Juneau, Alaska, May 17,1942

Received from B. D. Stewart, Commissioner of Mines, one typed copy of Territorial Department of Mines report entitled:

"The Occurrence of Chromite in the Ketchikan District, Alaska".

5/11/ 42

Otto Wihl,

Alaskan Hotel,

Called and inquired about chromite deposits on Mt. Burnett. Says he was referred to me by Dr.Peterson of Ketchikan, who wants to dispose of his interests there.

Wihl says he is associated with

L.H.Brown, (An individual, not a company)
78 Bush St.,
San Francisco, Calif.

Tops - raig /

SUMMARY OF RESULTS OF MINING INVESTIGATIONS 3. D. STHOWART IN THE RETCHIKAN DISTRICT BY THE TERRITORIAL Commissioner of Minas DEPARTMENT OF MINES DURING JUNE, 1938. K. 119.117

The discovery and positive identification of the mineral chromite of commercial quality on Cleveland Peninsula in the Ketchikan district has been one of the interesting high lights of this season's investigation in that area. Its discovery was made by an associate engineer for the Department. It is in a new un-mapped and unprospected area. The Ketchikan district recorder states that no claims are on record as being held in the area.

The mineral chromite (FeO-Cr203) is a chromate of iron and when in pure state contains 68 per cent chromic oxide. Chromic oxide contains the element chromium, a brilliant tin-white, comparatively rere metal, which is hard, brittle, and refractory. Chromium is alloyed with steel in making chromium-steel. It hardens intensely on sudden cooling and is used for the manufacture of armor-piercing projectiles, safe-plates, and crushing machinery. It contains about 16 per cent chromium, does not rust under ordinary conditions, and is also called stainless steel. The uses of stainless steel are numerous and becoming rapidly adopted to many industries. The platinum metals are often associated with this mineral. Whether or not platinum is present in this area has not been determined due to lack of assays.

The geology of the area compares somewhat to the Red Mountain area of Goodnews Bay in the assemblage the ultra-basic rocks. Should platinum be found associated, the chances for platinum placer deposits are very unlikely due to the severe glacial action and the lack of concentrating agencies since glacial times.

The area referred to above is Mt. Burnett, located on Cleveland Peninsula between Vixen Inlet and Union Bay and the high mountain ridge that extends to the northwest. This area has been known by the Department for sometime to be composed of ultra-basic rocks. The upper portion of the mountain is barren and from a distance appears very red in color and is locally known as Red Mountain. In the early prospecting days, 1900, this mountain was prospected for gold. Negative results were obtained. since geological conditions are not favorable to gold deposition. Irregular bunches of magnetite were found on the ridge north of Mt. Burnett at that time. Since magnetite and chromite are two minerals of nearly the same hardness, have the same black metallic color, luster, and crystal system, the mineral chromite was not identified, according to reports of that time. June 26 a trip was made to the top of Mt. Burnett and along its extension. Chromite was found associated with magnetite in the dunitepyroxenite core of the mountain in irregular bunches, small masses and as a crystalline constituent of the rock. Its occurrence is similar to most deposits of this mineral -- the result of magmatic segregation.

A return trip was made to the area and the general geology was mapped. This reveals a very interesting structure. Mt. Burnett and associated ridge to the north is an intrusive mass which has come up through metamorphic schists and sediments that occupy a wide belt on the west side of the coast batholith. Generally, the whole mass is a segregation of the various basic rocks occurring in bands that encircle the mass. These range from peridotite to hornblendite and gabbro, alternating around the base to pyroxenite and dunite as a central core. Many black basic dikes cut through the schists on all sides at various strikes.

The chromite was traced by numerous pieces of float and irregular outcroppings for two miles along the high ridge of Mt. Burnett. This chromite has some magnetite associated, but some bunches occur very pure. On the high ridge northwest of Mt. Burnett it was again found for a distance of over two miles. Here considerable more magnetite is associated and the dunite-pyroxenite areas are spotty, intermixed, and smaller than the main mass on Mt. Burnett. Large bunches of magnetite were noted.

In regard to commercial bodies, no statement can be made, as assays have not been received. To sample the best areas seen would require considerable time and expenses. First the area will require careful prospecting with considerable development work. Should commercial bodies be proven the area is very favorable for transportation, as it is within two to three miles of the beach and sloping toward it. The present discoveries are from 1500 feet to 2400 feet in elevation. A small amount of water power could be developed from the lake and river at the head of Vixen Inlet. Less then half a mile from the head of Vixen Inlet this river has a 30-foot fall. The lake is over a mile in length, two miles from salt water, and has an elevation of 160 feet.

During field investigations in the Ketchikan and Petersburg districts a total of 20 properties were visited. Considerable time was spent in the Hollis area on Prince of Wales Island. Here in the vicinity of Granite Mountain is a gold mineralization that is considerably different from the usual type found along the east coast of this island. It is noteworthy for its gold content.

The new mill and operations of the Flagstaff Mining Company were visited. This 25-ton ball mill is under operation, a noteworthy feature being the speed of its construction and the well planned operation. Mr. H. G. Wilcox is in charge of all operations for the summer and is handling the operation in a very efficient manner.

Operations on the Kassan Gold property by Wendell Dawson are very encouraging.

The Hope Mine at Hollis has been sold to Adams & Erickson who are operating the mill this season.

Copper ore of shipping grade was found on two properties on the Kasaan Peninsula. Molybdenite was found associated with one of the copper ores.

Considerable time was spent at Helm Bay. The industry looks encouraging here. Bert Libe is cross-cutting a likely zone on the old Portland group. A few thousand dollars worth of ore was pointed out to the present operators of the Gold Standard.

Several other likely prospects were seen, however, information concerning them cannot at this time be given out.

Generally, the mining interest in the district is considerably greater than it was two years ago.

The condition at the Territorial assay office at Ketchikan is ample proof of the increasing interest and activity. The assayer is loaded with samples and many assays are delayed due to this condition. So much has the volume of assaying increased that a helper for a period sufficient to catch up has been ordered by the Commissioner of Mines.

Samples of chromite from Mt. Burnett are on display at the Territorial Department of Mines office in Juneau and at the Territorial assay office in Ketchikan. Further information regarding this discovery and area may be obtained from the Territorial Department of Mines office at Juneau, Alaska.

Tile leopy, RE-mitten and edited by

OF ALASKA TERRITORY

BDJ- 4-10-42 TERRITORY OF ALASKA

DEPARTMENT OF MINES

#. Fauchman Leather

J. G. Galvin —

THE OCCURRENCE OF CHROMITE

IN THE

KETCHIKAN DISTRICT, ALASKA.

** Shaper Sh

The following excerpt is quoted from a press redated August 1, 1938 that was issued by the Territorial Department of Mines:

"An interesting result of field investigations recently conducted in the Ketchikan mining precinct by the Territorial Department of Mines is the discovery of the occurrence of the mineral chromite on Cleveland Peninsula.

The discovery was made by J. C. Rochm, associate engineer of the Department of Mines, who has been engaged for the past two months in examining mining properties and assisting prospectors in the Ketchikan region.

The locality where the chromite was found is along the summit of the divide that separates Vixen Inlet from Union Bay, which are indentations from Ernest Sound on the north coast of Cleveland Peninsula. The principal observed occurrences of the mineral are on and adjacent to the summit of Mt. Burnett, otherwise known locally as Red Mountain, and on the ridge that extends westerly from 1t toward Union Bay. By reason of its pronounced reddish oblor, and the absence of vegetation upon it, Mt. Burnett forms a conspicuous landmark.

Investigation and mapping of this mountain mass disclosed that it consists of a central core of dunite and pyroxenite surrounded by alternating bands of other ultra-basic rocks that include hornblendite, gabbro and pyroxenite, all of which have been intruded into a broad belt of altered sedimentary rocks. Many black basic dikes penetrate the schists adjacent to their contacts with the intrusives.

An oval mass of dunite approximately 2 miles long and 14 miles wide embraces the summit and flanks of Mt. Burnott. Within this area chromite occurs in the form of irregular bunches, small masses, and as a crystalline constituent of the rook. Althourh the chromite is associated with magnetite at some of the occurrences it is of a very pure quality at others.

Another oval mass about 2 miles long and one mile wide occupies the summit of the high ridge that extends westerly from Mt. Burnett. It lies about 3 miles distant from the first described mass. Within this second mass the dunite occurs intermixed with pyroxenite and the composition of the rocks is less uniform. Also, more magnetite is here associated with the chromite and large bunches of pure magnetite were observed. It is sometimes difficult to distinguish chromite from magnetite in the field. The surest method is by use of a magnet.

Much prospecting and development work will be required to determine the commercial value of these deposits. Even the proper sampling of the best deposits observed will require considerable time and expense.

Should commercially valuable bodies of chromite be proven the area is a favorable one for mining operations, as it is within 2 or 3 miles of deep water transportation. The mineral occurrences are at elevations ranging from 1,500 to 2,400 feet above sea level. A limited water power could be developed on the river that empties into the head of Vixen Inlet, and which flows within one mile of the principal chromite showings. This river issues from a lake more than a mile in length whose elevation is about 160 feet above sea level and whose outlet is within 2 miles of salt water. The river has a fall of 30 feet within less than one-half mile from its outlet."

The investigation that was made of the Mt. Burnett ultra-basic rocks in 1938 revealed only minor segregations of chromite ores. No orebodies of commercial size were observed. However, pieces of chromite in the form of float that were as much as two feet in length and 18 inches in diameter were seen. No attempt was made to sample the small masses of ore that were exposed but a few representative specimens were collected. From those specimens a sample representing as nearly as possible an average of the material exposed was prepared and assayed at the Territorial assay office in Ketchikan. The chromium metal content of this average sample was found to be 17.72 per cent, which corresponds to a Gr203content of 25.9%. The range in grade and composition of the material collected is indicated in the following tabulation of the results of assaying four individual specimens:

Porcentages

Specimen	Chromium Metal	Chromic Oxide (Cr203)	<u>Iro</u> n
No. 1	7.0	10.2	10.6
No. 2	25.8	37-7	20.2
No. 3	17.4	25.4	41.8
No. 4		metite but containage of chromium)	

Specimens numbers 3 and 4 were assayed for platinum but with negative results.

Upon receiving reports in 1941 to the effect that discovery had been made of two additional chromite bodies on Mt. Burnett by prospectors who had scarched the area subsequent to the investigations made by the Territorial Department of Mines in 1938, the area was revisited by Mr. Rochm in September 1941. He describes as follows his observations on these additional ore occurrences:

The lower of the two exposures lies at an elevation of 2150 feet above sea level on the barren northeast slope of MV. Burnett. It is in the form of a curved lens of ilmenite—ahromite ore situated at the apex of a nearly closed fold in the bedrock. The longest limb of this fold strikes N. 53° W. and dips northeasterly. The apex of the fold pitches steeply to the southeast. A solid mass of ore is exposed on the northwest limb of the fold over a length of about 30 feet and varying in thickness from 18 inches at the apex of the fold to one inch lower down on the limb. Small bunches and seams containing disseminated chromite extend along the apex of the fold for a distance of 200 feet and the ore appears to follow the apex down its steep dip to the southeast. A sample taken across this lens at its widest portion (18 ins.) assayed:

The upper exposure of ore lies 300 feet southwest of the lower one and at an altitude of 2250 feet. It consists of a flat-lying lens of ilmenite-chromite ore, the outcrop of which is 12 feet in length and the average width 20 inches, alongside of which lens lie several narrow seems of ore up to one inch in thickness. The massive lens has a low dip to the southwest. It does not appear to be related to any definite structural feature

of the bedrock and its depth is uncertain. The narrow seams of ore have a uniform strike of N. 45° V. and dip 42° southwest. They were traced continuously for a distance of over 300 feet horizontally and along their course at intervals a few irregular small bunches of massive ore were observed. A sample that was taken across 20 inches of flat-lying lens assayed as follows:

Or203 21.8% (Equivalent to 14.9 chrome metal)
Fe (Iron) 24.9%

A persistent search was made of the locality where these two exposures occur in an effort to find other and possibly larger lenses of ore, but without success. The total amount of ore in the two bodies above described is unimportant.

TERRITORY OF ALASKA DEPARTMENT OF MINES MEMORANDUM FOR THE PRESS

FOR RELEASE AUGUST 1, 1938.

Re-writter ordiles by

THE OCCURRENCE OF CHRONITE IN THE RETCHIKAN DISTRICT, ALASKA.

An interesting result of field investigations recently attornial conducted in the Ketchikan mining precinct by the Territorial Department of Mines is the discovery of the occurrence of the Mines is the disco

The discovery was made by J. C. Roshm, associate engineer of the Department of Mines, who has been engaged for the past two months in examining mining properties and assisting prospectors in the Ketchikan region.

The locality where the chromite was found is along the summit of the divide that separates Vixen Inlet from Union Bay, which are indentations from Ernest Sound on the north coast of Cleveland Peninsula. The principal observed occurrences of the mineral are on and adjacent to the summit of Mt. Burnett, otherwise known locally as Red Mountain, and on the ridge that extends westerly from it toward Union Bay. By reason of its pronounced reddish color, and the absence of vegetation upon it, Mt. Burnett forms a conspicuous landmark.

Investigation and mapping of this mountain mass disclosed that it consists of a central core of dunite and pyroxenite surrounded by alternating bands of other ultra-basic rooks that include hornblendite, gabbro and pyroxenite, all of which have been intruded into a broad belt of altered sedimentary rocks. Many black basic dixes penetrate the schists adjacent to their contacts with the intrusives.

An oval mass of dunite approximately 2 miles long and 12 miles wide embraces the summit and flanks of Mt. Burnett. Within this area chromite occurs in the form of irregular bunches, small masses, and as a crystalline constituent of the rock. Although the chromite is associated with magnetite at some of the occurrences it is of a very pure quality at others.

Another oval mass about 2 miles long and one mile wide ocouples the summit of the high ridge that extends westerly from Mt. Burnett. It lies about 3 miles distant from the first described mass. Within this second mass the dunite occurs intermixed with pyroxenite and the composition of the rocks is less uniform. Also, more magnetite is here associated with the chromite and large bunches of pure magnetite were observed. It is sometimes difficult to distinguish chromite from nagnetite in the field. The surest method is by use of a magnet.

Much prospecting and development work will be required to determine the commercial value of these deposits. Even the proper sampling of the best deposits observed will require considerable time and expense.

Should commercially valuable bodies of chromite be proven the area is a favorable one for mining operations, as it is within 2 or 3 miles of deep water transportation. The mineral occurrences are at elevations ranging from 1,500 to 2,400 feet above sea level. A limited water power could be developed on the river that empties into the head of Vixen Inlet, and which flows within one mile of the principal chromite showings. This river issues from a lake more than a mile in length whose elevation is about 160 feet above sea level and whose outlet is within 2 miles of salt water. The river has a fall of 30 feet within less than one-half mile from its outlet.

The mineral chromite is used principally in metallurgical processes; especially in the manufacture of stainless steels of which it is the rust-preventing component. Although the United States is the largest consumer of chromite, it is one of the smallest producers. Large quantities of chromite ores are imported by this country. In 1936 the principal sources of supply, named in the order of their importance were: Africa, Oceania (New South Wales), Cuba, Greece, and Turkey. Probably the largest known deposits of chromite ores in the United States are situated in California and Montana. Other known deposits in Alaska are situated at Port Chatham and the nearby Red Mountain on the southerly tip of Kenai Peninsula (#); and at Red Bluff Bay on the east coast of Baranof Island.

During the World War approximately 20,000 tons of chromite ore was mined and shipped from the deposits at Port Chatham. Since that time the properties have been idle.

The name of Red Bluff Bay is derived from reddish color of the weathered ultra-basic rocks of dunite and serpentine types of which the conspicuous promontory that forms the north shore of the entrance to the bay is composed. These rocks contain scattered oc-

^(#) Described in U. S. Geol. Survey Bull. No. 742, Chromite of Kensi Peninsula, Alaska, by A. C. Gill.

currences of high-grade chromite, but the mineral has not yet been found there in bodies of commercial size.

The current price paid for chromite c.1.f. Atlantic coast ports range from \$18. to \$25. per long ton (2140 pounds) for ores that contain from 43 to 49 per cent chromic oxide (Cr203)

Further interest attaches to the mass of ultra-basic rocks found in the vicinity of Mt. Burnett on Cleveland Peninsula by reason of the similarity that exists in their composition and nature of occurrence to the platinum-bearing rocks of the Red Mountain area at Goodnews Bay.

Sampling and Assays

During the interval spent in obtaining the geology of Mt. Burnett and vicinity very little attention was given to sampling the central portion of the dunite masses which contained the disseminated chromite deposits. No massive bodies of chromite, other than minor segregations, were seen. However, sizable float pieces up to two feet in length and eighteen inches in dismeter were noted. Later reports were to the effect that small lenses were observed on the north side of Mt. Burnett ranging up to thirty feet in length and from two to three feet in width. These were reported found after the examinations.

Several pounds of chromite pieces were, however, collected during the various trips. These were pieces of high-grade chromite mixed with various pieces of lower grade containing magnetite and ilmenite. From these a sample was taken for assay to arrive at an average figure of chromium content. This sample, No. 441, consisting of ten pounds of chromium ore have a chromium content of 17.72 per cent. The sample was assayed at Territorial Assay Office at Ketchikan.

From the various samples representing the types of ore found on Mt. Burnett and the mountains north, four different types were sent to Territorial Assay Office at Fairbanks to determine the chromium and iron content and the presence of platinum minerals. Of these samples the following results were obtained:

		T :	VD8		Percentages			2 68
		-					Chromium	Iron
Sample	558	No.	1				7.0	10.6
Pt T	559	H	2				25. 8	20.2
6	5 6 0	*	3				17.4	41.8
н	561	4	Į.	WAS	found	to	be nearly	pure magnetite

Samples 560 and 561, which were assayed for platinum, were found lacking.

Sample No. 559, with the content of 25.8 per cent chromium has a chromium oxide (Cr_2O_3) content of 37.7 per cent. This is the only sample that is near a commercial ore - however, the iron content is rather high.

Commercial assays could possibly be obtained from picked pieces from selected areas. However, these would not represent any massive ore bodies. Further prospecting for ore bodies may, however, reveal commercial bodies.

La runia Coma Rain X, , , x

TERRITORY OF ALASKA DEPARTMENT OF MINES MEMORANDUM FOR THE PRESS

FOR RELEASE AUGUST 1, 1938.

THE OCCURRENCE OF CHROMITE IN THE KETCHIKAN DISTRICT, ALASKA.

An interesting result of field investigations recently conducted in the Ketchikan mining precinct by the Territorial Department of Mines is the discovery of the occurrence of the mineral chromite on Cleveland Peninsula.

The discovery was made by J. C. Roshm, associate engineer of the Department of Mines, who has been engaged for the past two months in examining mining properties and assisting prospectors in the Ketchikan region.

The locality where the chromite was found is along the summit of the divide that separates Vixen Inlet from Union Bay, which are indentations from Ernest Sound on the north coast of Cleveland Peninsula. The principal observed occurrences of the mineral are on and adjacent to the summit of Mt. Burnett, otherwise known locally as Red Mountain, and on the ridge that extends westerly from it toward Union Bay. By reason of its pronounced reddish color, and the absence of vegetation upon it, Mt. Burnett forms a conspicuous landmark.

Investigation and mapping of this mountain mass disclosed that it consists of a central core of dunite and pyroxenite surrounded by alternating bands of other ultra-basic rocks that include hornblendite, gabbro and pyroxenite, all of which have been intruded into a broad belt of altered sedimentary rocks. Many black basic dikes penetrate the schists adjacent to their contacts with the intrusives.

An oval mass of dunite approximately 2 miles long and 1 miles wide embraces the summit and flanks of Mt. Burnett. Within this area chromite occurs in the form of irregular bunches, small masses, and as a crystalline constituent of the rock. Although the chromite is associated with magnetite at some of the occurrences it is of a very pure quality at others.

Another oval mass about 2 miles long and one mile wide occupies the summit of the high ridge that extends westerly from Mt. Burnett. It lies about 3 miles distant from the first described mass. Within this second mass the dunite occurs intermixed with pyroxenite and the composition of the rocks is less uniform. Also,

more magnetite is here associated with the chromite and large bunches of pure magnetite were observed. It is sometimes difficult to distinguish chromite from nagnetite in the field. The surest method is by use of a magnet.

Much prospecting and development work will be required to determine the commercial value of these deposits. Even the proper sampling of the best deposits observed will require considerable time and expense.

Should commercially valuable bodies of chromite be proven the area is a favorable one for mining operations, as it is within 2 or 3 miles of deep water transportation. The mineral occurrences are at elevations ranging from 1,500 to 2,400 feet above sea level. A limited water power could be developed on the river that empties into the head of Vixen Inlet, and which flows within one mile of the principal chromite showings. This river issues from a lake more than a mile in length whose elevation is about 160 feet above sea level and whose outlet is within 2 miles of salt water. The river has a fall of 30 feet within less than one-half mile from its outlet.

The mineral chromite is used principally in metallurgical processes; especially in the manufacture of stainless steels of which it is the rust-preventing component. Although the United States is the largest consumer of chromite, it is one of the smallest producers. Large quantities of chromite ores are imported by this country. In 1936 the principal sources of supply, named in the order of their importance were: Africa, Oceania (New South Wales), Guba, Greece, and Turkey. Probably the largest known deposits of chromite ores in the United States are situated in California and Montana. Other known deposits in Alaska are situated at Port Chatham and the nearby Red Mountain on the southerly tip of Kenai Peninsula (#); and at Red Bluff Bay on the east coast of Baranof Island.

During the World War approximately 20,000 tons of chromite ore was mined and shipped from the deposits at Port Chatham. Since that time the properties have been idle.

The name of Red Bluff Bay is derived from reddish color of the weathered ultra-basic rocks of dunite and serpentine types of which the conspicuous promontory that forms the north shore of the entrance to the bay is composed. These rocks contain scattered oc-

^(#) Described in U. S. Geol. Survey Bull. No. 742, Chromite of Kenai Peninsula, Alaska, by A. C. Gill.

currences of high-grade chromite, but the mineral has not yet been found there in bodies of commercial size.

The current price paid for chromite c.i.f. Atlantic coast ports range from \$18. to \$25. per long ton (2140 pounds) for ores that contain from 43 to 49 per cent chromic oxide (Cr203)

Further interest attaches to the mass of ultra-basic rocks found in the vicinity of Mt. Burnett on Cleveland Peninsula by reason of the similarity that exists in their composition and nature of occurrence to the platinum-bearing rocks of the Red Mountain area at Goodnews Bay.

Sampling and Assays

During the interval spent in obtaining the geology of Mt. Burnett and vicinity very little attention was given to sampling the central portion of the dunite masses which contained the disseminated chromite deposits. No massive bodies of chromite, other than minor segregations, were seen. However, sizable float pieces up to two feet in length and eighteen inches in diameter were noted. Later reports were to the effect that small lenses were observed on the north side of Mt. Burnett ranging up to thirty feet in length and from two to three feet in width. These were reported found after the examinations.

Several pounds of chromite pieces were, however, collected during the various trips. These were pieces of high-grade chromite mixed with various pieces of lower grade containing magnetite and ilmenite. From these a sample was taken for assay to arrive at an average figure of chromium content. This sample, No. 441. consisting of ten pounds of chromium ore have a chromium content of 17.72 per cent. The sample was assayed at Territorial Assay Office at Ketchikan.

From the various samples representing the types of ore found on Mt. Burnett and the mountains north, four different types were sent to Territorial Assay Office at Fairbanks to determine the chromium and iron content and the presence of platinum minerals. Of these samples the following results were obtained:

		<u>T</u> ;	Type				Percentages		
6	«	31.4	7				Chromium	<u>Iron</u>	
Sample	558	No.	7				25 8	20.2	
Ħ	560	ll.	3				17.4	41.8	
Ĥ	561	it	ŢĻ	was	found	to	be nearly	pure magnetite	

Samples 560 and 561, which were assayed for platinum, were found lacking.

Sample No. 559, with the content of 25.5 per cent chromium has a chromium oxide (Cr₂O₃) content of 37.7 per cent. This is the only sample that is near a commercial ore - however, the iron content is rather high.

Commercial assays could possibly be obtained from picked pieces from selected areas. However, these would not represent any massive ore bodies. Further prospecting for ore bodies may, however, reveal commercial bodies.

JUNEALL, ALASKA

March 23, 1942

Mr. B. D. Stewart Territorial Commissioner of Mines Juneau, Alaska

Dear Mr. Stewart:

I understand that Mr. Rohn or one of your territorial engineers had made a report on the Union Bay chrome deposit. Union Bay is located on the southeast coast of Alaska on Cleveland Peninsula about thirty miles north of Ketchikan.

I have been informed that one of your engineers, and I think it was Mr. Rohn, had made his report on this chrome deposit. I wish you would please send me any information you have on the same to 1119 Boren Avenue, Seattle, Washington.

Respectfully,

G. Galvin

J30:ms

Mr. J. G. Galvin 1119 Boren Avenue Seattle, Washington.

Dear Mr. Galvin:

In response to your letter of Merch 23rd there is enclosed copy of a memorandum I have prepared on the occurrence of chromite in the Ketchikan District. This deals with the deposits on Mt. Burnett adjacent to Union Bay on Cleveland Peninsula to which your letter refers.

Very truly yours,

BDS:B Enclosure

B. D. Stewert Commissioner of Mines

Mrangell, Alaska June 11th, 1942

Mr. J. C. Roehm Ketchikan, Alaska

Dear Mr. Roehm:

I just returned from Cleveland Peninsula and received your letter and map and thank you very much for same.

I have written Mr. B. D. Stewart asking him for any additional dava he may have on chrome deposits on the southeast coast. I also told him that we have found five separate chrome deposits in the Vixen Inlet sector, and asked him if it were convenient for him to have you visit the properties again. In the event that I should not be here, Mr. Oarl Shumaker, who was with me in the staking and sampling of the ore deposits would be here to go with you. He is the man you met while you were in Wrangell.

He knows where all those deposits are and also the trails and shortcuts leading to them.

I expect to leave here in about ten days for Seattle and will have spectrographic tests and assays made of the samples.

Hoping to see you soon again, I am

Yours truly, Julian

of Main

Wrangell, Alaska June 11th, 1942

Mr. E. D. Stewart Commissioner of Mines Juneau, Alaska

Dear Lr. Stewart:

I received your letter of April 13th, with the information in regards to Cleveland Peninsula chromite and I thank you very much for same. If you have any additional information on these deposits I wish that you would send it to me, or if you have any information on any other chrome deposits on the southeast coast, I would be thankful for the information.

The delay in answering your letter was due to the fact that it was mailed to Seattle and forwarded to me in Wrangell, at which time I was at Vixen Inlet.

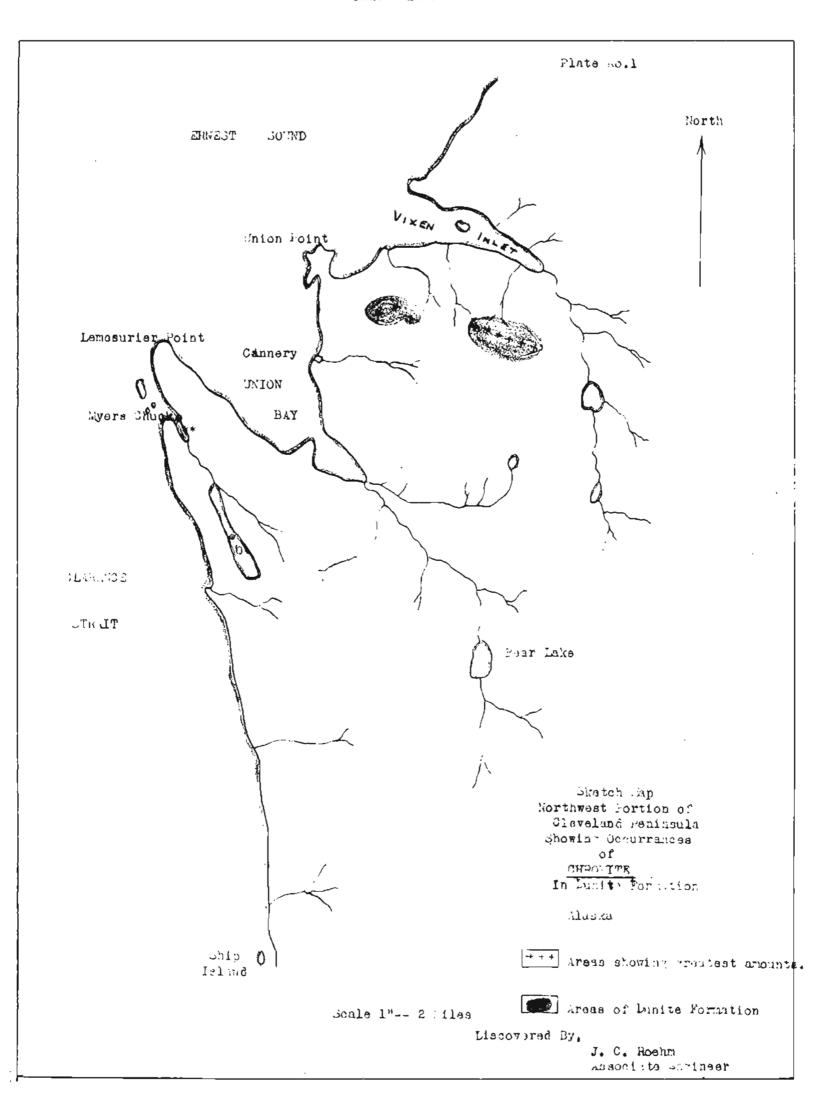
I am going out tomorrow to sample a graphite property about fifteen miles up the Stikine liver, near Popoff Glacier. I understand that Mr. Buddington visited this property some years ago; if you have any data on same, I would be glad to get that information.

192-1985-1997

139-189-1997

While I have not as yet had any assays made on the chrome deposits near Vixen Inlet and on Cleveland Peninsula, I have reason to believe that some producing chrome deposits will be developed in that section, as we found five different chrome deposits—one of them a very large one. The chrome was exposed for a width of about two hundred feet and a length of about five hundred feet. It seems to occur in a big dome, which is exposed at a heighth of about one hundred twenty five feet.

I had the pleasure of meeting Mr. Roehm when he went through Wrantell and he gave me some helping information as to this deposit. If it is convenient for you, I would be very nice to have Mr. Roehm visit this property, as I think we have showings additional to those seen on his other visit. In case I should not be here to go with him, Mr. Carl Shumaker, who was with me and helped me stake and sample the property, and who knows where all those showings of chromite are, would go with Mr. Roehm and show him the several deposits.


I expect to leave for Seattle in about ten days, and I will have spectrographic analysis of the samples and also have them assayed.

Thanking you sin for the information you sent me, I am NOT IID

Yours truly. IN 2 ? 1942

TERRITORIAL LOGARITHMY FILIUS Junoau, 4148ka

Nino 1938

