## TERTIARY FORMATIONS AND ASSOCIATED MESOZOIC ROCKS IN THE ALASKA PENINSULA AREA, ALASKA, AND THEIR PETROLEUM-RESERVOIR AND SOURCE-ROCK POTENTIAL

ΒY

W. M. LYLE and J. A. MOREHOUSE Alaska Division of Geological and Geophysical Surveys,

and

IRVEN F. PALMER, JR., and J. G. BOLM, U.S. Geological Survey

# GEOLOGIC REPORT 62



Published by DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Anchorage, Alaska

# STATE OF ALASKA Jay S. Hammond, Governor

# DEPARTMENT OF NATURAL RESOURCES Robert E. LeResche, Commissioner

DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Ross G. Schaff

For sale by Alaska Division of Geological and Geophysical Surveys, P.O. Box 80007, College, 99708; 3327 Fairbanks St., Anchorage, 99503; P.O. Box 7438, Ketchikan 99901; and Pouch M, Juneau, 99811.

# CONTENTS

| Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | age |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |
| Personnel and logistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   |
| Field methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Lithologic descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3   |
| Shangaphy it is the test of te | 3   |
| Naknek Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3   |
| Chignik Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3   |
| Hoodoo Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4   |
| Tolstoi Formation $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4   |
| Stepovak Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4   |
| Bear Lake Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5   |
| Tachilni Formation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5   |
| Measured stratigraphic sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5   |
| Black Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5   |
| Milky River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5   |
| Southeast Bear Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | б   |
| Heren 1 and 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Lefthand Bay–Balboa Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Beaver Bay and Beaver Bay East                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6   |
| Aliaksin Peninsula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| White Bluff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7   |
| East Morzhovoi Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7   |
| Reservoir characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7   |
| Reservoir geometry and size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Reservoir porosities and permeabilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8   |
| Reservoir structure and spatial relationship                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| Basin maturity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Hydrocarbon source rocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Structural geology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Petrography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Geochemical analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| Paleontological determinations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| Gravity control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

# ILLUSTRATIONS

Index maps of 2° quadrangle maps showing sampling and stratigraphic section localities:

| Plate A          | Ushagik Quadrangle      |
|------------------|-------------------------|
| Plate B          | Chignik Quadrangle      |
| Plate C          | Cold Bay Quadrangle     |
| Plate D          | Port Moller Quadrangle  |
| Plate E          | Stepovak Quadrangle     |
| Plate F          | False Pass Quadrangle   |
| Stratigraphic Se | ections:                |
| Plate 1          | Black Lake              |
| Plate II         | Milky River             |
| Plate III        | Southeast Bear Lake     |
| Plate IV         | Heren I                 |
| Plate V          | Heren II                |
| Plate VI         | Waterfall Point         |
| Plate VII        | Lefthand Bay–Balboa Bay |
| Plate VIII       | Beaver Bay              |
| Plate (X         | Beaver Bay East         |
| Plate X          | Aliaksin Peninsula      |
| Plate X1         | White Bluff             |
| Plate XII        | East Morzhovoi Bay      |
| Plate XIII       | West Morzhovoi Bay      |
|                  |                         |

|                                                                                    | Page  |
|------------------------------------------------------------------------------------|-------|
| Figure 1—Map showing 1977 State-Federal Alaska Peninsula<br>stratigraphic projects | . 2   |
| Figures 2 through 24—Photographs of representative outcrops at                     |       |
| or near stratigraphic section localities                                           | 55-65 |

# TABLES

| Tables 1A and 18Cross reference                     |  |     |     |     |  |       |  |  |     |  |     |  |    |
|-----------------------------------------------------|--|-----|-----|-----|--|-------|--|--|-----|--|-----|--|----|
| Table 1A – Map numbers to sample or station numbers |  |     | • • |     |  |       |  |  |     |  | •   |  | 12 |
| Table 1B — Sample or station numbers to map numbers |  |     |     |     |  |       |  |  |     |  |     |  | 25 |
| Table IC – Gravity station numbers to map numbers   |  |     |     |     |  |       |  |  |     |  |     |  | 34 |
| Table 1D — Triangle numbers to map numbers          |  | • • |     | , , |  |       |  |  |     |  |     |  | 37 |
| Table 2 – Thickness of stratigraphic sections       |  |     |     |     |  |       |  |  |     |  |     |  |    |
| Table 3 – Porosity and permeability analyses        |  |     |     |     |  |       |  |  | • • |  | . , |  | 41 |
| Table 4 – Organic chemical data                     |  |     |     |     |  |       |  |  |     |  |     |  | 43 |
| Table 5 – Petrographic data                         |  |     |     |     |  | <br>, |  |  | , . |  | •   |  | 45 |
| Table 6 – Geochemical analyses                      |  |     |     |     |  |       |  |  |     |  |     |  | 47 |
| Table 7 – Palynology determinations                 |  |     |     |     |  |       |  |  |     |  |     |  | 50 |
| Table 8 – Macropaleontology determinations          |  |     |     |     |  |       |  |  |     |  |     |  | 51 |

## TERTIARY FORMATIONS AND ASSOCIATED MESOZOIC ROCKS IN THE ALASKA PENINSULA AREA, ALASKA, AND THEIR PETROLEUM-RESERVOIR AND SOURCE-ROCK POTENTIAL

#### By

W. M. Lyle and J. A. Morehouse,<sup>1</sup> and Irven F. Palmer, Jr., and J. G.  $Bolm^2$ 

#### ABSTRACT

Fourteen strattgraphic sections totaling over 16,000 feet (5,000 m) were measured in a 1977 joint State-Federal project to determine the petroleum-reservoir and source-rock potential of the Alaska Peninsula. The percentage of potential Tertiary reservoir sandstone to the total stratigraphic section measured ranges from less than one to 100 percent, with an average of 63 percent. Sandstones range from less than 3 feet to over 100 feet in thickness. Porosities and permeabilities are low in most areas as a result of pervasive pore-filling mineralization. Laboratory analyses indicate that potential reservoir rocks have been preserved in certain instances; however, their offshore extension is unknown.

Hydrocarbon  $C_{15+}$  extracts range from 37 ppm (parts per million) to 2,984 ppm; the average for 69 samples is 362 ppm, which is above the generally accepted level for petroleum source rock, Organic carbon ranges from less than 0.2 to more than 8.0 percent. Thermal alteration index (TAI), based on kerogen assessment, ranges from 1+ to 3+; most samples have a TAI of 2to 2+. Major constituents are herbaceous-spore debris with lesser amounts of woody and amorphous-sapropel grains. Dry gas is the most probable hydrocarbon to form in these source rocks.

#### INTRODUCTION

A stratigraphic field project was conducted on the Alaska Peninsula during a 24-day period in June and July of 1977 by the U.S. Geological Survey (USGS) and the State of Alaska, Division of Geological and Geophysical Surveys (DGGS) (fig. 1). The project was similar in scope to previous cooperative State-Federal field projects completed in 1975 in the Gulf of Alaska Tertiary province and in 1976 in the uplands near lower Cook Inlet and Kodiak Island.

Both State and Federal agencies are responsible for the evaluation of petroleum potential of all submerged lands under their jurisdictions. Collaboration of State and Federal geologists on these projects results in uniformity in the collecting and processing of geological data and eliminates (or greatly reduces) duplication of effort.

Data are extrapolated into the adjacent submerged areas and serve as input to evaluation programs being conducted in all areas that have any future offshore lease-sale potential.

Two main bases of operation were used during the 1977 season: Cold Bay from June 14 to 18 and Bear Lake Lodge at Port Moller from June 18 to July 8.

Major emphasis was placed on measuring and sampling Tertiary stratigraphic sections, with a concentration on Miocene and Pliocene exposures. Some older Tertiary and Mesozoic exposures were also examined. Samples were collected for both a general areal resource evaluation and more detailed studies in relation to possible petroleum occurrences.

#### PERSONNEL AND LOGISTICS

This report combines two sets of data. In 1974 W. M. Lyle and P. L. Dobey (DGGS) collected data mostly in the Port Heiden-Chignik area; C. N. Conwell, R. M. Klein, and F. Larson (DGGS) joined this field party for a few days. In 1977 I. F. Palmer and J. G. Bolm (USGS) and W. M. Lyle and J. A. Morehouse (DGGS) collected data from the Cold Bay area northward along the Alaska Peninsula to Unga Island, Port Moller, Chignik, and Port Heiden. Ross Schaff, Alaska State Geologist, and D. L. McGee visited the project area in 1977.

The 1977 crew flew to Cold Bay on Reeve Aleutian Airways on June 14. The move to Port Moller area was made on Peninsula Airways June 17. Fuel was transported from Seattle to Sand Point, Alaska, by ship and then moved to work areas with a DeHavilland Otter.

The authors thank Louie Marincovich (USGS) for his identification of the macrofossils.

<sup>1</sup> Alaska Division of Geological and Geophysical Surveys.

<sup>2</sup> U.S. Geological Survey.

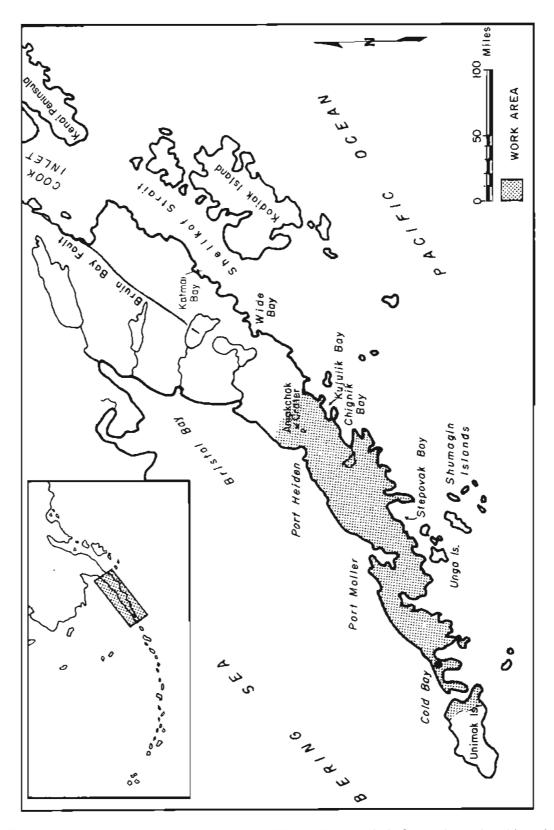



Figure 1. Index map showing the area of the 1977 State-Federal Alaska Peninsula stratigraphic projects.

## FIELD METHODS

#### MEASUREMENT OF STRATIGRAPHIC SECTIONS

Stratigraphic sections were measured primarily with Brunton compass and tape. Occasionally it was necessary to use the helicopter altimeter to determine thickness. All stratigraphic thicknesses recorded on the stratigraphic sections are true thicknesses that were corrected for dip and slope directly in the field or at base camp prior to rough field drafting of sections. All field measurements are in feet and inches to be compatible with geological logs in common use by industry. A metric conversion scale is provided on each stratigraphic section.

#### LITHOLOGIC DESCRIPTIONS

Lithologic descriptions on the stratigraphic sections generally follow the accepted format listed below:

Rock type, descriptive modifier, color (from GSA Rock Color Chart), grain size (either Wentworth grade name or in actual metric measurements), sorting, lithologic constituents, statements concerning degree of induration, porosity, and sedimentary structures.

Abbreviations are commonly used to save time and space; notations such "as above" are freely used when there is little obvious difference between units.

#### SAMPLING

Samples from stratigraphic sections and spot sample localities were collected in 7 by 12-inch or 5 by 7-inch sample bags to provide enough material for laboratory analyses and for sample cuts for permanent library reference for both agencies. The "freshest" (least oxidized) samples available were taken by digging small pits into the outcrops or taking samples below the weathering "rind."

The numbering system included the sequence, collector's initials, and year (1-IP-77; 2-WL-77; 3-JB-77; etc.). The 1974 samples had one exception: all the samples on the Black Lake section had a 207 prefix, i.e., 207.21-WL-74; 207.22-WL-74; etc. On a few samples the letters A and B were used to denote that more than one sample was taken at the same locality.

Sample locations are numbered on the quadrangle maps (plates A through F), and cross referenced (tables 1A and 1B).

A total of 269 samples were collected: 79 for porosity and permeability determinations, 39 for hydrocarbon analyses, 39 for basin maturity determination, 34 for palynological age determination, 34 for micropaleontological age determination, 36 for geochemical analyses, 2 for lithology, 2 for orientation of sandstones, and 4 for macrofossil age determination.

## STRATIGRAPHY

Rocks of Jurassic, Cretaceous, and Tertiary age crop out in the mountainous area along the Pacific coast of the study area. Stratigraphic sections in the area are interrupted by unconformities beneath formations that are Late Cretaceous, Paleocene, Miocene, and Pliocene in age.

Outcrop patterns of individual formations are controlled by large northeast-trending folds, which are the principal features in the area. In the northern part, bedrock is buried beneath the Quaternary glacial and alluvial deposits of the Bering Sea lowlands.

The following descriptions of the various formations that crop out in the study area are based on Burk's memoir of 1965.

#### NAKNEK FORMATION

The Naknek Formation is exposed extensively throughout the study area and consists of well to poorly bedded arkosic sandstones, conglomerates, siltstones, and mudstones, which either are interbedded or form relatively thick exposures of a single lithology. Sandstones and conglomerate matrices are typically feldspar, quartz, volcanic rock fragments, and chert. Granitic and metamorphic rocks are abundant among coarser clasts in conglomerates, and quartz and feldspar are predominant among coarser clasts in the siltstones and mudstones. Quartz is generally more abundant than feldspar in the fine-grained rock types, whereas feldspar is commonly more abundant than quartz in the sandstones and conglomerates.

The base of the Naknek Formation is not exposed anywhere in the study area. The maximum exposed thickness of the formation is about 5,000 feet near Amber Bay, but exposed thicknesses of more than 9,000 feet are known for the formation in areas northwest of the study area.

The Naknek is the oldest rock unit exposed in the study area. Sporadically abundant marine pelecypods, belemnites, gastropods, and ammonites indicate an Oxfordian to Kimmeridgian age for the formation. The common presence of carbonaceous plant debris and marine fossils suggests a nearshore marine environment of deposition for the formation.

#### CHIGNIK FORMATION

The Chignik Formation, well exposed at many locations, is unconformable to underlying rocks and grades from predominantly nonmarine near its base to marine in its upper part. The Chignik Formation and locally overlying siltstones of the Hoodoo Formation were interpreted by Burk (1965) to be a typical transgressive marine lithologic sequence, but more recently Mancini and others (1978) have reinterpreted the two formations to be time-equivalent lithofacies representative of deposition in nonmarine to inner neritic and outer neritic to bathyal environments, respectively.

The largely nonmarine Coal Valley Member of the Chignik Formation has been interpreted by Burk (1965) to be the basal part of the formation and by Mancini and others (1978) to be a nonmarine facies deposited simultaneously with the rest of the Chignik and Hoodoo Formations. The Coal Valley Member is composed primarily of well-bedded sandstones in which large carbonaceous plant fragments are common, often in association with abundant marine fossils. Sedimentary and volcanic rock fragments are major components of these sandstones; carbonate occurs commonly as cement and as a replacement of silicate clasts and may make up as much as 50 percent of the rock. Minor conglomerates, carbonaceous shales, and coal streaks are interbedded with the sandstones of the marine portions of the Chignik Formation.

The Coal Valley Member displays a maximum thickness of about 1,200 feet in Coal Valley and the area southeast of Staniukovich Mountain; it is absent in some locations. The upper marine portion of the Chignik Formation reaches a maximum thickness of about 2,000 feet near Herendeen Bay.

An irregularly abundant marine fauna dominated by pelecypods, principally <u>Inoceramus schmidti</u>, indicates that the Chignik Formation is Campanian.

#### HOODOO FORMATION

The Hoodoo Formation (Burk, 1965) is widely exposed and consists predominantly of welt-bedded black and dark gray siltstones and shales with some interbedded fine-grained sandstones and conglomerates. Although slaty cleavage is not developed in the formation, abundant pencil-slate-like prismatic splinters are commonly formed by weathering of siltstones (fig. 2). Conglomerates contain typically well-rounded chert and volcanic, granitic, and argillitic pebbles and cobbles and have black siltstone or fine-grained sandstone matrices. Because of the incompetence of the predominant lithologies of the Hoodoo Formation, deformation of the formation is characterized by extreme folding and shearing which together account for the absence of any known complete and undisturbed stratigraphic section.

The contact between the Hoodoo and Chignik Formations is gradational, and the Hoodoo Formation was interpreted by Burk (1965) to be a more distal facies than the Chignik Formation in a single marine-

transgressive sequence; Mancini and others (1978) reinterpreted the Hoodoo Formation as a more distal timeequivalent lithofacies in the same stratigraphic interval as the Chignik Formation. D. L. McGee (DGGS report in preparation) accepts both Burk's and Mancini's interpretations and suggests that the lower part of the Chignik Formation is time-equivalent to both the lower part of the Hoodoo Formation and the Coal Valley Member followed by a transgressive event in which the marine Chignik and Hoodoo Formations overlapped the previously deposited nonmarine Coal Valley Member. This order of deposition best fits the lateral interfingering of the formations and the upward grading of the Coal Valley Member into the Chignik marine sequence, The greatest known thickness of the Hoodoo Formation is more than 2,000 feet and perhaps as much as 3,000 feet in the area between Herendeen and Pavlof Bays.

Fossils are extremely rare in the Hoodoo Formation, but the few marine pelecypods, cephalopods, and ammonites that are found in the formation suggest an age of Campanian to early Maestrichtian.

#### TOLSTO! FORMATION

The Tolstoi Formation (Burk, 1965) crops out extensively north of Pavlof Bay and consists largely of brittle black siltstones made up of poorly sorted andesitic and basaltic volcanic debris with interbedded mafic volcanic flows and sills in some localities. The formation unconformably overlies older formations and has a thickness of about 5,000 feet everywhere except in the area south of ML. Veniaminof, where it is about twice that thickness.

Although a rich Paleocene to possibly early Eocene fossil flora was found in this essentially nonmarine formation, middle and late Eocene marine mollusks were found in two localities. The Tolstoi Formation represents the early part of a marine-transgressive lithologic sequence (fig. 3).

#### STEPOVAK FORMATION

The Stepovak Formation (Burk, 1965) consists of an alternating sequence of thin-bedded mudstones and massively bedded mudstones and siltstones. It contains several thin coals and many carbonaceous zones throughout the section and also some thin petrified wood zones.

The formation was deposited in the Oligocene under conditions ranging from swampy (as suggested by thin coals and coaly zones) to marine (questionable Foraminifera and shell fragments).

The contact between the underlying Tolstoi Formation and the Stepovak Formation is gradational. The Tolstoi is massively bedded, whereas the Stepovak is thin-bedded. The detrital grains of the Stepovak and the Tolstoi Formations are similar; volcanic rock fragments make up about 50 percent of the detrital grains: plagioclase feldspar (more than 20 percent), quartz (less than 10 percent), and other rock fragments (more than 20 percent).

#### BEAR LAKE FORMATION

The Bear Lake Formation consists of a sequence of rocks ranging from nonmarine to shallow marine. Thickness estimates vary from 5,000 to 10,000 feet. The oldest rocks of the formation are exposed in the Unga Island-Cape Aliaksin area (Wisehart, 1971). These rocks are dominantly volcanic and volcanically derived sediments. This basal part of the formation is Burk's Unga Conglomerate Member of the Bear Lake Formation and has been assigned a middle(?) Miocene age from marine invertebrate fossil data. Upper Oligocene(?) plants have also been reported from Unga Island (Burk, 1965).

In general, the Bear Lake Formation is a transgressive sequence with nonmarine beds, including coal, in the basal part of the section and fossiliferous, marine sandstones in the upper part of the section. Local regressive cycles can also be identified. The section contains zones of marine and nonmarine conglomerates. On the Bering Sea side of the study area near Port Moller and Milky River, the section is predominantly clayey sandstone with lesser amounts of siltstone and conglomerate. For the most part these sandstones are too friable to permit collection of representative samples for porosity and permeability evaluation.

The amount of plutonic detritus in the Bear Lake Formation increases to the north on the Bering Sea side of the study area and is interpreted as the initiation of erosion of the mid-Tertiary plutons which had not been unroofed yet during the deposition of the Unga Member. Therefore, the Port Moller-Milky River rocks are younger than those in the Unga Island-Cape Aliaksin area (Wisehart, 1971). Burk (1965) came to a similar conclusion using macrofossil and stratigraphic data.

The Port Moller area rocks represent a regressive sequence that grades upward from coarse-grained, largescale crossbedded sandstone and flaser-bedded siltstones to pyritic siltstones and highly fossiliferous conglomcrates (Wisehart, 1971).

Rocks of the Bear Lake Formation suggest deposition at the seaward edges of two geographically distinct accreting and subsiding alluvial plains in a tidal deltabarrier bar environment. The sediments deposited on the older of these two plains represent the lower Miocene basal Unga Member of the Bear Lake Formation. They consist of a thick sequence of rapidly deposited debris to the north of the uplifted Shumagin batholith. The younger of the two plains was built northward from a series of quartz diorite plutons that intruded the Unga Member and other sedimentary rocks during the Miocene along a line approximating the present Pacific coastline of the Alaska Peninsula.

The depositional environment for most of the Bear Lake sediments appears to have been that of tidal flats and tidal channels formed in lieu of an offshore barrier bar complex. Quiet water, backshore paludal and fluviatile deposition are indicated by the sediments (Wisehart, 1971). Overall age for the Bear Lake Formation is middle(?) and late Miocene.

#### TACHILNI FORMATION

The Tachilni Formation crops out in sea cliffs along the southeast coast of the Alaska Peninsula west of Cold Bay. The formation consists of poorly consolidated, brown to greenish gray sandstones and conglomerates with minor black shales; volcanic rock fragments and chert are predominant among clasts in the sand and coarser size grades.

The base of the Tachilni Formation is not exposed, and the top of the formation is gradational with overlying volcanic rocks. A marine fossil fauna, dominated by early Pliocene mollusks, is abundant locally in the formation. The overall age of the Tachilni, on the basis of gastropods, is considered to be late Miocene to early Pliocene (Nelson, 1978).

#### MEASURED STRATIGRAPHIC SECTIONS

#### BLACK LAKE (plate 1)

The Black Lake stratigraphic section is located in sec. 3, T. 43 S., R. 60 W., Seward Meridian. The upper 600-plus feet of the Bear Lake Formation in this section is an alternating sequence of siltstone and sandstone (figs. 4 and 5). The topmost 100-plus feet has been oxidized dark reddish brown and appears to have been heated by contact with nearby intrusive igneous rocks. A 500-foot-thick massive sandstone unit with some reed imprints and floating pebbles occurs 687 feet below the base of the Milky River Formation (Galloway, 1974). This unit caps a series of 5- to 25-foot-thick alternating sandstone and conglomerate, which in turn overlie a 270-foot-thick conglomeratic sandstone with oscillation ripple marks and carbonaceous trash. The basal 640 feet is a series of massive sandstone and shales with some conglomerate and mudstone.

#### MILKY RIVER (plate II)

The Milky River stratigraphic section is in secs. 33 and 34, T. 48 S., R. 69 W., Seward Meridian. It contains more than 80 percent sandstone, sandy conglomerate, and sandy mudstone. The beds are predominantly massive. The upper section is capped unconformably by volcanic layers, tuffs, and water-deposited volcanicallyderived sandstone (figs. 6 and 7). Pelecypods and gastropods are commonly present in the upper 158 feet of the section. Several other thin zones also have pelecypods, and some thin zones are coaly or contain petrified wood. The presence of marine fossils and of channel cut-and-fill sandstones and conglomerates (fig. 8) suggest that the depositional environment ranged from shallow marine to fluvial.

There are few mudstones or shales in this measured section. In general, the  $C_{15+}$  extracts from the limited hydrocarbon source beds of the Bear Lake Formation are moderately high (over 500 ppm average).

#### SOUTHEAST BEAR LAKE (plate 111)

This measured section is located at the east end of Bear Lake along a prominent ridge in secs. 20 and 29, T. 49 S., R. 70 W., Seward Meridian (fig. 9), where the Miocene Bear Lake Formation consists almost entirely of friable sandstone and is capped and preserved by lava flows, mudflows, and ash beds. Locally the section is conglomeratic. Cut-and-fill channel deposits, lenticular sandstone beds, high-angle festoon crossbeds, and the presence of wood and coaly debris indicate a fluvial environment of deposition for most of the measured section. At least 143 feet of the section contains numerous pelecypods, including pectins, and gastropods, which indicate that the depositional environment for this part of the section was marine, probably in the shore-face regime. Zones of fossil hash are also present.

#### HEREN I and II (plates |V| and |V|)

The Heren stratigraphic sections are exposed in a sea cliff along the south side of Herendeen Bay near the Heren triangulation station in sec. 9, T. 51 S., R.74 W., Seward Meridian (fig. 10). Heren I stratigraphic section is composed of interbedded sandstone and mudstone of the Tolstoi Formation that total 143 feet. The basal part of this section is grass covered near the beach, and the upper part terminates at a fault that separates Heren I from Heren II. Palynological data indicate a Paleocene(?) or early Eocene(?) age and suggest a marine environment of deposition. Numerous burrows in one thin sandstone and the presence of coaly streaks and carbonaceous debris suggest a shallow marine to transitional environment.

The Heren II stratigraphic section, which overlies Heren I across a fault contact, is 172 feet thick and consists of unnamed interbedded sandstone, mudstone, carbonaceous mudstone, and coal. This section is also Paleocene to early Eocene in age. If the throw on the fault separating the two sections is small (as indicated by limited drag features), then a stratigraphic sequence is suggested that begins with shallow marine in Heren I and becomes nonmarine upward into Heren II. These outcrops have previously been mapped as Pliocene by Burk (1965), probably on lithologic characteristics only.

Porosity ranges from 0.3 to 11.8 percent and averages 7.3 percent; permeability ranges from 0.06 to 8.50 mD and averages 0.95 mD.

#### WATERFALL POINT (Plate VI)

This measured section is located in secs. 30 and 31, T. 51 S., R 69 W., Seward Meridian, where the Oligocene Stepovak Formation is well exposed in cliffs at Waterfall Point on the west side of Stepovak Bay.

The predominant lithologies in this section are olive or greenish gray, fine to coarse sandstone, dark-gray to black or brownish-black mudstones, and grayish or greenish black siltstones. Sandstones tend to be pebbly, and crossbedding is common. Calcareous concretions, commonly with ragged surfaces, occur along some bedding surfaces in sandstones, and some sandstone layers are carbonate cemented. Fossil marine pelecypods and to a lesser extent gastropods are abundant in some sandstone horizons.

Sandstone samples from this section have porosities of 1.7 to 12.1 percent; the sample that tested 12.1 percent porosity is calcareous, and petrographic examination suggests that pore spaces are largely of solution origin and not well connected (permeability for this sample is 0.06 mD). Organic carbon content of mudstones in this section is very low (0.26 to 0.42 percent).

#### LEFTHAND BAY-BALBOA BAY (plate VII)

This stratigraphic section is located in sec. 29, T. 53 S., R. 73 W., Seward Meridian, where the Stepovak Formation is exposed in a ridge that extends northward from the mouth of Lefthand Bay (fig. 11). The line along which the section was measured is offset across a covered interval of about 300 feet stratigraphic thickness near the center of the section.

Mudstone and siltstone are the predominant lithologies in the section; these rocks are various shades of olive or greenish gray. Thin sandstone and carbonate beds and carbonate nodules are located in the lower half of the section, and thin bentonite beds and a tuff bed occur in the upper half.

Organic carbon content in samples from this section is very low (0.23 to 0.86 percent), and a single sample that was tested had a porosity of 1.7 percent and a permeability of 0.02 mD.

#### BEAVER BAY AND BEAVER BAY EAST (plates VIII and IX)

The Beaver Bay and Beaver Bay East stratigraphic sections are located in secs. 13, 14, and 24 and secs. 32

and 33, respectively, in T. 54 S., R. 77 W., Seward Meridian (fig. 12). Siltstone and mudstone, typical of the Stepovak Formation, predominate. Locally thin sandstones and conglomerates are present. Carbonaceous debris and petrified wood occur in the nonmarine portion of the section. A minor part of the section contains symmetrical ripple marks and burrows. The environment of deposition ranges from mudflats to shallow water marine. The sandstones are generally thin, silty, and of poor reservoir quality.

#### ALIAKSIN PENINSULA (plate X)

This measured section is exposed in a prominent sea cliff and is located in sec. 18, T. S4 S., R. 75 W., Seward Meridian (figs. 13-17). The sandstone, conglomerate, and conglomeratic sandstone section is equivalent to the Unga Conglomerate Member of the Bear Lake Formation. The environments of deposition range from shallow marine (as attested by burrows, pelecypods, pectins, and gastropods) to fluvial or delta-plain stream cut-and-fill deposits with cross-laminations, conglomerate pods, and many boulder and cobble zones. Coal fragments and carbonaceous debris are common in the nonmarine deposits. A large percentage of the clasts are volcanogenic. The sands are friable and generally yellowish brown to dark gray.

#### WHITE BLUFF (plate XI)

The White Bluff stratigraphic section is located in sec. 5, T. 56 S., R. 74 W. and in sec. 32, T. 55 S., R. 74 W., along cast-facing cliff exposures bordering Zachary Bay on Unga Island (figs. 18-21).

The section totals 948 feet and consists of interbedded mudstones, sandstones, and conglomerates with minor amounts of coal, tuff, and conglomerate. One coaly zone is near the base of the section and the other is about 334 feet up in the section. Individual coal beds range from a few inches to 2 feet thick.

Palynological determinations indicate a nonmarine depositional environment during a warm paleoclimate in Tertiary time (possible Eocene, Oligocene, or middle Miocene). Small evolutionary changes in the Tertiary pollen spectrum preclude assignment to a single epoch; lithologic similarities favor assignment of these beds to the Unga Conglomerate member of the Miocene Bear Lake Formation, however. Approximately one-third of the total section is sandstone and conglomerate that can be considered potential reservoir rock. Some sandstones are too friable to permit sampling for porosity and permeability. The only sample that survived transport and handling had 4.2 percent porosity and 0.06 mD permeability.

#### EAST MORZHOVOI BAY (plate XII)

This stratigraphic section is located in sec. 35, T. 60 S., R. 90 W., Seward Meridian, where the Miocene to Pliocene Tachilni Formation is exposed in cliffs north of Cape Tachilni on the east side of the mouth of Morzhovoi Bay (figs. 22-24).

The measured section, which is offset about ½ mile with an overlap near its center, is predominantly poorly consolidated sandstones, mudstones, and conglomerates; individual beds are so discontinuous laterally that the exact amount of overlap between the two parts of the section cannot be determined. Sandstones in the section are locally calcareous, commonly pebbly, crossbedded, and, on weathered surfaces, jarosite-stained. Calcareous concretions are common in the sandstones and conglomerates. Petrified wood is present in the section, and fossil marine mollusks are abundant in some layers. Minor thin, light brownish or greenish gray claystone beds in the section are probably altered volcanic ash.

Organic carbon content in mudstone samples from this section is very low (0.28 to 0.69 percent). Much of the sandstone in the section is too friable for porosity and permeability measurements. Two samples collected had porosities of 11.6 and 20.1 percent and permeabilities of 2.42 and 2.0 mD. However, there is almost no visible porosity in these samples.

#### WEST MORZHOVOI BAY (plate XIII)

This section is located in secs. 19 and 30, T. 61 S., R, 92 W., Seward Meridian. The Tachilni Formation section is topped by a 400- to 500-foot-thick series of resistant volcanic flows and breccias. Angular volcanic clasts are found in the conglomerates, conglomeratic sandstones, and the 35-foot-thick breccia that make up the rest of the section. Broken shells are found in a 95-foot-thick sandy conglomerate, and some pelecypods in a 45-foot-thick bed of massive sandstone. Several andesite dikes occur in the lower half of the section.

This exposure is considered to be Pliocene by Burk (1965) and late Miocene to early Pliocene by Nelson (1978).

## RESERVOIR CHARACTERISTICS

Significant thicknesses of potential reservoir rock occur throughout the Alaska Peninsula. Pore-filling cements are pervasive throughout most of the outcrop samples examined, but selected outcrop samples and well log analyses indicate that the porosity of some of the potential reservoir rock has been preserved. This preservation could have resulted from early migration of hydrocarbons, although there is no evidence to support this.

#### **RESERVOIR GEOMETRY AND SIZE**

Measured sections and well data indicate that thick reservoirs should be present in the Miocene Bear Lake Formation. Greater quartz content and types of depositional environments of deposition make this formation a primary drilling objective. Potential reservoirs should have the large areal extent typical of tabular sand bodies that result from linear clastic shoreline deposition. Geometry consistent with beaches, upper and middle shoreface deposits, and offshore bars should be present in the subsurface.

The Stepovak Formation has very thin sandstones and sandstone stringers that are not expected to have good reservoir characteristics.

Some massive sandstones that are present in the Tolstoi and Chignik Formations are of poor quality onshore but cannot be ruled out as possible reservoir rock in nearby submerged lands. One or more stratigraphic tests will be needed offshore to evaluate the reservoir quality of these rocks.

Discrete sandstone thickness determinations and sandstone percentage determinations have been made for the stratigraphic sections measured. These determinations are all for Tertiary sandstones ranging in age from Paleocene(?) or Eocene(?) to Pliocene. Sandstone thicknesses have been grouped into three thickness categories: 0-15 meters, 15-30 meters, and greater than 30 meters. These data are tabulated on Table 2.

The percentage of sandstone in the total stratigraphic section measured ranges from less than 1 percent to 100 percent and averages 62.8 percent for all ages (table 2).

#### RESERVOIR POROSITIES AND PERMEABILITIES

The porosities and permeabilities (table 3) range from low to fair in the Tolstoi and Stepovak Formations to fair to good in the Bear Lake Formation. The Bear Lake Formation is friable and difficult to sample. Permeability is very low to nonexistent in the Tolstoi and Stepovak Formations and low in the Bear Lake Formation except for three high permeabilities of 990, 72, and 53 mD. Most samples had permeabilities of less than 1 millidarcy.

#### RESERVOIR STRUCTURE AND SPATIAL RELATIONSHIP

All the stratigraphic sections in this report were measured in either homoclinal dip areas or on the limbs of folds where comparison of units or bed sequences was not possible between the different flanks of a structure. Deposition during the Tertiary was sporadic and complex. General observations indicate that there are no preferential areas, directions, or flank positions where reservoir rocks are preserved. Transitional and strandline sand bodies should be oriented roughly parallel to the existing Alaska Peninsula shoreline (Selley, 1970). Fluvial sand bodies should have an orientation normal to the existing coastline, as should offshore deepwater turbidite deposits (Middleton and others, 1973). In general, all surface structure post-dates reservoir deposition.

#### **BASIN MATURITY**

Kerogen-type assessment and thermal alteration index (TAI) determinations were run on the 69 samples collected from stratigraphic sections and spot sample locations. Fifty-eight samples are from Tertiary exposures, and 31 samples are from Cretaceous outcrops. The Tertiary samples have a TAI level that ranges from 1 to 3- with an average of 2. (A TAI level of 2 equates to a moderately mature hydrocarbon-maturation level.) Cretaceous samples have a range of 2- to 3+. These alteration levels equate to a moderately mature to a very mature maturation level.

Kerogen constituents in all samples are dominantly herbaceous-spore/cuticle with secondary, amphorous, woody, or coaly grains. Thus, the most likely hydrocarbon to be generated is dry gas. There are, however, significant amounts of amphorous material present in most of the samples, which suggest the capability for generation of some liquid hydrocarbons.

Table 4 shows the kerogen assessment as processed by Geochemical Laboratories Incorporated.

## HYDROCARBON SOURCE ROCKS

Source rocks on the Alaska Peninsula range from fair to good, from 37 to 2,984 ppm hydrocarbon. The average for 69 samples is 362.3 ppm hydrocarbon.

An analysis of hydrocarbon content by rock age indicates that hydrocarbon content is higher in younger rocks:

| Jurassic and Cretaceous | 105 ppm (11 samples)   |
|-------------------------|------------------------|
| Eocene                  | No data                |
| Oligocene               | 290 ppm (26 samples)   |
| Miocene                 | 550.5 ppm (27 samples) |
| Pliocene                | 627 ppm (4 samples)    |

The highest values of 2,984, 1,947, and 1,372 ppm occurred in the Miocene Bear Lake Formation. The lowest values 55 through 89 were in the Cretaceous Hoodoo Formation.

## STRUCTURAL GEOLOGY

The study area is the site of extensive volcanism, and the sedimentary rocks of the area have been folded, faulted, and intruded by plutonic and hypabyssal rocks. The general structural relationships in the area have been described by Burk (1965), and the following outline is based on his work.

Three en echelon anticlinal complexes that deform rocks of Middle or Late Jurassic to Pliocene age are the principal structures in the study area. These anticlinal complexes are located between Katmai Bay and Aniakchak Crater, between Kujulik Bay and Stepovak Bay, and between Stepovak Bay and Cold Bay. Fold axes in these complexes trend generally northeastward and diverge slightly in a clockwise sense from the axis of the peninsula; fold style seems to vary in relation to rock competence, with shales and siltstones more tightly folded than sandstones and conglomerates.

Major steeply dipping reverse longitudinal faults are located in the southern flanks of most anticlines. Displacement across these faults is generally greatest near the culminations and decreases toward the noses of the folds. Smaller steeply dipping normal longitudinal faults are located in the northern flanks of some anticlines.

The abundance of steeply dipping reverse and normal faults and a tendency of anticlines to have broad crests and monoclinal flanks suggest that basement faulting may have played an important role in the structural development of the study area. Plutons of Jurassic, early Tertiary, and middle Tertiary age crop out in or adjacent to the study area, and it is evident that extensive differential vertical movements have occurred in the area following each period of plutonism.

Outcrops of plutonic rocks of various ages are located along discernible trends: Jurassic plutons crop out along the peninsular axis, lower Tertiary plutons crop out in islands southeast of the peninsula, and middle Tertiary plutons crop out along the southeastern coast of the peninsula. Similarly, recent volcanoes tend to be aligned along and older volcanoes somewhat southeast of the axis of the peninsula. No consistent general relationship between plutonic or volcanic igneous activity and structural configuration has been detected in the study area, however.

#### PETROGRAPHY

Forty-six samples of sandstones from measured stratigraphic sections and spot localities in the study area were examined petrographically. Of these 46 samples, 2 were from the Naknek Formation at Bold Bluff Point on Herendeen Bay; 5 were from the Chignik Formation at Gull Point on Herendeen Bay and the low sea cliff of Staniukovich Mountain; 14 were from the Tolstoi Formation in the Heren I and II stratigraphic sections and at an unnamed mountain northwest of Beaver Bay; 9 were from the Stepovak Formation in the Beaver Bay and Waterfall Point stratigraphic sections; 12 were from the Bear Lake Formation in the Black Lake and Milky River stratigraphic sections; and 4 were from the Tachilni Formation in the East and West Morzhovoi Bay stratigraphic sections. Sample locations and a summary of petrographic data for representative samples are presented in Table 5.

Framework clasts in all the samples are dominated by chemically unstable constituents indicative of derivation from predominantly igneous source terranes, variations in which are reflected in differences in the clastic compositions of samples from the various studied formations. The arkoses of the Naknek Formation are compositionally similar to typical quartzose intermediate granitic rocks with a slight admixture of volcanic clasts, and it is evident that Naknek sediments were derived from a predominantly plutonic source. The sandstones of the Chignik Formation are characteristically litharenites in which volcanic and fine-grained sedimentary clasts predominate, and a mixed volcanic and sedimentary source terrane is indicated. Sandstones in the Tertiary formations are volcanic arenites dominated by volcanic clasts, which indicates a volcanic source area; a particular abundance of quartz in samples from the Bear Lake Formation suggests that significant recycling of older sedimentary rocks may have played a role in the deposition of that formation. Pumpellyite was observed among clasts in samples from the Tolstoi and Tachilni Formations, and a glaucophane clast was seen in one sample from the Stepovak Formation; some zeolite- and blueschist-facies rocks must have cropped out somewhere in the source terranes of these formations.

There is little visible pore space in any of the samples examined; most samples have no visible pore space. This lack of visible porosity is the result of deformation of ductile clasts, primarily volcanic or sedimentary rock fragments, during compaction and filling of any remaining potential pore spaces with various ferruginous, phyllosilicate, tectosilicate, and carbonate materials. These features, which have caused the low visible porosities (and low measured permeabilities) of the samples, have resulted from diagenesis of the rocks; there may be better porosity in similar sandstones in the subsurface or offshore in adjacent OCS (Outer Continental Shelf) areas.

For every formation studied, except the Naknek (from which only two samples were examined), there are samples in which porosity has been reduced either by ductile grain deformation or by filling of potential pore spaces. The more authigenic pore-filling material there is in a sample, the less deformed are the ductile grains in that sample. In these samples compaction was accomplished largely by ductile grain deformation after burial; the introduction of authigenic pore-filling material arrested such grain deformation and prevented further compaction. Pore-filling phases in the samples include amorphous ferruginous material, authigenic clays (including chlorite), carbonate, zeolite, quartz, and authigenic albite. Amorphous ferruginous material and authigenic clay commonly coat clasts and generally underlie and thus predate any other pore-filling phases that may be present; these two materials and carbonate are the only pore-filling phases that were observed alone in any of the samples. Quartz was observed in partial syntaxial overgrowths on some quartz clasts but was never seen to form a complete cement in any samples; such syntaxial overgrowths may have formed during a previous sedimentary cycle.

In several samples where two or more pore-filling phases coexist, textural evidence such as embayments indicates a replacement relationship among the phases; replacement or partial replacement of framework clasts by pore-filling materials is common in the samples, too.

Intragranular fractures were observed in many of the samples. Such fractures are filled with the same pore-filling materials as fills potential intergranular pore spaces in the same sample; thus fracturing occurred prior to emplacement of the pore-filling materials. In several of these samples ductile grains are little deformed, and fracturing must have occurred as a result of partial dissolution of the rock after cementation had arrested deformation of ductile clasts. Further cementation after fracturing brought rocks to their present configuration. The past existence of secondary porosity is further indicated in some samples by the occurrence within pore-filling carbonate or zeolite of fragments of clay coats broken away from clast surfaces, and the large size of some intergranular spaces suggests that they were formed by dissolution after primary compaction had ceased. In none of the samples where compaction by ductile grain deformation was completed is there any evidence of secondary porosity ever having existed.

The formation of secondary porosity results from changes in the physical and chemical conditions in a rock such that a material that was once stable becomes unstable and is dissolved away. Similarly the filling of secondary porosity requires certain physical and chemical conditions to precipitate the pore-filling phase. Both these types of changes have occurred in at least some of the samples studied, and burial and uplift probably figured significantly in achieving and changing physical and chemical conditions in the samples. In one sample (23-WL-77, Stepovak Formation, Beaver Bay) there are two generations of carbonate coment separated by a layer of authigenic chlorite, which also fills intragranular fractures. Early carbonate cementation prevented complete destruction of intergranular spaces by ductile grain deformation, and subsequently, secondary porosity was formed by dissolution of carbonate. As secondary porosity became more extensive, renewed compaction led to

the formation of intragranular fractures, but infilling of secondary pores and intragranular fractures with chlorite prevented completion of compaction. Finally chlorite was replaced by carbonate, but the process was not completed. The change from conditions where carbonate was precipitated to those where it was dissolved and finally to where chlorite was precipitated all probably resulted from increasing depth of burial. Similarly the return to conditions favoring the precipitation of carbonate probably resulted from uplift. This sample might have had significant porosity today had it remained at some depth where carbonate was soluble and chlorite not yet stable. Such secondary porosity may exist at least locally in similar rocks at depths favorable for the formation of petroleum reservoirs in offshore areas adjacent to the study area.

### **GEOCHEMICAL ANALYSES**

One hundred and eight stream sediment and two whole rock samples were analyzed for the presence of gold, silver, copper, lead, zinc, molybdenum and antimony (table 6). Sample 55-IP-77, from Unga mine tailings, is not a stream-sediment sample.

## PALEONTOLOGICAL DETERMINATIONS

A total of 19 outcrop samples were processed and analyzed for palynological age determinations (table 7). All samples with definable ages were from Tertiary strata.

As the results in Table 7 show, the nonmarine Tertiary samples are difficult to place in any defined age subdivision. In the Alaska Peninsula study area, the nonmarine Tertiary section displays slight or no evolutionary changes in the pollen spectrum. In Oligocene and younger strata, we are dealing mainly with climatic fluctuations, whereas a few unique species may be used in distinguishing Paleocene or Eocene strata. Due to these factors, it is impossible to assign any given sample to a single epoch. Other information, such as sample location on columnar sections or geologic maps, could assist in age interpretations of floras. It is also desirable to have sufficient section coverage in sampling so that a known or reliably definable age boundary is crossed; this boundary can then be used as a datum to which the other unknowns may be related.

Table 8 lists the macrofossils found in samples from the Bear Lake, Stepovak, and Talchilni Formations.

## **GRAVITY CONTROL**

Gravity values from over 200 newly occupied stations during the 1977 field season are currently being reduced and integrated with previous gravity surveys conducted by the Alaska DGGS in 1974 and by the U.S. Geological Survey. Bouguer gravity will be determined with a common datum for all gravity surveys conducted over the project area. Gravity data and interpretation maps will be published when computer programming and data compilation are completed.

## **CONCLUSIONS**

During the 1977 State-Federal Alaska Peninsula field project, stratigraphic sections totaling 16,000 fect (5,000 m) were measured and 269 samples were collected and analyzed. Significant new data were obtained on petroleum-reservoir and source-rock potential, depositional environments, paleontological age dating, structural geology, petrographic and diagenetic characteristics, geochemical control, and gravity control.

Porosity and permeability analyses on most samples indicate a range of poor to fair reservoir potential. A few samples of Miocene age have good porosity and permeability. Thick potential reservoir sands were measured at several locations; however, the offshore extensions of porous sandstones are unknown.

Source-rock potential is considered good. Kerogen assessment favors the generation of gas as the major hydrocarbon type. Most samples analyzed for maturity (TAI method) indicate a submature to mature range of maturation.

We conclude that the offshore area adjacent to the Alaska Peninsula is a good place to explore for hydrocarbons.

#### REFERENCES

- Burk, C. A., 1965, Geology of the Alaska Peninsulaisland arc and continental margin: Geol. Soc. America Mem. 99, 250 p.
- Galloway, W. E., 1978, Deposition and diagenetic alteration of sandstone in northeast Pacific arc-related basins: Geol. Soc. America Bull., v. 85, no. 3, p. 379-390.
- Goddard, E. N., Chairman, 1970, Rock-color chart: Geol. Soc. America, 7 p.
- Mancini, E. A., Deete, T. M., and Wingate, F. H., 1978, Upper Cretaceous arc-trench gap sedimentation on the Alaska Peninsula: Geology, v. 6, p. 437-439.
- Middleton, G. V., and others, 1973, Turbidites and deep water sedimentation: Soc. Econ. Paleontologists and Mineralogists, Pacific section, short course, 157 p.
- Nelson, C. M., 1978, <u>Neptunea</u> (Gastropoda: Buccinacea) in the Neogene of the North Pacific and adjacent Bering Sea: The Veliger, v. 1, no. 2, p. 203-215.

Selley, R. C., 1970, Ancient sedimentary environments: Chapman and Hall Ltd., London, 224 p.

Wisehart, R. H., 1971, Paleoenvironmental analysis of the Bear Lake Formation (upper and middle Miocene), Alaska Peninsula, Alaska: M.S. thesis, University of California at Los Angeles.

|                            |                                          | CROSS REFERENCE<br>MBERS TO SAMPLE<br>NUMBERS       | Map No.<br>27        | Sample or<br>Station No.<br>35-JB-77                     | Analysis or<br>Measurement<br>Geochemical                            |
|----------------------------|------------------------------------------|-----------------------------------------------------|----------------------|----------------------------------------------------------|----------------------------------------------------------------------|
| USHAGIK QUADRANGL          |                                          | ANGLE (PLATE A)                                     | - 28<br>28           | 36-JB-77<br>36-}B-77                                     | Geochemical<br>Geochemical                                           |
|                            | Random Sampling                          |                                                     | 29<br>30             | 32-JB-77<br>45-JB-77                                     | Geochemical<br>Geochemical                                           |
| Map No.<br>1               | Sample or<br>Station No.<br>65-IP-77     | Analysis or<br>Measurement<br>Palynology            | 31<br>32<br>33<br>34 | 46-JB-77<br>47-JB-77<br>PH01<br>PH02                     | Geochemical<br>Geochemical<br>Gravity<br>Gravity                     |
| 1                          | 66-IP-77                                 | Hydrocarbon                                         | 35                   | 48-JB-77                                                 | Geochemical                                                          |
| 1<br>2                     | 67-IP-77<br>62-IP-77                     | Porosity and<br>permeability<br>Palynology          | 36<br>37<br>38       | PH14<br>TRI.#189<br>31-∫B-77                             | Gravity<br>Gravity<br>Geochemical                                    |
| 2 2                        | 63-IP-77<br>64-IP-77                     | Hydrocarbon<br>Porosity and                         | 39<br>40             | 30-JB-77<br>29-JB-77                                     | Geochemical<br>Geochemical                                           |
|                            |                                          | permeability                                        | 41<br>43             | TRI.#197<br>283-WL-74                                    | Gravity<br>Density; magnetic<br>susceptibility                       |
| (                          | HIGNIK QUADR                             | ANGLE (PLATE B)                                     | — 41<br>42           | 284-WL-74<br>TRI.#205                                    | Geochemical<br>Gravity                                               |
|                            | Bandons                                  | Some fing                                           |                      |                                                          | Section (Plate 1) Samples                                            |
| <b>A</b> 4 NJ              | Random Sample or                         | Analysis or                                         | 43<br>43<br>43       | 5-WL-77<br>6-WL-77<br>7-WL-77                            | Lithology<br>Paleontology<br>Paleontology                            |
| Map No.<br>3               | Station No.<br>PH Base                   | Measurement<br>Gravity                              | 43<br>43             | 8-WL-77<br>9-WL-77                                       | Hydrocarbon<br>Paleontology                                          |
| 4<br>5<br>6<br>7           | PH12<br>PH11<br>PH10<br>PH09             | Gravity<br>Gravity<br>Gravity<br>Gravity<br>Gravity | 43<br>43<br>43       | 10-WL-77<br>11-WL-77<br>12-WL-77                         | Paleontology<br>Hydrocarbon<br>Porosity and<br>permeability          |
| 8<br>9                     | PH13<br>PH06                             | Gravity<br>Gravity                                  | 43                   | 13-WL-77                                                 | Porosity and<br>permeability                                         |
| 10<br>11<br>12             | РН07<br>РН08<br>TRL#213*                 | Gravity<br>Gravity<br>Gravity                       | 43                   | 14-WL-77                                                 | Porosity and<br>permeability                                         |
| 13<br>14<br>15             | TR1.#211<br>38-JB-77<br>39-JB-77         | Gravity<br>Geochemical<br>Geochemical               | 43<br>43<br>43       | 15-WL-77<br>16-WL-77<br>17-WL-77                         | Macrofossil<br>Macrofossil<br>Porosity and<br>permeability           |
| 16<br>17                   | 40-JB-77<br>41-JB-77                     | Geochemical<br>Geochemical                          | 43                   | 18-WL-77                                                 | Porosity and<br>permeability                                         |
| 18<br>19                   | 42-JB-77<br>43-JB-77                     | Geochemical<br>Geochemical                          | 43<br>43             | 19-WL-77<br>20-WL-77                                     | Lithology<br>Porosity and                                            |
| 20<br>21<br>22<br>23<br>24 | PH03<br>PH04<br>PH05<br>PH06<br>TRI.#211 | Gravity<br>Gravity<br>Gravity<br>Gravity<br>Gravity | 43<br>43<br>43<br>43 | 207.1-WL-74<br>207.2-WL-74<br>207.3-WŁ-74<br>207.4-WL-74 | permeability<br>Lithology<br>Lithology<br>Geochemical<br>Geochemical |
| 25<br>26                   | TR{.#210<br>33-JBO-77                    | Gravity<br>Gravity<br>Geochemical                   | 43                   | 207.5-WL-74                                              | Porosity and permeability                                            |
| 27                         | 34-JB-77                                 | Geochemical                                         | 43                   | 207.6-WL-74                                              | Hydrocarbon                                                          |

| Мар No.  | Sample or<br>Station No. | Analysis or<br>Measurement          | Map No.  | Sample or<br>Station No. | Analysis or<br>Measurement          |
|----------|--------------------------|-------------------------------------|----------|--------------------------|-------------------------------------|
| 43       | 207.8-WL-74              | Porosity and                        | 52       | TR1,#196                 | Gravity                             |
|          |                          | permeability                        | 52       | 275-WL-74                | Office sample                       |
| 43       | 207,9-WL-74              | Porosity and                        | 54       | 274-WL-74                | Office sample                       |
| 40       | 007 10 001 74            | permeability                        | 55<br>56 | TRI.#225<br>263-WL-74    | Gravity<br>Geochemical              |
| 43       | 207.10-WL-74             | Lithology                           |          |                          |                                     |
| 43       | 207.11-WL-74             | Porosity and<br>permeability        | 56       | 264-WL-74                | Porosity and<br>permeability        |
| 43       | 207.12-WL-74             | Porosity and<br>permeability        | 56       | 265-WL-74                | Density; magnetic<br>susceptibility |
| 43       | 207.13-WL-74             | Macrofossil                         | 56       | 266-WL-74                | Office sample                       |
| 43       | 207.14-WL-74             | Macrofossil                         | 56       | 267-WL-74                | Hydrocarbon                         |
| 43       | 207,15-WL-74             | Macrofossil                         | 57       | TRI.#193                 | Gravity                             |
| 43       | 207.16-WL-74             | Macrofossil                         | 57       | 269-WL-74                | Geochemical                         |
| 43       | 207.17-WL-74             | Lithology                           | 58       | MR03                     | Gravity                             |
| 43       | 207,18-WL-74             | Porosity and                        | 59       | MR05                     | Gravity                             |
|          |                          | permeability                        | 60       | TR1.#178                 | Gravity                             |
| 43       | 207.19-WL-74             | Lithology                           | 61       | MR10                     | Gravity                             |
| 43       | 207.20-WL-74             | Porosity and                        | 62       | 49-1B-77                 | Geochemical                         |
|          |                          | permeability                        | 63       | MR11                     | Gravity                             |
| 43       | 207.21-WL-74             | Lithology                           | 64       | MR12                     | Gravity                             |
| 43       | 207.22-WL-74             | Porosity and                        | 65       | PH15                     | Gravity                             |
|          |                          | permeability                        | 66       | TRI.#198                 | Gravity                             |
| 43       | 207.23-WL-74             | Density; magnetic<br>susceptibility | 66       | 276-WL-74                | Geochemical                         |
| 43       | 207.24-WL-74             | Porosity and                        | 67       | TRI.#199                 | Gravity                             |
| 15       |                          | permeability                        | 67       | 277-WL-74                | Geochemical                         |
| 43       | 207,25-WL-74             | Porosity and                        | 68       | TRI.#200                 | Gravity                             |
|          |                          | permeability                        | 68       | 278-WL-74                | Geochemical                         |
| 43       | 207,26-WL-74             | Lithology                           |          |                          | <b>a</b> .                          |
| 43       | 207,27-WL-74             | Porosity and                        | 69       | TRI.#206                 | Gravity                             |
|          |                          | permeability                        | 69<br>70 | 285-WL-74                | Geochemical                         |
| 43       | 207.28-WL-74             | Porosity and                        | 70<br>70 | TRI.#209                 | Gravity<br>Geochemical              |
|          |                          | permeability                        | 70       | 292-WL-74<br>293-WL-74   | Age date                            |
| 43       | 207.29-WL-74             | Hydrocarbon                         |          |                          | -                                   |
| 43       | 207.30-WL-74             | Hydrocarbon                         | 70       | 294-WL-74                | Geochemical                         |
| 43       | 207.31-WL-74             | Porosity and                        | 70<br>70 | 295-WL-74                | Density                             |
|          |                          | permeability                        | 70       | 296-WL-74                | Magnetic<br>susceptibility          |
| 43       | 207.32-WL-74             | Lithology                           | 70       | DT 74-6                  | Density; magnetic                   |
| 43       | 207.33-WL-74             | Hydrocarbon                         | 70       | 01/10                    | susceptibility                      |
|          | Random San               |                                     | 70       | DT 74-5                  | Density; magnetic<br>susceptibility |
| 44       | 318-WL-74                | Geochemical                         | 70       | 007.001.74               | . ,                                 |
| 45       | TR1,#192                 | Gravity                             | 70       | 297-WL-74                | Density; magnetic                   |
| 45       | 268-WL-74<br>MR06        | Geochemical<br>Gravity              | 70       | 298-WL-74                | susceptibility<br>Geochemical       |
| 46<br>47 | MR07                     | Gravity                             | 70       | 299-WL-74                | Density; magnetic                   |
| 47       | MR07<br>MR08             | Gravity                             | 10       | <b>ムフリー VY にー/ ヤ</b>     | susceptibility                      |
| 48<br>49 | MR08<br>MR09             | Gravity                             | 70       | 300-WL-74                | Geochemical                         |
| 49<br>50 | TR1.#223                 | Gravity                             | 71       | 288-WL-74                | Geochemical                         |
| 50       | 315-WL-74                | Geochemical                         | 71       | 289-WL-74                | Age date                            |
| 51       | TRI.#224                 | Gravity                             | 71       | 290-WL-74                | Density                             |
| -        |                          | ,                                   |          |                          |                                     |

|          | Sample or             | Analysis or            |              | Sample or   | Analysis or                   |
|----------|-----------------------|------------------------|--------------|-------------|-------------------------------|
| Map No.  | Station No.           | Measurement            | Map No.      | Station No. | Measurement                   |
|          |                       |                        | -            |             |                               |
| 71       | 291-WL-74             | Magnetic               | 89           | 305-WL-74   | Magnetic                      |
|          |                       | susceptibility         | ~~           | 0000        | susceptibility?               |
| 72       | TRJ.#204              | Gravity                | 89           | 306-WL-74   | Geochemical?                  |
| 72       | 285-WL-74             | Geochemical            | 90           | 307-WL-74   | Density                       |
| 70       | CDL #100              | Cravity                | 90           | 308-WL-74   | Magnetic                      |
| 73<br>73 | TRI.#190<br>259-WL-74 | Gravity<br>Geochemical | 90           | 309-WL-74   | susceptibility<br>Geochemical |
| 73       | 261-WL-74             | Density                |              |             | -                             |
| 73       | 262-WL-74             | Office sample          | 90           | 310-WL-74   | Geochemical                   |
| 74       | 314.12-WL-74          | Geochemical            | 91           | 311-WL-74   | Density                       |
| 74       | 517.72-116-77         | Geochemica             | 91           | 312-WL-74   | Geochemical                   |
| 74       | 314.13-WL-74          | Geochemical            | 91           | 313-WL-74   | Magnetic                      |
| 75       | 314-WL-74             | ?                      | 00           | MR02        | susceptibility                |
| 75       | 314.1-WL-74           | Density                | 92           |             | Gravity                       |
| 75       | 314.2-WL-74           | Office sample          | 93           | TRI.#147    | Gravity                       |
| 75       | 314.3-WL-74           | Porosity and           | 94           | TRI.#182    | Gravity                       |
|          |                       | permeability           | 95           | TRI.#184    | Gravity                       |
| 75       | 314.4-WL-74           | Density                | 95           | 248-WL-74   | Geochemical                   |
| 75       | 314.5-WL-74           | Paleontology           | 96           | PH16        | Gravity                       |
| 75       | 314.6-WL-74           | Geochemical            | 97           | MR16        | Gravity                       |
| 76       | 314.7-WL-74           | Porosity and           | 98           | TR1.#5      | Gravity?                      |
|          | •••••                 | permeability           | 99           | TRI,#185    | Gravity                       |
| 76       | 314.8-WL-74           | Density                | 99           | 249-WL-74   | Geochemical                   |
| 76       | 314.9-WL-74           | Magnetic               | 99           | 250-WL-74   | Geochemical                   |
| 70       | 514.5-WE-74           | susceptibility         | 100          | TR1.#186    | Gravity                       |
| 76       | 314.10-WL-74          | Density                | 100          | 251-WL-74   | Geochemical                   |
| 76       | DT-74-15              | Age date               | 100          | 252-WL-74   | Hydrocarbon                   |
| 76       | 314.11-WL-74          | Geochemical            | 100          | 253-WL-74   | Office sample                 |
| 77       | TRI.#183              | Gravity                | 100          | 254-WL-74   | Age date;                     |
| 78       | MR04                  | Gravity                |              |             | density; magnetic             |
| 79       | TR1.#179              | Gravity                |              |             | susceptibility                |
| 80       | TRI.#180              | Gravity                | 101          | ĭRI.#187    | Gravity                       |
| 81       | TR1.#181              | Gravity                | 101          | 255-WL-74   | Float                         |
| 82       | MR13                  | Gravity                | 101          | 256-WL-74   | Geochemical                   |
| 83       | MR14                  | Gravity                | 102          | TRI.#188    | Gravity                       |
| 84       | MR15                  | Gravity                | 102          | 257-WL-74   | Magnetic                      |
| 85       | TRI.#201              | Gravity                |              |             | susceptibility                |
| 85       | 279-WL-76             | Geochemical            | 102          | 258-WL-74   | Density                       |
| 86       | TR1.#203              | Gravity                | 102A         | 319-WL-74   | Geochemical                   |
| 86       | 280-WL-74             | Density; magnetic      | 102B         | 320-WL-74   | Office sample                 |
| 00       | 200-11 - 74           | susceptibility         | 102C         | 321-WL-74   | Geochemical                   |
| 86       | 281-WL-74             | Quartz diorite         | 102C         | 322-WL-74   | Rock sample                   |
| 86       | 282-WL-74             | Age date               | 102C         | 323-WL-74   | Office sample                 |
| 87       | TR1.#202              | Gravity                | 102C         | 324-WL-74   | Geochemical                   |
| 87       | 280-WL-74             | Geochemical            | 102C         | 325-WL-74   | Geochemical                   |
| 88       | 301-WL-74             | Density                | 102C         | 326-WL-74   | Geochemical                   |
| 88<br>88 | 302-WL-74             | Geochemical            | 102D         | 358-WL-74   | Geochemical                   |
| 88       | 303-WL-74             | Magnetic               | 102D         | 359-WL-74   | Geochemical                   |
| 00       | 555 WE /T             | susceptibility         | 1020<br>102E | 360-WL-74   | Geochemical                   |
| 88       | DT-74-11              | Age date               | 102E         | 361-WL-74   | Geochemical                   |
| 89       | 304-WL-74             | Density?               | 102G         | 330-WL-74   | Geochemical                   |
|          |                       | - , -                  |              |             |                               |

| Map No.      | Sample or<br>Station No. | Analysis or<br>Measurement      | Map No.    | Sample or<br>Station No. | Analysis or<br>Measurement |
|--------------|--------------------------|---------------------------------|------------|--------------------------|----------------------------|
| 102H         | 331-WL-74                | Geochemical                     | 110        | 144-WL-74                | Geochemical                |
| 102H         | 332-WL-74                | Geochemical                     | 111        | 60-WL-74                 | Geochemical                |
| 1021         | 350-WL-74                | Office sample                   | 112        | 60A-WL-74                | Geochemical                |
| 1021         | 351-WL-74                | Magnetic                        | 112        | TR1,#70                  | Gravity                    |
| 1021         | 352-WL-74                | susceptibility<br>Office sample | 113<br>114 | BS23<br>BS15             | Gravity<br>Gravity         |
| 1021         | 353-WL-74                | Density                         | 115        | TRI.#61                  | Gravity                    |
| 1021         | 354-WL-74                | Geochemical                     | 115        | 8S16                     |                            |
| 1021         | 355-WL-74                | Office sample                   | 117        | TRI, #68                 | Gravity<br>Gravity         |
| 102)         | 356-WL-74                | Geochemical                     | 117        | 59-WL-74                 | Geochemical                |
| 102)         | 357-WL-74                | Geochemical                     | 119        | TRI,#60                  | Gravity                    |
| 102K         | 327-WL-74                | Geochemical                     | 120        | 8S17                     | Gravity                    |
| 102K         | 328-WL-74                | Geochemical                     | 121        | TRI.#59                  | Gravity                    |
| 102K         | 329-WL-74                | Office sample                   | 122        | TR1.#58                  | Gravity                    |
| 102L         | 333-WL-74                | Geochemical                     | 123        | TRI.#62                  | Gravity                    |
| 102L         | 334-WL-74                | Geochemical                     | 124        | TRI.#67                  | Gravity                    |
| 102L         | 335-WL-74                | Geochemical                     | 124        | 58-WL-74                 | Geochemical                |
| 102L         | 336-WL-74                | Age date                        | 125        | B520                     | Gravity                    |
| 102L<br>102L | 337-WL-74<br>338-WL-74   | intrusive<br>Density ; magnetic | 126        | 8522                     | Gravity                    |
| 102L         | 338-WL-74                | susceptibility                  | 127<br>128 | NONE<br>TR1. #58         | NONE<br>Gravity            |
| 102L         | 339-WL-74                | Geochemical                     | 128        | TRI.#56                  | Gravity                    |
| 102L         | 340-WL-74                | Geochemical                     | 130        | TR1.#55                  |                            |
| 102L         | 341-WL-74                | Age date                        | 130        | TR1.#55                  | Gravity<br>Gravity         |
| 102L         | 342-WL-74                | Density                         | 132        | TRI.#63                  | Gravity                    |
| 102L         | 343-WL-74                | Magnelic                        | 133        | TRI,#19                  | Gravity                    |
|              |                          | susceptibility                  | 134        | TR1.#54                  | Gravity                    |
| 102L         | 344-WL-74                | Thin sections                   | 135        | TRI.#47                  | Gravity                    |
| 102M         | 362-WL-74                | Age date                        | 136        | TRI.#46                  | Gravity                    |
| 102M         | 363-WL-74                | Geochemical                     | 137        | TRI,#53                  | Gravity                    |
| 102M         | 364-WL-74                | Density                         | 138        | 1Z24                     | Gravity                    |
| 102M         | 365-WL-74                | Magnetic<br>susceptibility      | 139        | IZ23                     | Gravity                    |
| 102M         | 366-WL-74                | Geochemical                     | 140        | SB2                      | Gravity (1Z22)             |
| TOLM         | 500-112-71               | Goodineittiour                  | 141        | 1221                     | Gravîty                    |
|              |                          |                                 | 142        | 1Z20<br>1Z19             | Gravity                    |
| CC           | LD BAY QUADRANG          | LE (PLATE C)                    | 143<br>144 | TR1.#52                  | Gravity<br>Gravity         |
|              |                          |                                 | 145        | IZ16                     | Gravity                    |
|              | Random Samp              | ling                            | 146        | 1Z15                     | Gravity                    |
|              | Sample or                | Analysis                        | 147        | IZ14                     | Gravity                    |
| Map No.      | Station No.              | Measurement                     | 348        | 1217                     | Gravity                    |
| 103          | BS09                     | Gravity                         | 149        | IZ13                     | Gravity                    |
| 103          | BS09<br>TRI,#71          | Gravity<br>Gravity              | 150        | IZ18                     | Gravity                    |
| 104          | BS10                     | Gravity                         | 151        | IZ12                     | Gravity                    |
| 106          | BS10<br>BS11             | Gravity                         | 152        | TRI.#65                  | Gravity                    |
| 107          | BS12                     | Gravity                         | 152A       | TRI.#64                  | Gravity                    |
| 108          | B\$13                    | Gravity                         | 153        | BS18                     | Gravity                    |
| 109          | BS14                     | Gravity                         | 154        | <b>B</b> S19             | Gravity                    |
| 110          | TRL#124                  | Gravity                         | 155        | 42-WL-74                 | Geochemical                |
|              |                          |                                 |            |                          |                            |

| Map No.                         | Sample or Station No.                       | Analysis or<br>Measurement                                  | Map No.                         | Sample or<br>Station No.                               | Analysis or<br>Measurement                                      |
|---------------------------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
| 155<br>156<br>157<br>158        | 43-WL-74<br>44-WL-74<br>TRI.#44<br>TRI.#45  | Geochemical<br>Geochemical<br>Gravity<br>Gravity            | 193<br>193<br>194<br>194        | FP02<br>A1-JB-77<br>FP03<br>A2-JB-77                   | Gravity<br>Geochemical<br>Gravity<br>Geochemical                |
| 159<br>159<br>160<br>160        | TRI.#33<br>53-WL-74<br>TR1.#32<br>52-WL-74  | Gravity<br>Geochemical<br>Gravity<br>Geochemical            | 195<br>195<br>196<br>196        | FP04<br>A3-JB-77<br>TRI.#21<br>38-WL-74                | Gravity<br>Geochemical<br>Gravity<br>Geochemical                |
| 161<br>162<br>162<br>163<br>163 | IZ06<br>IZ07<br>3-JBM-77<br>IZ05<br>2-J8-77 | Gravity<br>Gravity<br>Geochemical<br>Gravity<br>Geochemical | 197<br>197<br>197<br>198<br>198 | TRJ.#22<br>39-WL-74<br>40-WL-74<br>TRI.#23<br>41-WL-74 | Gravity<br>Geochemical<br>Rock sample<br>Gravity<br>Geochemical |
| 164<br>165<br>166<br>167        | IZ08<br>IZ09<br>IZ10<br>4-JM-77             | Gravity<br>Gravity<br>Gravity<br>Geochemical                | POR                             | T MOLLER QUAD                                          | RANGLE (PLATE D)                                                |
| 168<br>169                      | 1Z11<br>1Z04                                | Gravity<br>Gravity                                          |                                 | Random S                                               | ampling                                                         |
| 170<br>171<br>172               | Site Cold Bay<br>NONE<br>IZ03               | Gravity<br>NONE<br>Gravity                                  | Map No.                         | Sample or<br>Station No.                               | Analysis or<br>Measurement                                      |
| 173<br>173<br>174<br>174<br>175 | {Z02<br>5-}M-77<br> Z01<br>1-}M-77<br>FP01  | Gravity<br>Geochemical<br>Gravity<br>Geochemical<br>Gravity | 199<br>200<br>201<br>202<br>203 | BS05<br>PB10<br>BS04<br>BS03<br>BS02                   | Gravity<br>Gravity<br>Gravity<br>Gravity<br>Gravity             |
| 176<br>176<br>177<br>177        | TR1,#20<br>37-WL-74<br>UN15<br>3-WL-77      | Gravity<br>Geochemical<br>Gravity<br>Geochemical            | 203A<br>204<br>204              | MR01<br>TRI.#150<br>199-WL-74                          | Gravity<br>Gravity<br>Geochemical                               |
| 178<br>178                      | UN14<br>2-WL-77                             | Gravity<br>Geochemical                                      |                                 | Milky River Strati<br>(Plate II) S                     |                                                                 |
| 179<br>179<br>180               | UN13<br>1-WL-77<br>UN01                     | Gravity<br>Geochemical<br>Gravity                           | 205<br>205                      | 29-GB-77<br>30-GB-77                                   | Porosity and<br>permeability<br>Porosity and                    |
| 181<br>182                      | UN02<br>TRI.#40                             | Gravity<br>Gravity                                          | 205                             | 31-GB-77                                               | permeability<br>Hydrocarbon                                     |
| 183<br>184                      | TRI.#41<br>TRI.#42                          | Gravity<br>Gravity                                          | 205<br>205                      | 32-GB-77<br>33-GB-77                                   | Paleontology<br>Hydrocarbon                                     |
| 185<br>186<br>187               | TR1.#43<br>TR1.#39<br>UN11                  | Gravity<br>Gravity<br>Gravity                               | 205<br>205<br>205<br>205        | 34-GB-77<br>35-GB-77<br>36-GB-77<br>37-GB-77           | Paleontology<br>Hydrocarbon<br>Paleontology<br>Hydrocarbon      |
| 187<br>189<br>190<br>191        | 15-JM-77<br>56-WL-74<br>TRI.#36<br>TRI.#34  | Geochemical<br>Geochemical<br>Gravity<br>Gravity            | 205<br>205                      | 38-GB-77<br>39-GB-77                                   | Paleontology<br>Porosity and<br>permeability                    |
| 192<br>192                      | TR1.#35<br>55-WL-74                         | Gravity<br>Geochemical                                      | 205<br>205<br>205               | 40-GB-77<br>41-GB-77<br>42-G8-77                       | Hydrocarbon<br>Paleontology<br>Macrofossil                      |

|          | Sample or                              | Analysis or  |         | Sample or               | Analysis or                |
|----------|----------------------------------------|--------------|---------|-------------------------|----------------------------|
| Map No.  | Station No.                            | Measurement  | Map No. | Station No.             | Measurement                |
| thap the |                                        |              | -       |                         |                            |
| 205      | 72A-WL-77                              | Porosity and | 211     | ST02                    | Gravity                    |
|          |                                        | permeability | 211     | 19-JM-77                | Geochemical                |
| 205      | 73-WL-77                               | Paleontology | 212     | NO DATA                 |                            |
| 205      | 74-WL-77                               | Hydrocarbon  | 213     | TRI.#3                  | Gravity                    |
| 205      | 75-WL-77                               | Lithology    | 213     | 16-WL-77                | Geochemical                |
| 205      | 76-WL-77                               | Palynology   | 214     | PB05                    | Gravity                    |
| 205      | 77-WL-77                               | Porosity and | 215     | BS01                    | Gravity                    |
| 200      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | permeability | 216     | PB02                    | Gravity                    |
| 205      |                                        |              | 217     | TRI.#74                 | Gravity                    |
| 205      | 78-WL-77                               | Porosity and | 218     | PB01                    | Gravity                    |
| 000      | 20.000 27                              | permeability | 219     | TRI.#73                 | Gravity                    |
| 205      | 79-WL-77                               | Paleontology | 220     | TRI,#75                 | Gravity                    |
| 205      | 80-WL-77                               | Hydrocarbon  | 221     | TRI.#76                 | Gravity?                   |
| 205      | 81-WL-77                               | Paleontology | 221     | 61-WL-74                | Geochemical                |
| 205      | 82-WL-77                               | Paleontology | 222     | TRI.#148                | Gravity                    |
| 205      | 83-WL-77                               | Hydrocarbon  |         |                         | -                          |
| 205      | 84-WL-77                               | Porosity and | 223     | TRI.#149                | Gravity                    |
|          |                                        | permeability | 223     | 198-WL-74               | Geochemical                |
| 205      | 85-WL-77                               | Hydrocarbon  | 224     | TRI.#81                 | Gravity                    |
| 205      | 86-WL-77                               | Macrofossil  | 224     | 65-WL-74                | Geochemical                |
| 205      | 87-WL-77                               | Paleontology | 225     | TRI.#151                | Gravity                    |
| 205      | 88-WL-77                               | Paleontology | 226     | TRI.#153                | Gravity                    |
| 205      | 89-WL-77                               | Hydrocarbon  | 226     | 201-WL-74               | Geochemical                |
| 205      | 90-WL-77                               | Porosity and | 227     | TRI.#152                | Gravity                    |
|          |                                        | permeability | 227     | 200-WL-74               | Geochemical                |
| 205      | 91-WL-77                               | Paleontology | 228     | TRI,#93                 | Gravity                    |
| 205      | 92-WL-77                               | Hydrocarbon  | 228     | 79-WL-74                | Geochemical                |
| 205      | 93-WL-77                               | Porosity and | 229     | TRI.#94                 | Gravity                    |
| 203      | JJ-WC-77                               | permeability | 229     | 80-WL-74                | Geochemical                |
| 205      | 94-WL-77                               | Macrofossil  | 229     | 81-WL-74                | Geochemical                |
| 205      | 95-WL-77                               | Porosity and |         |                         |                            |
|          |                                        | permeability |         |                         |                            |
| 205      | 96-WL-77                               | Paleontology | •       |                         |                            |
| 205      | 97-WL-77                               | Hydrocarbon  | So      | utheast Bear Lake Strat |                            |
| 205      | 98-WL-77                               | Macrofossil  |         | (Plate III) Sam         |                            |
| 205      | 99-WL-77                               | Paleontology | 230     | 34-JM-77                | Office sample              |
| 205      | 100-WL-77                              | Hydrocarbon  | 230     | 35-JM-77                | Porosity and               |
| 205      | 101-WL-77                              | Paleontology |         |                         | permeability               |
| 205      | 102-WL-77                              | Hydrocarbon  | 230     | 36-JM-77                | Porosity and               |
|          |                                        |              |         |                         | permeability               |
| 205      | 103-WL-77                              | Macrofossil  | 230     | 37-JM-77                | Palcontology               |
| 205      | 103A-WL-77                             | Paleontology | 230     | 38-JM-77                | Hydrocarbon                |
| 205      | 104-WL-77                              | Hydrocarbon  | 230     | 39-JM-77                | Porosity and               |
| 205      | 105-WL-77                              | Macrofossil  |         |                         | permeability               |
|          |                                        |              | 230     | 40-JM-77                | Paleontology               |
|          | Random Sam                             | pling        | 230     | 41-JM-77                | Hydrocarbon                |
|          |                                        |              | 230     | 42-JM-77                | Macrofossil<br>Macrofossil |
| 206      | BS06                                   | Gravity      | 230     | 43-JM-77                |                            |
| 207      | PB31                                   | Gravity      | 230     | 44-JM-77                | Macrofossil                |
| 208      | NO DATA                                |              | 230     | 45-JM-77                | Macrofossil                |
| 209      | SR12                                   | Gravity      | 230     | 46-JM-77                | Paleontology               |
| 210      | TRI.#125                               | Gravity      | 230     | 47-1M-77                | Hydrocarbon                |
|          |                                        |              |         |                         |                            |

| Map No. | Sample or<br>Station No. | Analysis or<br>Measurement          | Map No. | Sample or<br>Station No. | Analysis or<br>Measurement          |
|---------|--------------------------|-------------------------------------|---------|--------------------------|-------------------------------------|
|         | Random Sa                | ampling                             | 261     | NO DATA                  |                                     |
|         |                          |                                     | 262     | TRI.#175                 | Gravity                             |
| 231     | TR1.#97                  | Gravity                             | 262     | 239-WL-74                | Geochemical                         |
| 231     | 84-WL-74                 | Geochemical                         | 262     | 240-WL-74                | Geochemical                         |
| 232     | TRI.#96                  | Gravity                             | 262     | 241-WL-74                | Office sample                       |
| 232     | 83-WL-74                 | Geochemical                         |         | 242-WL-74                |                                     |
| 233     | TRI.#95                  | Gravity                             | 262     |                          | Density; magnetic<br>susceptibility |
| 233     | 82-WL-74                 | Geochemical                         | 262     | 243-WL-74                | Office sample                       |
| 234     | NO DATA                  |                                     | 263     | TRI.#176                 | Gravity                             |
| 235     | PB30                     | Gravity                             | 263     | 244-WL-74                | Geochemical                         |
| 236     | BS07                     | Gravity                             | 264     | TR1.#160                 | Gravity                             |
| 237     | TR1.#72                  | Gravity                             | 265     | TR1.#177                 | Gravity                             |
| 237A    | TR1.#126                 | Gravity                             | 265     | 245-WL-74                | Geochemical                         |
| 238     | SR13                     | Gravity                             | 265     | 246-WL-74                | Density                             |
| 239     | SR11                     | Gravity                             | 265     | 240-WL-74                | Magnetic                            |
| 239     | 30-1M-77                 | Geochemical                         | 205     | 27, 012,1                | susceptibility                      |
| 240     | SR10                     | Gravity                             | 265     | 248-WL-74                | Office sample                       |
| 240     | 29-1M-77                 | Geochemical                         | 266     | TR1.#157                 | Gravity                             |
| 241     | PBÍI                     | Gravity                             | 266     | 212-WL-74                | Geochemical                         |
| 242     | SR03                     | Gravity                             | 266     | 142-WL-74                | Office sample                       |
| 242     | 20-JM-77                 | Geochemical                         | 267     | TR1.#133                 | Gravity?                            |
| 243     | SR01                     | Gravity                             | 267     | 153-WL-77                | Porosity and<br>permeability        |
| 243     | 18-JM-77                 | Geochemical                         |         |                          |                                     |
| 244     | SR04                     | Gravity                             | 267     | 154-WL-77                | Density                             |
| 244     | 21-JM-77                 | Geochemical                         | 267     | 155-WL-77                | Office sample                       |
| 245     | TRI.#127                 | Gravíty                             | 267     | 156-WL-77                | Volcanic flow                       |
| 246     | PB06                     | Gravity                             | 268     | NO DATA                  |                                     |
| 247     | P807                     | Creatite                            | 269     | 62-WL-74                 | Macrofossit                         |
| 247     | PB09                     | Gravity                             | 270     | TR1.#84                  | Gravity                             |
| 248     | PB08                     | Gravity                             | 270     | 69-WL-74                 | Geochemical                         |
| 249     | PB04                     | Gravity<br>Gravity                  | 271     | 66-WL-74                 | Office sample                       |
| 250     | TR1.#138                 | •                                   | 272     | TR1.#85                  | Gravity                             |
| 231     | 1151.#130                | Gravity                             | 272     | 70-WL-74                 | Geochemical                         |
| 251     | 162-WL-74                | Geochemical                         | 272     | TR1.#79                  | Gravity                             |
| 251     | 163-WL-74                | Geochemical                         | 272     | 63-WL-74                 | Geochemical                         |
| 252     | NO DATA                  |                                     | 272     | TRL#89                   | Gravity                             |
| 253     | P803                     | Gravity                             | 273     | 75-WL-74                 | Geochemical                         |
| 254     | TR1.#173                 | Gravity                             | 274     | TRI.#91                  | Gravity                             |
| 254     | 237-WL-74                | Geochemical                         | 275     | TR1.#90                  | Gravity                             |
| 255     | 160-WL-74                | Rock sample                         | 275     | 76-WL-74                 | Geochemical                         |
| 255     | 161-WL-74                | Geochemical                         | 275     | 77-WL-74                 | Macrofossil                         |
| 256     | 158-WL-76                | Geochemical                         | 276     | TRI.#86                  | Gravity                             |
| 256     | 159-WL-74                | Density; magnetic<br>susceptibility | 276     | 71-WL-74                 | Geochemical                         |
|         |                          |                                     | 277     | TR1.#88                  | Gravity                             |
| 257     | 73-GB-77                 | Porosity and                        | 277     | 74-WL-74                 | Geochemical                         |
|         |                          | permeability                        | 278     | TRI.#87                  | Gravity                             |
| 258     | 74-GB-77                 | Paleontology                        | 278     | 72-WL-74                 | Geochemical                         |
| 259     | TR1.#134                 | Gravity                             | 279     | TRI.#80                  | Gravity                             |
| 259     | 157-WL-74                | Geochemical                         |         |                          |                                     |
| 260     | 143-WL-74                | Geochemical                         | 280     | TRI,#83                  | Gravity                             |

| Map No.    | Sample or<br>Station No. | Analysis or<br>Measurement            | Map No.     | Sample or<br>Station No. | Analysis or<br>Measurement   |
|------------|--------------------------|---------------------------------------|-------------|--------------------------|------------------------------|
| 280<br>280 | 67-WL-74<br>68-WL-74     | Geochemical<br>Geochemical            | 291         | 39-1P-77                 | Porosity and<br>permeability |
| 281        | TRI.#92                  | Gravity                               | 291         | 40-IP-77                 | Paleontology                 |
| 281        | 78-WL-74                 | Geochemical                           | <b>29</b> 1 | 41-18-77                 | Paleontology                 |
| 282        | TRI.#152                 | Gravity                               | 291         | 42-IP-77                 | Hydrocarbon                  |
| 282        | 202-WL-74                | Geochemical                           | 291         | 43-IP-77                 | Porosity and                 |
| 282        | 203-WL-74                | Geochemical                           | 0.01        | 4410 22                  | permeability                 |
| 283<br>283 | TRJ.#155                 | Gravity                               | 291         | 44-1P-77                 | Paleontology                 |
|            | 204-WL-74                | Geochemical                           | 291         | 45-1 <b>P-</b> 77        | Hydrocarbon                  |
| 283<br>283 | 205-WL-74<br>206-WL-74   | Geochemical<br>Density; magnetic      | 291         | 46-IP-77                 | Porosity and<br>permeability |
|            |                          | susceptibility                        | 291         | 47-IP-77                 | Palcontology                 |
| 283        | 207-WL-74                | Office sample                         | 291         | 48-1P-77                 | Coal                         |
| 283        | 208-WL-74                | Density                               | 291         | 49-IP-77                 | Paleontology                 |
| 283        | 209-WL-74                | Density                               | 291         | 50-IP-77                 | Hydrocarbon                  |
| 283<br>284 | 210-WL-74<br>BS08        | Office sample<br>Gravity              | 291         | 51-JP-77                 | Porosity and<br>permeability |
| 285<br>286 | PB29<br>8S24             | Gravity<br>Gravity                    | 291         | 52-IP-77                 | Porosity and<br>permeability |
| 280        | SR14                     | Gravity                               | 291         | 5 <b>3-IP-</b> 77        | Porosity and                 |
| 287        | 31-JM-77                 | Geochemical                           |             |                          | permeability                 |
| 288        | SR09                     | Gravity                               |             |                          |                              |
| 288        | 28-JM-77                 | Geochemical                           |             | Pandom                   | Sampling                     |
| 289        | PB12                     | Gravity                               |             | Kandom                   | Samping                      |
| 290        | SR07                     | Gravity                               | 292         | 1 <b>58-JB-7</b> 7       | Geochemical                  |
| 290        | 25-JM-77                 | Geochemical                           | 293         | 157-JB-77                | Geochemical                  |
| 290        | 26-JM-77                 | Geochemical                           | 294         | 64-GB-77                 | Porosity and<br>permeability |
|            |                          |                                       | 294         | 65-GB-77                 | Lithology                    |
|            |                          | ratigraphic Sections<br>ad V) Samples | 294         | 66-GB-77                 | Porosity and<br>permeability |
| 291        | 26-lP-77                 | Paleontology                          | 295         | TR1.#11                  | Gravity                      |
| 291        | 27-(P-77                 | Paleontology                          | 295         | 26-WL-74                 | Age date                     |
| 291        | 28-1P-77                 | Porosity and                          | 295         | 27-WL-74                 | Age date                     |
| -          |                          | permeability                          | 296         | TR1,#29                  | Gravity                      |
| 291        | 29-JP-77                 | Paleontology                          | 296         | TRI.#29                  | Gravity                      |
| 291        | 30-IP-77                 | Coal                                  | 296         | 50-WL-74                 | Geochemical                  |
| 291        | 31-IP-77                 | Porosity and<br>permeability          | 297         | 58-GB-77                 | Porosity and permeability    |
| 291        | 32-IP-77                 | Porosity and<br>permeability          | 297         | 59 <b>-</b> GB-77        | Porosity and<br>permeability |
| 291        | 33-IP-77                 | Paleontology                          | 297         | 60-GB-77                 | Porisity and                 |
| 291        | 34-IP-77                 | Porosity and                          | 221         | 00-00-77                 | permeability                 |
| 271        | 5411 17                  | permeability                          | 297         | 61 <i>-</i> GB-77        | Porosity and                 |
| 291        | 35-IP-77                 | Porosity and<br>permeability          |             |                          | permeability                 |
| 001        | 26 10 77                 |                                       | 297         | 62-GB-77                 | Porosity and                 |
| 291        | 36-1P-77                 | Paleontology                          | 297         | 63-GB-77                 | permeability                 |
| 291<br>291 | 37-IP-77<br>38-IP-77     | Hydrocarbon<br>Porosity and           | 297         | 28-WL-74                 | Hydrocarbon<br>Geochemical   |
| 231        | JO-11 -/ /               | permeability                          | 299         | 29-WL-74                 | Geochemical                  |

| Map No.    | Sample or<br>Station No. | Analysis or<br>Measurement          | Map No.    | Sample or<br>Station No. | Analysis or<br>Measurement   |
|------------|--------------------------|-------------------------------------|------------|--------------------------|------------------------------|
| 300        | 164-WL-74                | Geochemical                         |            | Waterfall Pt. Stratigrap |                              |
| 300        | 165-WL-74                | Geochemical                         |            | (Plate VI) Sam           | ples                         |
| 301        | TR1.#174                 | Gravity                             | 322        | 1-GB-77                  | Porosity and                 |
| 301        | 238-WL-74                | Geochemical                         |            |                          | permeability                 |
| 302<br>302 | TR1.#140<br>166-WL-74    | Gravity<br>Geochemical              | 322        | 2-G8-77                  | Lithology                    |
|            |                          |                                     | 322        | 3-GB-77                  | Paleontology                 |
| 303        | TRI.#166                 | Gravity                             | 322        | 4-GB-77                  | Porosity and<br>permeability |
| 303        | 255-WL-74                | Porosity and<br>permeability        | 322        | 5-GB-77                  | Paleontology                 |
| 303        | 226-WL-74                | Density                             | 322        | 6-GB-77                  | Hydrocarbon                  |
| 303        | 227-WL-74                | Office sample                       | 322        | 7-GB-77                  | Paleontology                 |
| 304        | TRI.#141                 | Gravity                             | 322        | 8-GB-77                  | Lithology                    |
| 304        | 167-WL-74                | Geochemical                         | 322        | 9-GB-77                  | Porosity and                 |
| 305        | 219-WL-74                | Office sample                       |            |                          | permeability                 |
| 306        | 216-WL-74                | Geochemical                         | 322        | 10-GB-77                 | Hydrocarbon                  |
| 306        | 217-WL-74                | Age date                            | 322        | 11-GB-77                 | Paleontology                 |
| 306        | 218-WL-74                | Magnetic                            | 322        | 12-GB-77                 | Macrofossil                  |
|            |                          | susceptibility                      | 322        | 13-GB-77                 | Porosity and                 |
| 307        | TR1,#158                 | Gravity                             |            |                          | permeability                 |
| 307        | 213-WL-74                | Age date                            | 322        | 14-GB-77                 | Hydrocarbon                  |
| 307        | 214-WL-74                | Geochemical                         | 322        | 15-GB-77                 | Paleontology                 |
| 307        | 215-WL-74                | Density; magnetic<br>susceptibility |            |                          |                              |
| 308        | TR1.#102                 | Gravity                             |            | Random Samp              | ling                         |
| 308        | 115-WL-74                | Geochemical                         |            |                          | -                            |
| 309        | 141-WL-74                | Geochemical                         | 323        | PB28                     | Gravity                      |
| 310        | 138-WL-74                | Geochemical                         | 324        | SR16                     | Gravity                      |
| 311        | TRI.#146                 | Gravity                             | 324<br>325 | 33-JM-77                 | Geochemical                  |
| 311        | 194-WL-74                | Rock sample                         | 325        | SR15<br>32-JM-77         | Gravity<br>Geochemical       |
| 311        | 195-WL-74                | Burned                              |            |                          |                              |
| 312        | 139-WL-74                | Geochemical                         | 326<br>327 | PB15<br>TRI.#30          | Gravity                      |
| 312        | 140-WL-74                | Geochemical                         | 327        | PB14                     | Gravity                      |
| 313        | 151-WL-74                | Geochemical                         | 328        | SR08                     | Gravity                      |
| 314        | 149-WL-74                | Geochemical                         | 329        | 27-JM-77                 | Geochemical                  |
| 315        | TRI.#130                 | Density                             | 330        | SR06                     | Gravity                      |
| 315        | 148-WL-74                | Geochemical                         | 330        | 23-JM-77                 | Geochemical                  |
| 316        | TRI.#129                 | Gravity                             | 331        | SR05                     | Gravity                      |
| 316        | 146-WL-74                | Density; magnetic                   | 331        | 22-JM-77                 | Geochemical                  |
| 316        | 147-WL-74                | susceptibility<br>Geochemical       | 332        | 155-JM-77                | Geochemical                  |
|            |                          |                                     | 333        | 156-JMB-77               | Geochemical                  |
| 317        | TR1.#103                 | Gravity                             | 333        | 156-38-77                | Geochemical                  |
| 318        | TR1.#128                 | Gravity                             | 334        | 153-}8-77                | Geochemical                  |
| 318        | 145-WL-74                | Geochemical                         | 335        | 154-18-77                | Geochemical                  |
| 319<br>320 | 116-WL-74<br>TRI.#156    | Geochemical<br>Gravity              | 335A       | 22-WL-74                 | Age date                     |
|            |                          | •                                   | 335A       | 23-WL-74                 | Age date                     |
| 320        | 211-WL-74                | Geochemical                         | 335A       | 24·WL-74                 | Hydrocarbon                  |
| 321        | 77-SWH-11                | Density; magnetic                   | 335A       | 25-WL-74                 | Rock sample                  |
| 321        | 77-SWH-12                | susceptibility<br>Paleontology      | 336<br>336 | 133A-WL-74<br>133B-WL-74 | Geochemical<br>Geochemical   |

| Map No.                                | Sample or<br>Station No.                                                | Analysis or<br>Measurement                                                | Map No.                                | Sample or<br>Station No.                                            | Analysis or<br>Measurement                                                     |
|----------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 337<br>337<br>338                      | TRI.#114<br>132-WL-74<br>TRI.#311                                       | Gravity<br>Geochemical<br>Gravity                                         | 353<br>353                             | 124-W'L-74<br>125-W'L-74                                            | Density<br>Magnetic<br>susceptibility                                          |
| 338<br>339                             | 127-WL-74<br>TR1.#112                                                   | Geochemical<br>Gravity                                                    | 354<br>354<br>255                      | TRI.#106<br>119-WL-74<br>22 WL-74                                   | Gravity<br>Geochemical                                                         |
| 339<br>340<br>340                      | 128-WL-74<br>75-G8-77<br>76-GB-77                                       | Geochemical<br>Paleontology<br>Hydrocarbon                                | 355<br>355A<br>356                     | 33-WL-74<br>18-WL-74<br>TRL#101                                     | Age date<br>Age date<br>Gravity                                                |
| 340<br>340<br>340                      | 77-GB-77<br>78-GB-77<br>79-GB-77                                        | Paleontology<br>Hydrocarbon<br>Pałcontology                               | 356<br>357<br>357                      | 114-V/L-74<br>TRI.#165<br>224-WL-74                                 | Geochemical<br>Gravity<br>Geochemical                                          |
| 340<br>340<br>340<br>340<br>340        | 80-GB-77<br>81-GB-77<br>82-GB-77<br>83-GB-77<br>84-GB-77                | Hydrocarbon<br>Paleontology<br>Hydrocarbon<br>Paleontology<br>Hydrocarbon | 358<br>358<br>359<br>359<br>360        | TRI.#162<br>220-WL-74<br>TRJ,#163<br>221-WL-74<br>TRI.#164          | Gravity<br>Geochemical<br>Gravity<br>Geochemical<br>Gravity                    |
| 340<br>340<br>340<br>340               | 85-GB-77<br>86-GB-77<br>87-GB-77<br>88-GB-77                            | Paleontology<br>Hydrocarbon<br>Paleontology<br>Hydrocarbon                | 360<br>360<br>361<br>361<br>362        | 222-WL-74<br>223-WL-74<br>TRI.≉167<br>228-WL-74<br>PB27             | Geochemical<br>Geochemical<br>Gravity<br>Geochemical<br>Gravity                |
| 340<br>340<br>341<br>341<br>341        | 89-GB-77<br>90-GB-77<br>TRI.#113<br>130-WL-74<br>131-WL-74              | Paleontology<br>Hydrocarbon<br>Gravity<br>Geochemical<br>Geochemical      | 363<br>364<br>364<br>365               | РВ16<br>TRI.*26<br>45-WI-74<br>РВ13                                 | Gravity<br>Gravity<br>Geochemical<br>Gravity                                   |
| 342<br>342<br>342<br>343<br>343<br>343 | TRI,#145<br>192-WL-74<br>193-WL-74<br>TRI,#116<br>134-WL-74<br>TRI,#110 | Gravity?<br>Age date<br>Burned<br>Gravity<br>Geochemical<br>Gravity       | 365<br>365<br>366<br>367<br>367<br>368 | TR[.#9<br>21-W174<br>150-JB-77<br>TRI.#142<br>168-W174<br>152-JB-77 | Gravity<br>Geochemical<br>Geochemical<br>Gravity<br>Geochemical<br>Geochemical |
| 344<br>345<br>346<br>346               | 126-WL-74<br>30-WL-74<br>TR1.#117<br>135-WL-74                          | Geochemical<br>Geochemical<br>Gravity<br>Geochemical                      | Lefth                                  | nand Bay-Balboa Bay Str<br>(Plate VII) Sam                          |                                                                                |
| 347<br>347<br>348<br>348<br>348        | TR1,#7<br>19-WL-74<br>136-WL-74<br>137-WL-74<br>31-WL-74                | Gravity<br>Density<br>Geochemical<br>Geochemical<br>Geochemical           | 369<br>369<br>369<br>369<br>369<br>369 | 16-G8-77<br>17-G8-77<br>18-GB-77<br>18-GB-77<br>19-GB-77            | Hydrocarbon<br>Palcontology<br>Hydrocarbon<br>Hydrocarbon<br>Palcontology      |
| 349<br>350<br>350<br>350<br>350<br>351 | 32-WL-74<br>34-WL-74<br>35-WL-74<br>36-WL-74<br>TR1.#107                | Geochemical<br>Geochemical<br>Geochemical<br>Geochemical<br>Gravity       | 369<br>369<br>369<br>369<br>369<br>369 | 20-GB-77<br>21-GB-77<br>22-GB-77<br>23-GB-77<br>24-GB-77            | Lithology<br>Hydrocarbon<br>Paleontology<br>Lithology<br>Hydrocarbon           |
| 351<br>351<br>352<br>352<br>353        | 120-WL-74<br>121-WL-74<br>TR1.#108<br>122-WL-74<br>123-WL-74            | Geochemicat<br>Geochemical<br>Gravity<br>Rock sample<br>Lithology         | 369<br>369<br>369<br>369<br>369<br>369 | 25-GB-77<br>26-GB-77<br>27-GB-77<br>28-GB-77<br>9-IP-77             | Paleontology<br>Hydrocarbon<br>Paleontology<br>Lithology<br>Paleontology       |

| Map No. | Sample or<br>Station No. | Analysis or<br>Measurement   | Map No.     | Sample or<br>Station No. | Analysis or<br>Measurement   |
|---------|--------------------------|------------------------------|-------------|--------------------------|------------------------------|
| 369     | 10-IP-77                 | Hydrocarbon                  | 377         | 28-WL-77                 | Paleontology                 |
| 369     | 11-IP-77                 | Paleontology                 | 377         | 29-WL-77                 | Hydrocarbon                  |
| 369     | 12-IP-77                 | Paleontology                 | 377         | 30-WL-77                 | Porosity and                 |
| 369     | 13-IP-77                 | Hydrocarbon                  |             |                          | permeability                 |
| 369     | 14-IP-77                 | Hydrocarbon                  | 377         | 31-WL-77                 | Lithology                    |
|         |                          | ,                            |             |                          |                              |
| 369     | 15-1P-77                 | Palcontology                 | 377         | 32-WL-77                 | Paleontology                 |
| 369     | 16-IP-77                 | Paleontology                 | 377         | 33-WL-77                 | Hydrocarbon                  |
| 369     | 17-(P-77                 | Hydrocarbon                  | 377         | 33A-WL-77                | Hydrocarbon                  |
| 369     | 18-19-77                 | Paleontology                 | 377         | 34-WL-77                 | Paleontology                 |
| 369     | 19-1P-77                 | Hydrocarbon                  | 377         | 35-WL-77                 | Hydrocarbon                  |
| 369     | 20-IP-77                 | Porosity and<br>permeability | 377         | 36-WL-77                 | Porosity and permeability    |
| 369     | 21-IP-77                 | Paleontology                 | 377         | 37-WL-77                 | Hydrocarbon                  |
| 369     | 22-IP-77                 | Hydrocarbon                  | 377         | 38-WL-77                 | Paleontology                 |
| 369     | 23-IP-77                 | Lithology                    | 377         | 39-WL-77                 | Hydrocarbon                  |
| 369     | 24-1P-77                 | Paleontology                 |             |                          |                              |
| 369     | 25-IP-77                 | Hydrocarbon                  | 377         | 40-WL-77                 | Porosity and<br>permeability |
| 369     | 46-WL-74                 | Hydrocarbon                  | 378         | 85-WL-74                 | Shale                        |
| 369     | 47-WL-74                 | Hydrocarbon                  | 378         | 86-WL-74                 | Sandstone                    |
| 369     | 48-WL-74                 | Hydrocarbon                  | 378         | 87-WL-74                 | Sandstone                    |
| 369     | 49-WL-74                 | Hydrocarbon                  | 378         | 88-WL-74                 | Shale                        |
| 369     | 77-SWH-12A               | Macrofossil                  | <b>3</b> 78 | 89-WL-74                 | Coal                         |
| 369     | 77-SWH-13                | Macrofossil                  | 378         | 90-WL-74                 | Porosity and                 |
| 370     | TRI.#100                 | Gravity                      | 270         | 01.000 74                | permeability                 |
| 371     | TRI.#105                 | Gravity                      | 378         | 91-WL-74                 | Paleontology                 |
| 371     | 117-WL-74                | Geochemical                  | 378         | 92-WL-74                 | Siltstone                    |
| 371     | 118-WL-74                | Geochemical                  | 378         | 91A-WL-74                | Shale                        |
| 372     | TRI.#168                 | Gravity                      | 378         | 92A-WL-74                | ?                            |
| 372     | 229-WL-74                | Geochemical                  | 378         | 93-WL-74                 | Siltstone                    |
| 373     | TR1,#169                 | Gravity                      | 378         | 94-WL-74                 | Siltstone                    |
| 373     | 230-WL-74                | Geochemical                  | 378         | 95-WL-74                 | Sandstone                    |
| 374     | TRI.#4                   | Gravity                      | 378         | 96-WL-74                 | Shale                        |
| 374     | 17-WL-74                 | Office sample                | 378         | 97-WL-74                 | Paleontology                 |
| 375     | PB26                     | Gravity                      | 378         | 98-WL-74                 | Source                       |
| 376     | <b>PB</b> 17             | Gravity                      | 378         | 99-WL-74                 | Porosity and<br>permeability |
|         |                          |                              | 378         | 100-WL-74                | Sandstone                    |
|         | Beaver Bay Stratig       | raphic Section               | 378         | 101-WL-74                | Conglomerate                 |
|         | (Plate VIII)             |                              | 378         | 102-WL-74                | Geochemical                  |
| 377     | 21-WL-77                 | Paleontology                 | 378         | 103-WL-74                | Source                       |
| 377     | 22-WL-77                 | Hydrocarbon                  | 378         | 104-WL-74                | Source                       |
| 377     | 23-WL-77                 | Porosity and                 | 378         | 105-WL-74                | Macrofossil                  |
| 577     | 2J-W L-//                | permeability                 | 378         | 106-WL-74                | ?                            |
| 377     | 24-WL-77                 | Porosity and                 | 378         | 107-WL-74                | Coal                         |
|         | A                        | permeability                 | 378         | 108-WL-74                | Conglomerate                 |
| 377     | 25-WL-77                 | Paleontology                 | 378         | 109-WL-74                | Shale                        |
| 377     | 26-WL-77                 | Macrofossil                  | 378         | 110-WL-74                | Paleontology                 |
| 377     | 27-WL-77                 | Porosity and                 | 378         | 111-WL-74                | Sandstone                    |
|         |                          | permeability                 | 378         | 112-WL-74                | Source                       |
|         |                          | [                            |             |                          |                              |

|            | Sample or                          | Analysis or                |            | Samula or                | Applying                   |
|------------|------------------------------------|----------------------------|------------|--------------------------|----------------------------|
| Map No     |                                    | Analysis or<br>Measurement | Map No.    | Sample or<br>Station No. | Analysis or<br>Measurement |
| maprio     | . otation ite.                     | measurement                | map ivo.   | Station No.              | incusar entrene            |
| 378        | 113-WL-74                          | Conglomerate               | 382        | 47-WL-77                 | Paleontology               |
| 378        | 169-WL-74                          | Thin section               | 382        | 48-WL-77                 | Paleontology               |
| 378        | 170-WL-74                          | Age date                   | 382        | 49-WL-77                 | Porosity and               |
| 378        | 171-WL-74                          | Magnetic                   |            |                          | permeability               |
|            |                                    | susceptibility             | 382        | \$0-WL-77                | Palcontology               |
| 378        | 172-WL-74                          | Source                     | 382        | 51-WL-77                 | Lithology                  |
| 378        | 173-WL-74                          | Source                     |            |                          | 0,                         |
| 378        | 174-WL-74                          | Porosity and               |            | Kandom                   | Sampling                   |
|            |                                    | permeability               | 383        | 236-WL-74                | Geochemical                |
| 378        | 175-WL-74                          | Density; magnetic          | 384        | TRI.#171                 | Gravity                    |
|            |                                    | susceptibility             | 384        | 231-WL-74                | Geochemical                |
| 378        | 176-WL-74                          | Sandstone                  | 384        | 232-WL-74                | Office sample              |
| 378        | 177-WL-74                          | Conglomerate               | 384        | 233-WL-74                | Density                    |
| 378        | 178-WL-74                          | Porosity and               | 384        | 234-WL-74                | Magnetic                   |
|            |                                    | permeability               | 304        | 234-116-74               | susceptibility             |
| 378        | 179-WL-74                          | Source                     | 384        | 235-WL-74                | Office sample              |
| 378        | 180-WL-74                          | Sandstone                  | 385        | 20-WL-74                 | Office sample              |
| 378        | 181-WL-74                          | Conglomerate               | 386        | PB18                     | Gravity                    |
|            |                                    | clasts                     | 387        | PB19                     | Gravity                    |
| 378        | 182-WL-74                          | Source                     |            |                          |                            |
| 378        | 183-WL-74                          | Sandstone                  | 388<br>389 | 190-WL-74<br>PB22        | Geochemical                |
| 378        | 184-WL-74                          | Macrofossil                |            |                          | Gravity                    |
| 378        | 185-WL-74                          | Source                     | 390        | P821                     | Gravity                    |
| 378        | 186-WL-74                          | Lithology                  | 390A       | PB20                     | Gravity                    |
| 378        | 187-WL-74                          | Lava                       | 391        | 61-IP-77                 | Geochemical                |
|            |                                    |                            |            | White Bluff Stra         | tigraphic Section          |
| 378<br>378 | 188-WL-74<br>189-WL-74             | Source                     |            | (Plate XI                | ) Samples                  |
| 570        |                                    | Lithology                  | 391 A      | 52-WL-77                 | Paleontology               |
|            | Random S                           | Sampling                   | 391A       | 53-WL-77                 | Hydrocarbon                |
| 379        | TRI.#99                            | Gravity                    | 391A       | 54-WL-77                 | Coal                       |
| 380        | 67-GB-77                           | Paleontology               | 391A       | 55-WL-77                 | Paleontology               |
| 380        | 68-GB-77                           | Hydrocarbon                | 391A       | 56-WL-77                 | Palynology                 |
| 380        | 69-GB-77                           | Paleontology               |            |                          | ,                          |
| 380        | 70-GB-77                           | Hydrocarbon                | 391A       | 57-WL-77                 | Lithology                  |
|            |                                    | -                          | 391 A      | 58-WL-77                 | Paleontology               |
| 380        | 71-GB-77                           | Porosity and               | 391 A      | 59-WL-77                 | Palynology                 |
| 200        | 20.00.77                           | permeability               | 391A       | 60-WL-74                 | Paleontology               |
| 380        | 72 <b>-</b> GB-77                  | Porosity and               | 391 A      | 61-WL-74                 | Hydrocarbon                |
| 201        | <b>TOL</b>                         | permeability               | 391 A      | 62-WL-77                 | Coal                       |
| 381        | TRI,#144                           | Gravity                    | 391 A      | 63-WL-77                 | Palynology                 |
| 381        | 191-WL-74                          | Geochemical                | 391 A      | 64-WL-77                 | Palcontology               |
|            | Alistain Boningula Et              | estimanhia Castien         | 391 A      | 65-WL-77                 | Hydrocarbon                |
|            | Aliaksin Peninsula St<br>(Plate X) |                            | 391 A      | 66-WL-77                 | Paleontology               |
|            | (riate A)                          | Samples                    | 391 A      | 67-WL-77                 | Hydrocarbon                |
| 382        | 41-WL-77                           | Paleontology               | 391A       | 68-WL-77                 | Paleontology               |
| 382        | 42-WL-77                           | Hydrocarbon                | 391A       | 69-WL-77                 | Hydrocarbon                |
| 382        | 43-WL-77                           | Paleontology               | 391A       | 70-WL-77                 | Porosity and               |
| 382        | 44-WL-77                           | Pateontology               | 22.74      |                          | permeability               |
| 382        | 45-WL-77                           | Paleontology               | 391A       | 71-WL-77                 | Porosity and               |
| 382        | 46-WL-77                           | 0,1                        |            |                          | permeability               |
| 202        | 40-WL-//                           | Porosity and               | 391 A      | 72-WL-77                 | Lithology                  |
|            |                                    | permeability               | JAIR       | / ٢- ٧٧ ٢ / /            | LITHOIORY                  |
|            |                                    |                            |            |                          |                            |

| Map No.                         | Sample or<br>Station No.                 | Analysis or<br>Measurement                           | Map No.                  | Sample or<br>Station No.            | Analysis or<br>Measurement                   |
|---------------------------------|------------------------------------------|------------------------------------------------------|--------------------------|-------------------------------------|----------------------------------------------|
|                                 | Random                                   | Sampling                                             | 416                      | 16-JM-77                            | Geochemical                                  |
| 392<br>393<br>394               | PB24<br>PB23<br>60-1P-77                 | Gravity<br>Gravity<br>Geochemical                    | 417<br>418<br>419<br>420 | 24-JB-77<br>FP11<br>FP10<br>FP09    | Geochemical<br>Gravity<br>Gravity<br>Gravity |
| 39 <i>5</i><br>396              | 59-IP-77<br>58-IP-77                     | Geochemical<br>Geochemical                           | 420<br>420               | A7-JB-77<br>77-SWH-01               | Geochemical<br>Oriented basalt               |
| 397<br>398<br>399<br>400        | 57-1P-77<br>54-1P-77<br>56-1P-77<br>PB25 | Geochemical<br>Geochemical<br>Geochemical<br>Gravity | E                        | ast Morzhovoi Bay S<br>(Plate XII)  |                                              |
| 401                             | 55-1P-77                                 | Geochemical                                          | 421<br>421               | 43-GB-77<br>44-GB-77                | Hydrocarbon<br>Paleontology                  |
| 51                              | EPOVAK QUADI                             | RANGLE (PLATE E)                                     | 421                      | 45-GB-77                            | Hydrocarbon                                  |
|                                 | Random                                   | Sampling                                             | 421<br>421               | 46-GB-77<br>47-GB-77                | Paleontology<br>Macrofossil                  |
| Map No.                         | Sample or<br>Station No.                 | Analysis or<br>Measurement                           | 421<br>421<br>421        | 48-GB-77<br>49-GB-77<br>50-JB-77    | Hydrocarbon<br>Paleontology<br>Paleontology  |
| 402<br>402                      | 55-JM-77<br>56-JM-77                     | Geochemical<br>Geochemical                           | 421<br>421               | 51-GB-77<br>52-GB-77                | Macrofossil<br>Porosity and<br>permeability  |
| 403<br>403<br>404               | 53-JM-77<br>54-JM-77<br>104-JB-77        | Geochemical<br>Geochemical<br>Geochemical            | 421<br>421<br>421        | 53-GB-77<br>54-GB-77<br>55-GB-77    | Macrofossil<br>Lithology<br>Macrofossil      |
| 405<br>406<br>407               | 105-JB-77<br>102-JB-77<br>101-JB-77      | Geochemical<br>Geochemical<br>Geochemical            | 421                      | 56-G <b>B</b> -77                   | Porosity and<br>permeability                 |
| 408<br>409                      | 99-JB-77<br>100-JB-77                    | Geochemical<br>Geochemical                           | 421                      | 57-GB-77<br>Random S                | Lithology                                    |
| 410                             | 48-JB-77                                 | Geochemical                                          | 421 A                    | FP08                                | Gravity                                      |
| 410                             | 49-JB-77                                 | Geochemical                                          | 422                      | 6-18-77                             | Geochemical                                  |
| 410<br>410                      | 50-JM-77<br>51-JM-77                     | Geochemical                                          | 422                      | 7-JB-77                             | Geochemical                                  |
| 410                             | 52-JM-77                                 | Lithology<br>Geochemical                             | 422<br>422               | 9-ĴB-77<br>77-SWH-1A                | Geochemical<br>Geochemical                   |
| 411<br>412<br>413               | 98-JB-77<br>106-JB-77<br>102-JB-77       | Geochemical<br>Geochemical<br>Geochemical            | 422<br>422<br>422        | 77-SWH-2A<br>77-SWH-3A<br>77-SWH-4A | Geochemical<br>Geochemical<br>Geochemical    |
| FALSE PASS QUADRANGLE (PLATE F) |                                          | RANGLE (PLATE F)                                     | 422<br>423               | 77-SWH-5A<br>FP07                   | Gcochemical<br>Gravity                       |
| Random Sampling                 |                                          | Sampling                                             | 423<br>424               | A6-J <b>B</b> -77<br>FP06           | Geochemical<br>Gravity                       |
| Map No.                         | Sample or<br>Station No.                 | Analysis or<br>Measurement                           | 424<br>424<br>424        | A5-}B-77<br>77-SWH-01B<br>77-SWH-02 | Geochemical<br>Bulk rock<br>Bulk rock        |
| 414                             | UN03                                     | Gravity                                              | 424                      | 77-SWH-03                           | Bulk rock                                    |
| 414<br>415                      | 7-JM-77<br>UN10                          | Geochemical<br>Gravity                               | 424<br>424               | 77-SWH-04<br>77-SWH-05              | Bulk rock                                    |
| 415                             | UNIO<br>UNI2                             | Gravity                                              | 424<br>424               | 77-SWH-06                           | Bulk rock<br>Bulk rock                       |
| 416                             | 25-JB-77                                 | Geochemical                                          | 424                      | 77-SWH-07                           | Bulk rock                                    |

| Map No.                                | Sample or<br>Station No.                            | Analysis or<br>Measurement                                                              |                                 | Random S                                     | ampling                                                     |
|----------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------------------------------|
| 424<br>425                             | 77-SWH-08<br>FP05                                   | Bulk rock                                                                               | Map No.                         | Sample or Station No.                        | Analysis or<br>Measurement                                  |
| 423<br>425<br>426<br>426<br>427<br>427 | A4-JB-77<br>UN04<br>8-JM-77<br>FP19<br>9-JM-77      | Gravity<br>Geochemical<br>Gravity<br>Geochemical<br>Gravity<br>Geochemical              | 432<br>432<br>433<br>434<br>434 | FP13<br>A8-JB-77<br>FP12<br>UN06<br>10-JM-77 | Gravity<br>Geochemical<br>Gravity<br>Gravity<br>Geochemical |
| 428<br>428<br>429<br>430               | FP19<br>A10-JB-77<br>FP18<br>FP20                   | Gravity<br>Geochemical<br>Gravity<br>Gravity                                            | 435<br>436<br>437<br>438<br>438 | FP17<br>FP16<br>UN07<br>TR1.#48<br>57-WL-74  | Gravity<br>Gravity<br>Gravity<br>Gravity<br>Geochemical     |
|                                        |                                                     |                                                                                         | 439<br>439<br>440<br>441<br>441 | FP15<br>A9-JB-77<br>FP14<br>UN08<br>11-JN-77 | Gravity<br>Geochemical<br>Gravity<br>Gravity<br>Geochemical |
| We                                     | est Morzhovoi Bay St<br>(Plate XIII)                |                                                                                         | 442<br>443<br>443               | TRL#51<br>TRL#49<br>57A-WL-74                | Gravity?<br>Gravity<br>Density                              |
| 431<br>431                             | 1-IP-77<br>2-IP-77                                  | Porosity and<br>permeability<br>Porosity and                                            | 444<br>445                      | TRI.#50<br>UN09                              | Gravity<br>Gravity                                          |
| 431                                    | 3-1P-77                                             | permeability<br>Paleontology                                                            | 445<br>445<br>445               | 12-JM-77<br>13-∫M-77<br>14-JM-77             | Geochemical<br>Geochemical<br>Geochemical                   |
| 431<br>431                             | 4-1P-77<br>5-1P-77                                  | Macrofossil<br>Paleontology                                                             |                                 | 1-1-111-17                                   | Goothennear                                                 |
| 431<br>431<br>431<br>431<br>431        | 6-IP-77<br>7-IP-77<br>8-IP-77<br>1-WL-74<br>2-WL-74 | Paleontology<br>Paleontology<br>Porosity and<br>permcability<br>Age date<br>Geochemical | TABL                            | .E 1B-SAMPLE OR<br>TO MAP N                  | STATION NUMBERS                                             |
| 431                                    | 3-WL-74                                             | Porosity and<br>permeability                                                            |                                 |                                              |                                                             |
| 431<br>431                             | 4-WL-74<br>5-WL-74                                  | Thin section<br>Porosity and                                                            |                                 | SAMPLING BY J. A                             | A. MOREHOUSE                                                |
| 431<br>431                             | 6-WL-74<br>7-WL-74                                  | permeability<br>Office sample<br>Office sample                                          |                                 | Random S                                     | ampling                                                     |
| 431                                    | 8-WL-74                                             | Porosity and<br>permeability                                                            | Sample N                        |                                              | Мар No.<br>174                                              |
| 431                                    | 9-WL-74                                             | Age date                                                                                | 1-JM-77<br>2-JM-77              |                                              | 163                                                         |
| 431                                    | 10·₩ <b>L-</b> 74                                   | Porosity and<br>permeability                                                            | 3-JM-77<br>4-IM-77              |                                              | 162<br>167                                                  |
| 431                                    | 11-WL-74                                            | Hydrocarbon                                                                             | 4-jM-77<br>5-JM-77              |                                              | 173                                                         |
| 431                                    | 12-WL-74                                            | Porosity and<br>permeability                                                            | 6-}M-77<br>7-JM-77              |                                              | 181<br>414                                                  |
| 431                                    | 13-WL-74                                            | Age date                                                                                | 8-JM-77                         |                                              | 426                                                         |
| 431<br>431                             | 14-WL-74<br>15-WL-74                                | Age date<br>Lithology                                                                   | 9-JM-77<br>10-JM-77             |                                              | 427<br>434                                                  |

\_\_\_\_

\_

| Sample No.           | Map No.                    | SAMPLING BY W. M. LYLE |                       |
|----------------------|----------------------------|------------------------|-----------------------|
| 11-}M-77             | 441                        |                        |                       |
| 12-JM-77             | 445                        | Kan                    | dom Sampling          |
| 13-JM-77             | 445                        | Sample No.             | Map No.               |
| 14-JM-77             | 445                        | 1 11/2 22              | 1 70                  |
| 15-JM-77             | 187                        | 1-WE-77                | 179                   |
| 16-JM-77             | 416                        | 2-WL-77                | 178<br>177            |
| 17-JM-77             | None                       | 3-WL-77<br>4-WL-77     | None                  |
| 18-JM-77             | 243                        | 4-W L-77               | None                  |
| <b>19-JM-</b> 77     | 211                        | Black Lake             | Stratigraphic Section |
| 20-JM-77             | 242                        | (Pi.                   | ate I) Samples        |
| 21-JM-77             | 244                        | - 114 - 77             | 40                    |
| 22-ĴM-77             | 331                        | 5-WL-77                | 43                    |
| 23-JM-77             | 330                        | 6-WL-77                | 43<br>43              |
| 24-}M-77             | 330                        | 7-WL-77                | 43                    |
| 25-JM-77             | 290                        | 8-WL-77                | 43                    |
| 26-1M-77             | 290                        | 9-WL-77                |                       |
| 27-JM-77             | 329                        | 10-WL-77               | 43                    |
| 27 <b>)</b>          |                            | 11-WL-77               | 43                    |
|                      |                            | 12-WL-77               | 43                    |
|                      |                            | 13-WL-77               | 43                    |
|                      |                            | 14-WL-77               | 43                    |
|                      |                            | 15-WL-77               | 43                    |
| C E Dave             | - les Etestionation        | 16-WL-77               | 43                    |
|                      | Lake Stratigraphic Section | 17-WL-77               | 43                    |
| (r                   | late III) Samples          | 18-WL-77               | 43                    |
| 35-JM-77             | 230                        | 19-WL-77               | 43                    |
| 36-ĴM-77             | 230                        | 20-WL-77               | 43                    |
| 37-ĴM-77             | 230                        | Beaver Bay             | Stratigraphic Section |
| 38-JM-77             | 230                        |                        | e VIII) Samples       |
| 39-JM-77             | 230                        |                        |                       |
| 40-1M-77             | 230                        | 21-WL-77               | 377                   |
| 41-JM-77             | 230                        | 22-WL-77               | 377                   |
| 42. JM-77            | 230                        | 23-WL-77               | 377                   |
| 43-JM-77             | 230                        | 24-WL-77               | 377<br>377            |
| 44-JM-77             | 230                        | 25-WL-77               |                       |
| 45-1M-77             | 230                        | 26-WL-77               | 377                   |
| 46-JM-77             | 230                        | 27-WL-77               | 377                   |
| 47-1M-77             | 230                        | 28-WL-77               | 377                   |
| , <b>,</b>           |                            | 29-WL-77               | 377                   |
|                      |                            | 30-WL-77               | 377                   |
|                      |                            | 31-WL-77               | 377                   |
| R                    | andom Sampling             | 32-WL-77               | 377                   |
| 48-}M-77             | 410                        | 33-WL-77               | 377                   |
| 49-JM-77             | 410                        | 33A-WL-77              | 377                   |
| 50-JM-77             | 410                        | 34-WL-77               | 377                   |
| 51-JM-77             | 410                        | 35-WL-77               | 377                   |
| 52-1M-77             | 410                        | 36-WL-77               | 377                   |
| 53-1M-77             | 403                        | 37-WL-77               | 377                   |
| 53-jm-77<br>54-jM-77 | 403                        | 38-WL-77               | 377                   |
| 55-JM-77             | 402                        | 39-WL-77               | 377                   |
| 56-JM-77             | 402                        | 40-WL-77               | 377                   |
| ,                    |                            |                        |                       |

| Sample No.  | Map No.                                     | Sample No.           | Map No.            |
|-------------|---------------------------------------------|----------------------|--------------------|
|             | sula Stratigraphic Section<br>te X) Samples | 82-WL-77<br>83-WL-77 | 20 <i>5</i><br>205 |
| (* 14       | te i ti sumpres                             | 84-WL-77             | 205                |
| 42-WL-77    | 382                                         | 85-WL-77             | 205                |
| 43-WL-77    | 382                                         |                      |                    |
| 44-WL-77    | 382                                         | 86-WL-77             | 205                |
| 45-WL-77    | 382                                         | 87-WL-77             | 205                |
|             |                                             | 88-WL-77             | 205                |
| 46-WL-77    | 382                                         | 89-WL-77             | 205                |
| 47-WL-77    | 382                                         | 90-WL-77             | 205                |
| 48-WL-77    | 382                                         |                      |                    |
| 49-WL-77    | 382                                         | 91-WL-77             | 205                |
| 50-WL-77    | 382                                         | 92-WL-77             | 205                |
| 51-WL-77    | 382                                         | 93-WL-77             | 205                |
| 51-00 2-77  | 562                                         | 94-WL-77             | 205                |
|             |                                             | 95-WL-77             | 205                |
| White Bluff | Stratigraphic Section                       | 96-WL-77             | 205                |
|             | te XI) Samples                              |                      |                    |
| (172)       | te Aty Samples                              | 97-WL-77             | 205                |
| 52-WL-77    | 391                                         | 98-WL-77             | 205                |
| 53-WL-77    | 391                                         | 99-WL-77             | 205                |
| 54-WL-77    | 391                                         | 100-WL-77            | 205                |
| 55-WL-77    | 391                                         | 101-WL-77            | 205                |
| 56-WL-77    | 391                                         |                      |                    |
|             | 166                                         | 102-WL-77            | 205                |
| 57-WL-77    | 391                                         | 103-WL-77            | 205                |
| 58-WL-77    | 391                                         | 103A-WL-77           | 205                |
| 59-WL-77    | 391                                         | 104-WL-77            | 205                |
| 60-WL-77    | 391                                         | 105-WL-77            | 205                |
| 61-WL-77    | 391                                         |                      |                    |
|             |                                             |                      |                    |
| 62-WL-77    | 391                                         |                      |                    |
| 63-WL-77    | 391                                         |                      |                    |
| 64-WL-77    | 391                                         |                      |                    |
| 65-WL-77    | 391                                         | CAMPLIN              |                    |
| 66-WŁ-77    | 391                                         | SAMPLIN              | NG BY J. G. BOLM   |
| 67-WL-77    | 391                                         |                      |                    |
| 68-WL-77    | 391                                         | Ran                  | dom Sampling       |
| 69-WL-77    | 391                                         |                      | B                  |
| 70-WL-77    | 391                                         | Sample No.           | Map No.            |
|             |                                             | Sample (10.          | map no.            |
| 71-WL-77    | 391                                         | A1-JB-77             | 193                |
| 72-WL-77    | 391                                         | A2-18-77             | 194                |
|             |                                             | A3-JB-77             | 195                |
| Miłky River | Stratigraphic Section                       | A4-JB-77             | 425                |
|             | te II) Samples                              | A5-JB-77             | 424                |
| (           |                                             |                      |                    |
| 72A-WL-77   | 205                                         | A6-J8-77             | 423                |
| 73-WL-77    | 205                                         | A7-J8-77             | 420                |
| 74-WL-77    | 205                                         | A8-18-77             | 432                |
| 75-WL-77    | 205                                         | A9-38-77             | 439                |
| 76-WL-77    | 205                                         | A10-/B-77            | 428                |
|             |                                             |                      |                    |
| 77-WL-77    | 205                                         | 6-JB-77              | 422                |
| 78-WL-77    | 205                                         | 7-JB-77              | 422                |
| 79-WL-77    | 205                                         | 9-JB-77              | 422                |
| 80-WL-77    | 205                                         | 24-JB-77             | 417                |
| 81-WL-77    | 205                                         | 25-JB-77             | 416                |
|             |                                             |                      |                    |

| Sample No.                                                                                                                                                                                    | Map No.                                                                                                                           | Sample No.                                                                                                                                                                    | Map No.                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 29-1B-77                                                                                                                                                                                      | 40                                                                                                                                | 77-SWH-04A                                                                                                                                                                    | 422                                                                                                                      |
| 30-1B-77                                                                                                                                                                                      | 39                                                                                                                                | 77-SWH-05A                                                                                                                                                                    | 422                                                                                                                      |
| 31-JB-77                                                                                                                                                                                      | 38                                                                                                                                | 77-SWH-01                                                                                                                                                                     | 420                                                                                                                      |
| 32-J́B-77                                                                                                                                                                                     | 29                                                                                                                                | 77-SWH-018                                                                                                                                                                    | 420                                                                                                                      |
| 33-1B-77                                                                                                                                                                                      | 26                                                                                                                                | 77-SWH-02                                                                                                                                                                     | 424                                                                                                                      |
| 34-1B-77                                                                                                                                                                                      | 27                                                                                                                                | 77-SWH-03                                                                                                                                                                     | 424                                                                                                                      |
| 35-JB-77                                                                                                                                                                                      | 27                                                                                                                                | 77-SWH-04                                                                                                                                                                     | 424                                                                                                                      |
| 36-JB-77                                                                                                                                                                                      | 28                                                                                                                                |                                                                                                                                                                               |                                                                                                                          |
| 37-1B-77                                                                                                                                                                                      | 28                                                                                                                                | 77-SWH-05                                                                                                                                                                     | 424                                                                                                                      |
| 38-JB-77                                                                                                                                                                                      | 14                                                                                                                                | 77-SWH-06                                                                                                                                                                     | 424                                                                                                                      |
| -                                                                                                                                                                                             |                                                                                                                                   | 77-SWH-07                                                                                                                                                                     | 424                                                                                                                      |
| 39-jB-77                                                                                                                                                                                      | 15                                                                                                                                | 77-SWH-08                                                                                                                                                                     | 424                                                                                                                      |
| 40-JB-77                                                                                                                                                                                      | 16                                                                                                                                | 77-SWH-09                                                                                                                                                                     | 424                                                                                                                      |
| 41-JB-77                                                                                                                                                                                      | 17                                                                                                                                | 77-SWH-11                                                                                                                                                                     | 321                                                                                                                      |
| 42-JB-77                                                                                                                                                                                      | 18                                                                                                                                | 77-SWH-12                                                                                                                                                                     | 321                                                                                                                      |
| 43-JB-77                                                                                                                                                                                      | 19                                                                                                                                | 77-SWH-12A                                                                                                                                                                    | 369                                                                                                                      |
| 44-]B-77                                                                                                                                                                                      | 20                                                                                                                                | 77-SWH-13                                                                                                                                                                     | 369                                                                                                                      |
| 45-1B-77                                                                                                                                                                                      | 30                                                                                                                                | 77-SWH-14                                                                                                                                                                     | 59                                                                                                                       |
| 46-JB-77                                                                                                                                                                                      | 31                                                                                                                                |                                                                                                                                                                               |                                                                                                                          |
| 47-JB-77                                                                                                                                                                                      | 32                                                                                                                                |                                                                                                                                                                               |                                                                                                                          |
| 48-JB-77                                                                                                                                                                                      | 35                                                                                                                                |                                                                                                                                                                               |                                                                                                                          |
| ,-,-                                                                                                                                                                                          |                                                                                                                                   | SAMDI IN                                                                                                                                                                      | G BY J. G. BOLM                                                                                                          |
| 40 20 77                                                                                                                                                                                      | 60                                                                                                                                |                                                                                                                                                                               |                                                                                                                          |
| 49-}B-77                                                                                                                                                                                      | 62                                                                                                                                | SAMPLIN                                                                                                                                                                       |                                                                                                                          |
| 98-JB-77                                                                                                                                                                                      | 411                                                                                                                               |                                                                                                                                                                               |                                                                                                                          |
| 98-}B-77<br>99-}B-77                                                                                                                                                                          | 411<br>408                                                                                                                        | Waterfall Poin                                                                                                                                                                | t Stratigraphic Section                                                                                                  |
| 98-}B-77<br>99-}B-77<br>100-JB-77                                                                                                                                                             | 411<br>408<br>409                                                                                                                 | Waterfall Poin                                                                                                                                                                |                                                                                                                          |
| 98-}B-77<br>99-}B-77                                                                                                                                                                          | 411<br>408<br>409<br>407                                                                                                          | Waterfall Poin<br>(Plate                                                                                                                                                      | t Stratigraphic Section<br>e VI) Samples                                                                                 |
| 98-}B-77<br>99-}B-77<br>100-JB-77                                                                                                                                                             | 411<br>408<br>409                                                                                                                 | Waterfall Poin                                                                                                                                                                | t Stratigraphic Section                                                                                                  |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77                                                                                                                                                | 411<br>408<br>409<br>407                                                                                                          | Waterfall Poin<br>(Plate<br>Sample No.                                                                                                                                        | t Stratigraphic Section<br>e VI) Samples<br>Map No.                                                                      |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>102-JB-77                                                                                                                                   | 411<br>408<br>409<br>407<br>406<br>413<br>404                                                                                     | Waterfall Poin<br>{Plate<br>Sample No.<br>1-GB-77                                                                                                                             | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322                                                               |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>102-JB-77<br>103-JB-77                                                                                                                      | 411<br>408<br>409<br>407<br>406<br>413                                                                                            | Waterfall Poin<br>{Plate<br>Sample No.<br>1-GB-77<br>2-GB-77                                                                                                                  | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322                                                        |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>102-JB-77<br>103-JB-77<br>104-J8-77                                                                                                         | 411<br>408<br>409<br>407<br>406<br>413<br>404                                                                                     | Waterfall Poin<br>{Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77                                                                                            | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322                                          |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>102-JB-77<br>103-J8-77<br>104-J8-77<br>105-J8-77<br>106-JB-77                                                                               | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412                                                                       | Waterfall Poin<br>{Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>3-GB-77                                                                                 | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322                                   |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>102-JB-77<br>103-JB-77<br>104-J8-77<br>105-}B-77<br>106-JB-77<br>150-JB-77                                                                  | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366                                                                | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77                                                                                 | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322                     |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>102-JB-77<br>103-JB-77<br>104-JB-77<br>105-}B-77<br>106-JB-77<br>150-JB-77<br>151-JB-77                                                     | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366                                                         | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77                                                                      | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322              |
| 98-}B-77<br>99-}B-77<br>100-]B-77<br>101-]B-77<br>103-]B-77<br>103-]B-77<br>104-]B-77<br>105-}B-77<br>106-]B-77<br>150-]B-77<br>151-]B-77<br>152-]B-77                                        | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366<br>366<br>368                                           | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77<br>6-GB-77                                                           | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>32 |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>103-JB-77<br>103-JB-77<br>104-JB-77<br>105-}B-77<br>106-JB-77<br>150-JB-77<br>151-JB-77<br>152-JB-77<br>153-JB-77                           | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366<br>366<br>368<br>334                                    | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77<br>6-GB-77<br>7-GB-77                                                | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>32 |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>103-JB-77<br>103-JB-77<br>104-JB-77<br>105-}B-77<br>106-JB-77<br>150-JB-77<br>151-JB-77<br>152-JB-77<br>153-JB-77<br>154-JB-77              | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366<br>366<br>368<br>334<br>335                             | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77<br>6-GB-77<br>7-GB-77<br>8-GB-77                                     | t Stratigraphic Section<br>vI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>32   |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>103-JB-77<br>103-JB-77<br>104-JB-77<br>105-JB-77<br>150-JB-77<br>150-JB-77<br>152-JB-77<br>152-JB-77<br>154-JB-77<br>155-JB-77              | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366<br>366<br>368<br>334<br>334<br>335<br>332               | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77<br>6-GB-77<br>7-GB-77                                                | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>32 |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>103-JB-77<br>103-JB-77<br>104-JB-77<br>104-JB-77<br>106-JB-77<br>150-JB-77<br>151-JB-77<br>152-JB-77<br>154-JB-77<br>154-JB-77<br>156-JB-77 | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366<br>366<br>368<br>334<br>334<br>335<br>332<br>333        | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77<br>6-GB-77<br>8-GB-77<br>8-GB-77<br>9-GB-77                          | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>32 |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>103-JB-77<br>103-JB-77<br>104-JB-77<br>105-JB-77<br>150-JB-77<br>150-JB-77<br>152-JB-77<br>154-JB-77<br>154-JB-77<br>156-JB-77<br>157-JB-77 | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366<br>366<br>368<br>334<br>334<br>335<br>332<br>333<br>293 | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77<br>6-GB-77<br>8-GB-77<br>9-GB-77<br>10-GB-77                         | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>32 |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>103-JB-77<br>103-JB-77<br>104-JB-77<br>104-JB-77<br>106-JB-77<br>150-JB-77<br>151-JB-77<br>152-JB-77<br>154-JB-77<br>154-JB-77<br>156-JB-77 | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366<br>366<br>368<br>334<br>334<br>335<br>332<br>333        | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77<br>6-GB-77<br>8-GB-77<br>8-GB-77<br>9-GB-77                          | t Stratigraphic Section<br>vI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>32   |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>103-JB-77<br>103-JB-77<br>104-JB-77<br>105-JB-77<br>150-JB-77<br>150-JB-77<br>152-JB-77<br>154-JB-77<br>154-JB-77<br>156-JB-77<br>157-JB-77 | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366<br>366<br>368<br>334<br>334<br>335<br>332<br>333<br>293 | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77<br>6-GB-77<br>7-G8-77<br>8-GB-77<br>10-GB-77<br>11-GB-77<br>12-GB-77 | t Stratigraphic Section<br>e VI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>32 |
| 98-}B-77<br>99-}B-77<br>100-JB-77<br>101-JB-77<br>103-JB-77<br>103-JB-77<br>104-JB-77<br>105-JB-77<br>150-JB-77<br>150-JB-77<br>152-JB-77<br>154-JB-77<br>154-JB-77<br>156-JB-77<br>157-JB-77 | 411<br>408<br>409<br>407<br>406<br>413<br>404<br>405<br>412<br>366<br>366<br>366<br>368<br>334<br>334<br>335<br>332<br>333<br>293 | Waterfall Poin<br>(Plate<br>Sample No.<br>1-GB-77<br>2-GB-77<br>3-GB-77<br>3-GB-77<br>4-GB-77<br>5-GB-77<br>6-GB-77<br>8-GB-77<br>9-GB-77<br>10-GB-77<br>11-GB-77             | t Stratigraphic Section<br>vI) Samples<br>Map No.<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>322<br>32   |

\_\_\_\_

322

Balboa Bay Stratigraphic Section (Plate VII) Samples

# SAMPLING BY STEVE HACKETT

## Random Sampling

| Sample No. | Map No. | 16-GB-77<br>17-GB-77 | 369<br>369 |
|------------|---------|----------------------|------------|
| 77-SWH-01A | 422     | 18-GB-77             | 369        |
| 77-SWH-02A | 422     | 19-GB-77             | 369        |
| 77-SWH-03A | 422     | 20-G8-77             | 369        |

15-GB-77

| Sample No.                                | Map No.        | Sample No.               | Map No.    |
|-------------------------------------------|----------------|--------------------------|------------|
| 21-GB-77                                  | 369            | 63-GB-77                 | 297        |
| 22-GB-77                                  | 369            | 64-GB-77                 | 294        |
| 23-GB-77                                  | 369            | 65-GB-77                 | 294        |
| 24-GB-77                                  | 369            | 66-GB-77                 | 294        |
| 25-GB-77                                  | 369            | 67-G8-77                 | 380        |
| 26-GB-77                                  | 369            | 68-GB-77                 |            |
| 27-GB-77                                  | 369            | 69-GB-77                 | 380        |
| 28-GB-77                                  |                | 70-G8-77                 | 380        |
| 20-0D-77                                  | 369            | 71-GB-77                 | 380        |
| Milly Diver Street grow                   | his Costinu    | 72-GB-77                 | 380        |
| Milky River Stratigrap<br>(Plate II) Samp |                | 12.00-11                 | 380        |
| (Flate II) Samp                           | nes            | 73-GB-77                 | 257        |
| 29-GB-77                                  | 205            | 74-GB-77                 | 258        |
| 30-GB-77                                  | 205            | 75-GB-77                 | 340        |
| 31-GB-77                                  | 205            | 76-GB-77                 | 340        |
| 32-GB-77                                  | 205            | 77-GB-77                 | 340        |
| 33-GB-77                                  | 205            | 78-GB-77                 | 340        |
| 34-GB-77                                  | 205            | 79-GB-77                 | 340        |
| 35-GB-77                                  | 205            | 80-GB-77                 | 340        |
| 36-GB-77                                  | 205            | 81-GB-77                 | 340        |
| 37-GB-77                                  | 205            | 82-GB-77                 | 340        |
| 38-GB-77                                  | 205            | 83-GB-77                 | 340        |
| 39-GB-77                                  | 205            | 84-GB-77                 | 340        |
| 40-GB-77                                  | 205            | 85-GB-77                 | 340        |
| 41-GB-77                                  | 205            | 86-GB-77                 | 340        |
| 42-GB-77                                  | 205            |                          |            |
|                                           | 205            | 87-GB-77<br>88-GB-77     | 340<br>340 |
| East Morzhovoi Bay Stratig                | raphic Section | 89-GB-77                 | 340        |
| (Plate XII) Sam                           |                | 90-GB-77                 | 340        |
|                                           |                |                          | 510        |
| 43-G8-77                                  | 421            |                          |            |
| 44-GB-77                                  | 421            |                          |            |
| 45-GB-77                                  | 421            |                          |            |
| 46-GB-77                                  | 421            |                          |            |
| 47-GB-77                                  | 421            |                          |            |
| 48-GB-77                                  | 421            |                          |            |
| 49-GB-77                                  | 421            |                          |            |
| 50-GB-77                                  | 421            | SAMPLING BY IRVEN F.     | PAIMER IR  |
| 51-GB-77                                  | 421            |                          |            |
| 52-GB-77                                  | 421            |                          | -          |
| 53-GB-77                                  | 421            | West Morzhovoi Stratigra |            |
| 54-GB-77                                  | 421            | (Plate XIII) Sam         | ples       |
| 55-GB-77                                  | 421            |                          |            |
| 56-GB-77                                  | 421            | Sample No.               | Map No.    |
| 57-GB-77                                  | 421            | 1-IP-77                  | 431        |
|                                           |                | 2-IP-77                  | 431        |
| Random Sampl                              | ing            | 3-IP-77                  | 431        |
| 50 CD 33                                  | 207            | 4-IP-77                  | 431        |
| 58-GB-77                                  | 297            | 5-18-77                  | 431        |
| 59-GB-77                                  | 297            |                          |            |
| 60-GB-77                                  | 297<br>297     | 6-IP-77                  | 431        |
| 61-GB-77<br>62-GB-77                      | 297            | 7-1P-77<br>8-1P-77       | 431<br>431 |
|                                           |                |                          |            |

| Sample No.                                                                                   | Map No.                                              | Sample No.                                                                                   | Map No.                                                  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Lefthand Bay-Balboa Bay Stratigraphic Section                                                |                                                      | 54-IP-77                                                                                     | 398                                                      |
| (Plate VII) San                                                                              |                                                      | 55-IP-77                                                                                     | 401                                                      |
| 0.10.77                                                                                      | 260                                                  | 56-IP-77                                                                                     | 399                                                      |
| 9-IP-77                                                                                      | 369                                                  | 57-IP-77                                                                                     | 397                                                      |
| 10-IP-77                                                                                     | 369                                                  | 58-IP-77                                                                                     | 396                                                      |
| 11-1P-77<br>12-1P-77                                                                         | 369<br>369                                           | 59-IP-77                                                                                     | 395                                                      |
| 13-IP-77                                                                                     | 369                                                  | 60-IP-77                                                                                     | 394                                                      |
|                                                                                              |                                                      | 61-1P-77                                                                                     | 390                                                      |
| 14-IP-77                                                                                     | 369                                                  | 62-IP-77                                                                                     | 2                                                        |
| 15-IP-77                                                                                     | 369<br>369                                           | 63-1P-77                                                                                     | 2                                                        |
| 16-IP-77<br>17-IP-77                                                                         | 369                                                  | 64-IP-77                                                                                     | 2                                                        |
| 18-IP-77                                                                                     | 369                                                  | 65-IP-77                                                                                     | 1                                                        |
|                                                                                              |                                                      | 66-I <b>P-</b> 77                                                                            | 1                                                        |
| 19-1P-77                                                                                     | 369                                                  | 67-IP-77                                                                                     | 1                                                        |
| 20-IP-77                                                                                     | 369<br>369                                           |                                                                                              |                                                          |
| 21-IP-77                                                                                     | 369                                                  |                                                                                              |                                                          |
| 22-{P-77<br>23- P-77                                                                         | 369                                                  |                                                                                              |                                                          |
|                                                                                              |                                                      |                                                                                              |                                                          |
| 24-IP-77                                                                                     | 369                                                  |                                                                                              |                                                          |
| 25-IP-77                                                                                     | 369                                                  | SAMPLING I                                                                                   | BY W. M, LYLE                                            |
| Heren I and II Stratigra                                                                     | phic Sections                                        |                                                                                              |                                                          |
| (Plates IV and V)                                                                            |                                                      | Mart Manatana i Da                                                                           | · C · · · · · · · · · · · · · · · · · ·                  |
| ``````````````````````````````````````                                                       |                                                      |                                                                                              | / Stratigraphic Section<br>11) Samples                   |
| 26-IP-77                                                                                     | 291                                                  | (Flate Al                                                                                    | n) samples                                               |
| 27-18-77                                                                                     | 291                                                  | Sample No.                                                                                   | Map No.                                                  |
| 28-1P-77                                                                                     | 291                                                  | Sample No.                                                                                   | map sto.                                                 |
| 29-IP-77<br>30-IP-77                                                                         | 291<br>291                                           | 1-WL-74                                                                                      | 431                                                      |
|                                                                                              |                                                      | 2-WL-74                                                                                      | 431                                                      |
| 31-IP-77                                                                                     | 291                                                  | 3-WL-74                                                                                      | 431                                                      |
| 32-18-77                                                                                     | 291                                                  | 4-WL-74                                                                                      | 431                                                      |
| 33-IP-77                                                                                     | 291                                                  | 5-WL-74                                                                                      | 431                                                      |
| 34-IP-77                                                                                     | 291<br>291                                           | 6-WL-74                                                                                      | 431                                                      |
| 35-IP-77                                                                                     |                                                      | 7-WL-74                                                                                      | 431                                                      |
| 36-IP-77                                                                                     | 291                                                  | 8-WL-74                                                                                      | 431                                                      |
| 37-IP-77                                                                                     | 291                                                  | 9-WL-74                                                                                      | 431                                                      |
| 38-IP-77<br>39-IP-77                                                                         | 291<br>291                                           | 10-WL-74                                                                                     | 431                                                      |
| 40-IP-77                                                                                     | 291                                                  | 11-WL-74                                                                                     | 431                                                      |
|                                                                                              |                                                      | 12-WL-74                                                                                     | 431                                                      |
| 41-IP-77                                                                                     | 291                                                  | 13-WL-74                                                                                     | 431                                                      |
| 42-IP-77                                                                                     | 291                                                  | 14-WL-74                                                                                     | 431                                                      |
|                                                                                              |                                                      |                                                                                              |                                                          |
| 43-1P-77                                                                                     | 291                                                  | 15-WŁ-74                                                                                     | 431                                                      |
| <b>44-1P-</b> 77                                                                             | 291                                                  | 16-WL-74                                                                                     | 431<br>188A                                              |
| 44-1P-77<br>45-1P-77                                                                         | 291<br>291                                           | 16-WL-74<br>17-WL-74                                                                         | 188A<br>374                                              |
| 44-1P-77<br>45-1P-77<br>46-1P-77                                                             | 291<br>291<br>291                                    | 16-WL-74<br>17-WL-74<br>18-WL-74                                                             | 188A<br>374<br>355A                                      |
| 44-1P-77<br>45-1P-77<br>46-1P-77<br>47-1P-77                                                 | 291<br>291<br>291<br>291<br>291                      | 16-WL-74<br>17-WL-74<br>18-WL-74<br>19-WL-74                                                 | 188A<br>374<br>355A<br>347                               |
| 44-1P-77<br>45-1P-77<br>46-1P-77<br>47-1P-77<br>48-1P-77                                     | 291<br>291<br>291<br>291<br>291<br>291               | 16-WL-74<br>17-WL-74<br>18-WL-74<br>19-WL-74<br>20-WL-74                                     | 188A<br>374<br>355A<br>347<br>385                        |
| 44-1P-77<br>45-1P-77<br>46-1P-77<br>47-1P-77<br>48-1P-77<br>49-1P-77                         | 291<br>291<br>291<br>291<br>291<br>291<br>291        | 16-WL-74<br>17-WL-74<br>18-WL-74<br>19-WL-74<br>20-WL-74<br>21-WL-74                         | 188A<br>374<br>355A<br>347<br>385<br>365                 |
| 44-IP-77<br>45-IP-77<br>46-IP-77<br>47-IP-77<br>48-IP-77<br>49-IP-77<br>50-IP-77             | 291<br>291<br>291<br>291<br>291<br>291<br>291        | 16-WL-74<br>17-WL-74<br>18-WL-74<br>19-WL-74<br>20-WL-74<br>21-WL-74<br>22-WL-74             | 188A<br>374<br>355A<br>347<br>385<br>365<br>335A         |
| 44-IP-77<br>45-IP-77<br>46-IP-77<br>47-IP-77<br>48-IP-77<br>49-IP-77<br>50-IP-77<br>51-{P-77 | 291<br>291<br>291<br>291<br>291<br>291<br>291<br>291 | 16-WL-74<br>17-WL-74<br>18-WL-74<br>19-WL-74<br>20-WL-74<br>21-WL-74<br>22-WL-74<br>23-WL-74 | 188A<br>374<br>355A<br>347<br>385<br>365<br>335A<br>335A |
| 44-IP-77<br>45-IP-77<br>46-IP-77<br>47-IP-77<br>48-IP-77<br>49-IP-77<br>50-IP-77             | 291<br>291<br>291<br>291<br>291<br>291<br>291        | 16-WL-74<br>17-WL-74<br>18-WL-74<br>19-WL-74<br>20-WL-74<br>21-WL-74<br>22-WL-74             | 188A<br>374<br>355A<br>347<br>385<br>365<br>335A         |

| Sample No. | Map No. | Sample No.        | Map No. |
|------------|---------|-------------------|---------|
| 26-WL-74   | 295     | 63-WL-74          | 272     |
| 27-WL-74   | 295     | 64-WL-74          | 279     |
| 28-WL-74   | 298     | 65-WL-74          | 224     |
| 29-WL-74   | 299     | 66-WL-74          | 271     |
| 30-WL-74   | 345     | 67-WL-74          | 280     |
| 31-WL-74   | 349     | 68-WL-74          | 280     |
| 32-WL-74   | 349     | 69-WL-74          | 270     |
| 33-WL-74   | 355     | 70-WL-74          | 272     |
| 34-WL-74   | 350     | 71-WL-74          | 276     |
| 35-WL-74   | 350     | 72-WL-74          | 278     |
| 36-WL-74   | 350     | 73-WL-74          | 278     |
| 37-WL-74   | 176     | 74-WL-74          | 277     |
| 38-WL-74   | 196     | 7 <b>5-</b> WL-74 | 273     |
| 39-WL-74   | 197     | 76-WL-74          | 275     |
| 40-WL-74   | 197     | 77-WL-74          | 275     |
| 41-WL-74   | 198     | 78-WL-74          | 281     |
| 42-WL-74   | 155     | 79-WL-74          | 228     |
| 43-WL-74   | 155     | 80-WL-74          | 229     |
| 44-WL-74   | 156     | 81-WL-74          | 229     |
| 45-WL-74   | 364     | 82-WL-74          | 233     |
|            |         | 83-WL-74          | 232     |
|            |         | 84-WL-74          | 231     |

# Beaver Bay East Stratigraphic Section (Plate IX) Samples

| (Plate VII) Samples |                 | (Trate TAY Samples    |            |
|---------------------|-----------------|-----------------------|------------|
| (ria                | te VII) Samples | 85-WL-74              | 378        |
| 46-WL-74            | 369             | 86-WL-74              | 378        |
| 47-WL-74            | 369             | 87-WL-74              | 378        |
| 48-WL-74            | 369             | 88-WL-74              | 378        |
| 49-WL-74            | 369             | 89-WL-74              | 378        |
|                     |                 | 90-WL-74              | 378        |
|                     |                 |                       |            |
| Random Sampling     |                 | 91A-WL-74<br>92-WL-74 | 378<br>378 |
|                     |                 | 92A·WL-74             | 378        |
| Sample No.          | Map No.         | 93-WL-74              | 378        |
| 60 W/L 74           | 205             |                       |            |
| 50-WL-74            | 296             | 94-WL-74              | 378        |
| 51-WL-74            | 160             | 95-WL-74              | 378        |
| 52-WL-74            | 159             | 96-WL-74              | 378        |
| 53-WL-74            | 191             | 97-WL-74              | 378        |
| 54-WL-74            | 192             | 98-WL-74              | 378        |
| 55-WL-74            | 189             | 99-WL-74              | 378        |
| 56-WL-74            | 438             | 100-WL-74             | 378        |
| 57-WL-74            | 438             | 101-WL-74             | 378        |
| 57A-WL-74           | 443             | 102-WL-74             | 378        |
| 58-WL-74            | 124             | 103-WL-74             | 378        |
| 59-WL-74            | 117             | 104-WL-74             | 378        |
| 60-WL-74            | 111             | 105-WL-74             | 378        |
| 60A-WL-74           | 112             | 106-WL-74             | 378        |
| 61-WL-74            | 221             | 107-WL-74             | 378        |
| 62-WL-74            | 269             | 108-WL-74             | 378        |
|                     |                 |                       |            |

Balboa Bay Stratigraphic Section

| Sample No.             | Map No.    | Sample No.               | Map No.    |
|------------------------|------------|--------------------------|------------|
| 109-WL-74              | 378        | 156-WL-74                | 267        |
| 110-WL-74              | 378        | 157-WL-74                | 259        |
| 111-WL-74              | 378        | 158-WL-74                | 256        |
| 112-WL-74              | 378        | 159-WL-74                | 256        |
| 113-WL-74              | 378        | 160-WL-74                | 255        |
|                        |            | 161-WL-74                | 255        |
| Devidence Constant     | Par        | 162-WL-74                | 255        |
| Random Samp            | oling      |                          |            |
| 114-WL-74              | 356        | 163-WL-74                | 251        |
| 115-WL-74              | 308        | 164-WL-74                | 300        |
| 116-WL-74              | 319        | 165-WL-74                | 300        |
| 117-WL-74              | 371        | 166-WL-74                | 302        |
| 118-WL-74              | 371        | 167-WL-74                | 304        |
| 119-WŁ-74              | 354        | 168-WL-74                | 367        |
| 120-WE-74              | 351        |                          |            |
| 121-WL-74              | 351        |                          |            |
| 122-WL-74              | 352        | Beaver Bay East Stratigr |            |
| 123-WL-74              | 353        | (Plate IX) Sam           | ples       |
|                        |            | 169-WL-74                | 378        |
| 124·WL-74              | 353        | 170-WL-74                | 378        |
| 125-WL-74<br>126-WL-74 | 353        | 171-WL-74                | 378        |
| 128-wL-74<br>127-WL-74 | 344<br>338 | 172-WL-74                | 378        |
| 128-WL-74              | 339        | 173-WL-74                | 378        |
|                        |            | 174-W <b>L-</b> 74       |            |
| 129-WL-74              | 339        | 174-WL-74<br>175-WL-74   | 378        |
| 130-WL-74              | 341        | 175-WE-74<br>176-WE-74   | 378<br>378 |
| 131-WL-74              | 341        | 177-WL-74                | 378        |
| 132-WL-74              | 337        | 178-WL-74                | 378        |
| 133-WL-74              | 336        |                          |            |
| 133B-WL-74             | 336        | 179-WL-74                | 378        |
| 134-WL-74              | 343        | 180-WL-74                | 378        |
| 135-WL-74              | 346        | 181-WL-74                | 378        |
| 136-WL-74              | 348        | 182-WL-74                | 378        |
| 137-WL-74              | 348        | 183-WL-74                | 378        |
| 138-WL-74              | 310        | 184-WL-74                | 378        |
| 139-WL-74              | 312        | 185-WL-74                | 378        |
| 140-WŁ-74              | 312        | 186-WL-74                | 378        |
| 141-WL-74              | 309        | 187-WL-74                | 378        |
| 142-WL-74              | 266        | 188-WL-74                | 378        |
| 143-WL-74              | 260        | 189-WL-74                | 378        |
| 144-WL-74              | 110        |                          |            |
| 145-WL-74              | 318        | Random Samp              | ling       |
| 146-WL-74              | 316        | 100 101 74               |            |
| 147-WL-74              | 316        | 190-WL-74                | 378        |
|                        |            | 197-WL-74                | 381        |
| 148-WL-74              | 315        | 192-WL-74<br>193-WL-74   | 342        |
| 149-WL-74<br>150-WL-74 | 314        | 194-WL-74                | 342        |
| 151-WL-74              | 314<br>313 |                          | 311        |
| 152-WL-74              | 313        | 195-WL-74                | 311        |
|                        |            | 197-WL-74                | 222        |
| 153-WL-74              | 267        | 198-WL-74                | 223        |
| 154-WL-74              | 267        | 199-WL-74                | 204        |
| 155-WL-74              | 267        | 200-WL-74                | 227        |

| Sample No.                                                    | Map No.                                | Sample No.                                                    | Map No.                          |
|---------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|----------------------------------|
| 201-WL-74                                                     | 226                                    | 250-WL-74                                                     | 99                               |
| 202-WL-74                                                     | 282                                    | 251-WŁ-74                                                     | 100                              |
| 203-WL-74                                                     | 282                                    | 252-WL-74                                                     | 100                              |
| 204-WL-74                                                     | 283                                    | 253-WL-74                                                     | 100                              |
| 205-WL-74                                                     | 283                                    | 254-WL-74                                                     | 100                              |
| 206-WL-74<br>207-WL-74<br>208-WL-74<br>209-WL-74<br>210-WL-74 | 283<br>283<br>283<br>283<br>283<br>283 | 255-WL-74<br>256-WL-74<br>257-WL-74<br>258-WL-74<br>259-WL-74 | 101<br>101<br>102<br>102<br>73   |
| 211-WL-74                                                     | 320                                    | 260-WL-74                                                     | 73                               |
| 212-WL-74                                                     | 266                                    | 261-WL-74                                                     | 73                               |
| 213-WL-74                                                     | 207                                    | 262-WL-74                                                     | 73                               |
| 214-WL-74                                                     | 207                                    | 263-WL-74                                                     | 56                               |
| 215-WL-74                                                     | 307                                    | 264-WL-74                                                     | 56                               |
| 216-WL-74                                                     | 206                                    | 265-WL-74                                                     | 56                               |
| 217-WL-74                                                     | 206                                    | 266-WL-74                                                     | 56                               |
| 218-WL-74                                                     | 306                                    | 267-WL-74                                                     | 56                               |
| 219-WL-74                                                     | 305                                    | 268-WL-74                                                     | 45                               |
| 220-WL-74                                                     | 258                                    | 269-WL-74                                                     | 57                               |
| 221-WL-74                                                     | 359                                    | 270-WL-74                                                     | 57                               |
| 222-WL-74                                                     | 360                                    | 271-WL-74                                                     | 57                               |
| 223-WL-74                                                     | 360                                    | 272-WL-74                                                     | 57                               |
| 224-WL-74                                                     | 357                                    | 273-WL-74                                                     | 53                               |
| 225-WL-74                                                     | 303                                    | 274-WL-74                                                     | 54                               |
| 226-WL-74                                                     | 303                                    | 275-WL-74                                                     | 52                               |
| 227-WL74                                                      | 303                                    | 276-WL-74                                                     | 66                               |
| 228-WL-74                                                     | 361                                    | 277-WL-74                                                     | 67                               |
| 229-WL-74                                                     | 373                                    | 278-WL-74                                                     | 68                               |
| 230-WL-74                                                     | 373                                    | 279-WL-74                                                     | 85                               |
| 231-WL-74<br>232-WL-74<br>233-WL-74<br>234-WL-74<br>235-WL-74 | 384<br>384<br>384<br>384<br>384<br>384 | 280-WL-74<br>281-WL-74<br>282-WL-74<br>283-WL-74<br>284-WL-74 | 87<br>86<br>86<br>41<br>41       |
| 236-WL-74                                                     | 383                                    | 285-WL-74                                                     | 69                               |
| 237-WL-74                                                     | 254                                    | 286-WL-74                                                     | 72                               |
| 238-WL-74                                                     | 301                                    | 287-WL-74                                                     | 71                               |
| 239-WL-74                                                     | 262                                    | 288-WL-74                                                     | 71                               |
| 240-WL-74                                                     | 262                                    | 289-WL-74                                                     | 71                               |
| 241-WL-74                                                     | 262                                    | 290-WL-74                                                     | 71                               |
| 242-WL-74                                                     | 262                                    | 291-WL-74                                                     | 71                               |
| 243-WL-74                                                     | 262                                    | 292-WL-74                                                     | 70                               |
| 244-WL-74                                                     | 263                                    | 293-WL-74                                                     | 70                               |
| 245-WL-74                                                     | 263                                    | 294-WL-74                                                     | 70                               |
| 246-WL-74<br>247-WL-74<br>248-WL-74<br>248-WL-74<br>249-WL-74 | 265<br>265<br>265<br>95<br>99          | 295-WL-74<br>296-WL-74<br>297-WL-74<br>298-WL-74<br>299-WL-74 | 70<br>70<br>70<br>70<br>70<br>70 |

| Sample No.                                                                | Map No.                              | Sample No.                                                    | Map No.                                      |
|---------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------|----------------------------------------------|
| 300-WL-74<br>301-WL-74<br>302-WL-74<br>303-WL-74<br>304-WL-74             | 70<br>88<br>88<br>88<br>88<br>89     | 338-WL-74<br>339-WL-74<br>340-WL-74<br>341-WL-74<br>342-WL-74 | 102L<br>102L<br>102L<br>102L<br>102L         |
| 305-WL-74<br>306-WL-74<br>307-WL-74<br>308-WL-74<br>309-WL-74             | 89<br>89<br>90<br>90<br>90           | 343-WL-74<br>344-WL-74<br>345-WL-74<br>350-WL-74<br>351-WL-74 | 102L<br>102L<br>None<br>102!<br>102!         |
| 310-WL-74<br>311-WL-74<br>312-WL-74<br>313-WL-74<br>314-WL-74             | 90<br>91<br>91<br>91<br>75           | 352-WL-74<br>353-WL-74<br>354-WL-74<br>355-WL-74<br>356-WL-74 | 1028<br>1028<br>1021<br>1021<br>1021<br>1023 |
| 314.1-WL-74<br>314.2-WL-74<br>314.3-WL-74<br>314.4-WL-74<br>314.6-WL-74   | 75<br>75<br>75<br>75<br>75<br>75     | 357-WL-74<br>358-WL-74<br>359-WL-74<br>360-WL-74<br>361-WL-74 | 102J<br>102D<br>102D<br>102E<br>702F         |
| 314.7-WL-74<br>314.8-WL-74<br>314.9-WL-74<br>314.10-WL-74<br>314.11-WL-74 | 76<br>76<br>76<br>76<br>76<br>76     | 362-WL-74<br>363-WL-74<br>364-WL-74<br>365-WL-74<br>366-WL-74 | 102M<br>102M<br>102M<br>102M<br>102M         |
| 314.12-WL-74<br>314.13-WL-74<br>315-WL-74<br>316-WL-74<br>317-WL-74       | 74<br>74<br>50<br>55<br>72 or 43     | TABLE IC-GRAI<br>TO MAP NUMBER                                | VITY STATION NUMBERS                         |
| 318-WL-74<br>319-WL-74<br>320-WL-74<br>321-WL-74<br>322-WL-74             | 44<br>102A<br>102B<br>102C<br>102C   |                                                               | VITY STATION NUMBERS<br>IAP NUMBERS          |
| 323-WL-74<br>324-WL-74                                                    | 102C<br>102C                         | FALSE                                                         | PASS TRAVERSE                                |
| 325-WL-74<br>326-WL-74<br>327-WL-74                                       | 102C<br>102C<br>102K                 | Gravity<br>Station No.                                        | Map No.                                      |
| 328-WL-74<br>329-WL-74<br>330-WL-74<br>331-WL-74<br>332-WL-74             | 102K<br>102K<br>102G<br>102H<br>102H | FP01<br>FP02<br>FP03<br>FP04<br>FP05                          | 175<br>193<br>194<br>195<br>425              |
| 333-WL-74<br>334-WL-74<br>335-WL-74<br>336-W೬-74<br>337-WL-74             | 102L<br>102L<br>102L<br>102L<br>102L | FP06<br>FP07<br>FP08<br>FP09<br>FP10                          | 424<br>423<br>421 A<br>420<br>419            |

34

| Gravity<br>Station No. | Map No.     | Gravity<br>Station No. | Map No.        |
|------------------------|-------------|------------------------|----------------|
| FP11                   | 418         | UN03                   | 414            |
| FP12                   | 433         | UN04                   | 426            |
| FP13                   | 432         | UN05                   | 427            |
| FP14                   | 440         |                        |                |
| FP15                   | 439         | UN06                   | 434            |
|                        |             | UN07                   | 437            |
| FP16                   | 436         | UN08                   | 44 (           |
| FP17                   | 435         | UN09                   | 445            |
| FP18                   | 429         | UN10                   | 415            |
| FP19                   | 428         | UN11                   | 187            |
| FP20                   | 430         | UN12                   | 416            |
|                        |             | _ UN13                 | 179            |
|                        |             | UN14                   | 178            |
|                        | EK TRAVERSE | - UN15                 | 178            |
|                        |             | 0113                   | 177            |
| Gravity                |             | PAVLON                 | / BAY TRAVERSE |
| Station No.            | Map No.     |                        |                |
| IZ01                   | 174         | Constitut              |                |
| IZ02                   | 173         | Gravity                |                |
| 1Z03                   | 172         | Station No.            | Map No.        |
| 1204                   | 169         | PB01                   | 218            |
| IZ05                   | 163         | PB02                   | 216            |
|                        |             | PB02<br>PB03           | 253            |
| IZ06                   | 161         | PB04                   | 250            |
| IZ07                   | 162         |                        | 214            |
| 1208                   | 164         | PB05                   |                |
| 1Z09                   | 165         | PBOG                   | 246            |
| IZ10                   | 166         | PB07                   | 247            |
| IZ11                   | 168         | PB08                   | 249            |
| 1212                   | 151         | PB09                   | 248            |
| IZ13                   | 149         | PB10                   | 200            |
| IZ14                   | 145         | PB11                   | 241            |
| IZ15                   | 146         |                        | 289            |
|                        |             | P812                   |                |
| IZ16                   | 145         | PB13                   | 365            |
| IZ17                   | 148         | PB14                   | 328            |
| IZ18                   | 150         | PB15                   | 326            |
| IZ19                   | 143         | PB16                   | 363            |
| 1Z20                   | 142         | PB17                   | 376            |
| 1Z21                   | 141         | PB18                   | 386            |
| IZ22                   | 140         | PB19                   | 387            |
| 1Z23                   | 139         | P820                   | 390A           |
| IZ24                   | 138         | PB21                   | 390            |
| 1224                   | 138         | PB22                   | 389            |
|                        |             |                        |                |
|                        |             | РВ23<br>- РВ24         | 393<br>392     |
| UNIN                   | AK TRAVERSE | PB25                   | 400            |
|                        |             |                        |                |
| C                      |             | PB26                   | 375            |
| Gravity                |             | PB27                   | 362            |
| Station No.            | Map No.     | PB28                   | 323            |
| UN01                   | 180         | PB29                   | 285            |
| UN02                   |             | PB30                   | 235            |
|                        | 181         | PB31                   | 207            |

| MUDDY RIVER TRAVERSE   |         | BERING SEA TRAVERSE    |         |
|------------------------|---------|------------------------|---------|
| Gravity<br>Station No. | Map No. | Gravity<br>Station No. | Map No. |
| (R01                   | 203A    | B\$01                  | 215     |
| 1R02                   | 92      | B\$02                  | 203     |
| R03                    | 58      | B\$03                  | 202     |
| R04                    | 78      | BS04                   | 201     |
| R05                    | 59      | BS05                   | 199     |
| R06                    | 46      | BS06                   | 206     |
| 1R07                   | 47      | 8\$07                  | 236     |
| 1R08                   | 48      | BS08                   | 284     |
| 1R09                   | 49      | BS09                   | 103     |
| IR10                   | 61      | BS10                   | 105     |
| /R11                   | 63      | 8511                   | 106     |
| AR12                   | 64      | BS12                   | 107     |
| IR13                   | 82      | 8\$13                  | 108     |
| 1R14                   | 83      | BS14                   | 109     |
| 1R15                   | 84      | BS15                   | 114     |
| AR16                   | 97      | BS16                   | 116     |
|                        |         | BS17                   | 120     |
|                        |         | BS18                   | 153     |
|                        |         | BS19                   | 154     |
|                        |         | BS20                   | 125     |
|                        |         | BS21                   | 118     |
|                        |         | BS22                   | 126     |
|                        |         | 0000                   | 127     |

BS23

**B**S24

113 286

|  | SAPSUK | RIVER | TRAVERSE |
|--|--------|-------|----------|
|--|--------|-------|----------|

\_\_\_\_\_

| Gravity              |                   | PORT HEIDEN TRAVERSE         |                  |
|----------------------|-------------------|------------------------------|------------------|
| Station No.          | Map No.           |                              |                  |
| SR01                 | 243               | Gravity                      | Map No.          |
| SR02                 | 211               | Station No.                  |                  |
| SR03                 | 242               | ₽Н01                         | 33               |
| SR04                 | 244               | ₽Н02                         | 34               |
| SR05                 | 331               | ₽Н03                         | 21               |
| SR06                 | 330               | РН04                         | 22               |
| SR07                 | 290               | РН05                         | 23               |
| SR08                 | 329               | РНО6                         | 9                |
| SR09                 | 288               | РНО7                         | 10               |
| SR10                 | 240               | РНО8                         | 11               |
| SR11<br>SR12<br>SR13 | 239<br>209<br>238 | РН09<br>РН10<br>РН11<br>РН12 | 7<br>6<br>5<br>4 |
| SR14                 | 287               | የዘ13                         | 8                |
| SR15                 | 325               | PH14                         | 36               |
| SR16                 | 324               | PH16                         | 96               |

| TABLE 1D-TRIANGLE NUMBERS TO<br>MAP NUMBERS |                | Triangle No.<br>45 | Map No.<br>158 |
|---------------------------------------------|----------------|--------------------|----------------|
|                                             |                | - 46               | 136            |
| [9/4 I KL                                   | ANGLE SECTIONS | 45                 | 135            |
|                                             |                | 46                 | 136            |
| Triangle No.                                | Map No.        | 47                 | 135            |
|                                             |                | 48                 | 438            |
| 1                                           | 170            | 49                 | 443            |
| 2<br>3                                      | 431            | 50                 | 444            |
| 3<br>4                                      | 213<br>374     | 51                 | 442            |
| 5                                           | 98             | 52                 | 144            |
|                                             |                | 53                 | 137            |
| 6                                           | 355A           | 54                 | 134            |
| 7                                           | 347            | 55                 | 130            |
| 8<br>9                                      | 385            | 56                 | 129            |
| 10                                          | 365<br>335A    | 57                 | 128            |
|                                             |                | 58                 | 122            |
| 11                                          | 295            | 59                 | 121            |
| 12                                          | 298            | 60                 | 119            |
| 13<br>14                                    | 299<br>431     | 61                 | 115            |
| 15                                          | 349            | 62                 | 123            |
|                                             |                | 63                 | 132            |
| 16                                          | 349            | 64                 | 152A           |
| 17                                          | 355            | 65                 | 152            |
| 18                                          | 350            | 66                 | 131            |
| 19                                          | 133            | 67                 | 124            |
| 20                                          | 176            | 68                 | 117            |
| 21                                          | 196            | 69                 | 111            |
| 22                                          | 197            | 70                 | 112            |
| 23                                          | 198            | 71                 | 104            |
| 24                                          | 155            | 72                 | 237            |
| 25                                          | 156            | 72                 |                |
| 26                                          | 364            | 73<br>74           | 219            |
| 27                                          | 269            | 74<br>75           | 217<br>220     |
| 28                                          | None           | 76                 | 220            |
| 29                                          | 296            | 77                 | 268            |
| 30                                          | 296            |                    |                |
| 31                                          | ?              | 78                 | 269            |
| 32                                          | 160            | 79                 | 272            |
| 33                                          | 159            | 80<br>81           | 279            |
| 34                                          | 191            | 82                 | 224<br>271     |
| 35                                          | 192            |                    |                |
| 36                                          | 190            | 83                 | 280            |
| 37                                          | 189            | 84                 | 270            |
| 37                                          | 189            | 85                 | 272            |
| 38                                          | 188            | 86                 | 276            |
| 39                                          | 186            | 87                 | 278            |
| 40                                          | 182            | 88                 | 277            |
| 41                                          | 183            | 89                 | 273            |
| 42                                          | 184            | 90                 | 275            |
| 43                                          | 185            | 91                 | 274            |
| 44                                          | 157            | 92                 | 281            |
|                                             |                |                    |                |

| Triangle No. | Map No. | Triangle No. | Map No. |
|--------------|---------|--------------|---------|
| 93           | 228     | 143          | 388     |
| 94           | 229     | 144          | 381     |
| 95           | 233     | 145          | 342     |
| 96           | 232     | 146          | 311     |
| 97           | 231     | 147          | 93      |
| 98           | 278     | 148          | 222     |
| 99           | 379     | 149          | 223     |
| 700          | 370     | 150          | 204     |
| 101          | 356     | 151          | 225     |
| 102          | 208     | 152          | 227     |
| 103          | 317     | 153          | 226     |
| 104          | 319     | 154          | 282     |
| 105          | 371     | 155          | 283     |
| 106          | 354     | 156          | 320     |
| 107          | 351     | 157          | 266     |
| 108          | 352     | 158          | 307     |
| 109          | 353     | 159          | 306     |
| 110          | 344     | 160          | 264     |
| 111          | 338     | 161          | 305     |
| 112          | 339     | 162          | 358     |
| 113          | 341     | 163          | 359     |
| 114          | 337     | 164          | 360     |
| 115          | 336     | 165          | 357     |
| 116          | 343     | 166          | 303     |
| 117          | 346     | 167          | 361     |
| 118          | 348     | 168          | 372     |
| 119          | 310     | 169          | 373     |
| 120          | 312     | 170          | 384     |
| 121          | 309     | 171          | 384     |
| 122          | 266     | 172          | 383     |
| 123          | 260     | 173          | 254     |
| 124          | 110     | 174          | 301     |
| 125          | 210     | 175          | 262     |
| 126          | 237A    | 176          | 263     |
| 127          | 245     | 177          | 265     |
| 128          | 318     | 178          | 59      |
| 129          | 316     | 179          | 79      |
| 130          | 315     | 180          | 80      |
| 131          | 314     | 181          | 81      |
| 132          | 313     | 182          | 94      |
| 133          | 267     | 183          | 77      |
| 134          | 259     | 184          | 95      |
| 135          | 256     | 185          | 99      |
| 136          | 255     | 186          | 100     |
| 137          | 252     | 187          | 101     |
| 138          | 251     | 188          | 102     |
| 139          | 300     | 189          | 37      |
| 140          | 302     | 190          | 73      |
| 141          | 304     | 191          | 56      |
| 142          | 367     | 192          | 45      |

| Triangle No.                    | Map No.                              | Triangle No.      | Map No.              |
|---------------------------------|--------------------------------------|-------------------|----------------------|
| 193<br>194<br>195<br>196<br>197 | 57<br>53<br>54<br>52<br>41           | 244<br>245<br>246 | 102E<br>1021<br>102M |
| 198<br>199<br>200<br>201<br>202 | 66<br>67<br>68<br>85<br>87           |                   |                      |
| 203<br>204<br>205<br>206<br>207 | 86<br>72<br>42<br>69<br>43           |                   |                      |
| 208<br>209<br>210<br>211<br>212 | 71<br>70<br>25<br>24<br>13           |                   |                      |
| 213<br>214<br>215<br>216<br>217 | ) 2<br>88<br>89<br>90<br>91          |                   |                      |
| 218<br>219<br>220<br>221<br>222 | 75<br>75<br>76<br>76<br>74           |                   |                      |
| 223<br>224<br>225<br>226<br>227 | 50<br>51<br>55<br>72 or 43<br>44     |                   |                      |
| 228<br>229<br>230<br>231<br>232 | 102A<br>102B<br>102C<br>102C<br>102C |                   |                      |
| 234<br>235<br>236<br>237<br>238 | 102K<br>102G<br>102H<br>102L<br>102L |                   |                      |
| 239<br>240<br>241<br>242<br>243 | 102L<br>1021<br>1021<br>1023<br>102D |                   |                      |

## TABLE 2-THICKNESS OF STRATIGRAPHIC SECTIONS AND THICKNESS AND PERCENTAGE OF SANDSTONE

| Age and<br>Stratigraphic Section | Total<br>Thickness<br>in feet | Percent<br>Sandstone | Number<br>of<br>Sands |      | Discrete Sandstone<br>thickness-meters |     |
|----------------------------------|-------------------------------|----------------------|-----------------------|------|----------------------------------------|-----|
| 2                                |                               |                      |                       | 0-15 | 15-30                                  | >30 |
| PLIOCENE-MIOCENE                 |                               |                      |                       |      |                                        |     |
| East Morzhovoi Bay               | 455                           | 45%                  | 34                    | 34   | 0                                      | 0   |
| West Morzhovoi Bay               | 1,221                         | 92%                  | 29                    | 26   | 2                                      | 1   |
| MIOCENE                          |                               |                      |                       |      |                                        |     |
| Aliaksin Peninsula               | 499                           | 100%                 | 12                    | 8    | 3                                      | 1   |
| Southeast Bear Lake              | 1,175                         | 96%                  | 31                    | 22   | 7                                      | 2   |
| Black Lake                       | 2,152                         | 61%                  | 34                    | 27   | 2                                      | 5   |
| Milky River                      | 2,658                         | 89%                  | 72                    | 57   | 14                                     | 1   |
| White Bluff                      | 948                           | 38%                  | 19                    | 18   | 1                                      | 0   |
| OLIGOCENE-EOCENE                 |                               |                      |                       |      |                                        |     |
| Beaver Bay                       | 1,936                         | 61%                  | 44                    | 44   | 0                                      | 0   |
| Beaver Bay East*                 | 2,798                         | 25%                  | Unknown               | ?    | 4                                      | 1   |
| Lefthand Bay—Balboa Bay          | 1,668                         | .78%                 | 4                     | 4    | 0                                      | 0   |
| Waterfall Point*                 | 378                           | 53%                  | Unknown               | All  | 0                                      | 0   |
| EOCENE(?) OR PALEOCENE(?)        | )                             |                      |                       |      |                                        |     |
| Heren I                          | 146                           | 66%                  | 6                     | б    | 0                                      | 0   |
| Heren II                         | 172                           | 43%                  | 13                    | 13   | 0                                      | 0   |
| Average percent                  |                               | 62.8%                |                       |      |                                        |     |
| Totals                           | 16,206                        |                      | 298                   | 240  | 29                                     | 10  |

\*Not all the sands in this section were measured; thus percentage of sandstone is estimated.

# TABLE 3- POROSITY AND PERMEABILITY ANALYSES (Analyses by Chemical and Geological Laboratories of Alaska, Inc.)

| Sample Number                                    | Effective Porosity<br>% | Permeability<br>(mD) |
|--------------------------------------------------|-------------------------|----------------------|
|                                                  | 10                      | (                    |
| Waterfall Point: Stepovak Formation <sup>a</sup> | 1.2                     | 0.04                 |
| 2-GB-77                                          | 1.7                     | 0,04<br>0,60         |
| 4-GB-77                                          | 4.1                     | 0.04                 |
| 9-GB-77                                          | 3.0<br>12.1             | 0.04                 |
| 13-GB-77                                         | 12.1                    | 0.08                 |
| Milky River: Bear Lake Formation                 |                         |                      |
| 29-GB-77                                         | 10.1                    | 0.32                 |
| 30-GB-77                                         | 6.4                     | 2.61                 |
| 39-GB-77                                         | 4.0                     | 1,83                 |
| 95-WL-77                                         | 17.7                    | 53,00                |
| 84-WL-77                                         | 17.5                    | 0.86                 |
| 93-WL-77                                         | unconsoli               | dated sand           |
| A72-WL-77                                        | 12.8                    | 0.26                 |
| 76-WL-77                                         | 16.8                    | 0.05                 |
| 77-WL-77                                         | 17.6                    | 72.00                |
| 78-WL-77                                         | 4.5                     | 10.00                |
| 90-WL-77                                         | unconsolic              | lated sand           |
|                                                  |                         |                      |
| East Morzhovoi Bay: Tachilni Formation           |                         |                      |
| 52-GB-77                                         | 20.1                    | 2.00                 |
| 56-GB-77                                         | 11.6                    | 2.42                 |
| Gull Point on Herendeen Bay: Chignik Formation   |                         |                      |
| 58-GB-77                                         | 8.7                     | 0.21                 |
| 59-GB-77                                         | 7.8                     | 0.21                 |
| 60-GB-77                                         | 5.7                     | 0,10                 |
| 61-GB-77                                         | 7.1                     | 0.09                 |
|                                                  |                         |                      |
| Bold Bluff Point on Herendeen Bay: Naknek For    |                         |                      |
| 64-G8-77                                         | 6.9                     | 0.02                 |
| 66-GB-77                                         | 6.8                     | 0.33                 |
| Tolstoi Formationa NE¼, Sec. 6, T. 54 S., R. 76  | W.                      |                      |
| 71-GB-77                                         | 1,6                     | 0.09                 |
| 72-GB-77                                         | 2.4                     | 0.02                 |
| Gas Rocks (see location map)                     |                         |                      |
| 73-GB-77                                         | 2.8                     | 0.11                 |
| West Morzhovoi Bay: Tachilni Formation           |                         |                      |
| 1-19-77                                          | 15.1                    | 2.87                 |
| 2-1P-77                                          | 13.6                    | 1.17                 |
| 8-1P-77                                          | 6,2                     | 5.00                 |
| <sup>a</sup> Buck (1965)                         | 5,2                     | 2.20                 |

| Sample Number                                 | Effective Porosity<br>% | Permeability<br>(mD) |
|-----------------------------------------------|-------------------------|----------------------|
| Lefthand Bay: Stepovak Formation <sup>a</sup> |                         |                      |
| 20-IP-77                                      | 1.7                     | 0.02                 |
| Heren I: Tolstoi Formationª                   |                         |                      |
| 28-IP-77                                      | 11.2                    | 0.82                 |
| 31-IP-77                                      | 11.5                    | 0.42                 |
| 32-1P-77                                      | 8.5                     | 0.23                 |
| 34-IP-77                                      | 7.5                     | 0.43                 |
| 3 <i>5</i> -1P-77                             | 11.8                    | 0.23                 |
| Heren II: Unnamed formation                   |                         |                      |
| 38-IP-77                                      | 0.3                     | 0.23                 |
| 39-18-77                                      | 11.0                    | 0.48                 |
| 43-1P-77                                      | 7.8                     | 0.11                 |
| 46-19-77                                      | 3.8                     | 0.06                 |
| 51-IP-77                                      | 4.5                     | 0.08                 |
| 52-IP-77                                      | 5.9                     | 0.78                 |
| 53-IP-77                                      | 11.7                    | 8.50                 |
| Mother Goose Area: Cretaceous                 |                         |                      |
| 64-IP-77                                      | 1.7                     | 0.01                 |
| Mother Goose Area: Tertiary                   |                         |                      |
| 67-IP-77                                      | 6.8                     | 0.02                 |
| White Bluff: Bear Lake Formation              |                         |                      |
| 71-WL-77                                      | 4.2                     | 0.06                 |
| Beaver Bay: Stepovak Formation <sup>a</sup>   |                         |                      |
| 33-WL-77                                      | 19.6                    | 990.00               |
| 24-WL-77                                      | 16.3                    | 3,79                 |
| 23-WL-77                                      | 15.0                    | 0.07                 |
| 40-WL-77                                      | 15.3                    | 0,03                 |
| 30-WE-77                                      | 1.7                     | 0.05                 |
| Black Lake: Bear Lake Formation               |                         |                      |
| 18-WL-77                                      | 5.6                     | 0.21                 |
| 12-WL-77                                      | 12.5                    | 0.18                 |
| 14-WL-77                                      | 8.7                     | 0.06                 |
| 20-WL-77                                      | 2.4                     | 2.28                 |
| Aliaksin Peninsula: Bear Lake Formation       |                         |                      |
| 46-WL-77                                      |                         | olidated sand        |
| 49-WL-77                                      | 16.0                    | 10                   |
| S. E. Bear Lake: Bear Lake Formation          |                         |                      |
| 36-}M-77                                      | 6.6                     | 1.04                 |
| <sup>a</sup> Burk (1965)                      |                         |                      |

### TABLE 4--ORGANIC GEOCHEMICAL DATA

(Analyses by Geochem Laboratories, Inc., Houston, Texas)

|                                                          | Organic Carbon                              |                                                              |                                                                                                                                                             |                                | + Extract                    |
|----------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|
| Sample                                                   | Content                                     | Keroj                                                        | gen                                                                                                                                                         | Total                          | Asphaltenes                  |
| Number                                                   | (Weight Percent)                            | Type <sup>a</sup>                                            | TAI <sup>b</sup>                                                                                                                                            | (ppm)                          | (ppm)                        |
| 06-GB-77                                                 | 0.42 (0.44)                                 | H;W;Am                                                       | 2. to <u>2</u>                                                                                                                                              | 179                            | 106                          |
| 10-GB-77                                                 | 0.33                                        | H;C;Am-W                                                     | 2 to <u>2</u> +                                                                                                                                             | 148                            | 97                           |
| 14-GB-77                                                 | 0.26                                        | H;W;Am-C                                                     | $\frac{2}{2}$ to 3-                                                                                                                                         | 483                            | 380                          |
| 16-GB-77                                                 | 0.58                                        | H;Am;W(C)                                                    | 2- to $\frac{2}{2}$                                                                                                                                         | 272                            | 81                           |
| 18-GB-77                                                 | 0.42                                        | Am;H;C                                                       | 2- to 2                                                                                                                                                     | 276                            | 91                           |
| 21-GB-77                                                 | 0.43 (0.46)                                 | H;W-C;Am                                                     | 2- to $2$                                                                                                                                                   | 266                            | 76                           |
| 24-GB-77                                                 | 0.62                                        | Am-H;-;C                                                     | <u>1</u> + to 2-                                                                                                                                            | 382                            | 98                           |
| 26-GB-77                                                 | 0.25                                        | H;W;C                                                        | <u>2</u> to 2+                                                                                                                                              | 103                            | 74                           |
| 33-GB-77                                                 | 0.37                                        | H;Am;W-C                                                     | 2- to 2                                                                                                                                                     | 124                            | 61                           |
| 35-GB-77                                                 | 0.53 (0.56)                                 | H;Am;-                                                       | $\frac{1+}{1} \text{ to } 2-$ $\frac{1+}{1} \text{ to } \frac{1+}{2}$ $\frac{1+}{2-} \text{ to } 2$ $\frac{2-}{2-} \text{ to } 2$                           | 172                            | 98                           |
| 37-GB-77                                                 | 0.67                                        | H;W;Am-C                                                     |                                                                                                                                                             | 152                            | 96                           |
| 40-GB-77                                                 | 0.96                                        | H;-;Am-C                                                     |                                                                                                                                                             | 273                            | 152                          |
| 43-GB-77                                                 | 0.35                                        | H;C;W                                                        |                                                                                                                                                             | 457                            | 142                          |
| 45-GB-77                                                 | 0.69                                        | H;W;C                                                        |                                                                                                                                                             | 520                            | 208                          |
| 48-GB-77<br>63-GB-77<br>68-GB-77<br>70-GB-77<br>76-GB-77 | 0.28 (0.30)<br>0.82<br>0.18<br>1.24<br>0.72 | H;Am;W<br>H;Am;W<br>Am;H;W-C<br>Am;H;-<br>W-C;Am-H;-         | 2- to 2<br>2- to 2<br>$\frac{2}{2}$ to 2+<br>$\frac{2}{3}$ to 3                                                                                             | 298<br>246<br>131<br>200<br>89 | 752<br>111<br>67<br>88<br>71 |
| 78-GB-77                                                 | 0.79 (0.78)                                 | H-C;₩;Am                                                     | $\begin{array}{cccc} 3 & to 3+ \\ \end{array}$                                             | 55                             | 38                           |
| 80-GB-77                                                 | 0.60                                        | W-C;H;Am                                                     |                                                                                                                                                             | 73                             | 43                           |
| 82-GB-77                                                 | 0.69                                        | H-C;₩;-                                                      |                                                                                                                                                             | 95                             | 66                           |
| 84-GB-77                                                 | 0.69                                        | H-C;₩;-                                                      |                                                                                                                                                             | 37                             | 30                           |
| 86-GB-77                                                 | 0.69                                        | W-C;H;Am                                                     |                                                                                                                                                             | 88                             | 55                           |
| 88-GB-77<br>90-GB-77<br>8-WL-77<br>11-WL-77<br>22-WL-77  | 0.71 (0.68)<br>0.80<br>0.15<br>0.14<br>1.23 | W-C;H;Am<br>W-C;H;Am<br>H;C;Am<br>H;C;Am<br>H;C;Am<br>H;Am;W | $\begin{array}{cccc} \underline{3} & \text{to } 3+\\ 3- & \text{to } \underline{3}\\ 2- & \text{to } 2?\\ & 2?\\ 2- & \text{to } \underline{2} \end{array}$ | 85<br>83<br>185<br>464<br>266  | 52<br>47<br>55<br>107<br>123 |
| 26-WL-77                                                 | 0.87 (0.86)                                 | H;W;Am                                                       | $\frac{2}{2} to 2+ \frac{2}{2} to 2+ \frac{2}{2} to 3- \frac{2}{2} to 2+ \frac{2}{2} to 2+$                                                                 | 189                            | 62                           |
| 29-WL-77                                                 | 1.17                                        | H;Am;W                                                       |                                                                                                                                                             | 176                            | 76                           |
| 33A-WŁ-77                                                | 1.91                                        | H;Am;W-C                                                     |                                                                                                                                                             | 107                            | 60                           |
| 35-WL-77                                                 | 1.94                                        | H;C;Am-W                                                     |                                                                                                                                                             | 462                            | 149                          |
| 38-WL-77                                                 | 1.10                                        | H;Am-W;C                                                     |                                                                                                                                                             | 398                            | 83                           |
| 39-WL-77<br>42-WL-77<br>43-WŁ-77                         | 3.94 (3.91)<br>0.39<br>0.18                 | H;Am;W<br>H;W-C;Am<br>H;W;Am                                 | 2 to 2+<br>2 to 2<br>2- to 2<br>2- to 2                                                                                                                     | 939<br>1947<br>967             | 251<br>1788<br>896           |

a. Kerogen key (in order listed): Predominant-60 to 100%; Secondary -20 to 40%; Trace-1 to 20%.

Al = Algal, Am = Amorphous-Sapropel, H = Herbaccous-Spore/Cuticle, W = Woody, C = Coaly, U = Unidentified Material.

b. Scale from 1 = unaltered to 4 = severely altered; underlined number indicates dominant rank of alteration.

| Sample<br>Number                                         | Organic Carbon<br>Content<br>(Weight Percent) | Kerogen<br>Type <sup>a</sup>                        | TAI <sup>b</sup>                                                                                                                                                                                                              | C <sub>15+</sub> Ex<br>Total<br>(ppm) | stract<br>Asphaltenes<br>(ppm) |
|----------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------|
| Number                                                   | (weight reicent)                              | Type                                                |                                                                                                                                                                                                                               | (ppm)                                 | (ppm)                          |
| 53-WL-77                                                 | 8.73                                          | H;Am;W                                              | 1 to <u>1+</u>                                                                                                                                                                                                                | 2984                                  | 1215                           |
| 61-WL-77                                                 | 3.22                                          | H;W;C                                               | <u>1+</u> to 2-                                                                                                                                                                                                               | 1372                                  | 1146                           |
| 65-WL-77<br>67-WL-77<br>69-WL-77<br>74-WL-77<br>80-WL-77 | 1.21 (1.22)<br>0.69<br>0.14<br>0.67<br>0.82   | H;W;Am<br>H;Am;C<br>H;C;Am<br>H;W;Am-C<br>H;W;Am(C) | 2- to 2<br>2- to 2<br>2- to 2<br>2- to 2<br>2- to 2<br>2- to 2<br>2- to 2                                                                                                                                                     | 372<br>266<br>98<br>141<br>270        | 200<br>143<br>54<br>86<br>86   |
| 83-WL-77                                                 | 1.88 (1.89)                                   | H;W;Am                                              | $\frac{2}{2} \cdot 10 2$ $\frac{2}{2} \cdot 10 2$ $\frac{2}{2} \cdot 10 2$ $\frac{2}{2} \cdot 10 2$ $\frac{1}{2} \cdot 10 2$                                                                                                  | 619                                   | 259                            |
| 85-WL-77                                                 | 0.87                                          | H;W;Am-C                                            |                                                                                                                                                                                                                               | 317                                   | 147                            |
| 89-WL-77                                                 | 0.66                                          | H;Am;W                                              |                                                                                                                                                                                                                               | 293                                   | 144                            |
| 92-WL-77                                                 | 0.57                                          | H;C;Am-W                                            |                                                                                                                                                                                                                               | 628                                   | 147                            |
| 97-WL-77                                                 | 0.85                                          | H;Am;W                                              |                                                                                                                                                                                                                               | 273                                   | 119                            |
| 100-WL-77                                                | 0.57 (0.56)                                   | H;Am;W-C                                            | $ \begin{array}{r} 1 + \text{ to } 2 - \\ \underline{2} \cdot \text{ to } 2 \\ \underline{2} \cdot \text{ to } 2 \\ 2 - \text{ to } 2 \\ \underline{2} \cdot \text{ to } 2 \\ \underline{2} \cdot \text{ to } 2 \end{array} $ | 345                                   | 196                            |
| 102-WL-77                                                | 0.72                                          | H;W;Am-C                                            |                                                                                                                                                                                                                               | 343                                   | 98                             |
| 104-WL-77                                                | 0.26                                          | H;W-C;Am                                            |                                                                                                                                                                                                                               | 127                                   | 41                             |
| 10-IP-77                                                 | 0.32                                          | Am;H-W;-                                            |                                                                                                                                                                                                                               | 93                                    | 23                             |
| 13-IP-77                                                 | 0.23                                          | H;Am;W                                              |                                                                                                                                                                                                                               | 156                                   | 59                             |
| 14-IP-77                                                 | 0.54 (0.54)                                   | Am;H;W                                              | $\begin{array}{c} \underline{2} & \text{to } 2 \\ \underline{2} & \text{to } 2 \\ \underline{2} & \text{to } 2 \\ 2 & \\ 2 & \\ 2 & \text{to } 2 \\ 2 & \text{to } 2 \end{array}$                                             | 375                                   | 73                             |
| 17-IP-77                                                 | 0,38                                          | H-W;Am;C                                            |                                                                                                                                                                                                                               | 180                                   | 72                             |
| 19-IP-77                                                 | 0.46                                          | H;Am;W-C                                            |                                                                                                                                                                                                                               | 241                                   | 77                             |
| 22-IP-77                                                 | 0.86                                          | H;Am;W-C                                            |                                                                                                                                                                                                                               | 196                                   | 60                             |
| 25-IP-77                                                 | 0.39                                          | H;W;Am-C                                            |                                                                                                                                                                                                                               | 331                                   | 163                            |
| 37-{P-77                                                 | 1.08 (1.02)                                   | Н;W;Am                                              | 2- to $2$                                                                                                                                                                                                                     | 646                                   | 247                            |
| 42-{P-77                                                 | 0.98                                          | Н;Am;W                                              | 2- to $2$                                                                                                                                                                                                                     | 927                                   | 701                            |
| 45-{P-77                                                 | 2.29                                          | Н;Am;W                                              | 2- to $2$                                                                                                                                                                                                                     | 623                                   | 435                            |
| 50-{P-77                                                 | 2.03                                          | Н;Am;W                                              | 2- to $2$                                                                                                                                                                                                                     | 313                                   | 133                            |
| 63-IP-77                                                 | 1.11                                          | W-C;H;-                                             | 3 to 3+                                                                                                                                                                                                                       | 83                                    | 45                             |
| 66-1P-77                                                 | 0,19 (0.18)                                   | H-W;-;C                                             | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                          | 223                                   | 167                            |
| 38-1P-77                                                 | 0.41                                          | H;W;C                                               |                                                                                                                                                                                                                               | 125                                   | 76                             |
| 41-JM-77                                                 | 0.16                                          | H;Am;W-C                                            |                                                                                                                                                                                                                               | 227                                   | 169                            |
| 46-JM-77                                                 | 0.98                                          | H;W;Am                                              |                                                                                                                                                                                                                               | 282                                   | 186                            |

a. Kerogen key (in order listed): Predominant-60 to 100%; Secondary-20 to 40%; Trace-1 to 20%.

AI = AIgaI, Am = Amorphous-Sapropel, H = Herbaceous-Spore/Cuticle, W = Woody, C = Coaly, U = Unidentified Material.

b. Scale from 1 = unaltered to 4 = severely altered; underlined number indicates dominant rank of alteration.

#### TERTIARY FORMATIONS AND ASSOCIATED MESOZOIC ROCKS IN THE ALASKA PENINSULA AREA, ALASKA

|                        |                   |                                      |                          |                                 |                             | -PETRUGRA               | APRIC DATA                                              |
|------------------------|-------------------|--------------------------------------|--------------------------|---------------------------------|-----------------------------|-------------------------|---------------------------------------------------------|
| FORMATION              | SAMPLE            | GRADE-SIZE CLASSIFICATION            | % QUARTZ<br>+ CHERT      | WORK CLAST COM<br>%<br>FELOSPAR | ROCK<br>% ROCK<br>FRAGMENTS | % CEMENT                | CEMENT PARAGENESIS                                      |
| Naknek                 | 64-GB-77          | Pebbly file to very coarse sandstone | 20                       | 70                              | 10                          | 5                       | Autogenic clay, zeolite                                 |
| Naknek                 | 66-GB-77          | Fine to medium sandstone             | 10                       | 85                              | 5                           | 10                      | Authigenic clay, zeolite                                |
| Chignik                | 58-GB-77          | Fine to medium sandstone             | 40                       | 15                              | 45                          | 5                       | Authigenic class, carbonate                             |
| Chignik                | \$9-GB-77         | Fine to medium sandstone             | 40                       | 10                              | 50                          | 3                       | Authogenic clay, quarty, authogenic albuse              |
| Chignik                | 60-GB-77          | Very fine to fine sundstone          | 30                       | 5                               | 65                          | 5                       | Authogenic clay                                         |
| Talstor                | 71-GB-77          | Medium to coarse sandstone           | 5                        | 25                              | 70                          | 15                      | for oxide, zeolite (2), suffigence chlorate             |
| សែនលោ                  | 72-GB-77          | Medium to coarse sandstone           | 5                        | 25                              | 70                          | 15                      | fror oxide, zeolite (?), authigenic chlorite, carbonate |
| Tolston                | 34-JP-77          | Very fine to fine subdistone         | 35                       | 50                              | 15                          | 12                      | Autogene (by, Lathendie                                 |
| Tolston                | 46-1P-77          | Medium to coarse sandstone           | 60                       | 30                              | 10                          | 40                      | Carlonate                                               |
| Stepovak               | 2-GB-77           | Pebbly fine to course sandstone      | 20                       | 15                              | 65                          | 3                       | Clay, authigenic chlorine                               |
| Sicbovak               | 4-G8-77           | Pebbly fine to medium sandstone      | 10                       | 1.5                             | 75                          | 2                       | Clay, authigency chlority, zeolity                      |
| \$1epovak <sup>1</sup> | 9.GB-77           | Coarse to very coarse sandstone      | 15                       | 20                              | 65                          | 50                      | Clay, carbonate                                         |
| Stepovak <sup>1</sup>  | 13.G8.77          | Medium to coarse sandstone           | 01                       | 20                              | 70                          | 50                      | Clas, carbonaic                                         |
| \$iepovak <sup>1</sup> | 23-WL-77          | Fine to very coarse sandstone        | -                        | 20                              | ж0                          | \$                      | Carlonate, authigenic chlorate, carbonate               |
| Stepovak               | 24-WL-77          | Fine to medium sandstone             | 30                       | 20                              | 50                          | 45                      | Cartonate                                               |
| Stepovak <sup>1</sup>  | 30-WL-77          | Medium to very coarse sandstone      | -                        | 15                              | 85                          | 10                      | Qualiz, carbonale                                       |
| Stepovak'              | 33-WL-77          | Fine to coarse sandstone             | 20                       | 15                              | 65                          | ŝ                       | fror oxide, authigenic clay                             |
| Stepovak?              | 40-WL-77          | Medium to coarse sandstone           |                          | 10                              | 90                          | 10                      | Cut unate, authigenic chlorite, carbonate               |
| Bear Lake              | 124WL-77          | Fine to medium sandstone             | 35                       | 25                              | 40                          | 7                       | tro invole, authrgenic clay                             |
| Bear Lake              | 14-WL-77          | Penbly fine to very coarse sandstone | 45                       | 5                               | 50                          | 3                       | iro sxide                                               |
| Bear Lake              | 18-WL-77          | Pebbly fine to coarse sandstone      | 50                       | 15                              | 35                          | 8                       | Au ligenic clav, authigenic kaolmite/carbonate3         |
| Bear Lake              | 29-GB-77          | Medium sundstone                     | 65                       | 15                              | 20                          | 15                      | Au genic chlorite, carbonate                            |
| Bear Lake              | 30-GB-77          | Fine to modium sandstone             | 45                       | 25                              | 30                          | 48                      | CI. carbonate                                           |
| Bear Lake              | 39-G <b>B</b> -77 | Pebbly fine to very coarse sandstone | 60                       | 5                               | 35                          | 20                      | AL gene chlorite, carbonate                             |
| Bear Lake              | 71-WL-77          | Medium to very coarse sandstone      | 35                       | 10                              | 55                          | 15                      | Ac some clay                                            |
| Bear Lake              | A72-WL-77         | Medium to coarse sandstone           | 60                       | 5                               | 35                          | 15                      | At                                                      |
| Bear Lake              | 77-W177           | Fine to medium sandstone             | 45                       | S                               | 50                          | 5                       | At enic chlorate                                        |
| Bear Lake              | 84-WE-77          | Very fine to medium sandstone        | 50                       | 10                              | 40                          | 10                      | A: enic clay                                            |
| Bear Lake              | 95-WL-77          | Medium to very coarse sandstone      | 45                       |                                 | 55                          | 10                      | A enic clay, zeolrte                                    |
| Tachilm                | 52-68-77          | Medium to very coarse sandstone      | 10                       | 5                               | 85                          | 2                       | ir .ide, authigenie chlorite                            |
| Tachilni               | 56-GB-77          | Fine to coarse sandstone             | 20                       | 40                              | 40                          | 40                      | lt ide, carbonate                                       |
| Tachilni               | i-1P-77           | Fine to coarse sandstone             | 20                       | 10                              | 70                          | 2                       | A pric chlorite, authgenic clay                         |
| Tachilni               | 8-1P-77           | Verv fine to medium sandstone        | 15                       | 10                              | 75                          | 10                      | C ate, authigenic clay                                  |
| 1 Bur                  | k (1965).         | 2 Gatloway (1974) 3 Age relationshi  | p of kaofinite and carbo | nute uncertain                  | 4 Diatom identifica         | tions by Don Olson, USG | s                                                       |

#### TABLE 5-PETROGRAPHIC DATA

1

#### REMARKS

Abundant hornblende, doctate grain deformation, computation-broken clasts Abundant hornhiende, diretile grain deformation, compaction-broken clasis

Double grain deformation, partial ruplacement of clasts by carbonate

Ducide grain deformation.

Dagate grain deformation

Ductife granideformation, compaction-broken clasty.

ate, iton oxide - Diretile grain deformation, compaction-broken clasts.

Ductile grain determation, compaction-broken classy, partial replacement of class by carbonate.

Detritud pumpellyne, partial replacement of clasts by carbonate

Glauconite, ducide grain deformation, compaction-broken clasts.

Duchle grain deformation, compaction-droken clasis

Minor doctile grain deformation, partial to complete replacement of classs by carbonate

Minor ductile grain deformation, partial to complete replacement of class-by carbonate

Ductile grain deformation, compaction-broken classis, partial to complete replacement of classists is carbonate

Compaction-broken clasts.

Duciile grain deformation, partial replacement of clasts by carbonine.

 $\Psi$  2% secondary percent, minor ductile grain deformation, compaction-broken classs, abundant diatoms including two species of <u>Stephanopyxis</u> and one species of each of Melogina, C<u>oscinodiscus</u> 2, and <u>Biddulphia</u><sup>4</sup>

Ductife grain deformation, partial replacement of clasts by carbonate.

Ductife grain deformation, iron oxide concentrated in patches.

Ductile grain deformation.

Abundant chert, ducide grain deformation, minor compaction proken clasts, minor partial replacement of clasts by carbonate.

Glauconite partial replacement of classs by carbonate.

Ductile grain detormation, minor compaction-broken clasts, partial to complete replacement of clasts by carbonate.

Ductile grain deformation, minor compaction-broken clasts, partial replacement of clasts by carbonate.

Ductile grain deformation, compaction-broken clasts

Glauconite, doctile grain deformation, compaction-broken clasts

Glauconite, dutible grain deformation, compaction-broken clasts

Ductile grain deformation, compaction-broken classs

Ductile gram deformation, compaction-broken clasts.

Glauconite ferruginous pellets, ductile grain deformation

Extensive partial and complete replacement of classy by carbonate.

Ductife grain deformation

Detrital pumpellyite, partial and complete replacement of class by carbonate.

,

#### TABLE 6-GEOCHEMICAL ANALYSES

Stream-sediment samples were analyzed for gold, silver, copper, lead, zinc, molybdenum, and tin. The results are in parts per million.

| Sample No.        | Gold | Silver | Copper        | Lead  | Zinc | Molybdenum | Antimony |
|-------------------|------|--------|---------------|-------|------|------------|----------|
| 1-JM-77           | 0.24 | 0.00   | 19.2          | 3,0   | 43   | 0          | 0        |
| 2-JM-77           | 0.10 | 0.00   | 17.8          | 3.8   | 44   | 0          | 0        |
| 3-JM-77           | 0.08 | 0.00   | 27.7          | 12.4  | 33   | 0          | 0        |
| 4-JM-77           | 0,14 | 1.00   | 19.6          | 7.1   | 73   | 0          | 0        |
| 5-JM-77           | 0.20 | 0.00   | 24.6          | 24.0  | 78   | 0          | 0        |
| 6-JM-77           | 0.10 | 0.00   | 19.6          | 3.1   | 51   | 0          | 0        |
| 7-JM-77           | 0.08 | 0.00   | 16.2          | 7.8   | 53   | 0          | 0        |
| 8- <b>]</b> M-77  | 0.04 | 0.00   | 16.0          | 3,7   | 65   | 0          | 0        |
| 9-JM-77           | 0.06 | 0.00   | 16 <i>.</i> 6 | 3.1   | .58  | 0          | 0        |
| 10- <b>]</b> M-77 | 0,12 | 0,00   | 23.0          | 2,0   | 56   | 0          | 0        |
| 11-JM-77          | 0.14 | 0.00   | 19.4          | 0,0   | 73   | 0          | 0        |
| 1 <b>2-JM-</b> 77 | 0.24 | 0.04   | 13.8          | 56.0  | 56   | 0          | 35       |
| 13-}M-77          | 0.18 | 0.00   | 10.9          | 11.5  | 32   | 0          | 0        |
| 14-}M-77          | 0.24 | 0.00   | 16.3          | 0,6   | .38  | 0          | 0        |
| 15-JM-77          | 0.34 | 0.05   | 19,8          | 0.0   | 38   | 0          | 0        |
| 16-JM-77          | 0,34 | 0.07   | 18.0          | 3,1   | 48   | 0          | 0        |
| 18-JM-77          | 0.12 | 0.00   | 11.1          | 8.6   | 45   | 0          | 0        |
| 19-JM-77          | 0.24 | 0.00   | 22.2          | 12.4  | 52   | 0          | 0        |
| 20-JM-77          | 0.30 | 0.11   | 4,3           | 1,1   | 27   | 0          | 0        |
| 21-JM-77          | 0.10 | 0.00   | 17.4          | 1.3   | 60   | 0          | 0        |
| 22-JM-77          | 0.16 | 2.84   | 19.7          | 874   | 68   | 0          | 526      |
| <b>23-JM-</b> 77  | 0.14 | 0.02   | 12.0          | 7.8   | 58   | 0          | 0        |
| 24-JM-77          | 0.12 | 0.00   | 17.7          | 4.6   | 50   | 0          | 0        |
| 25-JM-77          | 0.24 | 0.00   | 16.9          | 2.7   | 59   | 0          | 0        |
| 26-JM-77          | 0.24 | 0.00   | 19.8          | 1.7   | 68   | 0          | 0        |
| 27-JM-77          | 0.34 | 0,00   | 18.2          | 6.9   | 60   | 0          | 0        |
| 28-JM-77          | 0.26 | 0.00   | 15.7          | 13.1  | 32   | 0          | 0        |
| 29-JM-77          | 0.20 | 0.00   | 17.7          | 1.9   | 27   | 0          | 0        |
| 30-JM-77          | 0.16 | 0.00   | 12.4          | 16.0  | 23   | 0          | 0        |
| 31-JM-77          | 0.16 | 0.03   | 15.7          | 1,7   | 40   | 0          | 0        |
| 32-JM-77          | 0.26 | 0.00   | 15.2          | 0.8   | 29   | 0          | 0        |
| 33-JM-77          | 0.14 | 0.00   | 36.8          | 14.8  | 40   | 0          | 0        |
| 4 <b>8-</b> JM-77 | 0.14 | 0.28   | 49.2          | 51.7  | 153  | 0          | 0        |
| 49-JM-77          | 0.32 | 0.22   | 57.6          | 31.2  | 132  | 0          | 0        |
| SO-1M-77          | 0.28 | 0.22   | 21,4          | 13.8  | 45   | 0          | 0        |
| 52-JM-77          | 0.78 | 0.76   | 46.2          | 267.0 | 610  | 0          | 46       |
| 53-1M-77          | 0.24 | 0.00   | 67.3          | 8.3   | 85   | 0          | 0        |
| 54-1M-77          | 0.24 | 0.00   | 25.7          | 75.3  | 55   | 0          | 0        |
| <b>55-JM-</b> 77  | 0.38 | 0.00   | 37.3          | 8.3   | 42   | 2          | 0        |
| 56-JM-77          | 0.36 | 0.00   | 51.3          | 4.0   | 29   | 2          | 0        |

| Sample No.           | Gold | Silver | Copper | Lead | Zinc | Molybdenum | Antimony |
|----------------------|------|--------|--------|------|------|------------|----------|
| 1-₩Ł-77              | 0.46 | 0.05   | 33,2   | 3.2  | 209  | 0          | 0        |
| 2-WL-77              | 0,44 | 0.00   | 19.3   | 0.0  | 177  | 0          | 0        |
| 3-WL-77              | 0,00 | 0,00   | 30.2   | 3.8  | 44   | 0          | 0        |
| A1-JB-77             | 0.10 | 0,00   | 18.5   | 8.2  | 75   | 0          | 0        |
| A2-JB-77             | 0.24 | 0.00   | 21.4   | 3.0  | 66   | 0          | 0        |
| A3-JB-77             | 0.04 | 0.02   | 17.8   | 1.4  | 66   | 0          | 0        |
| A4-18-77             | 0.02 | 0.00   | 7.1    | 1.2  | 48   | 0          | 0        |
| A5-JB-77             | 0.00 | 0.00   | 20.0   | 11.0 | 66   | 0          | 0        |
| A6-JB-77             | 0.29 | 0.06   | 13.6   | 1.8  | 143  | 0          | 0        |
| A7-JB-77             | 0.34 | 0.00   | 19,0   | 1.0  | 228  | 0          | 0        |
| A8-JB-77             | 0.19 | 0.00   | 11.7   | 0.6  | 317  | 0          | 0        |
| A9-JB-77             | 0,04 | 0.00   | 7.3    | 0.5  | 73   | õ          | 0        |
| A10-JB-77            | 0.14 | 0.00   | 21.4   | 2.3  | 63   | 0          | õ        |
| 6-JB-77              | 0.06 | 0.12   | 38.3   | 23.7 | 146  | 0          | 0<br>0   |
| 7-{B-77              | 0.08 | 0.06   | 43,9   | 60.3 | 0    | 0          | 0        |
| ,<br>24-JB-77        | 0,04 | 0,06   | 29,5   | 0.7  | 64   | 0          | 0        |
| 24-JB-77<br>25-JB-77 | 0.04 | 0.00   | 18.5   | 1.9  | 47   | 0          | 0        |
| 29-J8-77             | 0.06 | 0.00   | 34.0   | 6.9  | 71   | 1          | 0        |
| 30-JB-77             | 0.00 | 0.00   | 21.8   | 3.3  | 52   | 0          | 0        |
| 31-JB-77             | 0,12 | 0.00   | 23.3   | 4.3  | 62   | 0          | 0        |
|                      |      |        |        |      |      |            |          |
| 32-JB-77             | 0.10 | 0.00   | 17.4   | 2.6  | 41   | 0          | 0        |
| 33-1B-77             | 0.00 | 0.00   | 16.2   | 0.0  | 123  | 0          | 0        |
| 34- <b>JB-</b> 77    | 0.04 | 0.00   | 27.9   | 0.7  | 186  | 0          | 0        |
| 35-JB-77             | 0.12 | 0.00   | 30,3   | 0.8  | 0.8  | 0          | 222      |
| 36-JB-77             | 0.06 | 0.00   | 27.6   | 0.0  | 258  | 0          | 0        |
| 37-JB-77             | 0,06 | 0.00   | 37.2   | 2.1  | 97   | 0          | 0        |
| 38-JB-77             | 0.12 | 0.00   | 23.0   | 1.6  | 65   | 0          | 0        |
| 39-1B-77             | 0.14 | 0.00   | 27.1   | 1.6  | 114  | 0          | 0        |
| 40-JB-77             | 0.04 | 0.00   | 30.6   | 6.6  | 56   | 0          | Ó        |
| 41-JB-77             | 0.32 | 0.00   | 24,3   | 3.1  | 143  | 0          | 0        |
| 42- B-77             | 0.12 | 0.00   | 17,8   | 3.6  | 82   | 0          | 0        |
| 43- <b>JB</b> -77    | 0.37 | 0.00   | 15.2   | 3.3  | 108  | õ          | 0        |
| 44-JB-77             | 0.64 | 0.00   | 14.2   | 0.7  | 73   | Ō          | Ő        |
| 45-JB-77             | 0.50 | 0.00   | 37.9   | 5.9  | 72   | 0          | Ő        |
| 46-JB-77             | 0.48 | 0,00   | 99,9   | 12.7 | 111  | 0          | Ő        |
| 47-JB-77             | 0.38 | 0.00   | 24.8   | 1.7  | 53   |            |          |
| 48-JB-77             | 0.38 | 0.00   | 12.3   | 0.0  | 52   | 0<br>0     | 0        |
| 49-JB-77             | 0.42 | 0.00   | 15.6   | 0.0  | 48   | 0          | 0        |
| 98-JB-77             | 0.20 | 0.00   | 22,7   | 0.3  | 36   | 0          | 0<br>0   |
| 99-JB-77             | 0.42 | 0.00   | 21.4   | 0.3  | 38   | 0          | 0        |
|                      |      |        |        |      |      |            |          |
| 100-JB-77            | 0.14 | 0.00   | 20.2   | 0.0  | 2.8  | 0          | 0        |
| 101-JB-77            | 0.36 | 0.00   | 25.7   | 0.0  | 27   | 0          | 0        |
| 102-JB-77            | 0.30 | 0,00   | 14.2   | 0.0  | 27   | 0          | 0        |
| 103-JB-77            | 0.40 | 0.00   | 24.7   | 2.6  | 58   | 0          | 0        |
| 10 <b>4-JB-</b> 77   | 0.44 | 0.00   | 57.3   | 0.7  | 57   | 0          | 0        |

| Sample No.          | Gold | Silver | Copper           | Lead   | Zinc | Molybdenum | Antimony |
|---------------------|------|--------|------------------|--------|------|------------|----------|
| 105- <b>JB</b> -77  | 0.44 | 0.00   | 26.5             | 2.1    | 63   | 0          | 0        |
| 106-JB-77           | 0.48 | 0,00   | 17,4             | 0.0    | 38   | 0          | 0        |
| 55-IP-77            | 0.66 | 14.90  | 2470.0           | 3770.0 | 8700 | I          | 0        |
| 55-IP-77            | 2.74 | 13,50  | 1060.0           | 2190.0 | 3300 | 0          | 0        |
| 77-SWH-02A          | 0.22 | 0.00   | 28.8             | 9.8    | 53   | 3          | 0        |
| 77-SWH-03A          | 0.53 | 0.00   | 8,5              | 5.2    | 19   | 6          | 0        |
| 77-SWH-04A          | 0.44 | 0.00   | 4.6              | 6.7    | 137  | 0          | 0        |
| 77 <b>-</b> SWH-05A | 0.44 | 0.06   | 19.6             | 47.6   | 40   | 0          | 0        |
| 77-SWH-14           | 0.24 | 0.00   | 22.8             | 4,2    | 97   | 0          | 0        |
| 54-IP-77            | 0.13 | 0.00   | 61.4             | 22.7   | 133  | 0          | 0        |
| 56-IP-77            | 0,99 | 5.44   | 390.0            | 747.0  | 380  | 0          | 0        |
| 57-IP-77            | 0.23 | 0.00   | 32.3             | 10.0   | 43   | 0          | 0        |
| 58-IP-77            | 0.15 | 0.00   | 43.9             | 23,6   | 64   | 0          | 0        |
| 59-IP-77            | 0.22 | 0.00   | 16.8             | 7,1    | 58   | 0          | 0        |
| 60-1P-77            | 0.33 | 0.00   | 21.8             | 3,6    | 62   | 0          | 0        |
| 61-}P-77            | 0.20 | 0.00   | 15.3             | 1.2    | 49   | 0          | 0        |
| 150-JB-77           | 0,17 | 0.00   | 27.7             | 7.9    | 75   | 0          | 0        |
| 151-JB-77           | 0.16 | 0.00   | 26.4             | 3,9    | 79   | 0          | 0        |
| 152-JB-77           | 0.39 | 0.05   | 30.3             | 11,9   | 90   | 0          | 0        |
| 153-JB-77           | 0.32 | 0.11   | 10.7             | 16.8   | 157  | 0          | 0        |
| 154-JB-77           | 0.40 | 0.11   | 41. <del>9</del> | 20,1   | 51   | 2          | 0        |
| 155-JB-77           | 0.39 | 0.25   | 50,0             | 37.3   | 224  | 1          | 0        |
| 156-JB-77           | 0.35 | 0.00   | 21.2             | 4.1    | 68   | 0          | 0        |
| 157- <b>J8</b> -77  | 0,22 | 0,00   | 30.4             | 7.1    | 88   | 0          | 0        |
| 158- <b>JB</b> -77  | 0.30 | 0.00   | 22,6             | 5,0    | 67   | 0          | 0        |

TABLE 7-PALYNOLOGY DETERMINATIONS (Analyses by Anderson, Warren and Associates, Inc.) Fossil assemblages: A = abundant, C = common, F = frequent, and R = rare. 26-12-77 Gymnosperm pollen (A), Osmundacidites sp. (R), Lycopodiumsporites sp. (R), Taxodiaceae (R). Deflandrea denticulata (F), Palacocystodinium golzowense (R), Spiniferites spp. (R). AGE: Paleogene (Paleocene-early Eocene) ENVIRONMENT: Marine. 27-IP-77 Gymnosperm pollen ( $\mathbf{F}$ ). Deflandrea denticulata (R), Spiniferites septatus (R), Spiniferites spp. (R). Paleogene (Paleocene) AGE: ENVIRONMENT: Marine. 29-IP-77 Gymnosperm pollen (C). Deflandrea denticulata (R), Palaeocystodinium golzowense (F), Spiniferites spp. (R). Paleogene (Paleocene-early AGE: Eocene) ENVIRONMENT: Marine 33-IP-77 Gymnosperm pollen (F). Deflandrea denticulata (R), Palaeocystodinium golzowense (R). AGE: Paleogene (Paleocene-early Eocene) ENVIRONMENT: Marine. 44-IP-77 Gymnosperm pollen (F), Betulaceae (R). AGE: Tertiary ENVIRONMENT: Nonmarine. 47-IP-77 Gymnosperm pollen (F), Aquilapollenites quadrilobus (R, reworked). Deflandrea denticulata (R), Palaeocystodinium golzowense (R), Sirmiodinium grossi (single, reworked). AGE: Paleogene (Paleocene-early Eocene) ENVIRONMENT: Marine

#### 49-IP-77

Gymnosperm pollen (C).

AGE: Indeterminate ENVIRONMENT: Nonmarine.

#### 62-IP-77

No identifiable palynomorphs. Poorly preserved organics, very dark brown color.

AGE: Indeterminate ENVIRONMENT: Probable nonmarine.

#### 65-1P-77

Lacvigatosporites sp. (R), Fungal spores (R). AGE: Indeterminate ENVIRONMENT: Nonmarine.

#### 52-WL-77

Gymnosperm pollen (F), <u>Lycopodiumsporites</u> sp. (R), <u>Osmundacidites</u> (A), <u>Laevigatosporites</u> sp. (A), <u>Alnus</u> (R). AGE: Tertiary

ENVIRONMENT: Nonmarine.

#### 56-WL-77

Gymnosperm pollen (C), <u>Tsuga</u> (R), <u>Osmundacidites</u> sp. (F), <u>Laevigatosporites</u> sp. (F), <u>Taxodiaccae</u> (F), <u>Jugians</u> (R), <u>Ulmus</u> (R), <u>Nyssa</u> (R). <u>Areosphaeridium diktyoplokus</u> (single, reworked?)

```
AGE: Tertiary (possible Eocene, Oligo-
cene, or middle Miocene)
ENVIRONMENT: Probable nonmarine, warm tem-
perate paleoclimate.
```

#### 58-WL-77

| Gymnosperm pollen<br>(A), <u>Pterocarya</u> (C),<br>(R), <u>Ulmus</u> (R), <u>Tilia</u> | (A), <u>Tsuga</u> (C), <u>Osmundacidites</u> sp.<br><u>Juglans</u> (F), <u>Betulaceae</u> (R), <u>Alnus</u><br>(R). |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| AGE:                                                                                    | Tertiary (possible Eocene, Oligo-<br>cene, or middle Miocene)                                                       |
| ENV{RONMENT:                                                                            | Nonmarine, warm temperate paleoclimate.                                                                             |
| 59-WL-77                                                                                |                                                                                                                     |

Gymnosperm pollen (C), <u>Tsuga</u> (F), <u>Laevigatosporites</u> sp. (F), <u>Polypodiaceae</u> (R), <u>Osmundacidites</u> sp. (R), <u>Betulaceae</u> (R), <u>Alnus</u> (R), <u>Fagus</u> [single, Tilia (single)] AGE: Tertiary (possible Eocene, Oligocene, or middle Miocene) ENVIRONMENT: Nonmarine, warm temperate paleoclimate.

#### 60-WL-77

Gymnosperm pollen (A), <u>Tsuga</u> (C), <u>Laevigatosporites</u> sp. (C), <u>Polypod iaceae</u> (F), <u>Pterocarya</u> (C), <u>Betulaceae</u> (F), <u>Alnus</u> (F), <u>Carya</u> (R), <u>Ulmus</u> (R), <u>Nyssa</u> (R), <u>Tilia</u> (F), Momipites (R), Fagus (R), Boisduvalia sp. (R).

AGE: Tertiary (possible Eocene, Oligocene, or middle Miocene) ENVIRONMENT: Non marine, warm temperate

paleoclimate.

#### 63-WL-77

Gymnosperm pollen (A), <u>Tsuga</u> (F), <u>Osmundacidites</u> sp. (F), <u>Lycopodiumsporites</u> sp. (R), <u>Polypodiaceae</u> (F), <u>Laevigatosporites</u> sp. (F), <u>Boisduvalia</u> sp. (R).

AGE: Tertiary ENVIRONMENT: Nonmarine, temperate paleoclimate.

#### 64-WL-77

Gymnosperm pollen (A), <u>Tsuga</u> (F), <u>Laevigatosporites</u> sp. (F), <u>Lycopodiumsporites</u> sp. (R), <u>Osmundacidites</u> sp. (R), <u>Betulaceae (R), Pterocarya</u> (R).

?Oligosphaeridium complex (single, reworked?).

AGE: Tertiary ENVIRONMENT: Probable nonmarine, temperate paleoclimate.

#### 66-WL-77

Gymnosperm pollen (A), <u>Tsuga</u> (C), <u>Laevigatosporites</u> sp. (F), <u>Lycopodiumsporites</u> sp. (R), <u>Betulaceae</u> (R), <u>Ulmus</u> (R), <u>Fagus</u> (R).

AGE: Tertiary ENVIRONMENT: Nonmarine, possible warm temperate paleoclimate

#### 68-WL-77

Gymnosperm pollen (A), <u>Tsuga</u> (A), <u>Osmundacidites</u> sp. (R), <u>Lycopodiumsporites</u> sp. (R), <u>Polypodiaceae</u> (R), <u>Betulaceae</u> (R), <u>Alnus</u> (F).

AGE: Tertiary ENVIRONMENT: Nonmarine, temperate paleoclimate

#### 76-WL-77

Gymnosperm pollen (C), <u>Tsuga</u> (C), <u>Osmundacidites</u> sp. (F), <u>Pterocarya</u> (R), <u>Carya</u> (R), <u>Ulmus</u> (R), <u>Juglans</u> (R), <u>Alnus</u> (F), <u>Boisduvalia</u> sp. (R).

<u>Micrhystridium</u> sp. (R), <u>Spiniferites</u> sp. (C), <u>Tuberculo-</u> <u>dinium vancampoae</u> (R), <u>Lejeunia hyalina</u> (single), ?<u>Op-</u> <u>erculodinium</u> sp. (R).

| AGE:         | Tertiary (probable early to middle |
|--------------|------------------------------------|
|              | Miocene)                           |
| ENVIRONMENT: | Marine (probable warm temperate    |
|              | paleoclimate)                      |

#### TABLE 8--MACROPALEONTOLOGY DETERMINATIONS

All macrofossils listed below are in the collections of the U.S. Geological Survey, Branch of Paleontology and Stratigraphy, Menlo Park, California. Identifications were made by Louie Marincovich.

Field locality 15-WL-77 (USGS Cenozoic loc. M7186).-Black Lake measured section, east of Black Lake near Range Peak, Chignik (B-3) Quadrangle; NW¼, Section 3, T. 43 S., R. 60 W.; latitude 56°30' N., longitude 158°43' W. Bear Lake Formation.

| Bivalves: | ?Clinocardium sp.                  |
|-----------|------------------------------------|
|           | ?Chione sp.                        |
| COMMENT:  | Specimens are all molds and casts, |
|           | poorly preserved.                  |

Field locality 16-WL-77 (USGS Cenozoic loc. M7187).—Same locality as 15-WL-77 above but about 23 meters (75 feet) stratigraphically lower in section.

| Bivalves: | Clinocardium sp.                      |
|-----------|---------------------------------------|
|           | Mya sp.                               |
| COMMENT:  | <u>Mya</u> is known in shallow water. |
|           | 0-50 m in depth. Clinocardium in      |
|           | 0-200 m depths. Age is in-            |
|           | determinate.                          |

Field locality 47-WL-77 (USGS Cenozoic loc. M7188).-68 m (225 feet) above base of measured section in sea cliff, west side of Beaver Bay north of Point Aliaksin, Aliaksin Peninsula, Port Moller Quadrangle; S½, Section 18, T. 54 S., R. 75 W.; latitude S5°30'N., longitude 161°W.; Unga Conglomerate Member of Bear Lake Formation.

| Bivalve:     | Chlamys (Swiftopecten) don-       |
|--------------|-----------------------------------|
|              | milleri MacNeil                   |
| Gastropod:   | Beringius hataii MacNeil          |
| AGE:         | Middle Miocene                    |
| ENVIRONMENT: | Probably inner neritic (0-100 m   |
|              | depth); temperate marine climate. |

Field locality 103-WL-77 (USGS Cenozoic loc. M7189).-Milky River measured section, 760 m (2,500 feet) above base of section; on north slope of valley above headwaters of Milky River, cast of Bear Lake, Port Moller (D-1) Quadrangle; Sections 33 and 34, T. 48 S., R. 69 W.; latitude 55°59' N., longitude 160°03' W. Bear Lake Formation.

| Bivalves:    | <u>Mytilus</u> ( <u>Plicatomytilus</u> ) sp. |
|--------------|----------------------------------------------|
|              | ? <u>Glycymeris</u> sp.                      |
|              | ?Cyclocardia sp.                             |
| Gastropod:   | Natica or Polinices sp.                      |
| AGE:         | Miocene                                      |
| ENVIRONMENT: | Water depth 0-50 m.                          |

Field locality 98-WL-77 (USGS Cenozoic loc. M7190).-Same locality as 103-WL-77 above but 143 m (472 feet) stratigraphically lower in Milky River section.

| Bivalve: | ? <u>Clin</u> | ocard | ium sp.     |          |
|----------|---------------|-------|-------------|----------|
| COMMENT: | Age           | and   | environment | indeter- |
|          | mina          | 1e.   |             |          |

Field locality 94-WL-77 (USGS Cenozoic loc. M7191).--Same locality as 98-WL-77 above but about 18 m (59 feet) stratigraphically lower in Milky River section.

| Gastropods:  | <u>Neptunea</u> ( <u>Neptunea</u> ) <u>plafkeri</u><br>Kanno |
|--------------|--------------------------------------------------------------|
|              | Neptunea (Neptunea) lyrata<br>(Gmelin) subspecies            |
| AGE:         | Late early Miocene to late                                   |
| ENVIRONMENT: | Miocene.<br>Indeterminate.                                   |

Field Jocality 86-WL-77 (USGS Cenozoic loc. M7192).-Same locality as 94-WL-77 above but about 82 m (270 feet) stratigraphically lower in Milky River section.

| Gastropod:    | Neptunea (Neptunea) lyrata          |
|---------------|-------------------------------------|
|               | (Gmelin) subspecies                 |
| Bivalve:      | ? <u>Mya</u> sp.                    |
| Plant debris: | Carbonized leaf fragments occur     |
|               | as very thin laminations in matrix. |
| AGE:          | Indeterminate.                      |
| ENVIRONMENT:  | Mya inhabits depths of 0-50 me-     |
|               | ters in modern seas.                |

Field to cality 105-WL-77 (USGS Cenozoic loc. M7193).—Same locality as 86-WL-77 above but about 152 m (500 feet) stratigraphically lower in Milky River section.

| Bivalves: | Acila sp. Indeterminate bivalve.        |
|-----------|-----------------------------------------|
| COMMENT:  | Age and environment indeter-<br>minate. |

Field locality 42-GB-77 (USGS Cenozoic loc. M7194), -Same locality as 105-WL-77 above but about 51 m (170 feet) stratigraphically lower in Milky River section.

| Gastropod:<br>AGE: | <u>Crepidula</u> <u>ungana</u> Dall<br>Miocene. |    |
|--------------------|-------------------------------------------------|----|
| AGE:               | Milocene.                                       |    |
| ENVIRONMENT:       | Crepidula inhabits depths                       | ٥ſ |
|                    | 0-165 meters in modern seas.                    |    |

Field locality 42-}M-77 (USGS Cenozoic loc. M7195).-Southeast Bear Lake measured section, about 250 m (830 feet) above base of section; on west slope of Bear River valley, south of Bear Lake, Port Moller (D-1) Quadrangle; Section 20, 7. 49 S., R 70 W.; latitude 55° 55' N., longitude 106°10' W. Bear Lake Formation.

| Bivalves:  | <u>Clinocardium</u> sp.      |
|------------|------------------------------|
|            | ?Spisula sp.                 |
|            | ?Podadesmus sp.              |
|            | Macoma sp.                   |
| Gastropod: | ?Neptunea sp.                |
| COMMENT:   | Age and environment indeter- |
|            | minate.                      |

Field locality 43-JM-77 (USGS Cenozoic loc. M7196).—Same locality as 42-JM-77 above but about 23 m (75 feet) stratigraphically higher in southeast Bear Lake measured section.

| Bivalves:    | <u>Clinocardium</u> sp.            |
|--------------|------------------------------------|
|              | Ostrea sp.                         |
|              | ? <u>Mya</u> sp.                   |
|              | ? <u>Protothaca</u> sp.            |
| AGE:         | Indeterminate.                     |
| ENVIRONMENT: | Ostrea (oysters) inhabit depths of |
|              | 0-35 meters in modern seas.        |

Field locality 45-JM-77 (USGS Cenozoic loc. M7197). -Same locality as 43-JM-77 above but about 30 m (100 feet) stratigraphically higher in Southeast Bear Lake measured section.

| Bivalve:   | <u>Ostrea</u> sp.                                        |
|------------|----------------------------------------------------------|
| Gastropod: | ? <u>Turritella</u> sp.                                  |
| COMMENT:   | Age indeterminate; Ostrea (oys-                          |
|            | ters) inhabit depths of 0-35 me-<br>ters in modern seas. |
|            | ters in modern seas.                                     |

Field locality 12-GB-77 (USGS Cenozoic loc. M7198).-Waterfall point stratigraphic section, about 108 m (355 feet) stratigraphically above base of section; along beach of Clarks Bay, near Waterfall Point, Port Molfer (C-1) Quadrangle; Section 30, T. 53 S., R. 74 W., latitude 53°43' N., longitude 160°01' W. Stepovak Formation (Burk, 1965).

| Bivalves:    | Macrocallista sp.   |
|--------------|---------------------|
|              | ? <u>Macoma</u> sp. |
| AGE:         | Tertiary            |
| ENVIRONMENT: | Indeterminate.      |

Field locality 77-SWH-13 (USGS Cenozoic loc. M7199),—Same locality as 12-GB-77 above but stratigraphic position of sample was not provided.

Sediment-filled burrow of unknown origin.

Field locality 47-GB-77 (USGS Cenozoic loc. M7200).—Measured section at Cape Tachilni, locality 5 m (16 feet) above base of section; False Pass (D-3) Quadrangle; Section 35, T. 60 S., R. 90 W.; latitude 54° 56' N., longitude 162°52' W. Tachilni Formation.

| Bivalves:    | Venerid-mold of interior shell  |
|--------------|---------------------------------|
|              | features                        |
|              | Clinocardium sp.                |
|              | Mytilus sp.                     |
| AGE:         | Indeterminate.                  |
| ENVIRONMENT: | Mytilus inhabits depths of 0-40 |
|              | meters in the modern northeast- |
|              | ern Pacific.                    |

Field locality 51-GB-77 (USGS Cenozoic loc. M7201).—Same locality as 47-GB-77 above but 47 m (155 feet) higher stratigraphically in same section.

| Bivalves:    | <u>Glycymeris</u> sp.               |
|--------------|-------------------------------------|
|              | Clinocardium sp.                    |
|              | Chlamys (Swiftopecten) cf. C. (S.)  |
|              | leohertleini MacNeil Venerid sp.    |
| Gastropods:  | <u>Natica</u> (Cryptonatica) clause |
|              | Broderip & Sowerby                  |
|              | ?Neptunea sp.                       |
| Echinoderm:  | Fragment of sand dollar echinoid.   |
| AGE:         | Pliocene                            |
| ENVIRONMENT: | Cool-temperature or colder hydro-   |
|              | climate.                            |

Field locality 53-GB-77 (USGS Cenozoic loc. M7202).—Same locality as 51-GB-77 above but located stratigraphically higher and 0.2 m (2 feet) above a break in the section.

| Bivalves:    | <u>Thyasira disjuncta</u> (Gabb)    |
|--------------|-------------------------------------|
|              | Mya sp.                             |
| AGE:         | Oligocene to Holocene.              |
| ENVIRONMENT: | Mya inhabits depths of 0-50 me-     |
|              | ters in the modern northeastern     |
|              | Pacific. Thyasira is a cool-temper- |
|              | ature or colder water inhabitant.   |

Field locality 55-GB-77 (USGS Cenozoic loc. M7203).—Same locality as 53-GB-77 above but 2.4 m (8 feet) higher stratigraphically in the same section.

| Bivalves:    | <u>Clinocardium</u> sp.             |
|--------------|-------------------------------------|
|              | <u>Nemocardium sp.</u>              |
|              | Macoma sp.                          |
|              | ?Cyrtodaria sp.                     |
| Gastropods:  | Natica (Cryptonatica) clausa        |
|              | Broderip & Sowerby                  |
|              | Margarites c1. M. costalis (Gould)  |
| AGE:         | Pliocene                            |
| ENVIRONMENT: | Inner neritic (0-100 meters), cool- |
|              | temperature hydroclimate.           |

Field locality 4-IP-77 (USGS Cenozoic loc. M7204).-Float specimens from West Morzhovoi Bay stratigraphic section, False Pass Quadrangle; Section 35, T. 60 S., R. 90 W.; latitude 54°56' N., longitude 162°52' W. Tachilni Formation.

| Bivalves:    | <u>Clinocardium</u> sp.                                    |
|--------------|------------------------------------------------------------|
|              | Macoma sp.                                                 |
|              | <u>Mya</u> ( <u>Arenomya</u> ) cf. <u>M.</u> ( <u>A</u> .) |
|              | arenaria Linnaeus.                                         |
| AGE:         | Miocene or younger.                                        |
| ENVIRONMENT: | Inner part of inner neritic (0-50                          |
|              | meters depth), cool-temperature                            |
|              | or colder hydroclimate.                                    |

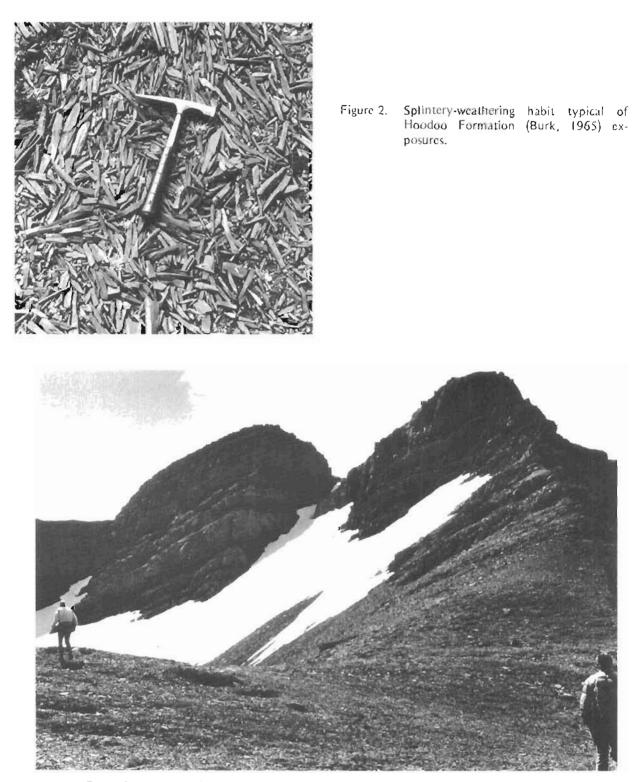



Figure 3. Upward-thickening sequence of Tolsto: Formation (Burk, 1965) sandstone beds exposed in the northeast quarter of sec. 6, T. 54 S., R. 76 W., S.M. (plate D).

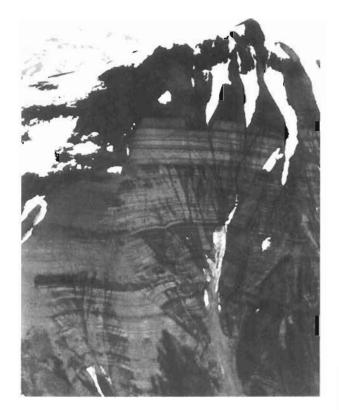



Figure 4. Black Lake stratigraphic section exposed east of Black Lake. The light-colored bands in this Bear Lake Formation exposure are generally sandstone.



Figure 5. Upper sandy unit (light-colored) of Black Lake stratigraphic section (see fig. 4). tertiary formations and associated mesozoic rocks in the alaska peninsula area, alaska 57



Figure 6. Upper part of the Milky River stratigraphic section. These Miocene strata of the Bear Lake Formation are unconformably overlain by younger volcanics (shown in the upper left).



Figure 7. Lower part of the Milky River stratigraphic section of the Bear Lake Formation. Arrow indicates correlation marker with upper part of section.



Figure 8. Crossbedded sandstone of the Bear Lake Formation common in upper part of Milky River stratigraphic section.



Figure 9. Southeast Bear Lake stratigraphic section. These Bear Lake Formation beds are overlain by volcanics (shown in upper part of photograph).

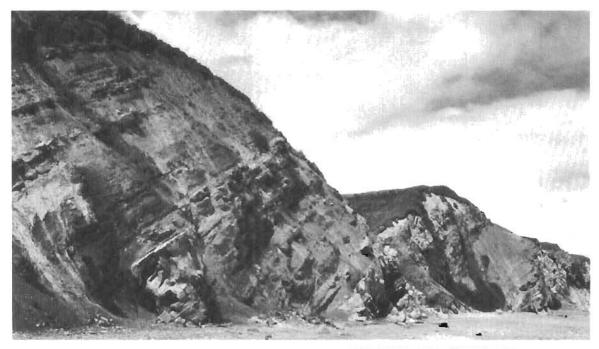



Figure 10. Heren stratigraphic sections showing beds of the Tolstoi Formation (Burk, 1965) exposed along west Herendeen Bay. The sections are separated by a fault of unknown throw.

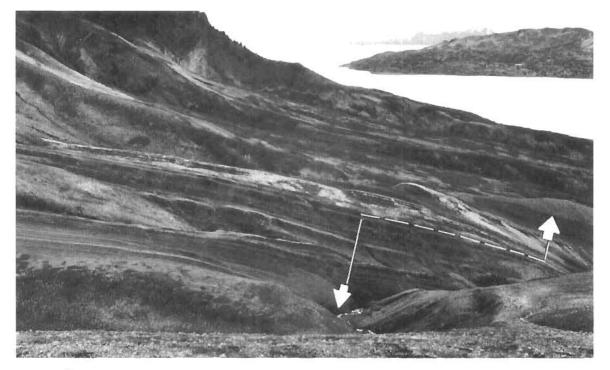



Figure 11. Upper part of Lefthand Bay-Balboa Bay stratigraphic section showing heds of the Stepovak Formation (Burk, 1965). View is to the south.



Figure 12. Beaver Bay stratigraphic section exposing strata of the Oligocene Stepovak Formation (Burk, 1965).



Figure 13. Aliaksin Peninsula stratigraphic section showing strata of the Bear Lake Formation.

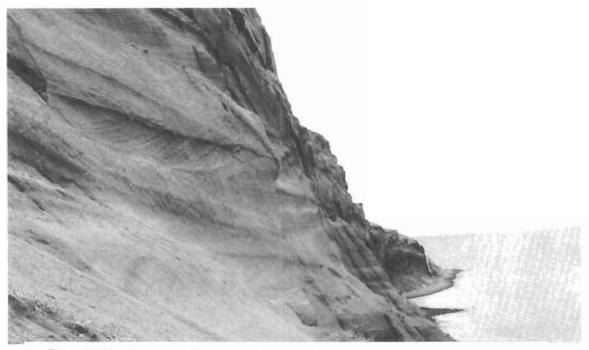



Figure 14. Massive crossbedded unit in the Bear Lake Formation, Aliaksin Peninsula stratigraphic section. View is to the south

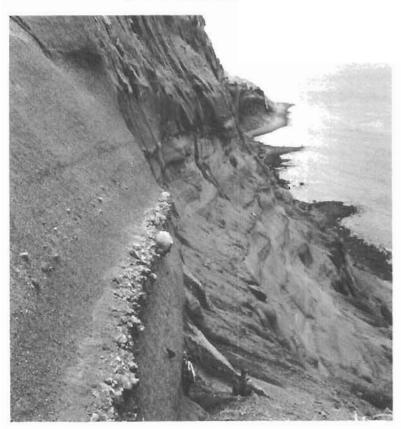



Figure 15. South-looking view of conglomerate tipping a sandstone unit of the Bear Lake Formation, Aliaksin Peninsula stratigraphic section.



Figure 16 "Fossil-hash" sandstone unit in the Bear Lake Formation, Atlaksin Peninsula stratigraphic section



Figure 17. Burrowed unit in Bear Lake Formation, Aliaksin Peninsula stratigraphic section

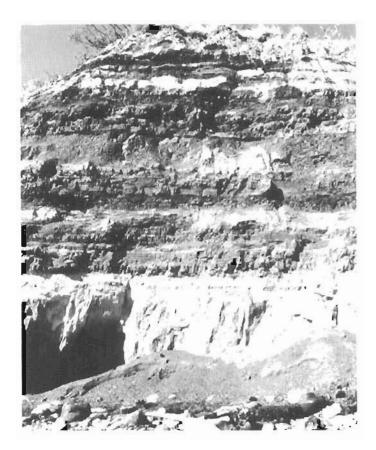



Figure 18. Lower part of the White Bluff stratigraphic section showing Bear Lake Formation strata, Unga Island.



Figure 19. Middle part of the White Bluff stratigraphic section, showing Bear Lake Formation strata, Unga Island.



Figure 20. Upper part of the White Bluff stratigraphic section showing Bear Lake Formation strata, Unga Island, View is to the north.

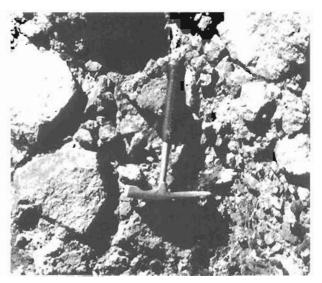



Figure 21. Agglomerate unit in the Bear Lake Formation capping the White Bluff stratigraphic section.



Figure 22. East Morzhovoi Bay stratigraphic section showing the Tachilni Formation. This formation is exposed in several places along the bay.



Figure 23. Authors Bolm (left) and Lyle working on a fossiliferous ledge in the Tachilni Formation, East Morzhovoi Bay section.

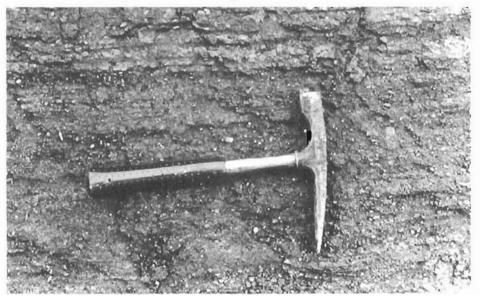



Figure 24. Shale rip-up layers in the Tachilni Formation, East Morzhovoi Bay stratigraphic section.