

RESISTIVITY ALTITUDE LIMITS

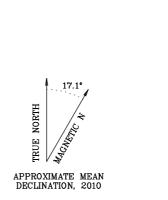
In areas where the EM bird height exceeded 150 m, resistivity was not calculated. This avoids meaningless resistivity calculations due to small signals where the helicopter flew higher to avoid cultural objects or for safety reasons. Blank areas in the grids were created where zones of high flying correlated over more than one survey line.

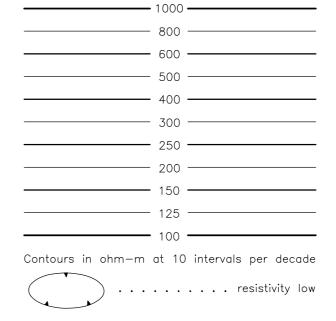
DESCRIPTIVE NOTES

The geophysical data were acquired with a DIGHEMV Electromagnetic (EM) system, Radiation Solutions RS-500 gamma-ray spectrometer and a Fugro D1344 magnetometer with a Scintrex CS3 cesium sensor. The EM and magnetic sensors were flown at a height of 100 feet. The gamma—ray spectrometer was flown at a height of 200 feet. In addition the survey recorded data from radar and laser altimeters, GPS navigation system, 50/60 Hz monitors and video camera. Flights were performed with an AS-350-B3 Squirrel helicopter at a mean terrain clearance of 200 feet along NE—SW (70°) survey flight lines with a spacing of a quarter of a mile. Tie lines were flown perpendicular to the flight lines at intervals of approximately 3 miles.

A Novatel OEM4-G2L Global Positioning System was used for navigation. The helicopter position was derived every 0.5 seconds using post-flight differential positioning to a relative accuracy of better than 5m. Flight path positions were projected onto the Clarke 1866 (UTM zone 5) spheroid, 1927 North American datum using a central meridian (CM) of 153°, a north constant of 0 and an east constant of 500,000. Positional accuracy of the presented data is better than 10m with respect to the UTM grid.

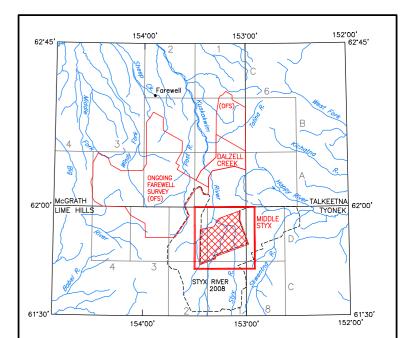
7200 Hz COPLANAR APPARENT RESISTIVITY **AND DATA CONTOURS** OF THE MIDDLE STYX SURVEY AREA, SOUTHCENTRAL ALASKA


PARTS OF THE LIME HILLS AND TYONEK QUADRANGLES


Laurel E. Burns, Fugro Airborne Surveys Corp., and Fugro GeoServices, Inc. 2013

RESISTIVITY

The DIGHEM^V EM system measured inphase and quadrature components at five frequencies. Two vertical coaxial coil-pairs operated at 1000 and 5500 Hz while three horizontal coplanar coil-pairs operated at 900, 7200 and 56,000 Hz. EM data were sampled at 0.1 second intervals. The EM system responds to bedrock conductors, conductive overburden, and cultural sources. Apparent resistivity is generated from the inphase and quadrature component of the coplanar 7200 Hz using the pseudo-layer half space model. The data were interpolated onto a regular 80 m grid using a modified Akima (1970) technique. All grids were then resampled from the 80 m cell size down to a 25 m cell size to produce the maps and final grids contained in this publication.


Akima, H., 1970, A new method of interpolation and smooth curve fitting based on local procedures: Journal of the Association of Computing Machinery, v. 17, no. 4, p. 589–602.

RESISTIVITY CONTOURS

LOCATION INDEX

SURVEY HISTORY

This map has been compiled and drawn under contract between the State of Alaska, Department of Natural Resources, Division of Geological & Geophysical Surveys (DGGS), and Fugro GeoServices, Inc. Airborne geophysical data for the area were acquired and processed by Fugro Airborne Surveys Corp. in 2012 and 2013. Previously flown DGGS surveys adjacent to the current survey are shown in the location map by dashed lines, survey name, and date of publication. The project was funded by the Alaska State Legislature as part of the Alaska Strategic and Critical Minerals Assessment project, which is part of the Alaska Airborne Geophysical and Geological Mineral Inventory Program.

All data and maps produced to date from this survey are available in digital format on DVD for a nominal fee through DGGS, 3354 College Road, Fairbanks, Alaska, 99709-3707, and are downloadable for free from the DGGS website (www.dggs.alaska.gov/pubs). Maps are also available on paper through the DGGS office, and are viewable online at the website in Adobe Acrobat .PDF file format.