	Jrg	DD,SK,TDV,BM	 	Therm. Alt.	
	9 PALEO, GEOCHEM				152.898611		33 1			W KENAI (A-8)	Jrg	DD,SK,TDV,BM		Therm. Alt.	
93LCP4	10 PALEO,GEOCHEM					RED GLACIER	33 1		_		Jrg	DD,SK,TDV,BM	 	Therm. Alt.	
	1 1 PALEO, GEOCHEM				152.898611		33 1			W KENAI (A-8)	Jrg	DD,SK,TDV,BM	 	Therm. Alt.	
000014	. I ALLO, GEOGRAM	00 2 4	00.04563	1102 03 155	1102.090011	I DED GLACIER	33 11	3	121	W KENAI (A-8)	Jrg	DD,SK,TDV,BM		Therm. Att.	

93 LCI-paly sample

Therm. Alt.
Therm. Alt.
Therm. Alt.
Therm. Alt.
Therm. Alt.
Them. Al.
-


93 LCI- Stop & Sample

Cton #	C = 1 A	Purpose	De	n Bai-	Sac	Latitude	Dec Min	Sac	Longitude	Geographic Area	Scn	Tw	D N-	Rna	F-V	Quad.	Fm.	Coll. By	I	Description & Comments
Stop #		All paleo,paly, etc. v						. 360.	Longitude	Geograpino Area	-	1 100	14.	19		i wadi.	1 1111.			Description & Comments
93KAT100			58					19	153.963333	S. FORK KAMISHAK RIV.	6	17	S	28	w	AFOGNAK (C6)	 			
			58	_	55		154 3		154.0575	KAMISHAK MTN.		-				MT. KATMAI (D1)	Khl,Kk			MEASURED SECTION (Kh/Kk)
93KAT101A		PALEO	58	_	_		154 3	_		KAMISHAK MTN.	23	15				MT. KATMAI (D1)	Khi.Kk	TV.BM.GH		WILL SECTION (NIVAK)
93KAT101B			58	_			154 3			KAMISHAK MTN.	23	-	_		_	MT. KATMAI (D1)	Khl,Kk	TV,BM,GH		
93KAT101B		P&P/TS	_				154 3	31		KAMISHAK MTN.	23					MT. KATMAI (D1)	Khi,Kk	TV,BM,GH		
93KAT101B		PALEO	58	_			154 3	_		KAMISHAK MTN.	23					MT. KATMAI (D1)	Khl,Kk	TV,BM,GH		
93KAT101C		PALEO	58	_		58.8675	100			KAMISHAK MTN.	23	15	_			MT. KATMAI (D1)	Khl.Kk	TV,BM,GH		
93KAT101D		P&P/TS	58	_	7		154 3	_		SPOTTED GLACIER	34	_	_	_	_	AFOGNAK (D5)	Kk	I V,DIVI,GIT		ON KY AS DRIED MEASURED SECTION
93KAT102			58		56		153 36	_		SPOTTED GLACIER	34	_	_			AFOGNAK (D5)	Kk	TV,BM,GH		DOUGLAS RIVER MEASURED SECTION
93KAT102A		P&P/TS	58		_	58.91556	153 36			SPOTTED GLACIER	34	14	_	26		AFOGNAK (D5)	Kk	TV,BM,GH		DOUGLAS RIVER MEASURED SECTION
93KAT102A		PALEO.	58			58.91556	153 36				_	200	_	-	-		Kk	I V,BM,GH		DOUGLAS RIVER MEASURED SECTION
93KAT102B			58	_		58.91556	153 36			SPOTTED GLACIER	34		S		_	AFOGNAK (D5)		T/DIA OIL		DOUGLAS RIVER MEASURED SECTION
93KAT102C		PALEO.	58	_		58.91333	153 36			SPOTTED GLACIER	3		S		_	AFOGNAK (D5)	Kk	TV,BM,GH		DOUGLAS RIVER MEASURED SECTION
93KAT102C		TS	58	_			153 36			SPOTTED GLACIER	3			_		AFOGNAK (D5)	Kk	TV,BM,GH		DOUGLAS RIVER MEASURED SECTION
93KAT102D		PALEO.	58			58.91167	153 36		153.6075	SPOTTEDGLACIER	3	-	_	-		AFOGNAK (D5)	Kk	TV,BM,GH		DOUGLAS RIVER MEASURED SECTION
93KAT103A		P&P/TS	58			58.88556	153 41			TWIN GLACIER	12		_			AFOGNAK (D6)	Jn, Khl	TV,BM,GH		WIN GLACIERS MEASURED SECTION
93KAT103A		P&P/TS	58			58.88556	153 41		153.695	TWIN GLACIER	12					AFOGNAK (D6)	Jn, Khl	TV,BM,GH		IWIN GLACIERS MEASURED SECTION
93KAT103B		PALEO.	58			58.88556	153 41	_	153.695	TWIN GLACIER	12					AFOGNAK (D6)	Jn, Khl	TV,BM,GH		IWIN GLACIERS MEASURED SECTION
93KAT103C			58			58.885	153 41			TWIN GLACIER	12		_	_	_	AFOGNAK (D6)	Jn, Khl	TV,BM,GH		TWIN GLACIERS MEASURED SECTION
93KAT103D		PALEO.	58		5	58.88472			153.693889	TWIN GLACIER	12					AFOGNAK (D6)	Jn, Khl	TV,BM,GH		WIN GLACIERS MEASURED SECTION
93KAT103E		P&P/TS	58		3		153 41			TWIN GLACIER	18					AFOGNAK (D6)	Jn, Khl	TV,BM,GH		TWIN GLACIERS MEASURED SECTION
93KAT103E		PALEO.	58	_	3		153 41	_	153.691667	TWIN GLACIER	18					AFOGNAK (D6)	Jn, Khl	TV,BM,GH		WIN GLACIERS MEASURED SECTION
93KAT103E		PALEO.	58	_	3		153 41			TWIN GLACIER	18					AFOGNAK (D6)	Jn, Khl	TV,BM,GH		WIN GLACIERS MEASURED SECTION
93KAT104A		Paleo	58		11			_		Hallo Glacier	32			_		Mt. Katmai B-1	Kk	Tdv, JVF, BM		HALLO GLACIER MEASURED SECTION
93KAT104B		Paleo	58			58.39889	154 16	_		Hallo Glacier	32					Mt. Katmai B-1	Kk	Tdv, JVF, BM		HALLO GLACIER MEASURED SECTION
93KAT104B		Paleo	58	_	56	58.39889	154 16	_		Hallo Glacier	32					Mt. Katmai B-1	Kk	Tdv, JVF, BM		HALLO GLACIER MEASURED SECTION
93KAT104C		P&P, TS	58			58.385	154 16				1	21				Mt. Katmai B-1	Kk	TDV,BM		HALLO GLACIER MEASURED SECTION
93KAT104C		Paleo	58		6	58.385	154 16		154.271944		1	21				Mt. Katmai B-1	Kk	TDV,BM		HALLO GLACIER MEASURED SECTION
93KAT104C		Paleo	58		_	58.385	154 16		154.271944		1					Mt. Katmai B-1	Kk	TDV,BM		HALLO GLACIER MEASURED SECTION
93KAT105	Stop		58	0	9	58.0025	154 47	8	154.785556	MT. PEDMAR	24	25	S	34	W	MT. KATMAI (A3)	Kp,Kk			Remeas. of section #14 from 1991
											_				\perp		4			fld prog. see stop 93KAT1&6
											_	_								or sample locations.
93KAT106A		P&P, TS	59	_						Douglas River Island	2					ILIAMNA (A-1&2)	Ks	TDV,BM		OUGLAS RIVER ISLAND SECTION
93KAT106A	2	P&P, TS	59		25	59.07361	153 44	_	153.745	Douglas River Island	2	_	_	_	_	ILIAMNA (A-1&2)	Ks	TDV,BM		XOUGLAS RIVER ISLAND SECTION
93KAT106A	3	Fission Track	59		25	59.07361	153 44		153.745	Douglas River Island	2	_	_	_	_	ILIAMNA (A-3)	Ks	TDV,BM		XOUGLAS RIVER ISLAND SECTION
93KAT106B	1	P&P,TS	59		34	59.07611	153 45			Douglas River Island	3	_	_	_	_	ILIAMNA (A-1&2)	Jn	TDV,BM		XOUGLAS RIVER ISLAND SECTION
93KAT106B	2	PALEO	59		34	59.07611				Douglas River Island	3	_	_		_	ILIAMNA (A-1&2)	Jn	TDV,BM		XOUGLAS RIVER ISLAND SECTION
93KAT106B	3	FISSION TRACK	59		34	59.07611	153 45			Douglas River Island	3	13	_	_	_	ILIAMNA (A-1&2)	Jn	TDV,BM		7' IN SECTION
93KAT106B	4	P&P,TS	59		34	59.07611	153 45			Douglas River Island	3					ILIAMNA (A-1&2)	Jn	TDV,BM		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
93KAT106B	5	VIT	59		34	59.07611	153 45			Douglas River Island	3	_				ILIAMNA (A-1&2)	Jn	TDV,BM	[OUGLAS RIVER ISLAND SECTION
93KAT106B	6	P&P,TS	59	4	34	59.07611	153 45			Douglas River Island	3	13	_	_	-	ILIAMNA (A-1&2)	Jn	TDV,BM		OUGLAS RIVER ISLAND SECTION
93KAT106C	1	P&P,TS	59	4	28	59.07444	153 44			Douglas River Island	2					ILIAMNA (A-1&2)	Ks	DD,SK		OUGLAS RIVER ISLAND SECTION
93KAT106C	2	MACRO	59	4	28	59.07444	153 44		153.7475	Douglas River Island	2	_	_		_	ILIAMNA (A-1&2)	Ks	DD,SK		OUGLAS RIVER ISLAND SECTION
93KAT106C	_	MACRO	59	4	28	59.07444	153 44	51	153.7475	Douglas River Island	2	13	S	27	W	ILIAMNA (A-1&2)	Ks	DD,SK		OUGLAS RIVER ISLAND SECTION
93KAT106C	4	VIT	59	4	28	59.07444	153 44		153.7475	Douglas River Island	2	13	_	-	-	ILIAMNA (A-1&2)	Ks	DD,SK		OUGLAS RIVER ISLAND SECTION
93KAT107A		PALEO FRM CLAS	T 59	3	46	59.06278	153 45	48	153.763333	Douglas River Island	10	13	S	27	W	ILIAMNA (A-3)	Ks	TDV,BM		ouglas River Ks Channel Complex

93 LCI- Stop & Sample 93KAT107A 2 PALEO 46 59.06278 153 45 48 153.763333 Douglas River Island 10 13 S 27 W ILIAMNA (A-3) Ks TDV.BM Douglas River Ks Channel Complex 93KAT107A 3 TS 46 59.06278 153 45 48 153.763333 Douglas River Island 10 13 S 27 W ILIAMNA (A-3) Ks TDV.BM Douglas River Ks Channel Complex 93KAT107A 4 P&P.TS 46 59.06278 153 45 48 153.763333 Douglas River Island 10 13 S 27 W ILIAMNA (A-3) Ks TDV.BM Douglas River Ks Channel Complex 93KAT107A 5 P&P.TS 46 59.06278 153 45 48 153.763333 Douglas River Island 10 13 S 27 W ILIAMNA (A-3) Ks TDV,BM Douglas River Ks Channel Complex 93KAT108 Stop 58 44 56 58.74889 154 5 52 154.097778 N.KAGUYAK CRATER 5 17 S 29 W MT. KATMAI (C-1) Khl Visual insepction from helicopter 93KAT109A 1 P&P,TS 58 41 51 58.6975 154 0 39 154.010833 N. KAGUYAK CRATER 23 17 S 29 W MT. KATMAI (C-1) Khl TDV, BM Recon measured section of Herendeen 93KAT109A 2 PALY 58 41 51 58.6975 154 0 39 154.010833 N. KAGUYAK CRATER 17 S 29 W MT. KATMAI (C-1) TDV. BM 93KAT10A Stop P&P.TS 58 51 2 58.85056 153 57 39 153.960833 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT10B 1 P&P.TS 58 50 30 58.84167 153 56 10 153.936111 W. DOUGLAS RIVER 27 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10C 1 58 50 36 58.84333 153 56 16 153.937778 W. DOUGLAS RIVER P&P/TS 27 | 15 | S | 28 | W | AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10D 1 P&P,TS 58 50 37 58.84361 153 56 20 153.938889 W. DOUGLAS RIVER 27 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10E 1 P&P,TS 58 50 38 58.84389 153 56 24 153.94 W. DOUGLAS RIVER 27 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10F 1 P&P/TS 58 50 42 58.845 153 56 30 153.941667 W. DOUGLAS RIVER 27 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10G 1 P&P/TS 58 50 45 58.84583 153 56 36 153.943333 W. DOUGLAS RIVER 27 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10H 1 Paleo 58 50 47 58.84639 153 56 40 153.944444 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10H 2 VITRINITE 58 50 47 58.84639 153 56 40 153.944444 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10I 1 P&P,TS 58 | 50 | 56 | 58.84889 | 153 | 57 | 6 | 153.951667 | W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10J 1 P&P,TS 58 | 50 | 59 | 58.84972 | 153 | 57 | 12 | 153.953333 | W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10K 1 PALEO. 58 51 1 58.85028 153 57 18 153.955 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10K 2 VITRINITE 58 51 1 58.85028 153 57 18 153.955 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT10L 1 P&P,TS 58.85028 153 57 25 153.956944 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK.SK.RT.RK 93KAT10M 1 P&P.TS 58 51 1 58.85028 153 57 25 153.956944 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK.SK.RT.RK 93KAT10N 1 P&P,TS 58 51 1 58.85028 153 57 34 153.959444 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT110A 1 P&P.TS 59 0 47 59.01306 154 1 23 154.023056 N. Kamishak Hills 31 13 S 28 W ILIAMNA (A-3) K TDV,BM,JVF,DC RECONSECTION 93KAT110A 2 TS 59 0 47 59.01306 154 1 23 154.023056 N. Kamishak Hills 31 13 S 28 W ILIAMNA (A-3) TDV,BM,JVF,DC RECONSECTION 93KAT110A 3 PALEO 47 59.01306 154 1 23 154.023056 N. Kamishak Hills 31 13 S 28 W ILIAMNA (A-3) TDV,BM,JVF,DC RECONSECTION 93KAT111A 1 TS 58 53 41 58.89472 153 37 12 153.62 SPOTTED GLACIER 9 15 S 26 W AFOGNAK (D5) TDV.BM Cont. of section from 93KAT102 93KAT112A 1 P&P/TS 58 58 1 58.96694 153 59 39 153.994167 Kamishak Hills 17 14 S 28 W AFOGNAK (D6) Kst ? TDV, BM,DD Cret, Channels in Naknek. 93KAT112A 2 MACRO 58 58 1 58.96694 153 59 39 153.994167 Kamishak Hills 17 14 S 28 W AFOGNAK (D6) Kst? TDV, BM,DD Cret. Channels in Naknek. 93KAT112A 3 PALEO 58 58 1 58.96694 153 59 39 153.994167 Kamishak Hills 17 14 S 28 W AFOGNAK (D6) Kst? TDV, BM,DD Cret, Channels in Naknek. 93KAT112A 4 TS 58 58 1 58.96694 153 59 39 153.994167 Kamishak Hills 17 14 S 28 W AFOGNAK (D6) Kst? TDV, BM,DD Cret, Channels in Naknek. 93KAT11A 1 P&P/TS 58 51 7 58.85194 153 57 51 153.964167 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT11A 2 P&P/TS 58 51 7 58.85194 153 57 51 153.964167 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT11A 3 VITRINITE 58 51 7 58.85194 153 57 51 153.964167 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT11A 4 58 51 7 58.85194 153 57 51 153.964167 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT11A 5 58 51 7 58.85194 153 57 51 153.964167 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT11B 1 P&P/TS 58 | 51 | 13 | 58.85361 | 153 | 57 | 59 | 153.966389 | W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT11C 1 PALEO 153 58 8 153.968889 W. DOUGLAS RIVER 58 51 18 58.855 28 15 S 28 W AFOGNAK (D6) Kk 93KAT12A Stop 58 50 38 58.84389 153 57 20 153.955556 W. DOUGLAS RIVER 28 15 S 28 W AFOGNAK (D6) Kk 93KAT13A Stop 58 50 30 58.84167 153 56 10 153.936111 W. DOUGLAS RIVER 27 15 S 28 W AFOGNAK (D6) Kk 93KAT13B Stop 58 50 26 58.84056 153 56 7 153.935278 W. DOUGLAS RIVER 34 15 S 28 W AFOGNAK (D6) Kk 93KAT13C 1 TS 58 50 11 58.83639 153 56 1 153.933611 W. DOUGLAS RIVER 34 15 S 28 W AFOGNAK (D6) Kk 93KAT13D Stop 58 | 49 | 56 | 58.83222 | 153 | 55 | 153.931944 | W. DOUGLAS RIVER 34 15 S 28 W AFOGNAK (D6) Kk 93KAT13E 1 58 50 17 58.83806 153 56 4 153.934444 W. DOUGLAS RIVER PALEO. 34 15 S 28 W AFOGNAK (D6) Kk GVK,SK,RT,RK 93KAT14 Stop 58 | 53 | 10 | 58.88611 | 153 | 41 | 55 | 153.698611 | TWIN GLACIERS 12 15 S 27 W AFOGNAK (D6) Jn\Kh GVK,SK,RT,RK 93KAT15 Stop 58 55 23 58.92306 154 1 3 154.0175 N KAMISHAK HILLS 31 14 S 28 W MT. KATMAI (D1) Jn\Kh\Kk GVK.SK.RT.RK 93KAT16 Stop 58 55 9 58.91917 154 1 46 154.029444 N KAMISHAK HILLS 36 14 S 29 W MT, KATMAI (D1) Jn\Kh\Kk GVK,SK,RT,RK

93 LCI- Stop & Sample 93KAT17 30 154.008333 N KAMISHAK HILLS Stop 58 57 3 58.95083 154 0 19 14 S 28 W MT. KATMAI (D1) Jn\Kk GVK,SK,RT,RK 93KAT18 Stop 59 0 17 59.00472 154 0 18 154.005 N KAMISHAK HILLS 31 | 13 | S | 28 | W | Iliamna A-3 Jn\Kk GVK,SK,RT,RK 93KAT19 Stop 58 33 46 58.56278 153 33 35 153.559722 HERENDEEN ISLAND 3 19 S 28 W AFOGNAK C-6 93KAT1A 1 VITRINITE 58 0 9 58.0025 154 47 8 154.785556 MT. PEDMAR 24 25 S 34 W MT. KATMAI (A3) Jn? **GVK** KAT=KATMAI AREA 93KAT1A P&P/TS 2 58 0 9 58.0025 154 47 8 154.785556 MT. PEDMAR 24 25 S 34 W MT. KATMAI (A3) Jn? GVK 93KAT1B Stop 58 0 4 58.00111 154 47 36 154.793333 MT. PEDMAR 24 25 S 34 W MT. KATMAI (A3) Ks? 93KAT1C Stop 58 0 8 58.00222 154 46 51 154.780833 MT. PEDMAR 19 25 S 33 W MT. KATMAI (A3) Ks? 93KAT1D 1 VITRINITE 58 0 7 58.00194 154 46 41 154.778056 MT. PEDMAR 19 25 S 33 W MT. KATMAI (A3) Kk? GVK 93KAT1D 2 P&P/TS 58 0 7 58.00194 154 46 41 154.778056 MT, PEDMAR 19 25 S 33 W MT. KATMAI (A3) Kk? **GVK** 93KAT2 Stop 19 58.05528 154 49 51 154.830833 MT. PEDMAR 34 24 S 34 W MT. KATMAI (A3) 93KAT20A 1 P&P. TS 53 59.06472 153 49 21 153.8225 Kamishak Bav 13 S 27 W Iliamna A-3 JN GVK, DI, MC 93KAT21A 1 P&P, TS 33 | 59.10917 | 153 | 52 | 38 | 153.877222 | Kamishak Bay 25? 12 S 28 W Iliamna A-3 JN GVK, DI, MC Samples taken at low tide 93KAT22A 1 P&P. TS 18 59.105 153 43 48 153.73 Kamishak Bav 26 12 S 27 W Iliamna A1 & A2 JN GVK, DC, DI Samples taken at low tide 93KAT23 Stop 58 27 28 58.45778 154 0 7 154.001944 Hallo Bay 12 20 S 29 W MT. KATMAI (B-1) Jn Niniagik Island 93KAT25A 1 FISSION TRACK 0 93KAT26A 1 P&P.TS 59 4 8 59.06889 153 45 15 153.754167 Douglas River Island 10 13 S 27 W ILIAMNA (A-3) Jn? SK 93KAT3A 1 PALEO. 46 58.01278 154 44 15 154.7375 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) Kk 93KAT3A 2 P&P/TS 46 58.01278 154 44 15 154.7375 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) Kk 93KAT3A 3 VITRINITE 58 0 46 58.01278 154 44 15 154.7375 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) Kk 93KAT4A Stop 58 1 47 58.02972 154 36 54 154.615 CAPE ILKTUGITAK 25 S 33 W MT. KATMAI (A2) Kk 93KAT4B 1 VITRINITE 58 1 47 58.02972 154 36 39 154.610833 CAPE ILKTUGITAK 25 S 33 W MT. KATMAI (A2) Kk GVK 93KAT4B 2 P&P/TS 47 58.02972 154 36 39 154.610833 CAPE ILKTUGITAK 25 S 33 W MT. KATMAI (A2) Kk **GVK** 93KAT4C 1 P&P/TS 44 58.02889 154 37 0 154.616667 CAPE ILKTUGITAK 25 S 33 W MT. KATMAI (A2) **GVK** Kk 93KAT5A 1 PALEO. 20 | 58.05556 | 154 | 42 | 41 | 154.711389 | DAKAVAK BAY 32 24 S 33 W MT. KATMAI (A3) Kk SK **93KAT6A** Stop 58 0 9 58.0025 154 46 15 154.770833 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) **93KAT6B** 1 P&P/TS 58 0 9 58.0025 154 46 15 154.770833 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) Kp/Kk? GVK 93KAT6C 1 PALEO. 58 0 9 58.0025 154 46 15 154.770833 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) Kp/Kk? SK 93KAT6C 2 P&P/TS 58 0 9 58.0025 154 46 15 154.770833 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) Kp/Kk? GVK 93KAT6C 3 VIT. 58 0 9 58.0025 154 46 15 154.770833 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) Kp/Kk? GVK 93KAT6C 4 PALEO. 58 0 9 58.0025 154 46 15 154.770833 MT. PEDMAR 17 25 S 33 W MT. KATMAI (A3) Kp/Kk? TV 93KAT6C 5 P&P/TS 58 0 58.0025 154 46 15 154.770833 MT. PEDMAR 9 17 25 S 33 W MT. KATMAI (A3) Kp/Kk? BM 93KAT7 Stop 58 1 41 58.02806 154 52 10 154.869444 KATMAI BEACH 25 S 34 W MT. KATMAI (A3) **93KAT8A** 22 154.122778 S. KAGUYAK CRATER P&P/TS 58 33 22 58.55611 154 7 19 S 29 W MT. KATMAI (C1) Jn **GVK** 93KAT8B P&P/TS 58 33 25 58.55694 19 S 29 W MT. KATMAI (C1) 154 7 12 154.12 S. KAGUYAK CRATER Jn GVK **93KAT8C** P&P/TS 58 33 27 58.5575 154 6 56 154.115556 S. KAGUYAK CRATER 5 19 S 29 W MT. KATMAI (C1) Jn **GVK** 93KAT8D P&P/TS 58 33 28 58.55778 154 6 47 | 154.113056 | S. KAGUYAK CRATER 19 S 29 W MT. KATMAI (C1) Jn GVK 93KAT8E 1 58 33 27 58.5575 154 6 34 154,109444 S. KAGUYAK CRATER 19 S 29 W MT, KATMAI (C1) Jn 93KAT8E 2 P&P/TS 58 33 27 58.5575 154 6 34 154.109444 S. KAGUYAK CRATER 19 S 29 W MT. KATMAI (C1) Jn **GVK** 93KAT8F Stop 58 33 28 58.55778 154 6 28 154.107778 S. KAGUYAK CRATER 19 S 29 W MT. KATMAI (C1) Jn PALEO 93KAT8G 1 58 33 22 58.55611 154 6 26 154.107222 S. KAGUYAK CRATER 5 19 S 29 W MT. KATMAI (C1) Jn **GVK** 93KAT8G 1A VITRINITE 58 33 22 58.55611 154 6 26 154.107222 S. KAGUYAK CRATER 19 S 29 W MT. KATMAI (C1) Jn GVK **93KAT8H** 1 P&P/TS 58 33 21 58.55583 154 5 52 154.097778 S. KAGUYAK CRATER 19 S 29 W MT. KATMAI (C1) GVK 93KAT8I 1 58 33 12 58.55333 154 5 39 154,094167 S. KAGUYAK CRATER 5 19 S 29 W MT, KATMAI (C1) Jn GVK **93KAT8J** 1 PALEO 58 33 10 58.55278 154 5 35 154.093056 S. KAGUYAK CRATER 19 S 29 W MT. KATMAI (C1) GVK 93KAT8K 1 PALEO 58 33 7 58.55194 154 5 39 154.094167 S. KAGUYAK CRATER 8 19 S 29 W MT. KATMAI (C1) Jn GVK 93KAT9A Stop 58 49 23 58.82306 154 3 58 154.066111 S. FORK KAMISHAK RIV. 2 16 S 29 W MT. KATMAI (D1) 58 49 9 58.81917 154 3 22 154.056111 S. FORK KAMISHAK RIV. 2 93KAT9B Stop 16 S 29 W MT. KATMAI (D1)

93 LCI- Stop & Sample 93LCP1 EXTRACT 59 58 57 59.9825 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) Ksm TDV.SK.DD.BM 9' IN SADDLE MT. SEC. 93LCP1 TS NEEDS IMPREG. 59 58 57 59.9825 2 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) Ksm TDV,SK,DD,BM 8' IN SADDLE MT. SEC. 93LCP1 3 EXTRACT 59 58 57 59.9825 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) Ksm TDV.SK.DD.BM 8' IN SADDLE MT. SEC. 93LCP1 4 EXTRACT 59 58 57 59.9825 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) Ksm TDV,SK,DD,BM 8' IN SADDLE MT. SEC. 93LCP1 5 EXTRACT 59 58 57 59.9825 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) Ksm TDV,SK,DD,BM 20' IN SADDLE MT. SEC. 93LCP1 6 P&P, TS 59 58 57 59.9825 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) TDV.SK.DD.BM Ksm 28' IN SADDLE MT. SEC. 93LCP1 7 P&P, TS 59 58 57 59.9825 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) Ksm TDV,SK,DD,BM 45' IN SADDLE MT. SEC. 93LCP1 8 P&P, TS 59 58 57 59.9825 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) Ksm TDV.SK.DD.BM 52' IN SADDLE MT. SEC. 93LCP1 9 P&P. TS 59 58 57 59.9825 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) Ksm TDV.SK.DD.BM 55' IN SADDLE MT. SEC. 93LCP1 10 P&P. TS 59 58 57 59.9825 152 41 51 152.6975 SADDLE MOUNTAIN 27 2 S 20 W SELDOVIA (D-8) Ksm TDV,SK,DD,BM 67.5' IN SADDLE MT. SEC. 93LCP2 1 P&P, TS 59 56 37 59.94361 152 49 1 152.816944 SHELTER CREEK 1 3 S 21 W SELDOVIA (D-8) Ksm 93LCP2 2 PALY 59 56 37 59.94361 152 49 1 152.816944 SHELTER CREEK 3 S 21 W SELDOVIA (D-8) Ksm 93LCP3 1 Paleo 60 3 1 60.05028 152 53 52 152.897778 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD.SK 93LCP3 2 P&P.TS 60 3 1 60.05028 152 53 52 152.897778 REDGLACIER 33 1 S 21 W KENAI (A-8) DD.SK Jrg 93LCP4 1 TS 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD,SK,TDV,BM 93LCP4 2 PALEO, GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jra DD.SK.TDV.BM 93LCP4 3 PALEO, GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD.SK.TDV.BM 93LCP4 PALEO, GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD,SK,TDV,BM 93LCP4 PALEO, GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) DD,SK,TDV,BM Jrg 93LCP4 PALEO,GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD,SK,TDV,BM 93LCP4 7 PALEO, GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD.SK.TDV.BM 93LCP4 PALEO, GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) DD.SK.TDV.BM Jrg 93LCP4 9 PALEO, GEOCHEM 60 2 60.04583 152 53 55 152.898611 REDGLACIER 45 33 1 S 21 W KENAI (A-8) Jrg DD,SK,TDV,BM 93LCP4 10 PALEO, GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD.SK.TDV.BM 93LCP4 11 PALEO,GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD,SK,TDV,BM 93LCP4 12 PALEO,GEOCHEM 60 2 60.04583 152 53 55 152.898611 REDGLACIER 45 S 21 W KENAI (A-8) 33 1 Jrg DD.SK.TDV.BM 93LCP4 13 PALEO, GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) DD,SK,TDV,BM Jrg 93LCP4 14 PALEO, GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD,SK,TDV,BM 93LCP4 15 PALEO,GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jrg DD.SK.TDV.BM **93LCP4** 16 PALEO,GEOCHEM 60 2 45 60.04583 152 53 55 152.898611 REDGLACIER 33 1 S 21 W KENAI (A-8) Jra DD.SK.TDV.BM 93LCP5 1 MAG 60 14 40 60.24444 152 51 4 152.851111 Magnetic Island 24 2 N 21 W KENAI (A-8) SK

711 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + U.S.A TELEPHONE: (617) 876-3691 TELEFAX: (617) 661-0148

POTASSIUM-ARGON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Our Sample No. B-10447

Date Received:

9/22/93

Your Reference: Phonecall of 12/3/93

Date Reported: 1/6/94

Submitted By:

Steven C. Bergman

ARCO Exploration and Production Technology 2300 West Plano Parkway Plano, TX 75075

Sample Description & Locality:

Sample # 93KAT 25A-1, volcanic sandstone

Material Analyzed:

Biotite concentrate, -80/+200 mesh.

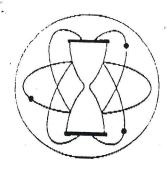
40"Ar/40K =

.008984

AGE = 148 +/- 4 M.Y.

Argon Analyses:

⁴°Ar, ppm	*	∞'Ar/Total •Ar	Ave. ⁴ Ar, ppm
.01899 .01880		•358 •576	.01890


Potassium Analyses:

% K	Ave. % K	∞ Κ, ppm
1.788 1.738	1.763	2.103

Constants Used:

$$\begin{array}{lll} \lambda_{\text{p}} = 4.962 \times 10^{\text{-10/year}} \\ (\lambda_{\text{s}} + \lambda'_{\text{s}}) = 0.581 \times 10^{\text{-10/year}} \\ \text{*°K/K} = 1.193 \times 10^{\text{-10/year}} \end{array} \qquad \text{AGE} = \frac{1}{\lambda_{\text{p}} + (\lambda_{\text{s}} + \lambda'_{\text{s}})} \ln \frac{\lambda_{\text{g}} + (\lambda_{\text{s}} + \lambda'_{\text{s}})}{(\lambda_{\text{s}} + \lambda'_{\text{s}})} \times \frac{\text{*°Ar}}{\text{*°K}} + 1$$

Note: 40 Ar refers to radiogenic 40 Ar.

711 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + U.S.A TELEPHONE: (617) 876-3691 TELEFAX: (617) 661-0148

POTASSIUM-ARGON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Our Sample No. A-10447

Date Received:

9/22/93

Your Reference: Phonecall of 11/18/93

Date Reported: 1/6/94

Submitted By:

Steven C. Bergman

ARCO Exploration and Production Technology

2300 West Plano Parkway

Plano, TX 75075

Sample Description & Locality:

Sample # 93KAT 25A-1 volcanic sandstone

Material Analyzed:

Amphibole concentrate, -80/+200 mesh.

40'Ar/40K =

.01041

AGE =

171 +/- 6 M.Y.

Argon Analyses:

⁴°'Ar, ppm

4º Ar/Total 4º Ar

Ave. ⁴⁰'Ar, ppm

.004635

.004541

-556 .525

.004588

Potassium Analyses:

% K

0.369

0.370

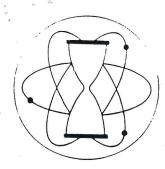
Ave. % K

0.370

∾K, ppm

0.441

Constants Used:


 $\lambda_{A} = 4.962 \times 10^{-10}/\text{year}$

 $(\lambda_{\bullet} + \lambda'_{\bullet}) = 0.581 \times 10^{-10}/\text{year}$

⁴⁰K/K = 1.193 x 10⁻⁴ g/g

 $AGE = \frac{1}{\lambda_{s} + (\lambda_{e} + \lambda'_{e})} \ln \left| \frac{\lambda_{s} + (\lambda_{e} + \lambda'_{e})}{(\lambda_{e} + \lambda'_{e})} \times \frac{{}^{40}\text{'Ar}}{{}^{40}\text{K}} + 1 \right|$

Note: 40°Ar refers to radiogenic 40Ar.

711 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + U.S.A TELEPHONE: (617) 876-3691 TELEFAX: (617) 661-0148

POTASSIUM-ARGON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Our Sample No. A-10492

Date Received:

9/22/93

Your Reference: Phonecall of 12/3/93

Date Reported:

1/20/94

Submitted By:

Steven C. Bergman

ARCO Exploration and Production Technology

2300 West Plano Parkway

Plano, TX 75075

Sample Description & Locality:

Sample # 93KAT 106A-3, volcanic sandstone

Material Analyzed:

Amphibole concentrate, -80/+200 mesh.

40'Ar/40K =

.01038

AGE =

170 +/- 6 M.Y.

Argon Analyses:

⁴⁰'Ar, ppm

40'Ar/Total 40Ar

Ave. 40 Ar, ppm

.005081

.005109

.536 .506

.005095

Potassium Analyses:

% K

0.408

0.415

Ave. % K

0.412

⁴⁰K, ppm

0.491

Constants Used:


 $\lambda_{R} = 4.962 \times 10^{-10}/\text{year}$

 $(\lambda_a + \lambda_a') = 0.581 \times 10^{-10}/\text{year}$

⁴⁰K/K = 1.193 x 10⁻⁴ g/g

 $AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\bullet} + \lambda'_{\bullet})} \ln \left| \frac{\lambda_{\beta} + (\lambda_{\bullet} + \lambda'_{\bullet})}{(\lambda_{\bullet} + \lambda'_{\bullet})} \times \right|^{40} + 1$

Note: 40 Ar refers to radiogenic 40 Ar.

711 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + U.S.A TELEPHONE: (617) 876-3691 TELEFAX: (617) 661-0148

POTASSIUM-ARGON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Our Sample No. B-10448

Date Received:

9/22/93

Your Reference: Phonecall of 12/3/93

Date Reported: 1/6/94

Submitted By:

Steven C. Bergman

ARCO Exploration and Production Technology

2300 West Plano Parkway

Plano, TX 75075

Sample Description & Locality:

Sample # 93KAT 106B-3, volcanic sandstone

Material Analyzed:

Biotite concentrate, -80/+200 mesh.

40"Ar/40K =

.01013

166 +/- 4 M.Y. AGE =

Argon Analyses:

Φ'Ar, pp	m
----------	---

40"Ar/Total 40Ar

Ave. «Ar, ppm

.02599

.02773

.647 .628

.02677

.567

.02683

Potassium Analyses:

% K

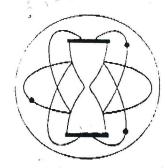
Ave. % K

«K, ppm

2.172 2.269 2.221

2.649

Constants Used:


 $\lambda_{s} = 4.962 \times 10^{-10}/\text{year}$

 $(\lambda_* + \lambda'_*) = 0.581 \times 10^{-10}/\text{year}$

 ${}^{40}K/K = 1.193 \times 10^{-4} g/g$

 $AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\bullet} + \lambda'_{\bullet})} \ln \frac{\lambda_{\beta} + (\lambda_{\bullet} + \lambda'_{\bullet})}{(\lambda_{\bullet} + \lambda'_{\bullet})} \times \frac{{}^{40}\text{Ar}}{{}^{40}\text{K}} + 1$

Note: 40 Ar refers to radiogenic 40 Ar.

H 14 -

GEOCHRON LABORATORIES a division of KRUEGER ENTERPRISES, INC.

711 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + U.S.A TELEPHONE: (617) 876-3691 TELEFAX: (617) 661-0148

POTASSIUM-ARGON AGE DETERMINATION

REPORT OF ANALYTICAL WORK

Our Sample No. A-10448

Date Received:

9/22/93

Your Reference: Phonecall of 11/18/93

Date Reported:

1/6/94

Submitted By:

Steven C. Bergman

ARCO Exploration and Production Technology

2300 West Plano Parkway

Plano, TX 75075

Sample Description & Locality:

Sample # 93KAT 106B-3 volcanic sandstone

Material Analyzed:

Amphibole concentrate, -80/+200 mesh.

40"Ar/40K =

.01062

AGE = 174 + / - 6 M.Y.

Argon Analyses:

⇔Ar, ppm

*O'Ar/Total *Ar

Ave. 40 Ar, ppm

.004892

.005138

.422 .406

.005015

Potassium Analyses:

% K

0.394 0.398 Ave. % K 0.396

[∞]K, ppm

0.472

Constants Used:

 $\lambda_8 = 4.962 \times 10^{-10}/\text{year}$

 $(\lambda_* + \lambda'_*) = 0.581 \times 10^{-10}/\text{year}$

40K/K = 1.193 x 104 g/g

 $AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\bullet} + \lambda'_{\bullet})} \ln \left| \frac{\lambda_{\beta} + (\lambda_{\bullet} + \lambda'_{\bullet})}{(\lambda_{\bullet} + \lambda'_{\bullet})} \times \frac{\omega \cdot Ar}{\omega \cdot K} \right|$

Note: 40 Ar refers to radiogenic 40 Ar.

To: Steve Bergman From: Shari Kelley Date: 3/21/94

Subject: Procedures used for 1993 South Alaska FT samples.

Three apatite and five zircon splits from South Alaska were received on 11/1/93.

None of the zircon fractions were treated with aqua regia to remove pyrite.

The following zircon split was not dated due to insufficient zircon: 93MAT4/9

The zircons were mounted in Teflon, polished, and etched in NaOH/KOH at 230°C for the times (in hours) shown in the table below. Two of the samples contained zircon populations that had similar etching characteristics, so only one mount was made for these samples. Two samples, 93KAT106A and 92MAT4/87, contained zircon populations that had varying etching characteristics. These mounts were cut in half and each half was etched for a different amount of time in an attempt to attain optimum etch conditions for each population. The numbers of the grains dated in each mount (keyed to the attached data sheets) for samples with two grain mounts are shown in parentheses.

Sample 93KAT25A	Mount 1	Mount 2
93KAT106A	5	8
93KAT106B	(1-4) 7	(5-20)
93MAT4/87	7	8
*	(7-11)	(1-6)

The zircons were placed in a reactor package with Fish Canyon zircon age standards and Corning (CN-5) fission-track glass standards. The neutron flux for the reactor run was determined from glass standards and the accepted ages of the zircon standards.

The color and general morphology of the dated zircon and apatite is noted next to the grain number on the attached data sheets. The color is listed first and the shape is listed second. The following code is used:

YB = yellow-brown
Y = yellow
RED = red
B = brown
RB = red-brown
O = orange

E = euhedral
SH = subhedral
R = round
R = round

Apatite grains were mounted in epoxy on a 1 cm² glass slide, polished to expose the grains, and etched for 25 seconds in a 5 M solution of nitric acid to reveal the fission tracks. The apatite samples were placed in a reactor package with Durango apatite (Baron collection) age standards and Corning (CN-6) fission-track glass standards.

Confined track lengths were measured both in the age mounts and in separate grains mounts that had been irradiated for 72 hrs at a distance of 7 cm from a C_1^{252} source. The C_1^{252} track density was on the order of 7.5 to 8.7 x 10⁵ tracks/cm².

TABLE 1. - APATITE AND ZIRCON FISSION-TRACK AGES FOR 1993 SOUTH ALASKA

		FOSSIL	INDUCED	NEUTRON	POOLED AGE	CENTRAL AGE	SPECTRAL		СНІ	MEAN
		TRACKS/CM2	TRACKS/CM2	FLUX	(STANDARD	(STANDARD	PEAK	URANIUM	SQUARED	LENGTH
SAMPLE	GRAINS	(X 10 ⁶)	(X 10 ⁸)	(X 10 ¹⁶	ERROR)	ERROR)	AGE	CONTENT	PROB.	(S.E.)(µm)
NUMBER	COUNTED	[# TRACKS]	[# TRACKS]	NEUTRONS/CM2)	(MA)	(MA)	(MA)	(PPM)	(%)	[N]
				18						
93KAT106A	20	0.64	3.01	1.1	139.2	139.2	135	26	85	13.4 (0.2)
APATITE		399	933	٠.	10	10.3				95
93KAT106A	20	7.34	5.59	0.2	158.3	148.6	110	268	<1	
ZIRCON		2563	975		12.7	13.1				
93KAT106B	20	0.45	2.08	1.1	139.9	139.9	130	18	96	13.2 (0.2)
APATITE		518	1205		9.3	9.6				100
93KAT106B	20	8.61	7.07	0.2	150.8"	140.6	120	339	<1	
ZIRCON		3174	1304		11.8	11.5				
93KAT25A	20	0.45	1.86	1.1	146.0°	156.0	90	16	<1	13.3 (0.3)
APATITE		381	782		13.9	16.4				100
93KAT25A	20	7.19	6.25	0.2	142.2°	135.1	130	300	<1	
ZIRCON		2157	937		9.2	10.8				

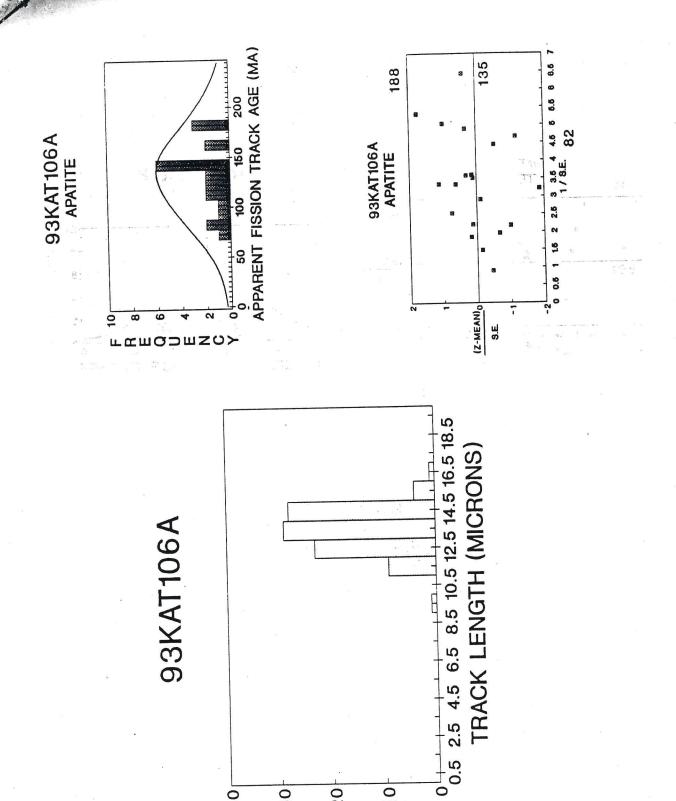
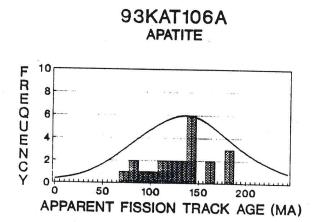
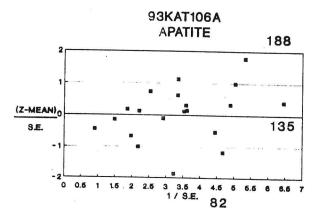
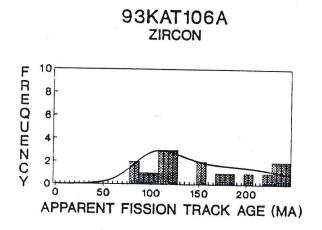
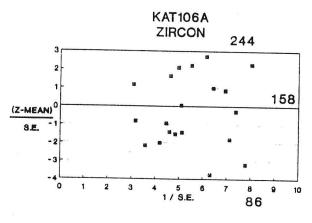

⁻ MEAN AGE

TABLE 2 - UNCORRECTED FISSION-TRACK LENGTH MEASUREMENTS FOR 1993 SOUTH ALASKA

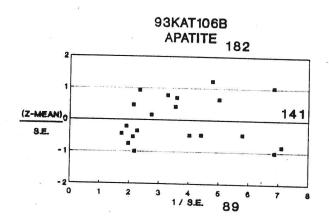

E.								TRACK LENGTH (MICRONS)	ENGTH	(MICR	(SNC								
SAMPLE NAME	2.5	3.5	4.5	5.5	2.5 3.5 4.5 5.5 6.5 7.5	7.5	8.5	9.5	10.5	11.5	12.5	3.5	1.5	8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5	6.5	7.5 18	8.5 18	9.5	TOTAL # OF TRACKS MEASURED
93KAT25	0	0 0 0	0	0	0	0	0	~ ~	~	7	30 29	29	16 10	10	4	0			100
93KAT106A	0	0	0	0	0	0	0	-	0	6	23 29 28	59	28	4	-	0	0	0	95
93KAT106B	0	0	0	0	0	0	0	0	-	6	38 25	i	21	r,	-	0	0	-	100

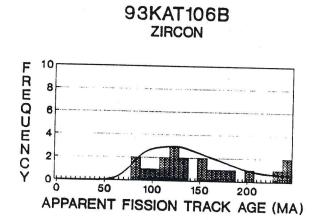

			FISS	ION	TRACK A	GE DATA				W
PROJECT	NAME:	SOUTH AL	ASKA		DATE:	2/20/94		ET ACE:	100.0	14:
. 1					DATE.	2 20194		FT AGE:	139.2	ма
SAMPLE	NUMBER:	93KAT106A	4		LATITUDE:	°' N		UPPER CI:	161.2	Ма
LAB NUM	BER:	SMU			LONGITUDE:	°'W		LOWER CI:	120.2	Ма
REACTOR	RUN NUMBER	: RR-12-17-	-93Z		ELEVATION (M):			STD ERR:	10.00	Ма
NEUTRON	I ELLIV	1.100E+16								
		1.100=+16			MICROSCOPE:	OLYMPUS		C. COEFF:	0.953	×
# SPON T	RACKS (FLUX)	600			MAGNIFICATION	N: 1250 X		CHI2:	13.868	19
# IND. TRA	ACKS (FLUX)	4000			ROCK TYPE:	Jn		AVG. AGE:	135.4	Ма
NUMBER	OF GRAINS:	20			MINERAL:	APATITE		STD. ERR:	7.7	
GRAIN#	AREA USED (SQ. CM)	Ns	RHO(S)			RHO(I)		URANIUM	AGE	STD.DEV.
	(OQ. ON)	145	(/CM²)	'	Ni	(/CM²)	(Ns/Ni)	(PPM)	(MA)	(MA)
1. SH	2.0E-05	18	9.000E+05		31		0.58	27.1	100.2	FC 4
2. SR	2.0E-05		1.500E+06		93				188.3	56.4
3. SR	4.0E-05		4.250E+05		34		0.50	14.8	105.3	22.6
4. R	2.0E-05	18	9.000E+05		42		0.43	36.7	162.5	48.8
5. SR	2.0E-05		5.000E+05		18		0.43		139.5	39.8
6. R	4.0E-05		1.175E+06		81		0.58	15.7	180.3	71.5
7. SH	2.0E-05		5.000E+04		. 4		0.35	35.3	188.2	35.5
8. SR	2.0E-05		1.400E+06		76			3.5	81.7	91.5
9. SH	2.0E-05		3.500E+05		16		0.37	66.3	120.1	27.1
10. SR	2.0E-05		6.500E+05		56		0.44	14.0	142.4	64.8
11. SR	4.0E-05		1.250E+05		17		0.23	48.9	75.9	23.6
12. SH	4.0E-05		1.250E+05		11		0.29	7.4	96.1	49.1
13. SH	4.0E-05		1.500E+05		23		0.45	4.8	147.9	80.0
14. SR	4.0E-05		9.000E+05		81		0.26	10.0	85.3	39.3
15. SR	2.0E-05		9.500E+05		42		0.44	35.3	144.6	29.7
16. SR	2.0E-05		1.500E+05		8	8.000E+05	0.45	36.7	147.2	41.2
17. SR	2.0E-05		9.500E+05		44	4.400E+06	0.38	7.0	122.2	82.9
18. SR	4.0E-05		1.000E+06		79		0.43	38.4	140.6	39.1
19. SH	4.0E-05		3.000E+05		30	3.950E+06	0.51	34.5	164.5	32.7
20. SH	8.0E-05		8.125E+05		147	1.500E+06 3.675E+06	0.40 0.44	13.1 32.1	130.3 143.9	44.9 22.3
	6.2E-04	399	6.435E+05		933	3.010E+06	0.43	26.3		

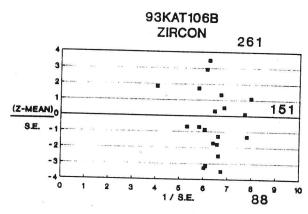

			FISSI	ON TRACK A	GE DATA	1.			3
PROJEC	NAME:	SOUTH		DATE:					
SAMPLE	NUMBER:	93KAT10			2/20/94		FT AGE:	155.4	4 Ma
			OA	LATITUDE:	o, N		UPPER CI:	174.2	2 Ma
LAB NUM		SMU		LONGITUDE:	°′W	я	LOWER CI:	138.6	S Ma
REACTOR	RUN NUMBER	: RR-12-17	7-93Z	ELEVATION (M)	:		STD ERR:		
NEUTRON	FLUX:	2.000E+1	5	MICROSCOPE:	OI YMPLIS			8.66	Ма
# SPON TI	RACKS (FLUX)	600	0				C. COEFF:	0.810	
IND. TRA	ACKS (FLUX)	4000		MAGNIFICATION	N: 1250 X		CHI2:	77.918	1
	OF GRAINS:			ROCK TYPE:	Ks	,	AVG. AGE:	158.3	Ма
	of Ghains:	20) .	MINERAL:	ZIRCON		STD. ERR:	12.7	
GRAIN#	AREA USED (SQ. CM)	Ns	RHO(S) (/CM²)	Ni	RHO(I) (/CM²)	RATIO (Ns/Ni)			STD.DEV
YB,SH	2.0E-05	216	1.080E+07					(MA)	(MA)
YB,SH	1.6E-05	106	6.625E+06	. 72				152.0	20.7
B,SH	8.0E-06		9.000E+06	37		1.47		87.5	13.9
YB,E YB,SR	2.0E-05		1.060E+07	70	9.250E+06 7.000E+06	1.95	444.0	115.4	23.9
YB,E	2.0E-05		9.200E+06	59	5.900E+06	3.03	336.0	178.7	25.8
B,SH	1.3E-05		1.231E+07	40	6.154E+06	3.12	283.2	183.9	28.7
YB,E	2.0E-05		8.600E+06	83	8.300E+06	4.00	295.4	235.0	42.8
YB,SH	4.0E-05		5.200E+06	50	2.500E+06	2.07	398.4	122.8	17.3
Y,SH	1.2E-05		5.417E+06	33	5.500E+06	4.16	120.0	244.2	39.9
. B,SH	8.0E-06	31	3.875E+06	15	3.750E+06	1.97	264.0	116.8	25.5
Y,SH	2.0E-05 2.0E-05	131	6.550E+06	32	3.200E+06	2.07 4.09	180.0		38.9
YB,E	8.0E-06	65	3.250E+06	30	3.000E+06	2.17	153.6	240.4	48.6
YB,SH	1.2E-05		5.875E+06	12	3.000E+06	3.92	144.0	128.3	28.9
YB,SH	4.0E-05		8.917E+06	. 28	4.667E+06	3.82	144.0	230.2	75.1
Y,SH	8.0E-06	50 C-000 (0.00)	2.500E+06	37	1.850E+06	2.70	224.0	224.7	48.7
Y,SH	1.2E-05		4.000E+06	22	5.500E+06	1.45	88.8 264.0	159.7	31.5
B,SH	2.0E-05		4.000E+06	29	4.833E+06	1.66	232.0	86.4	24.2
B,SH	1.2E-05		9.500E+06	107	1.070E+07	1.78		98.3	23.5
B,SH	2.0E-05		6.917E+06	41	6.833E+06	2.02	513.6	105.4	13.5
		334	1.670E+07	94	9.400E+06	3.55	328.0 451.2	120.0 209.2	23.5 26.1
	3.5E-04	2562	7.344E+06	975					

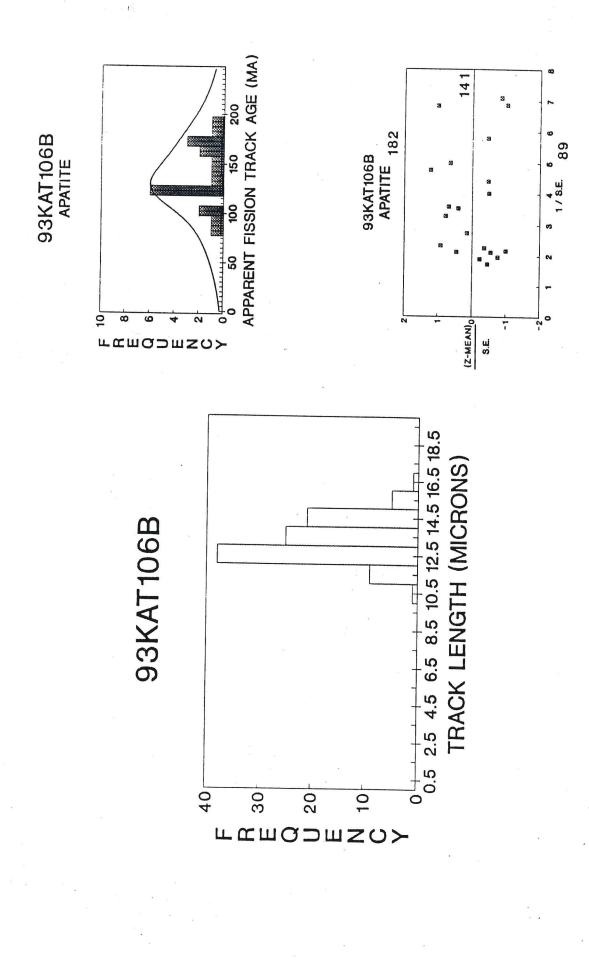


≺CNEUOFFF

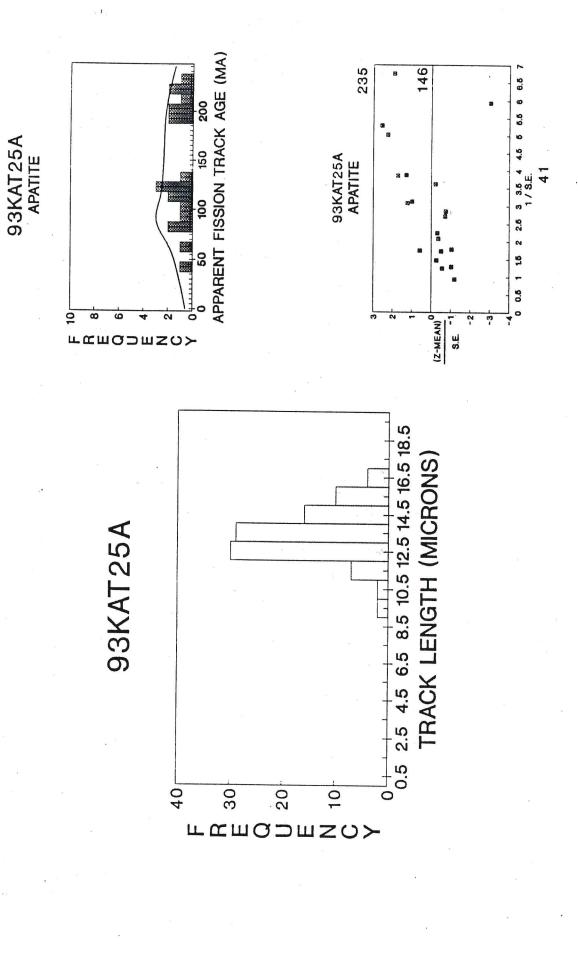

	z ^o		FISSI	ON TRACK A	GE DATA			*	
PROJEC	T NAME:	SOUTH A	_ASKA	DATE:	2/20/94		FT AGE:	139.9	. Ma
SAMPLE	NUMBER:	93KAT106	В	LATITUDE:	°' N		UPPER CI:	160.2	
LAB NUM	IBER:	SMU		LONGITUDE:	•'W	i i	LOWER CI:	122.2	
REACTOR	RUN NUMBER	: RR-12-17	-93Z	ELEVATION (M):			STD ERR:	9.27	
IEUTROI	N FLUX:	1.100E+16		MICROSCOPE:	OLYMPUS		C. COEFF:	0.980	
SPON T	RACKS (FLUX)	600		MAGNIFICATION	l: 1250 X		CHI2:	10.522	
IND. TR	ACKS (FLUX)	4000		ROCK TYPE:	Jn		AVG. AGE:	141.2	,
UMBER	OF GRAINS:	20		MINERAL:	APATITE		STD. ERR:	7.3	IVIQ
	AREA USED								
RAIN#	(SQ. CM)	Ns	RHO(S) (/CM²)	Ni	RHO(I) (/CM²)	RATIO (Ns/Ni)	URANIUM (PPM)		STD.DI
R	8.0E-05	37	4.625E+05	66	1.650E+06	0.50			
SH	4.0E-05	50	1.250E+06	125	6.250E+06	0.56	14.4	181.9	3
SR	4.0E-05	20	5.000E+05	38	1.900E+06	0.40	54.5	130.3	2
R	8.0E-05	71	8.875E+05	190	4.750E+06	0.53 0.37	16.6	170.9	4
SR	4.0E-05	5	1.250E+05	13	6.500E+05	0.37	41.5	121.8	1
SH	4.0E-05		5.750E+05	60	3.000E+06	0.38	5.7	125.3	(
SR	4.0E-05	6	1.500E+05	18	9.000E+05	0.33	26.2	124.9	3
SR SR	4.0E-05		2.750E+05	24	1.200E+06	0.46	7.9	108.8	5
SR	4.0E-05		4.250E+05	31	1.550E+06	0.55	10.5	149.1	5
SR	8.0E-05		7.500E+04	22	5.500E+05	0.27	13.5 4.8	178.0	5
SH	8.0E-05		3.500E+05	72	1.800E+06	0.39	4.8 15.7	89.1	4
SR	8.0E-05		8.750E+04	19	4.750E+05	0.37	4.1	126.7	2
SR	4.0E-05		1.000E+05	12	6.000E+05	0.33	5.2	120.1	5
SR	8.0E-05	•	6.250E+04	17		0.29	3.7	108.8	6
SH	8.0E-05		2.375E+05	39	9.750E+05	0.49	8.5	96.1	4
R	4.0E-05		1.750E+05	. 13	6.500E+05	0.54	5.7	158.4	4
SR	8.0E-05		1.125E+05	14	3.500E+05	0.64	3.1	174.8	8:
R	4.0E-05		9.750E+05	79	3.950E+06	0.49	34.5	208.2	8
R	8.0E-05		9.625E+05	153	3.825E+06	0.50	33.4	160.4	3:
······································	4.0E-05	77	1.925E+06	200	1.000E+07	0.39	87.3	163.5 125.5	23 17
	1.2E-03	518	4.466E+05	1205	2.078E+06	0.43	18.1		

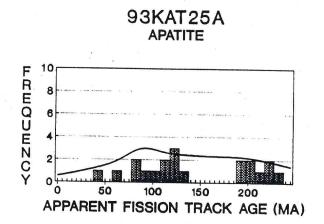

	e.	a 5	FISSI	ON TRACK A	AGE DATA				
PROJECT	NAME:	SOUTH AI	LASKA	DATE:	2/20/94		FT AGE:	158.4	∮ Ma
SAMPLE	NUMBER:	93KAT25A		LATITUDE:	°' N		UPPER CI:	184.1	
LAB NUM	BER:	SMU		LONGITUDE:	°'W		LOWER CI:	136.2	
REACTOR	RUN NUMBER	R: RR-12-17	-93Z	ELEVATION (M):		STD ERR:	11.65	
NEUTRON	FLUX:	1.100E+16	· .	MICROSCOPE:	OLYMPUS		C. COEFF:	0.863	*
# SPON T	RACKS (FLUX)	600		MAGNIFICATIO	N: 1250 X		CHI2:	37.430	
# IND. TR/	ACKS (FLUX)	4000	- 9	ROCK TYPE:	Jn		AVG. AGE:	146.0	
NUMBER	OF GRAINS:	. 20		MINERAL:	APATITE.		STD. ERR:	13.9	
	ADEA HOED								
GRAIN#	(SQ. CM)	Ns	RHO(S) (/CM²)	· N	RHO(I) Ii (/CM²)	RATIO (Ns/Ni)	URANIUM (PPM)		STD.DEV.
1. SH	8.0E-05		6.000E+05	178	4.450E+06	0.27	38.8	88.1	
2. SH	4.0E-05		4.750E+05	45		0.42	19.6		14.8
3. R	2.0E-05		5.000E+04			0.13	7.0	137.5 41.0	38.1
l. SR	2.0E-05		1.000E+05	10		0.20	8.7	65.5	-
S. SH	2.0E-05		3.500E+05	18		0.39	15.7	126.7	50.8
S. SH Z. SR	4.0E-05		1.000E+05	12		0.33	5.2	108.8	56.7
. SH	8.0E-05		1.250E+05	29	7.250E+05	0.34	6.3	112.5	63.0
SR	4.0E-05		2.750E+05	32	1.600E+06	0.34	14.0	112.1	41.5 39.5
0. SH	2.0E-05		1.300E+06	37	3.700E+06	0.70	32.3	227.2	59.0
1. SR	4.0E-05		1.500E+05	16	8.000E+05	0.38	7.0	122.2	58.8
2. SR	8.0E-05		5.625E+05	64	1.600E+06	0.70	14.0	227.3	45.3
3. SH	4.0E-05 4.0E-05		4.000E+05	. 24		0.67	10.5	215.7	70.3
4. SH	4.0E-05		4.000E+05	26		0.62	11.3	199.4	64.0
5. SH	4.0E-05		6.250E+05	40		0.63	17.5	202.5	52.4
6. SR	4.0E-05		1.000E+05	16		0.25	7.0	81.7	45.8
7. SH	8.0E-05		2.000E+06	134		0.60	58.5	193.5	28.6
8. SH	2.0E-05		6.250E+04	8		0.63	1.7	202.5	115.8
9. SH	4.0E-05		1.000E+05	7		0.29	6.1	93.3	75.0
0. SH			7.500E+04	8		0.38	3.5	122.2	82.9
	2.0E-05	51	2.550E+06	70	7.000E+06	0.73	61.1	235.4	44.5
	8.4E-04	381	4.536E+05	782	1.862E+06	0.49	16.2		

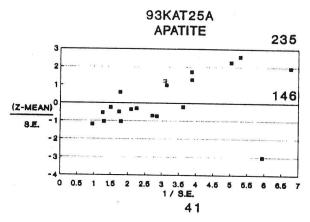

93KAT106B APATITE

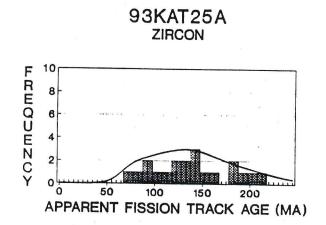

F 10
R 8
Q 6
U 4
N 2
C Y 0

0 50 100 150 200 APPARENT FISSION TRACK AGE (MA)










			Drage	011					
			FISSI	ON TRACK A	GE DATA				
PROJECT	NAME:	SOUTH AL	_ASKA	DATE:	2/20/94		FT AGE:	136.3	Ma
SAMPLE	NUMBER:	93KAT25A		LATITUDE:	°' N		UPPER CI:	153.1	
LAB NUM	BER:	SMU		LONGITUDE:	°'W	٠,	LOWER CI:	121.3	
REACTOR	RUN NUMBER	l: RR-12-17	-93Z	ELEVATION (M)	: .		STD ERR:		Ма
NEUTRON	FLUX:	2.000E+15		MICROSCOPE:	OLYMPUS		C. COEFF:		
# SPON TI	RACKS (FLUX)	60 0		MAGNIFICATIO				0.453	
					W. 1250 X		CHI2:	58.780	1
	ACKS (FLUX)	4000		ROCK TYPE:	Jn		AVG. AGE:	142.2	Ма
NUMBER (OF GRAINS:	20		MINERAL:	ZIRCON		STD. ERR:	9.2	
GRAIN #	AREA USED (SQ. CM)	Ns	RHO(S) (/CM²)	Ni			URANIUM (PPM)		STD.DEV
1. YB,SR	2.4E-05		4.167E+06	62		1.61	240.0		
2. YB,SH	1.2E-05		9.917E+06	35			248.0 280.0	95.8	16.0
B, B,SH	2.0E-05	130	6.500E+06	42			201.6	200.3	39.
. Y,E	2.0E-05	122	6.100E+06	66		1.85	316.8	182.6	33.
	1.2E-05		7.667E+06	35		2.63	280.0	109.7 155.4	17.
Y,SH	1.2E-05		4.667E+06	28	4.667E+06	2.00	224.0	118.6	31. 27.
B,SR	1.2E-05		8.917E+06	50			400.0	126.8	22.
. B,SR . Y,SH	1.6E-05		5.438E+06	35	4.375E+06	2.49	210.0	147.0	30.
0. Y,SH	9.6E-06		5.938E+06	36	7.500E+06	1.58		94.0	20.
1. Y,E	1.6E-05		1.031E+07	53	6.625E+06	3.11	318.0	183.6	30.
2. Y,SH	2.0E-05 1.6E-05		8.000E+06	43	4.300E+06	3.72	206.4	218.9	38.8
3. Y,SH	1.8E-05		5.875E+06	76	9.500E+06	1.24	456.0	73.6	11.8
4. Y,E	2.0E-05	108	8.438E+06	44	6.875E+06	2.45	330.0	145.2	26.7
5. B,SH	2.0E-05	1/5	8.750E+06	75		2.33	360.0	138.1	20.0
6. B,SH	9.6E-06		6.050E+06 9.896E+06	58		2.09	278.4	123.6	20.5
7. YB,SH	1.2E-05			33	6.875E+06	2.88	330.0	170.0	35.1
8. Y,SH	1.2E-05		8.083E+06	30	5.000E+06	3.23	240.0	190.6	40.7
9. Y,SH	1.2E-05			37	6.167E+06	2.35	296.0	139.2	28.0
0. YB,SR	1.2E-05		6.667E+06	56	9.333E+06	1.43	448.0	84.9	15.3
			8.750E+06	43	7.167E+06	2.44	344.0	144.5	26.9
	3.0E-04	2157	7.190E+06	937	6.247E+06	2.30	299.8		

