Public-data File 86-51

CHEMICAL AND BIOLOGICAL WATER QUALITY OF SELECTED STREAMS IN THE BELUGA COAL AREA, ALASKA

Ву

Mary A. Maurer

Alaska Division of Geological and Geophysical Surveys

June 1986

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

794 University Avenue, Basement Fairbanks, Alaska 99709

CONTENTS

	Page
Abstract	ì
Introduction	I
Study area	3
Methods	3
Chemical	3
Biological	6
Results and discussion	8
Chemical water quality	8
Field variables	8
Dissolved constituents	11
Trace metals and minor elements	12
Nutrients	15
Biological water quality	19
Invertebrate abundance	19
Invertebrate composition	23
Benchic ecology	25
Conclusions	27
References cited	28
Appendices	31
FIGURES	
Figure 1. Map showing location of benthic invertebrate and chemical	
water-quality sampling sites	4
Figure 2. Graph showing stream discharge at chemical water-	
quality sampling sites	9
Figure 3. Trilinear diagram of water analyses	9
Figure 4. Graph showing seasonal variation in total aluminum,	
total iron, and dissolved iron concentrations	14
Figure 5. Graph showing seasonal variation in concentrations of	
nitrogen and phosphorus fractions	16
Figure 6. Graphs showing benthic invertebrate density, wet weight	
biomass, mean number of taxa, and diversity	21
Figure 7. Percent composition of benthic invertebrates	24
TABLES	
IABBLO	
Table 1. Comparison of benthic invertebrate density, biomass,	
diversity, evenness, and number of taxa between streams,	
months, and years	20
APPENDICES	
Appendix A. Field variables and major inorganic constituents of	
Beluga water-quality samples	31
Appendix B. Minor element analysis of Beluga water-quality	٠,
samples	33

Appendix C. Nutrient analysis of Beluga water-quality samples	37
Appendix D-1. Density, number of taxa, diversity, and evenness	
of benthic invertebrates collected in Middle Creek,	
June 15, 1983	38
Appendix D-2. Density, number of taxa, diversity, and evenness	
of benthic invertebrates collected in Lone Creek,	
June 15, 1983	40
Appendix D-3. Density, number of taxa, diversity, and evenness	
of benthic invertebrates collected in Middle Creek,	
August 25, 1983	42
Appendix D-4. Density, number of taxa, diversity, and evenness	
of benthic invertebrates collected in Lone Creek,	
August 25, 1983	44
Appendix D-5. Density, number of caxa, diversity, and evenness	
of benthic invertebrates collected in Middle Creek,	
June 14, 1984	46
Appendix D-6. Density, number of taxa, diversity, and evenness	
of benthic invertebrates collected in Lone Creek,	
June 14, 1984	48
Appendix D-7. Density, number of taxa, diversity, and evenness	
of benthic invertebrates collected in Middle Creek,	
August 29, 1984	50
Appendix D-8. Density, number of taxa, diversity, and evenness	
of benthic invertebrates collected in Lone Creek,	
August 29, 1984	52
Appendix E. Three-factor analysis of variance table, based on	
benthic-invertebrate abundance data	54
Appendix F. Wet-weight biomass of benthic invertebrates in	
Middle and Lone Creeks, June and August, 1983 and 1984	5.5
Appendix G-1. Habitat parameters of benthic-invertebrate	
sampling sites, June 15, 1983	56
Appendix G-2. Habitat parameters of benthic-invertebrate	
sampling sites, August 25, 1983	57
Appendix G-3. Habitat parameters of benthic-invertebrate	
sampling sites, June 14, 1984	58
Appendix G-4. Habitat parameters of benthic-invertebrate	

ABSTRACT

Chemical water quality was determined in five streams during 1983 and 1984 in the Beluga coal area to determine their premining condition. In addition to field measurements, inorganic constituents, trace metal, minor element and nutrient samples were collected. Benthic invertebrates were quantitatively samples in two of the five streams, Middle and Lone Creeks, to assess biological water quality. The results show that the five streams have good chemical water quality with high concentrations of dissolved oxygen and low concentrations of dissolved inorganic constituents, trace metals, minor elements, and nutrients. All streams have calcium-bicarbonate water, except lower Bishop Creek, which is a mixed type (calcium-sodium bicarbonate water). Low alkalinity values in all five streams indicate poor acid-neutralizing capablity. Increased streamflow, surface runoff, and suspended sediment elevate total metal and nutrient concentrations in June in Bishop and Capps Creeks. Total iron concentrations are relatively high in all five streams. Benthic-invertebrate community structure shows that biological water quality in Middle and Lone Creeks is good. Benthic invertebrate standing crop exceeds 12,000 invertebrates per meter² and number of taxa averages 19 in both streams. Although invertebrate densities vary among sites, the composition of the taxa is similar among sites. Chironomid midges are the most abundant taxa in both streams. High invertebrate density and numerous taxa are attributed to warm summer water temperatures, light suspended sediment loads, and groundwater-maintained winter baseflow.

INTRODUCTION

Surface coal mining is proposed to begin during the 1990's in the Beluga coal area. Surface-water quality protection is a primary concern in the

development of these proposed coal mines because of the highly valued fishery resources of the Chuitna River and the Beluga River and their tributaries. Planning for protection of the surface waters and their fishery resources can be enhanced through areal collection of baseline surface—water quality data prior to mining. Several studies have investigated surface—water quality in the Beluga coal area (Scully, 1981; Environmental Research and Technology, Inc. [ERT], 1984a, 1984b; Maurer and Toland, 1984). The purpose of this study is to supplement these prior studies by interpreting the second year data of the chemical water quality study and to present biological water—quality information on two streams that will be influenced by coal mining.

The specific objectives of the study are to: 1) determine baseline chemical water quality in five streams within the Beluga coal area, 2) assess biological water quality by determining the benthic invertebrate community in Middle and Lone Creek prior to mining, and 3) supplement baseline information to assess the effects of future coal mining on water quality. The emphasis of the chemical water-quality investigation is on trends in field variables, major inorganic constituents, and nutrients. Samples were collected to correspond with specific hydrologic flow conditions of early summer (June), late summer (August), early winter (December), and late winter (March). The focus of the biological water-quality investigations is to determine benthic invertebrate distribution and abundance. Benthic invertebrates were selected as biological indicators of water quality because they are relatively immobile, year-round inhabitants of streams, are sensitive to water chemistry and aquatic habitat changes, and are important food sources for fish (Cairns and Dickson, 1971).

STUDY AREA

The Beluga coal area is located in southcentral Alaska on the west side of Cook Inlet, about 80 km (50 mi) west of Anchorage (fig. 1). A detailed description of the physiography, climate, and stream characteristics is presented in Maurer and Toland, 1984. The location of chemical and biological water-quality sampling sites is shown on figure 1. Five nonglacial streams, Bishop Creek, Capps Creek, Middle Creek, Lone Creek, and the Chuitna River, were selected to obtain areal water-quality conditions in the Beluga coal area. Bishop Creek is the proposed control stream because no coal mining is planned within its watershed. All chemical water-quality sampling sites were located in the lower reaches of the streams, downstream from prospective mining. Macroinvertebrate sampling sites were located on Middle and Lone Creeks because of their proximity to a proposed surface coal mine (fig. 1). Sampling sites were selected at an upper, middle, and lower reach in Middle and Lone Creeks to assess the effects of future coal mining on invertebrate community structure.

METHODS

Chemical

Stream discharge was measured on each sampling date at the chemical water-quality sites with a Marsh-McBirney current meter according the U.S. Geological Survey methods (Carter and Davidson, 1968; Buchanan and Somers, 1969). Water temperature, dissolved oxygen concentration, and specific conductance were measured in the field with a digital 4041 Hydrolab. An Orion digital pH meter was used to measure field pH. Measurements of dissolved oxygen and pH were taken in low velocity reaches within the stream to avoid streaming effects across the membrane probes. Bicarbonate alkalinity was

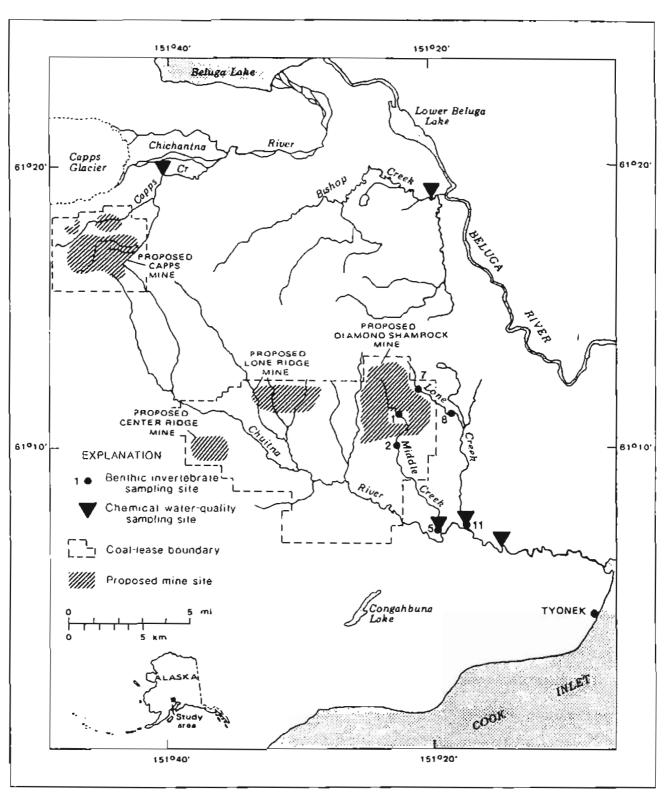


Figure 1. Location map of benthic invertebrate and chemical water-quality sampling sites, Beluga coal area.

Alaska.

measured in the field by titrating an untreated 200 ml sample with 0.01639N sulfuric acid to an electrometrically determined endpoint of pH 4.5 (U.S. Environmental Protection Agency [EPA], 1983).

All water samples were collected by the grab sampling technique. Samples for major inorganic constituents and dissolved trace-metal analysis were immediately filtered through a 0.45-um membrane filter. Total and dissolved trace-metal samples were acidified with double-distilled 70-percent nitric acid immediately after collection. Nutrient samples were untreated for total concentrations or filtered through a 0.45-um membrane filter for dissolved concentrations in the field and frozen within eight hours of collection.

Major inorganic constituents and total and dissolved trace metal samples were analyzed by Anatec Laboratories, Inc., in Santa Rosa, California. All inorganic constituents were analyzed according to U.S. EPA (1983) or American Public Health Association (APHA) methods (1980). With the exception of boron, trace metal concentrations were measured using atomic absorption spectrophotometry according to the methods of the U.S. EPA (1983). Boron concentrations were measured colorimetrically according to the methods of Wolf, 1974. Nutrient samples were analyzed at the Alaska Department of Fish and Game laboratory in Soldotna, Alaska. Concentrations of total phosphorus and total ammonia plus organic nitrogen were analyzed on a Technicon Auto Analyzer II. Dissolved nitrite plus nitrate and dissolved ammonia were analyzed in accordance with the methods of Stainton and others (1977). Two fractions of dissolved phosphorus, total filterable phosphorus and filterable reactive phosphorus, an estimate of orthophosphate, were measured according to the methods of Eisenreich and others (1975).

Biological

Three benthic invertebrate sampling sites (upper, middle, and lower) were selected to correspond to synoptic survey sites 1, 2, and 5 in Middle Creek and 7, 8, and 11 in Lone Creek (Maurer and Toland, 1984). Site 5 and 11 are located at chemical water quality sites (fig. !). Samples were collected over a two year period, during June and August of 1983 and 1984. Statistical analyses (Elliott, 1977) were performed on synoptic-survey invertebrate densities to estimate a suitable sample size per site in this study. The results indicated that ten samples per site in Middle Creek and three samples per site in Lone Creek were required for a standard error equal to 20 percent of the mean. Because this sampling schedule would greatly increase the time needed for sampling and analysis, the number of samples to be taken per site was compromised at four. Each stream reach was separated into four equal strata, parallel to streamflow. A stratified random sampling technique was used, that is, one sample was randomly chosen within each stratum. Habitat variables of water depth, stream width, and water temperature were measured at each site. Water velocity at the streambed was measured with a Marsh-McBirney current meter prior to sampling. Stream-substrate composition within the area of the samples was visually estimated by examining the relative percentages of boulder (>256 mm in diameter), rubble (64-256 mm in diameter), gravel (2-64 mm in diameter), and sand/silt (0.004-2.0 mm in diameter) (U.S. EPA, 1973).

A 0.6 meter high, 0.1 meter² cylindrical, aluminum substrate sampler was used to collect benthic invertebrates. The sides of the sampler's frame were covered with a net composed of 600-um (pore diameter) NITEX (Nylon) mesh netting on the front side to increase water flow through the sampler and 300-um NITEX netting on the back side and trailing collection bag. Samples

were collected by working the sampler into the streambed and displacing the rocks to dislodge invertebrates. Larger rocks were examined and shrubbed to insure that all invertebrates were removed. Invertebrates were washed into the collection bag and trapped in a detachable plastic bucket at the end of the bag. Samples were preserved in the field with a solution of 70-percent ethyl alcohol and water. Rose bengal bacteriological stain was added to the solution to facilitate sorting in the laboratory.

All invertebrates were hand-picked from sample debris and stored in 70percent ethyl alcohol in three dram vials. Insects were counted and
identified to the most practical taxonomic level using keys by Usinger (1956),
Jensen (1966), Smith (1968), Edmunds and others (1976), Baumann and others
(1977), Wiggins (1977), and Merritt and Cummins (1978). In many cases, very
small specimens could only be identified to the ordinal or family taxonomic
level. Non-insect invertebrates were identified to the class or ordinal level
using keys published by Pennak (1978).

Invertebrate biomass was determined in the laboratory by measuring the wet weight of all invertebrates in each benthic sample. Preserved invertebrates, the alcohol contents of the vial, and a 10-ml alcohol rinse were poured onto a tared 0.45-um membrane filter contained in a Millipore filtering unit. A vacuum-pump was hand-operated at a pressure of 30-cm mercury for one minute to remove the excess alcohol. The invertebrates and filter were then immediately weighed on an electronic balance to the nearest 0.001 grams.

Several quantitative methods were used to analyze invertebrate samples. Insect abundance was based on density (number of invertebrates per meter²). The number of taxa was determined by summing the taxonomic groups, that is, the number of identifiable insect families and other invertebrate groups, found in each sample. Invertebrate community structure was calculated using the Shannon-Weaver diversity index (H') and evenness (J') value (Poole, 1974). The formula for the Shannon-Weaver diversity index is $H' = -\frac{S}{i} p_i \log_2 p_1$, where s is the number of taxa and p_i is a proportion (total number of invertebrates of the ith taxa divided by the total number of invertebrates of all taxa). Evenness is expressed as $J' = H'/H'_{maximum}$ where $H'_{maximum} = \log_2 S$ (s = number of taxa). The diversity and evenness values for stream, year, and month were calculated on pooled samples, that is, all samples within the stream, year, or month were pooled (summed) to form a single sample.

A statistical three-factor analysis of variance (Zar, 1974) was performed on invertebrate density data to determine if there are differences between streams and among sites. Prior to the analysis the density data in each sample were transformed from X to log X to approximate a normal distribution (Elliott, 1971). The probability level used in the statistical F test was $\alpha = 0.05$.

RESULTS AND DISCUSSION Chemical Water Quality

Field variables

Streamflow was measured at each chemical water-quality site on each sampling date (fig. 2). The hydrographs show high flow during June in Bishop and Capps Creeks and the Chuitna River but little variation in streamflow in

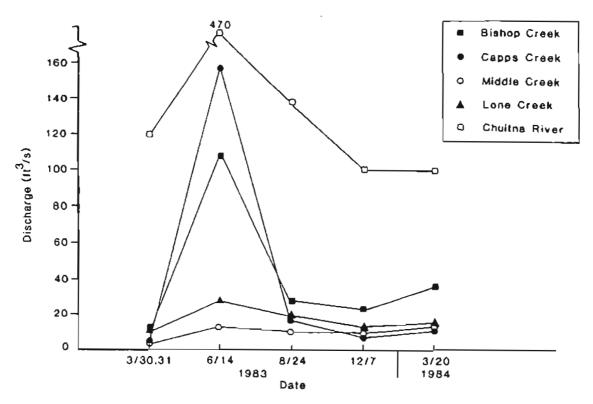


Figure 2. Stream discharge on each sampling date at chemical water-quality sites in five streams, Beluga coal area.

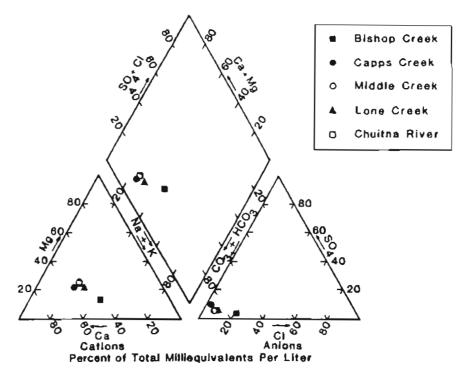


Figure 3. Trilinear diagram of water analyses for five streams in the Beinga coal area during 1983 and 1984.

Middle and Lone Creeks. Although an attempt was made to collect data during the various flow conditions, that is, winter baseflow, spring runoff, summer low flow, early winter flow, the single sampling date in June did not allow peak spring runoff to be measured in Middle and Lone Creeks. Peak spring discharge at these two streams occurs in May (ERT, 1984b). Moreover, the suspended sediment load measured in June in Middle and Lone Creeks is significantly less than in Bishop and Capps Creeks (Maurer and Toland, 1984). These observations are important because suspended sediment has a significant effect on the chemical water quality of Bishop and Capps Creeks. Streamflow measured in the Chuitna River in June represent early summer high flow because peak spring runoff normally occurs in late May or early June (USGS, 1984;

Other variables measured in the field were water temperature, specific conductance, pH, alkalinity, and dissolved oxygen concentration (appendix A). Water temperature ranged from 0°C in Bishop Creek, Middle Creek, Lone Creek, and the Chuitna River during December and March to a high of 13.8°C in the Chuitna River in August (appendix A). Capps Creek showed the least variation in water temperature. This is due to the site's higher elevation, relatively high gradient, and proximity to groundwater sources. Specific conductance is relatively low compared to other surface waters (Hem. 1970), averaging only 50 µmhos/cm at the five chemical water-quality sampling sites. Although there was relatively little change in specific conductance seasonally among the five streams, it did vary inversely with discharge. The pH averages close to 7.0 in each stream. Mean pH values show that Bishop Creek and Capps Creek are slightly acid, while Middle Creek, Lone Creek, and the Chuitna River have pH slightly above neutrality. The lowest pH, 5.85, was measured in Capps Creek.

Bicarbonate alkalinity is similar among sites. Alkalinity values, ranging from 10.5 to 46 mg/l indicate that these streams' ability to neutralize acids is poor. Alkalinity also varied inversely with discharge. Dissolved oxygen concentrations were generally near saturation in each stream. The lowest concentrations were measured in December 1982. The percent saturation of dissolved oxygen ranged from 92 to 100 percent in the summer and 78 to 100 percent in the winter.

Dissolved constituents

The concentration of major cations and anions was consistently low. The total filterable residue (dissolved solids) concentrations varied little, ranging from 44 to 61 mg/l among the five streams (appendix A). Although there was similarity in ionic composition, based on the average percentage of major ion concentrations expressed in milliequivalents per liter, Bishop Creek had a slightly different ionic composition than the other four streams (fig. 3).

Calcium is the major cation in Capps, Middle, and Lone Creeks and the Chuitna River, representing between 50 and 55 percent of the cations in these four streams. Bishop Creek, however, has equal percentages (41 percent) of calcium and sodium ions. All five streams have approximately the same percentage of potassium ions (4 percent). While Bishop Creek has a relatively low percentage (15 percent) of magnesium ions, the other four streams have similar concentrations of sodium and magnesium ions, 22 and 24 percent respectively.

Bicarbonate is the major anion in all five streams, representing approximately 86 percent of the anions. The percentage of chloride and sulfate ions averages 8 and 4 percent in Middle and Lone Creeks and the Chuitna River, and 1 and 10 percent in Capps Creek. The chloride ion concentration in Bishop Creek, representing 21 percent of the anions, was significantly higher than the other streams (fig. 3).

Based on these ionic compositions, Capps, Middle, and Lone Creeks and the Chuitna River have been classified as calcium-bicarbonate waters, while Bishop Creek has been classified as calcium-sodium bicarbonate water (fig. 3).

Bishop Creek has a different ionic composition than the other four streams because it has higher percentages of sodium and chloride ions. Because the ionic composition of Bishop Creek's middle reach (Scully, 1981) does not differ appreciably from the other four streams, the source of the sodium and chloride ions may be exposed deposits of "very fine bonded plastic clay" (Barnes, 1966) which occur only along the stream's lower reach.

Silica concentrations ranged from 9.7 to 13.6 mg/l (appendix A).

Dissolved silica is the result of weathering of silicate minerals and these concentrations are characteristic of surface waters (Hem, 1970).

Significantly lower concentrations, however, were measured in August at all sites and this may be in part due to silica utilization by aquatic algae, particularly diatoms (Reid, 1976).

Trace metals and minor elements

The concentrations of trace metals and minor elements measured in all five streams are generally low or below detection limits (appendix B).

Concentrations of most elements do not vary significantly among streams nor do they show a distinct seasonal trend. However, total concentrations of aluminum, iron, and several of the minor trace metals and elements were relatively high or detectable in June in Bishop and Capps Creeks due to high suspended sediment loads. For example, total zinc concentrations were detectable in low concentrations, that is, <10 µg/l, but total concentrations in Capps Creek during June were 78 µg/l. Barium and strontium were measured in low concentrations in all streams. Low concentrations of these elements are typical of many surface waters (Hem, 1970). Total manganese concentrations were detectable, but were relatively low, ranging from 0.02 mg/l to 0.28 mg/l. The highest total manganese concentrations were associated with suspended sediment in Capps Creek, and the lowest concentrations occurred in the Chuitna River, where the mean concentration was <0.03 mg/l (appendix B).

Aluminum and iron were the most abundant metals measured in all five streams and seasonal trends are apparent in total aluminum and dissolved iron concentrations (fig. 4). Total aluminum concentrations generally were similar among streams but concentrations were elevated in Bishop and Capps Creeks in June, measuring 2.2 mg/l and 12.0 mg/l, respectively. The high suspended sediment load observed during the June sampling of these two streams accounts for the elevated total aluminum concentrations. Middle and Lone Creeks had similarly low aluminum concentrations throughout the sampling period.

Total iron concentrations varied little among streams (fig. 4), but were consistently the highest of all trace metals measured, ranging from 0.41 to 8.8 mg/l (appendix B). There was little seasonal variation in total concentrations among streams, except at the Capps Creek site where a

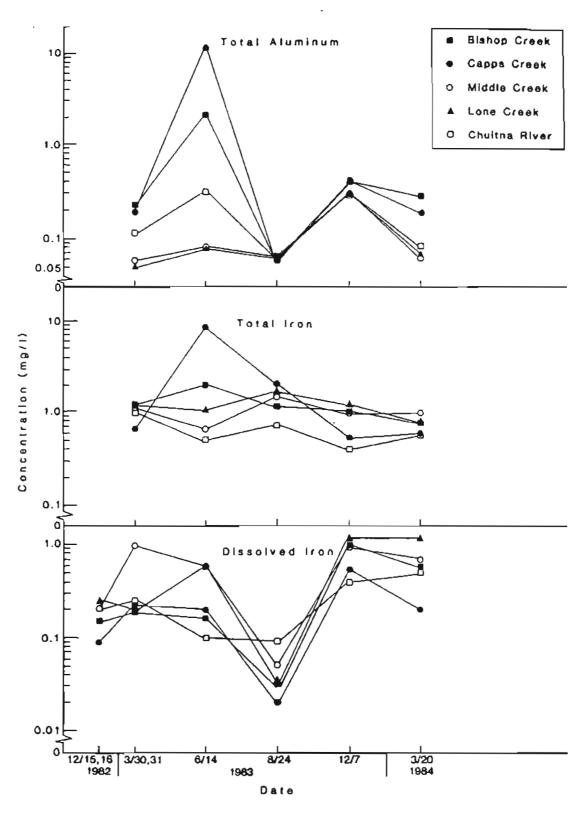


Figure 4. Seasonal variation in the concentrations of total aluminum, total iron and dissolved iron in five Beluga coal-area streams from 1982 to 1984.

concentration of 8.8 mg/l was measured in June (fig. 4). High suspended-sediment loading observed during the June sampling period in Capps Creek is the probable cause of the elevated concentration. Dissolved iron concentrations were also similar among streams, ranging from 0.02 to 1.2 mg/l (appendix A). There was seasonal variation in dissolved iron concentrations, however. The highest dissolved iron concentrations were measured in winter (December and March), while the lowest were measured in August (fig. 4). This pattern, seen in all five streams, may be due to the accumulation of organic matter and bacteria and algal growth which facilitates the precipitation of ferric hydroxide on the stream bottom (Reid, 1976), thereby reducing the concentration of dissolved iron in August.

The Chuitna River site consistently had the least seasonal variation and lowest concentration of total and dissolved iron of all sites measured (fig. 4). Total and dissolved iron concentrations at this site averaged 0.63 mg/l and 0.26 mg/l, respectively. Although total iron concentrations in Bishop, Capps, Middle, and Lone Creeks frequently exceeded the U.S. EPA criteria for protection of fresh-water aquatic life, that is, 1.0 mg/l (EPA, 1976), dissolved iron concentrations averaged less than 1.0 mg/l in all streams (fig. 4).

Nutrients

The concentration of dissolved nitrite plus nitrate nitrogen ranged from 0.012 to 0.541 mg/l in the five streams (appendix C). Dissolved nitrite plus nitrate nitrogen concentrations were relatively high in December and March and low in August in all streams (fig. 5). The concentrations measured in December and March may be due to groundwater inflow under base flow

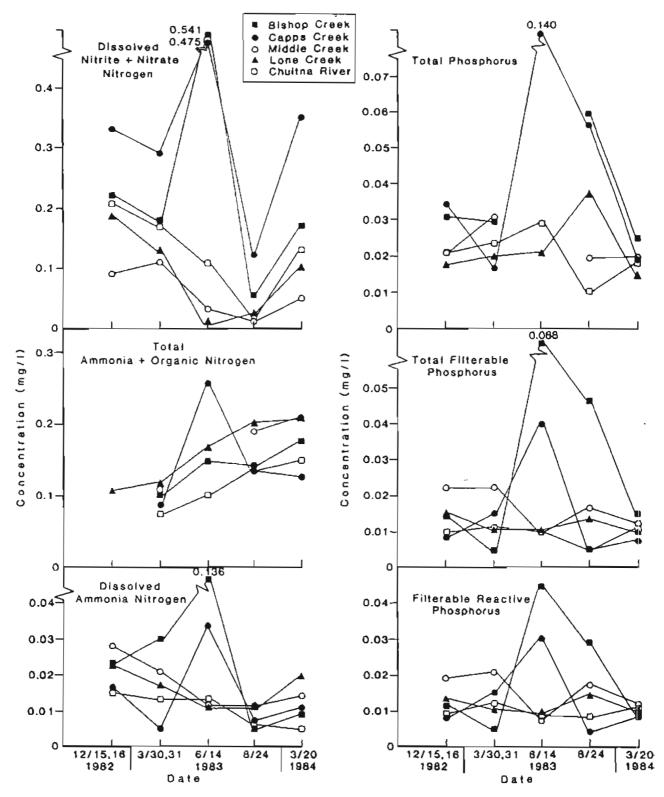


Figure 5. Seasonal variation in the concentrations of nitrogen and phosphorus fractions in five Beluga coal-area streams from 1982 to 1984.

conditions. Low concentrations in August in all five streams may be the result of nitrate utilization by algae and bacteria (Reid, 1976). Elevated concentrations in Bishop and Capps Creeks, 0.541 and 0.475 mg/l respectivly, probably result from surface runoff associated with high streamflows in June.

Total ammonia plus organic nitrogen concentrations were similar in the five streams (fig. 5). No seasonal trend was observed in these values. A relatively high concentration of 0.26 mg/l was measured in Capps Creek during June under high streamflow conditions (fig. 5). The increasing concentrations measured in all five streams from March through August 1983 may be due to organic loading from surface runoff and to periphyton production (Reid, 1976).

Dissolved ammonia nitrogen concentrations were relatively low in all five. streams, ranging from 0.01 to 0.04 mg/l (appendix C). The highest concentrations, 0.136 and 0.033 mg/l in Bishop Creek and Capps Creek, respectively, were measured in June. These elevated concentrations are probably the result of increased surface runoff in June in these two streams.

The measurement of total phosphorus consists of filterable and nonfilterable forms. The measured phosphorus fractions in this study consist of total phosphorus and two filterable forms, total filterable phosphorus and filterable reactive phosphorus, which closely correspond to dissolved phosphorus and orthophosphates, respectively (APHA, 1980). Orthophosphate is the form of phosphorus utilized by plants.

Total phosphorus concentrations were similar in the five streams, ranging from 0.010 to 0.140 mg/l (fig. 5). Elevated concentrations were measured in

Capps Creek in June and August (fig. 5). Although total phosphorus concentrations were not measured in Bishop Creek in June, the elevated concentration in August suggests that June concentrations in Bishop Creek were elevated as well. Total filterable and filterable reactive phosphorus concentrations were also similar among streams and exhibited little seasonal variation, except in Bishop and Capps Creeks (fig. 5). Total filterable phosphorus concentrations ranged from 0.005 to 0.088 mg/l and filterable reactive phosphorus concentrations ranged from 0.004 to 0.044 mg/l (appendix C). The percentage of total filterable to total phosphorus was consistently high throughout the sampling period, excluding elevated concentrations in Bishop and Capps Creeks in June. It is therefore inferred that phosphorus is primarily in the dissolved form rather than the particulate form in these five streams. Similarly, the percentage of filterable reactive to total filterable phosphorus was high in all five streams (appendix C), indicating that the majority of the dissolved phosphorus is in the form of orthophosphates. These consistent concentrations of all three phosphorus fractions are probably the result of a large groundwater contribution to streamflow, which is 34 percent in Lone Creek and 32 percent in Middle Creek (ERT, 1984c).

High streamflow and high suspended sediment loads are the probable cause of elevated concentrations of all three phosphorus fractions in Bishop and Capps Creeks in June. However, elevated concentrations of all three fractions were measured in Bishop Creek during August under relatively low streamflow conditions. Although the data presented in this study are insufficient to adequately explain these elevated phosphorus concentrations, they are probably the result of biological processes.

Biological Water Quality

Invertebrate abundance

Invertebrate mean density, calculated as the number of organisms per meter², varied by less than 24 percent between Middle and Lone Creeks (table 1). The mean density was 12,085 invertebrates per meter² in Middle Creek and 15,806 invertebrates per meter² in Lone Creek. The mean density was approximately 26 percent higher in 1983 in both screams. Although June and August mean invertebrate densities were virtually the same in Middle Creek, the June density was two times greater than the August density in Lone Creek (table 1). Generally, there was a progressive decrease in density from the upper (headwater) site to the lower site in Lone Creek (fig. 6). The pattern in invertebrate density differed somewhat in Middle Creek, with relatively high density at the upper and middle site and low density at the lower site (fig. 6).

The invertebrate densities enumerated in this study are substantially higher than those found in Scully (1981) and ERT (1984a). These differences are probably the result of different sampling methodologies. Artificial substrates and a dip net technique was used in the Scully study and a Surber sampler was used in the ERT study. It is felt that the completely enclosed substrate sampler and smaller net mesh size (300-µm) resulted in higher densities in this study. In addition, the August densities found in this study are considerably higher than those in our August 1982 synoptic survey (Maurer and Toland, 1984). This is probably due to the many microhabitats sampled in 1983 which included deep runs and pools as well as riffles. In the present study the only habitats sampled were riffle and shallow runs, which typically have higher invertebrate densities than pools (Hynes, 1970).

Table 1. Mean invertebrate density (numbers per meter²), mean biomass (grams per meter²), Shannon-Weaver diversity, evenness, and mean number of taxa in Middle and Lone Creeks by stream, month, and year. n = number of samples. A 95% confidence interval is shown for each mean value of density and biomass. Diversity and evenness values were calculated on the basis of pooled samples.

	MIDDLE CREEK	LONE CREEK
Density (no./m²)		
overall $(n = 48)$	12085 ± 2389	15806 ± 4032
month $(n = 24)$		
June	12330 ± 4269	21055 ± 7202
August	11841 ± 2784	10557 ± 3454
year (n = 24)		
1983	14008 ± 4470	17944 ± 7516
1984	10162 ± 2152	13668 ± 3983
Biomass (gm/m^2)		
overall (n = 48)	8.77 ± 0.91	13.40 ± 2.17
month $(n = 24)$		
June	9.62 ± 1.59	17.50 ± 3.47
August	7.92 ± 0.98	9.30 ± 1.77
year (n = 24)		
1983	9.00 ± 1.49	14.67 ± 3.74
1984	8.54 ± 1.23	12.13 ± 2.63
Diversity (H')		
overall $(n = 48)$	2.88	2.57
month $(n = 24)$		
June	2.13	1.71
August	2.99	3.26
year (n = 24)		
1983	2.79	2.44
1984	2.83	2.67
Evenness		
overall $(n = 48)$	0.58	0.52
month $(n = 24)$		
June	0.44	0.36
August	0.61	0.66
year (n = 24)		
1983	0.56	0.50
1984	0.57	0.54
Number of Taxa		
overall $(n = 48)$	19	19
month $(n = 24)$		
June	. 17	17
August	22	22
year (n = 24)		
1983	20	19
1984	19	20

Figure 6. Density, wet weight biomass, mean number of taxa and diversity of benthic invertebrate communities at sites in Middle and Lone Creeks, Beluga coal area, during 1983 and 1984.

U=upper site, M=middle site and L=lower site. Site 1, 2, and 5 in Middle Creek and site 7, 8, and 11 in Lone Creek correspond to the upper, middle, and lower site in their respective stream. n = number of samples.

Despite density differences, the mean number of taxa collected in this study were similar to that of past studies.

A three-factor analysis of variance (ANOVA, Zar, 1974) was performed on the invertebrate density data to determine if differences among streams (Middle vs. Lone), sites, (upper, middle, lower), and dates (June 1983, August 1983, June 1984, August 1984) are statistically significant. The results of the ANOVA indicate no significant difference between streams, a highly significant difference among sites, and a significant difference among dates (appendix E). This statistical test substantiates the relationships summarized on table 1 and figure 6. The only significant interaction is between stream and site, that is, mean invertebrate density of a stream is dependent on site (appendix E). The interaction of stream and date was nearly significant (calculated F = 2.74 versus critical F = 2.76), due to high June densities in Lone Creek.

Diversity and evenness values were slightly higher in Middle Creek. The overall diversity values, calculated from pooled samples, were 2.88 in Middle Creek and 2.57 in Lone Creek (table 1). The low to moderate numerical values in both streams indicate a fairly uneven distribution of taxa in samples (appendix D). There was no difference between years but values were higher in August, due to an increase in the number of taxa. The number of taxa ranged from 11 to 27, and averaged 19 in both streams. Generally, the highest number of taxa occurred at the upper sites in both streams. The lowest number of taxa occurred at the middle site in Lone Creek, but there was no distinct trend in Middle Creek.

Invertebrate biomass was higher in Lone Creek, averaging 13.40 grams per meter² in Lone Creek and 8.77 grams per meter² in Middle Creek (table 1). Biomass in Middle Creek did not vary appreciably between the June and August sampling period. Biomass in Lone Creek, however, was greater in June than in August by an average of 8.20 grams per meter² (table 1). This increase in June in Lone Creek is due to higher biomass at the upper site (site 7) and the middle site (site 8) (appendix F). Cenerally, there was less variability in biomass than in density (fig. 6).

Invertebrate composition

Five insect orders and six major groups of non-insect invertebrates were found at all sites. Diptera (true flies), predominantly chironomid midges and blackflies, were the most abundant invertebrates and represented 66 percent of the total invertebrate composition in Middle Creek and 73 percent in Lone Creek (fig. 7). Moreover, Diptera represented 80 percent of the total composition in June, but only 50 percent in August. As a result, the percentages of the other invertebrate groups were two to three times greater in August with Plecoptera having the greatest increase. These increases are due to the appearance of early instars of nemourid and capnild stoneflies and heptageniid mayflies. The decrease in the number of Diptera is probably due to pupation and emergence of midges and blackflies during the summer.

Ephemeroptera (mayflies) was the second most abundant invertebrate group, averaging approximately 12 percent of a sample in both streams. Non-insect invertebrates represented approximately 8 percent of the invertebrate composition, with Oligochaeta (aquatic earthworms) and Acarina (aquatic mites) the most abundant taxa. Plecoptera (stoneflies) and Trichoptera (caddisflies)

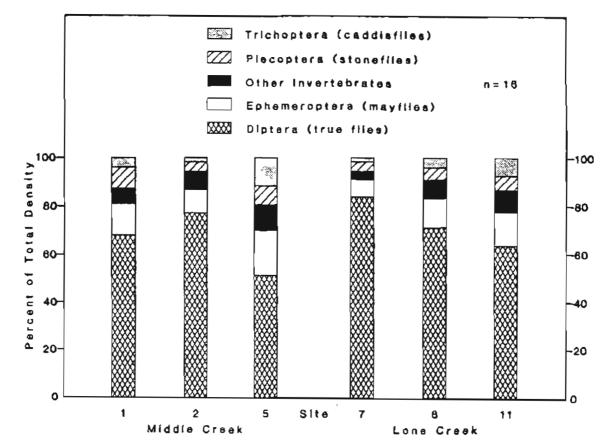


Figure 7. Percent composition (based on density) of benthic invertebrates at sites in Middle Creek and Lone Creek, Beluga coal area, during 1983 and 1984. n = number of samples.

averaged approximately 6 percent of the total composition. Capnild and nemourid stoneflies and glossosomatid caddisflies were the most abundant taxa in their respective groups (appendix D).

The relative distribution of invertebrate taxa, based on invertebrate density by percent, was similar among sites in Middle and Lone Creeks (fig. 7). Taxa were more evenly distributed at the lower sites of each stream, that is, site 5 in Middle Creek and site 11 in Lone Creek, because there were fewer dipteran flies present. As a result, diversity and evenness values were higher at these two sites (appendix D).

Benthic ecology

Invertebrate community structure, that is invertebrate abundance and composition, is the result of the inherent physical, chemical, and biological conditions in Middle and Lone Creeks. The most important physical factor is climate which affects the aquatic-riparian habitat to such an extent that invertebrate density and taxa are characteristic of temperate, rather than subarctic streams. The climate is moderated by Cook Inlet and both streams have a southern aspect and low gradient which raises water temperature above 13°C during the summer. Streamflow is relatively stable because the groundwater contribution to streamflow exceeds 30 percent in both stream (ERT, 1984c). Therefore, stream substrates probably do not freeze during winter and erosional processes are not significant due to stable streambanks and low stream gradient. Relatively stable streamflow also results in very stable substrates.

The chemical water quality of these streams is good. Dissolved oxygen concentrations are consistently high. Suspended sediment, trace metal, and dissolved solid concentrations are quite low and no concentrations are high enough to inhibit the invertebrate community.

There is also an abundant and varied food supply in Middle and Lone Creeks. The majority of invertebrates present in these streams, especially mayflies and midges, feed on periphyton and organic detritus (Merritt and Cummins, 1978). Blackflies strain fine particulate organic matter from the water column and several stonefly taxa shred coarse organic matter such as leaves and grasses. Although most caddisflies collect detritus, limnephilid

caddisflies were observed scavenging salmon carcasses on the streambed. Thus, these taxa fill more than one trophic level within the invertebrate community.

The similarity in physical factors, water chemistry characteristics, and aquatic-riparian habitat in Middle and Lone Creeks produce a comparable invertebrate community. There were, however, several major habitat differences among sites (appendix G). The habitat at the lower site in both streams consisted of a run with large substrate size, and shading from a mixed conifer-deciduous canopy. The upper sites and middle site on Lone Creek had similar habitat features: a riffle with a rubble-gravel substrate and shrub-grass riparian vegetation. The middle site in Middle Creek was different from all other sites in that it had very shallow riffles, small rubble-size substrate, and a riparian vegetation consisting entirely of grasses. Although only minor differences in invertebrate community structure occurred among sites, relatively high invertebrate densities and numerous taxa at upper sites may be due to stable groundwater flow and optimal substrate size for invertebrate colonization.

Invertebrate abundance and composition are appropriate variables for determining the biological water quality of these streams. Both streams have taxa typical of unpolluted, cold-water streams with eroding-type substrates (Hynes, 1974). Invertebrate density is relatively high but highly variable as well. Stream-wide, mean densities are probably overestimated because riffle and shallow run habitats, which normally have higher densities than pool habitats (Hynes, 1970), were the only areas sampled. The pool/riffle ratios (ERT, 1984a) and the presence of beaver ponds indicate that pool habitats are more common in these streams. Based on the densities found in the synoptic

survey (Maurer and Toland, 1984), where pool and deep run habitats were sampled, the mean invertebrate density among sites still averages approximately 7000 invertebrates per meter². Therefore, these relative high densities, with moderate biomass and numerous taxa, indicate a highly productive benthic invertebrate community.

CONCLUSIONS

Chemical water quality is good and very similar in Bishop, Capps, Middle, and Lone Creeks, and the Chuitna River. These streams have high concentrations of oxygen and low concentrations of dissolved solids, trace metals, and nutrients. Lower Bishop Creek has a slightly different ionic composition than the other four streams due to higher sodium and chloride ion concentrations. The elevated concentrations of trace metals and nutrients in . Bishop and Capps Creeks that occur in June are the result of high streamflow, surface runoff, and suspended sediment.

Biological water quality is good in Middle and Lone Creeks. The benthic invertebrate community is characterized by relatively high density, moderate biomass, and numerous taxa. The representative taxa are typically found in well-oxygenated, clear-water streams. Invertebrate composition is dominated by chironomid midges and blackflies. Although aquatic habitat differences produce invertebrate density differences among sites, the invertebrate community structure is similar between streams.

REFERENCES CITED

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1980, Standard methods for the examination of water and wastes (15th ed.): Washington, D.C., American Public Health Association, 1134 p.
- Barnes, F.F., 1966, Geology and coal resources of the Beluga-Yentna region, Alaska: U.S. Geological Survey Bulletin 1202-C, p. 1-54.
- Baumann, R.W., Gaufin, A.R., and Surdick, R.F., 1977, The stoneflies (Plecoptera) of the Rocky Mountains: Philadelphia, Pennsylvania, Memoirs of the American Entomological Society, no. 31, 208 p.
- Buchanan, T.J., and Somers, W.P., 1969, Discharge measurements at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chapter A8, 65 p.
- Cairns, John Jr., and Dickson, Kenneth L., 1971, A simple method for the biological assessment of the effects of waste discharges on aquatic bottom-dwelling organisms: Journal of the Water Pollution Control Federation, v. 43, no. 5, pp. 772-775.
- Carter, R.W., and Davidian, Jacob, 1968, General procedures for gaging streams: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chapter A6, 13 p.
- Edmunds, G.F. Jr, Jensen, S.L., and Berner, L., 1976, The mayflies of North and Central America: Minneapolis, University of Minnesota Press, 330 p.
- Eisenreich, S.J., Bannerman, R.T., and Armstrong, D.E., 1975, A simplified phosphorus analysis technique: Environmental Letters, v. 9, no. 1, p. 43-53.
- Elliott, J.M., 1971, Some methods for the statistical analysis of samples of benthic invertebrates: Freshwater Biol. Assoc. Sci. Pub. 25, 144 p.
- Environmental Research and Technology, Inc., 1984a, Diamond Chuitna project aquatic biology baseline studies report: Fort Collins, Colorado, Environmental Research and Technology, 2 v.
- , 1984b, Diamond Chuitna project surface water hydrology and water quality baseline studies report: Fort Collins, Colorado, Environmental Research and Technology, 4 v.
- , 1984c, Diamond Chuitna project groundwater hydrology baseline studies report: Fort Collins, Colorado, Environmental Research and Technology, 1 v.
- Hem, John D., 1970, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 1473, 363 p.
- Hynes, H.B.N., 1970, The ecology of running waters: University of Toronto Press, 555 p.

- Hynes, H.B.N., 1974, The biology of polluted waters: University of Toronto Press, 202 p.
- Jensen, S.L., 1966, The maflies of Idaho: Salt Lake City, University of Utah, unpublished M.S. thesis, 367 p.
- Maurer, M.A. and Toland, D.C., 1984, Water-quality data from the Beluga coal-field area, Alaska, June 1982 through March 1983: Alaska Division of Geological and Geophysical Surveys Report of Investigation 84-27, 33 p.
- Merritt, Richard W. and Cummins, Kenneth W., 1978, An introduction to the aquatic insects of North America: Iowa, Kendall/Hunt Publishing Company, 441 p.
- Pennak, R.W., 1978, Freshwater invertebrates of the United States, 2nd Edition: New York, The Ronald Press Company, 803 p.
- Poole, R.W., 1974, An introduction to quantitative ecology: New York, McGraw-Hill Book Company, Inc., 532 p.
- Reid, George K. and Wood, Richard D., 1976, Ecology of inland waters and estuaries: New York, D. Van Nostrand Company, 485 p.
- Scully, D.R., Krumhardt, A.P., and Kernodle, D.R., 1981, Hydrologic reconnaissance of the Beluga, Peters Creek, and Healy coal area, Alaska: U.S. Geological Survey Water-Resources Investigations 81-56, 71 p.
- Smith, S.D., 1968, The Rhyacophila of the Salmon River drainage of Idaho with special reference to larvae: Annuals of the Entomological Society of America, v. 61, no. 3, p. 655-674.
- Stainton, M.P., Capel, M.J., and Armstrong, E.J., 1977, The chemical analysis of freshwater: Winnepeg, Manitoba, Freshwater Institute, Fisheries and Marine Service, miscellaneous special publication no. 25, second edition, 180 p.
- U.S., Environmental Protection Agency, 1973, Biological field and laboratory methods for measuring the quality of surface waters and effluents: U.S. Environmental Protection Agency, EPA-670/4-73-001.
- , 1976, Quality criteria for water: U.S. Environmental Protection Agency, EPA-440/9-76-023.
- ______, 1983, Methods for chemical analysis of water and wastes: U.S. Environmental Protection Agency, EPA-600/4-79-020.
- U.S. Geological Survey, 1984, Water resources data for Alaska, water year 1983: U.S. Geological Survey Water-Data Report AK-83-1, 364 p.
- , 1985, Water resources data for Alaska, water year 1984: U.S. Geological Survey Water-Data Report AK-84-1, 358 p.

- Usinger, R.L., ed., 1956, Aquatic insects of California: Berkeley, University of California Press, 508 p.
- Wiggins, G.B., 1977, Larvae of the North American caddisfly genera (Trichoptera): University of Toronto Press, 401 p.
- Wolf, B., 1974, The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions: Soil Sci. Plant Analysis, v. 2, no. 5, p. 363-374.
- Zar, J.H., 1974, Biostatístical analysis: New Jersey, Prentice-Hall, Inc., 620 p.

Appendix A. Field variables and major inorganic constituents of Beluga water-quality samples.

	Time	Streamflow, instan- taneous (cfs)	Specific conductance (umhos at 25°C)	pH (units)	Water temperature (°C)	Silica, dissolved SiO, (mg/1)	Oxygen, dissolved (mg/l)	Oxygen, dissolved (percent saturation)	Calcium, dissolved (mg/l as Ca)	Magnesium, dissolved (mg/l as Mg)
Bishop Cre 12-15-82	ek 0935	15	33	7.30	-0.1	7.5	11.3	78	4.4	1.0
03-30-83	1230	13	61	6.85	-0.1	14	12.2	86	5.9	1.3
06-14-83	0910	108	24	6.80	10.5	8.1 1.4	10.2 11.8	92 100	2.4 5.5	0.58 1.3
08-24-83 12-07-83	0940 1115	a ²⁸ 23	60 50	7.25 6.55	10.1 -0.2	14	15.2	100	4.6	0.95
03-20-84	0930	35	45	6.75	-0.1	13	13.3	91	4.4	0.94
Capps Cree									_	_
12-15-82	1225	8.8	48	6.90	0.5	6.9	12.4	88	4.9	1.2
03-30-83 06-14-83	1420 1110	5.2 157	57 10	7.25 5.85	1.1 5.0	15 7.1	13.8 12.0	99 96	7.3 2.1	1.7 0.44
08-24-83	1105	36	39	6.95	8.2	1,4	12.5	100	5.6	1.2
12-07-83	1250	₽87.0	52	6.65	-0.4	13	15.8	100	6.0	1.4
03-20-84	1100	b ₁₂	53	7.05	0.1	15	15.2	100	6.3	1.5
Middle Cre		_	_							
12-16-82	1225	6.9	59	7.60	0 0.2	13	12.7	88	5.0	1.7
03-31-83 06-14-83	1410 1350	4.3 13	77 51	6.85 7.35	12.3	19 12	14.2 9.9	100 94	8.9 5.1	2.2 1.4
08-24-83	1220	9.7	64	6.95	10.1	1.6	12.0	100	8.0	1.9
12-07-83	1535	9.4	55	6.85	-0.3	14	15.9	100	6.4	1.7
03-20-84	1230	13	46	6.85	-0.3	15	15.4	100	5.4	1.4
Lone Creek						_				
12-16-82	1100	16 9.6	58 66	7.20 7.10	-1.0 0	12 16	12.9 14.1	89 99	4.1 7.8	1.4 1.8
03-31-83 06-14-83	1150 1515	28	47	7.10	13.7	6.1	9.5	92	5.2	1.3
08-24-83	1320	20	65	7.25	11.1	0.95	11.6	100	8.0	1.7
12-07-83	1445	13	59	6.85	-0.2	16	16.3	100	6.6	1.5
03-20-84	1350	14	52	6.90	-0.3	16	15.6	100	5.7	1.4
Chuitna Ri										
12-16-82	0900	c 100	42	7.00	-1.0	26	12.5	86	2.9	1.1
03-31-83 06-14-83	1100 1700	c120 c470	57 21	7.20 7.30	0.1 11.3	16 7.7	14.3 10.9	100 100	8.1 2.5	2.2 0.66
08-14-83	1445	139	47	8,10	13.8	2.1	11.6	100	7.0	1.6
12-07-83	1400	d 100 100	44	6.15	-0.3	16	15.9	100	5.8	1.5
03-20-84	1450	⁶ 100	43	7.10	-0.3	14	15.6	100	5.2	1.5

aEstimate only, ice on probe head. bU.S. Geological Survey (1985, p. 180). cU.S. Geological Survey (1984, p. 159). dU.S. Geological Survey (1985, p. 182).

Appendix A. (cont.)

	Sodium, dissolved (mg/l as Na)	Potassium, dissolved (mg/l as K)	lron, dissolved (mg/l as Fe)	Manganese, dissolved (mg/l as Mn)	Chloride, dissolved (mg/l as Cl)	fluoride, dissolved (mg/l as F)	Alkalinity, bicarbonate (field) (mg/l as HCO ₃)	Sulfate, dissolved (mg/l as SO ₄)	Residue, total filtrable at 180°C (mg/l)
Bishop Creek									
12-15-82	5.0	0.55	0.16	0.023	4.2	< 0.10	27	1.0	54
03~30-83	7.6	0.76	0.19	0.038	5.7	< 0.1	31	1.1	69
06-14-83	2.5	0.34	0.17	0.023	1.1	< 0.10	13.5	2	35
08-24-83	6.2	0.55	0.033	0.025	6.3	0.10	26	2.7	23
12-07-83	5.1	0.45	1.0	0.04	3.9	0.12	22	< 2	46
03-20-84	4.6	0.56	0.6	0.028	4.3	< 0.1	22.5	< 2	50
Capps Creek									
12-15-82	2.5	0.57	0.088	0.022	< 1.0	< 0.10	31	2.0	49
03-30-83	3.6	0.63	0.23	0.035	< 1.0	< 0.1	36	1.5	63
06~14-83	0.97	0.37	0.20	0.054	< 1.0	< 0.10	10.5	2.2	27
08-24-83	2.2	0.41	0.020	0.078	< 1	< 0.10	23.5	2.7	26
12-07-83	2.6	0.44	0.55	0.05	< 1	0.10	42.5	3.8	39
03-20-84	2.8	0.53	0.33	0.046	1.8	< 0.10	29.5	< 2	60
W 0 - 11									
Middle Creek									0.5
12-16-82	3.3	0.59	0.21	0.016	1.4	< 0.10	36.5	1.9	85
03-31-83	4.7	0.77	0.95	0.035	1.9	< 0.1	46	< 1.0	80
06-14-83	3.1	0.54	0.59	0.022	< 1.0	< 0.10	29	2	52
08-24-83	3.5	0.55	0,051	0.045	1.6	< 0.10	37.5	3.3	42
12-07-83	3.3	0.42	1.0	0.07	1.5	< 0.1	31	< 2	41
03-20-84	3.1	0.5}	0.7	0.002	1.9	< 0.1	27	< 2	40
Lone Creek									
12-16-82	4.0	0.74	0.25	0.023	2.4	< 0.10	35.5	1.8	56
03-31-83	4.4	0.89	0.19	0.042	2.8	< 0.1	40.5	< 1.0	77
06-14-83	3.0	0.60	0.61	0.049	1.1	< 0.10	28	2.1	49
08-24-83	4.2	0.64	0.035	0.054	2.4	< 0.10	34	3.3	48
12-07-83	4.4	0.55	1.2	0.08	2.2	< 0.1	32.5	< 2	44
03-20-84	3.6	0.64	1.2	0.034	2.9	< 0.1	28	< 2	90
Chuitna River									
12-16-82	2.0	0.40	0.21	0.012	2.4	< 0.10	33.5	< 1.0	47 .
03-31-83	4.1	0.71	0.26	0.012	1.4	< 0.10	33.3	1.6	84
06-14-83	1.5	0.71	0.10	0.009	< 1.0	< 0.10	39 14	2	33
08-24-83	2.8	0.32	0.087	< 0.02	1	< 0.10	30	2.9	34
12-07-83		0.46	0.41	< 0.03	1.1	< 0.1	30 27	2.7	38
	3.2							< 2	100
03~20-84	2.7	0.56	0.5	< 0.002	2.4	< 0.1	24.5	< 2	100

Appendix B. Minor-element analysis of Beluga water-quality samples.

	Time	Streamflow, instan- taneous (cfs)	Aluminum, total	Aluminum, dissolved (ug/l as Al)	Antimony, total (ug/l as Sb)	Antimony, dissolved (ug/l as Sb)	Arsenic, total (ug/l as As)	Arsenic, dissolved (ug/) as As)	Barium, total (ug/l as Ba)	Barium, dissolved (ug/l as Ba
Bishop Cre	ek									
03-30-83	1230	13	230	-	< 2	-	< 2	4	69	•
06-14-83	0910	108	2200	320	3	< 2	4	< 2	30	23
08-24-83	0940	. 28	< 60	-	< 2	-	< 2	-	420	-
12-07-83	1115	a 28 23	400	-	< 10	-	< 2	-	20	-
03-20-84	0930	35	270	•	< 5	-	< 2	-	10	-
Capps Cree	k									
03-30-83	1420	5.2	190	-	< 2	-	< 2	-	77	-
06-14-83	1110	157	12,000	300	9	< 2	16	< 2	140	20
08-24-83	1105	b7.0	< 60	-	< 2	-	< 2	-	420	-
12-07-83	1250	ر ₀ 7.0	400	-	< 10	-	< 2	-	20	-
03-20-84	1100	b ₁₂	190	-	< 5	-	< 2	-	30	-
Middle Cre	ek									
Q3-31-83	1410	4.3	58	•	< 2	-	< 2	-	45	-
06-14-83	1350	13	79	20	< 2	< 2	< 2	< 2	20	30
08-24-83	1220	9.7	< 60	-	< 2	-	< 2	-	420	-
12-07-83	1535	9.4	300	-	< 10	•	< 2	-	< 10	-
03-20-84	1230	13	60	-	< 5	-	< 2	-	10	
Lone Creek										
03-31-83	1150	9.6	52	•	< 2	-	< 2	-	53	-
06-14-83	1515	28	75	41	< 2	< 2	< 2	< 2	20	20
08-24-83	1320	20	< 60	-	< 2	-	< 2	-	420	-
12-07-83	1445	13	300	~	< 10	-	< 2	-	10	→
03-20-84	1350	14	65	-	< 5	•	< 2	-	10	-
Chuitna Ri										
03-31-83	1100	c 120	120	-	< 2	-	< 2	-	45	-
06-14-83	1700	~470	300	41	< 2	< 2	< 2	< 2	10	20
08-24-83	1445	139ړ	< 60	-	< 2	-	< 2	•	420	-
12-07-83	1400	d139 d100	300	-	< 10	-	< 2	-	< 10	-
03-20-84	1450	0100	80		< 5		< 2	-	5	-

aEstimate only, ice on probe head. bU.S. Geological Survey (1985, p. 180). cU.S. Geological Survey (1984, p. 159). dU.S. Geological Survey (1985, p. 182).

	Bery}lium, total (ug/l as Be)	Beryllium, Boron dissolved total (ug/l as Be) (ug/l as	Boron, total (ug/l as B)	Boron, dissolved (ug/l as B)	Cadmium, total (ug/l as Cd)	Cadmium, díssolved (ug/l as Cd)	Chromium, totał (ug/l as Cr)	Chromium, dissolved (ug/l as Cr)	Copper, total (ug/1 as Cu)	Copper, dissolved (ug/l as Cu)
Bishop Creek 03-30-83 06-14-83 08-24-83 12-07-83 03-20-84	k < 2 < 0.2 < 1 < 1 < 0.2	< 0.2	480 70 < 0.05 0.14	. 08	0 V V V V V V V V V V V V V V V V V V V	\$ 0.5	V V V V	۸ . د ن ه ر	0 0 0 0 0 0 0 0 0 0 0	· S · · ·
Capps Creek 03-30-83 06-14-83 08-24-83 112-07-83 03-20-84	< 2 < 0.2 < 0.2 < 1 < 1 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	<pre></pre>	74 170 < 0.05 0.06	. 0	> > > > > > > > > > > > > > > > > > >	, 0 , 0 , 1 , 1	4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, w , , ,	× × × × × × × × × × × × × × × × × × ×	(%
Middle Creek 03-31-83 06-14-83 08-24-83 12-07-83 03-20-84	k < 2 < 0.2 < 1 < 0.2 < 0.2	< 0.2	< 50 50 < 0.05 < 50 < 50	, 08 , , ,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 >	2 W W W W	, , , , ,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Lone Creek 03-31-83 06-14-83 08-24-83 12-07-83 03-20-84	<pre>< 2 < 0.2 < 1 < 1 < 0.2 </pre>	0,2	< 50 50 < 0.05 0.07 < 50	, , , , ,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 >	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	· \$7 · / ·	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	· Ø 1 · · ·
Chuitna River 03-31-83 06-14-83 08-24-83 12-07-83 03-20-84	67 < 2 < 0.2 < 1 < 1 < 1 < 0.2 < 1 < 1 < 0.2	0.5	< 50 < 50 < 0.05 < 0.05 < 50	, 05 , ,	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	\$ 0.5	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	, N, 1, 1	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	 V

^eContamination suspected,

5n)	iron, total (ug/l as Fe)	lron, dissolved (ug/l as Fe)	Lead, total (ug/l as Pb)	Lead, dissolved (ug/l as Pb)	Manganese, total (ug/l as Mn)	Manganese, dissolved (ug/l as Mn)	Mercury, total (ug/l as Hg)	Mercury, dissolved (ug/l as Hg)	Nicke), total (ug/l as Ni)	Nickel, dissolved (ug/l as Ni)
Bishop Creek D3-30-83 06-14-83 08-24-83 12-07-83 03-20-84	1300 2000 1200 1000 770	f 13	^	* KA * * 1 1	52 60 40 30	. 25	0.050.050.050.050.050.05	< 0.05	ν ν ν ν ν ν ν ν ν ν ν	, N
Capps Creek 03-30-83 06-14-83 08-24-83 12-07-83 03-20-84	680 8800 2100 550 630	, 98 1	V V V V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	43 280 190 50 53	, 85	< 0.05 0.1 < 0.05 < 0.05 < 0.5	< 0.05	^ ^ ^ ^ ~~~~	, N ,
Middle Creek 03-31-83 06-14-83 08-24-83 12-07-83 03-20-84	1200 670 1500 1000	f ₁₃₀	\$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\ \ \	44 35 66 70 42	35.	<pre></pre>	< 0.05	, , , , , , , , , , , , , , , , , , ,	 • • • • • • • • • • • • • • • • • • •
Lone Creek 03-31-83 06-14-83 08-24-83 12-07-83 03-20-84	1200 1100 1700 1200 770	04	V V V V V	1 W, 1 1 1 V	55 8 8 8 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ואיי	0.050.050.050.050.050.050.05	> 0.05	\) () () (
Chuitna River 03-31-83 06-14-83 08-24-83 12-07-83 03-20-84	930 500 710 410 600	f \$ 7.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, w , , , ,	22 35 < 20 < 30 22	. 2	0.050.050.050.050.050.05	< 0.05	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	۱ ۱ ۱ مر <i>۱</i> ۷

Low values suspected. See Appendix A for dissolved iron values.

	Selenium, total (ug/1 as Se)	Selenium, dissolved (ug/1 as Se)	Silver, total (ug/l as Ag)	Silver, dissolved (ug/l as Ag)	Strontium, totał (ug/l as Sr)	Strontium, dissolved (ug/1 as Sr)	Titanium, total (ug/1 as	Titanlum, disso)ved (ug/l as Ti)	Vanadium, total (ug/1 as V)	Vanadium, dissolved (ug/l as V)	Zinc, total (ug/1 as Zn)	Zinc, dissolved (ug/l as Zn)
Bishop Creek 03-30-83 06-14-83 08-24-83 12-07-83	0000t VVVV	7 2 4 1 1	V V V V V V V V V V V V V V V V V V V	, 6, 1, 1	220 70 150 10	- 65	< 50 140 < 100 < 20 < 20	20 >	> 0 0 0 10 0 10 0 10 0) 01 > -	40040 840	
Capps Creek 03-30-83 06-14-83 08-24-83 12-07-83	0000E	1 0 1 1 1 V	V V V V V	· ~ · · · ·	330 170 190 20 70	02	< 50 840 < 100 < 20 50	\$ 50 \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<pre></pre>	100 >	2.4 78 15 6 30	, ~ , , ,
Middle Creek 03-31-83 06-14-83 08-24-83 12-07-83 03-20-84	×	· 8 · · · ·	V V V V V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	260 80 170 20 40	. 08 (1 (<pre></pre>	· 50 · · · · · · · · · · · · · · · · · · ·	^ ^ ^ ^ ^ 0	, 10	2 2 3 . 4	·.) #
Lone Creek 03-31-83 06-14-83 08-24-83 12-07-83 03-20-84	7000c	18111	V V V V	· ~ · · · ·	280 95 170 10 60	, 20, 1, 1	<pre></pre>	· 50 · · · · · · · · · · · · · · · · · · ·	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	- 10 - 1	2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 27 1 1 1
Chultna River 03-31-83 06-14-83 08-24-83 12-07-83 03-20-84	6 / / / / / / / / / / / / / / / / / / /	· 2 · · · · · · · · · · · · · · · · · ·	V V V V	(2) ()	260 60 140 10 50	. 05	<pre></pre>	· · · · · · · · · · · · · · · · · · ·	^ ^ ^ ^ ^ ^ ^ ^	, 01 >	0 0 0 10 10 0 0 0 10 10	1,00111

^eContamination suspected.

Appendix C. Nutrient analysis of Beluga water-quality samples.

Date	Time	Streamflow, instantaneous (cfs)	Nitrogen, ammonia + organic total (mg/l as N)	Nitrogen, NO, + NO, dissolved (mg/l as N)	Nitrogen, ammonia dissolved (mg/) as N)	Phosphorus, tota) (mg/l as P)	Phosphorus, total reactive (dissolved) (mg/l as P)	Phosphorus, filterable reactive (ortho,dissolved) (mg/l as P)
Bishop Cre	ek							
12-15-82	0935	15	a_	0.223	0.023	0.031	0.014	0.012
03-30-83	1230	13	0.10	0.177	0.030	b0.029	0.005	0.005
06-14-83	0910	108	0.15	0.541	0.136		0.088	0.044
08-24-83	0940	28	0.14	0.056	0.005	0.060	0.046	0.029
03-20-84	0930	35	0.17	0.172	0.009	0.025	0.015	0.009
Capps Cree	ķ							
12-15-82	1225	8.8	a_	0.333	0.016	0.034	0.008	0.008
03-30-83	1420	5.2	0.09	0.292	0.005	0.016	0.015	0.015
06-14-83	1110	157	0.26	0.475	0.033	0.140	0.040	0.030
08-24-83	1105	c16	0.13	0.123	0.007	0.056	0.005	0.004
03-20-84	1100	12	0.13	0.351	0.011	0.019	0.007	0.008
Middle Cre	ek		3					
12-16-82	1225	6.9	ā.	0.092	0.028	0.021	0.022	0.019
03-31-83	1410	4.3	a0.11	0.110	0.021	a0.031	0.022	0.021
06-14-83	1350	13	٠.	0.034	0.012	٥_	0.010	0.007
08-24-83	1220	9.7	0.19	0.013	0.012	0.019	0.016	0.017
03-20-84	1230	13	0.21	0.049	0.014	0.020	0.012	0.012
Lone Creek								
12-16-82	1100	16	0.11	0.185	0.022	0.017	0.015	0.013
03-31-83	1150	9.6	0.11	0.130	0.017	0.019	0.011	0.010
06-14-83	1515	28	0.16	0.012	0.011	0.021	0.011	0.009
08-24-83	1320	20	0.20	0.025	0.011	0.037	0.013	0.014
03-20-84	1350	14	0.21	0.102	0.019	0.015	0.010	0.010
Chuitna Ri	ver							
12-16-82	0900	d ₁₀₀	å_	0.208	0.015	0.021	0.010	0.009
03-31-83	1100	0120	0.07	0.171	0.013	0.023	0.011	0,012
06-14-83	1700	d ₄₇₀	0.10	0.107	0.013	0.029	0.010	0.009
08-24-83	1445	139	0.14	0.023	0.006	0.010	0.005	0.008
03-20-B4	1450	e 100	0.15	0.130	0.005	0.018	0.011	0.011

aMissing data.

Erroneous value suspected.

CU.S. Geological Survey (1985, p. 180).

dU.S. Geological Survey (1984, p. 159).

eU.S. Geological Survey (1985, p. 182).

Appendix D-1, Density (numbers/m²), number of taxa, diversity, and evenness of benthic invertebrates collected in Middle Creek, Beluga coal area, June 15, 1983.

ı	=	=	≥	-	=	Site 2	2	-	=	=	2
	.}						:				:
		10	20	80	40	20	50	190	100	70	
130 90		260	50 %	130	350	910	740	2005	120	430	20 20
		20	20					10 20	30	20	
				30	10	30		10		10	
430 370		620	280	140	220	09	120	170	06	180	70
	ì			10		0-	20				!
150 190		220	06		10	10		310	230	290	150
20 20 110 140		60	0,4	30	60 20 40		20	5 6	0.00	20	20
	ĺ						;		101		
				10		58					
70 20 30 60		400 400	09		20	30	30	09	100 50	80 10	
06		140	10	000	9		0.5	220	380	300	80
50 10		Ċ	30	2	2	20	3	150	20	160	30
09 04		20	20						10		

Appendix D-1 (cont.)

							Site					
Taxon	-	=	=======================================	۸	-	Ξ	2 111	۸۱	_	-	111	۸۱
Diptera Atherix sp. Chelifera sp.	01 01	09	10	01	150	80	20	30	;		20	
Unidentified Chironomidae	3680	7810	6100 40	2690	6970	0944	4680	3570	2160	4130	4050	2980
Palpomyta sp.	100	205	20	208	08	2	3	01	!		;	
Prostmulium sp. Unidentified Simuliidae		10	20	0.7	07	0.				20	2	
Simulium sp.	1440	840	31640	9220	4220	36540	1590	2630	1370	1470	3580	130
Hymenoptera Unidentified Hymenoptera								10				
Collembola	10					20	20			30	10	
Turbellaria	10	,	0,4	01			,		30	30		01
Nematoda Oligochaeta Poligochaeta	20	300	70	200	830	530	20 20	70	00	20	10	20
rejecypous Arachnida	•			2	2	2	2	į	:			
Acarina Crustacea	250	1020	820	370	340	350	190	650	040	330	150	92
Ostracoda Copepoda				10	09		10	ļ	10	01	50	90
Total number of invertebrates/m ² 7230 Total number of taxa (based on number of invert families and	7230	11140	41110	13330	14370	44510	8060	8330	5550	8330	9570	3720
other invertebrates)	19	18	17	21	16	18	16	14	19	19	17	12
Shannon-Weaver Diversity Index	2.40	1.73	1.23	1.50	2.09	1.02	1.84	2.03	2.59	2.31	2.13	1.34
Evenness	0.56	0.42	0.30	0.34	0.52	0.25	94.0	0.53	0.61	0.54	0.52	0.38

40

Appendix D-2. Density (numbers/m²), number of taxa, diversity, and evenness of benthic invertebrates collected in Middle Creek, Beluga coal area, June 15, 1983.

							ite					
			7				8			-	1	
Taxon	<u>i</u>	11	111	17	ŧ	 		١٧		11	111	17
Insecta												
Ephemeroptera												
Unidentified												
Ephemeroptera		10			10		10		40	40	70	20
Baetis bicaudatus	50	30	20	20	10		10			10	20	10
Baetis tricaudatus	160	280	200	130	260	140	50		110	60	120	130
Baetis sp.	40	410	250	310	140	310	50	10	50	450	340	500
Ephemerella doddsi	50		40	10					20	50	20	10
Ephemerella infrequens/												
E. inermis complex				20	10		10		10	10		
Unidentified												
Heptageniidae	350	380	370	780	230	190	10	10	50	80	70	20
Plecoptera												
Unidentified Plecoptera		20	30	20			20			10		
Unidentified												
Chloroperlidae	120	310	130	240	220	160	10	10	110	150	80	60
tsoperla sp.				10					50	10		
Unidentified Periodidae			10		10							20
Zapada cinctipes						10				10		
Zapada oregonensis	28	10	20	30			10			10		
Trichoptera				10	20				10	20		10
Unidentified Trichoptera	60	20	30	20	10	10			30	10		120
Brachycentrus sp.	90	30	70	40	20	30			10	10		10
Clossosoma sp.	30	100	70	40	20	30			130	300	930	1400
Ochrotrichia sp.	30 10	100		60	10		10		130	300	730	1400
Onocosmoecus sp.		20	20		10 30	10	10			10	10	50
Unidentified Limnephilidae	30	20 50	20	80	30	10				20	10	טכ
Rhyacophila sp.	10	50	20							20		

Appendix D-2 (cont.)

							Site					
Taxon	-	=	111	> 1	1	11	8	11	-	1	111	2
Diptera Chelifera sp.		02			01		30		30	20	0000	20
Digrapota so	0756	38830	0.78	0 0 0 0 1 0 1	08/11	13360	18781	20	10	20	1000	05.20
Palpomyla sp.	110	20	9	350	20		10	20.	2 2	20	2	
Pericona sp.	ž	50	4			Š					ć	ř
Prosimulium sp. Unidentified Simuliidae	30	130 20	1060	90	0	9					07	?
Simulium sp.	24470	32030	62110	8400	2670	6820	310	120	820 10	0911	6460	13830
Collembola	10	10						02				
Turbellaria	02			02		10					10	
Nematoda	80	90	20	044	10	30	0		30		30	02
Oligochaeta	300		30	20	140	1720	100	480	10		10	20
Acarina	290	360	190	1180	240	20	80	10	20	240	180	260
Crustacea Ostracoda Copepoda	20	10	30					91	10	92	20	20
Total number of												
invertebrates/m² Total number of taxa (based	36330	54260	76590	30460	15880	22930	19020	1160	2270	13460	11410	22860
on number of insect ramilles and other invertebrates)	20	19	18	17	16	13	14	1.	17	8	15	91
Shannon-Weaver Diversity Index	1.30	1.29	0.82	1.69	1.32	1,54	0.33	16.1	2.71	1.65	1,75	1,57
Evenness	0.30	0.30	0.20	0.41	0.33	0.45	0.09	0,55	99.0	0,40	0,45	0.39

Appendix D-3. Density (numbers/m²), number of taxa, diversity, and evenness of benthic invertebrates collected in Middle Creek, Beluga coal area, August 25, 1983.

							Site					
	-	=		1 11	-	 	2	2	-	s :	=	}
Jaxon	-	=	=	≥	-	=		≥	-	-	-	<u> </u>
Insecta												
Ephemeroptera												
Baetis bicaudatus						0				160	30	20
Baetis tricaudatus			10	01								10
Baetis sp.	1110	3220	2640	2530	1560	3390	0205	1360	510	1000	077	360
Cinyomula so.		10	10					10				
Ephemerella doddsi	9	01	9	20		10				04	30	20
Ephemerella infrequens/											•	,
E. Inermis complex		04		20	130	140	30	20				
Unidentified Hentagens (dae	1660	2270	0770	2840	000	SAO	OBC	120	110	260	0101	1580
Unidentified Siphlonuridae	2	0,7	9	10	3		10	01	2) ,	20	33
Plecoptera												
Unidentified Capniidae	480	1580	2140	1700	910	880	1340	510	30	240	280	049
Unidentified												
Chloroperlidae	100	30	20	20					20	40	40	130
Isoperla sp.		10	30								20	
Unidentified Perlodidae	0								01			30
Skwala sp.		10	20			20	10	<u>50</u>				
Zapada cinctipes	680	1320	1180		906	1830	099	240	80	130	330	150
Zapada oregonensis		10			07		10			50	10	
Zapada sp.	180	530	. 230	400	10	20	10				04	40
Trichoptera												
Apatania sp.	10	20			30	30	130	210				
Brachycentrus sp.	280	130	170	120		0	30	40		20	100	
Ecclisomy a sp.					01				02	0		9
Clossosoma sp.	760	670	049	710	20	190	110	130	110	380	170	110
Unidentified Limnephilidae	20	20	20		10				20	30	20	20
Rhyacophila vepulsa	20	100	90	10								10

Appendix D-3 (cont.)

							Site					
Τάχου	_	=	= -	2	-	=	2 111	2	_	=	111	<u>`</u>
Chelifera sp. Unidentified (Dicrenote sp.	10 5330 190	10 7020 60	12420 12420	5810	10 7610 410	10 5970 500	09 10000 440	12060	350	1230	980	30 2740 20
Hesperocohopa sp. Palpomyta sp. Pericoma sp.	210	120	210	350 1320	300	140	230	40 110		000	37.0	50 750
Unidentified Simuliidae Simulium sp. Unidentified Tipulidae Tipula sp.	0 0	160	09	70	20	10	01	20				20
Hymenoptera Unidentified Hymenoptera	10						10					
Collembola	 		10						 			
Turbellaría	00.5	280	310	110	08.8		10	30	30	0,9	150	50
nematuda Oligochaeta Pelecyboda	06	20	70	610	1260	370	150	210	110	091	096	1530
Gastropoda						!	10			}		
	490	560	670	180	680	099	530	049	70	170	90	330
Cladocera Ostracoda Copepoda	10 60 20	130	01 079	10 270 150	10 60 400	40 30	50 70	10 40 40	60 30 10	40 190 10	10 110 10	10 360 10
Total number of invertebrates/m² Total number of taxa (based on	12550	19110	25760	18420	15310	14890	18440	16160	1630	4270	5280	9130
number of insect families and other invertebrates)	25	23	24	23	22	20	23	22	16	11	21	23
Shannon-Weaver Diversity Index Evenness	2.97	2.92	2.70	3.12	2.74	2.64	2.19	1.64	3.17	3.11	3.36	3.12

Density (numbers/m²), number of taxa, diversity, and evenness of benthic invertebrates collected in Middle Creek, Beluga coal area, August 25, 1983. Appendix D-4.

							Site					
Taxon	-	=	111	2	-	=	=	2	-	<u>-</u>	= =	2
nsecta												
Ephemeroptera Baetis bicaudatus			10			20	30	30		30	10	
Baetis tricaudatus	20		20		30	X	3		01	2	30.	
Baetis sp.	2750	2680	4810	2140	3230	2800	1170	3690	260	470	290	270
Foregon 12 dodden	4		0,0	- 3	150	ď	0.0	S		250	000	130
Ephemerella infrequens/	5		3	ř	000	96	0	2		720	007	20
E. inermis complex	04		10	10	10	20		09		9	20	30
Unidentified Heptageniidae	1890	2170	810	450	780	1010	320	270		290	460	220
knithrogena sp. Unidentified Siphlonuridae			10 20	20	10				0	0.7	110	22
Plecoptera												
Unidentified Capniidae	1100	1400	420	310	880	200	400	180	09	140	150	220
Unidentified	ć	Š	ć		ć		8		4	ŗ	ć	ć
Isober Ja so	120	8	2	07	9	200	96	0	30	?	90	20
Unidentified Perlodidae	ì	10	10	2	04	2	30	04		90	20	30
Skwala sp.	50			10		20						
Teenionema sp.	;	2		10			i			10	10	10
Zapada cinctipes	2490	900	480	099	350	400	2 9	160	09	740	044	350
Zapada sp.	370	110	130	190	20	20	2	0,7	10	0		07
Trichoptera												
Apatania sp.	0	06.	600	ć	5		20	50	ć		ř	
Ecclisomy(a sp.	400	2	260	017	000	2	10	2 5	S 0	061	0	2
Clossosoma sp.	670	330	160	1150	110	380	20.2	300	10	1530	870	140
Unidentified Limnephilidae Onocosmoecus so.	09	10	10			20	0		20	30	10	20 10
Psychoglypha sp.	10					01						2
ido attidando						2				Ì		Į

Appendix D-4 (cont.)

					:	Site					
		7				8					
	11	111	<u> 1V</u>	l		111	17		<u> </u>	111	ŧν
20 9020 210	14480 210	3620 120	3700 130	3250 290	10 1380 160	340 190	530 260	130 20	30 350 20	10 680 60	700 20
90 1800	30 2930	30 2910	1900	1250	30 480	10	30	60 10	760	420	20 50
10	30	50	10	40 20	40		20			40	20
10					10						
10				10			10				
230	40 20	30 20	70 120	20 20	20 10	90 220	20 90	40 10	40	610	170
40	270	170	140	750	80	370	920 10	60	120 10	1070	390
1100	550	430	450	410	150	70	40	30	220	80	100
60 130 20	40 130	40 80	30 40 30	10 80 70	50	20	20	20 20 10	80 40 50	40 30	10 10
22820	26560	15690	12090	11890	8270	3690	7040	910	5730	6190	3140
23	21	22	23	24	23	18	22	19	22	23	22
2.93	2.35	2.88	3.11	3.10	3.11	3.29	2.61	3.51	3.50	3.55	3,60
0.65	0.53	0.65	0.69	0.68	0.69	0.79	0.59	0.83	0.78	0.81	0.81
	9020 210 90 1800 10 10 10 230 40 1100 60 130 20 22820 23820	9020 14480 210 210 90 30 1800 2930 30 10 10 10 230 40 20 40 270 1100 550 60 40 130 130 20 22820 26560 23 21 2.93 2.35	20 9020 14480 3620 210 210 120 90 30 30 1800 2930 2910 30 50 10 10 10 230 40 30 20 20 40 270 170 1100 550 430 60 40 40 130 130 80 20 22820 26560 15690 23 21 22 2.93 2.35 2.88	20 9020 14480 3620 3700 210 210 120 130 90 30 30 90 1800 2930 2910 1900 30 50 10 10 10 230 40 30 70 20 20 120 40 270 170 140 1100 550 430 450 60 40 40 30 130 130 80 40 20 30 22820 26560 15690 12090 23 21 22 23 2.93 2.35 2.88 3.11	20 9020 14480 3620 3700 3250 210 210 120 130 290 90 30 30 90 60 1800 2930 2910 1900 1250 30 50 10 40 10 10 230 40 30 70 20 20 20 120 20 40 270 170 140 750 1100 550 430 450 410 60 40 40 30 10 130 130 80 40 80 20 30 70 22820 26560 15690 12090 11890 23 21 22 23 24 2.93 2.35 2.88 3.11 3.10	1 11 111 1V 1 14 20 14480 3620 3700 3250 1380 210 210 120 130 290 160 90 30 30 90 60 30 1800 2930 2910 1900 1250 480 30 50 10 40 40 40 10 10 40 40 40 20 10 10 10 40 40 20 10<	1 11 111 1V 1 11 111 20 100 3620 3700 3250 1380 340 210 210 120 130 290 160 190 90 30 30 90 60 30 10 1800 2930 2910 1900 1250 480 140 30 50 10 40 40 20 10 10 10 40 40 20 20 10 20 230 40 30 70 20 20 90 20 40 20 20 10 220 40 20 20 10 220 40 20 10 20 370 10 20 20 90 370 10 20 20 10 20 370 10 20 20 10 20 20 10 20 10	1	1 11 7 11 1V 1 11 111 1V 1 11 111 1V 1 20 9020 14480 3620 3700 3250 1380 340 530 130 210 210 120 130 290 160 190 260 20 90 30 30 90 60 30 10 20 1800 2930 2910 1900 1250 480 140 30 60 30 50 10 40 40 40 20 10 10 10 10 10 10 10 10 10 230 40 30 70 20 20 90 10 40 40 20 90 10 40 40 20 10 20 90 10 40 40 30 10 10 10 10	10	1

Density (numbers/m²), number of taxa, diversily, and evenness of benthic invertebrates collected in Middle Creek, Beluga coal area, June 14, 1984. Appendix D-5.

							Site					
Taxon	 	=	=	۸۱	 	=	2 (11)	^1	_	S = 	111	2
Insecta Ephemeroptera Unidentified												
Ephemeroptera	20	20	20	130	80	(05	30	180	330	120	09
Baetis bicaudatus Baetis tricaudatus	0 6 0 6	<u>8</u> 2	150	00 02	120	201	700 200	20	320 110	1050	260 150	130
Baetis sp.		10	1	09	0+	1	100	000	730	130	10	150
Ephemerella doddsi	10		20						20	130	10	
Entemerella infrequens/ E. inermis complex Unidentified Heptageniidae	۱ 460	230	830	۴ 60	30		230	01	330	340	310	160
Plecoptera Unidentified Plecoptera			10									
Chloroperlidee	80	70	320	190		10	20		130	100	110	190
Unidentified Perlodidae	2		10	10	30	10	09	10				
Zapada cinctipes Zapada oregonensis	30	10	10	10 50								
Trichoptera Unidentified Inichoptera			100		02	50	150	20		10		02
Apatania sp. Brachycentrus sp.	70	80	9	04	50	90		10		04	10	
Glossosoma sp. Ochrotrichia sp.	80	70	20	80	10	;	į		300 340	270 570	80 420	10 760
Unocosmoecus sp. Psychoglypha sp.					04	20	20	100				
Unidentified Limnephilidae	20	20	-	04	150	80		670	06	09	30	90
Rhyacophila sp.	05		2							10		

Appendix D-5 (cont.)

							Site					
Taxon		- 11			1	11	2	IV		11	5 	ιv
Diptera	•						177	.,				
Chelifera sp.					360	30	50		10	20		
Unidentified Chironomidae	2640	1620	3920	4520	12630	6670	11090	5470	3260	4010	3650	7270
<u>Dicranota</u> sp.	50	10	90	60	190	160	60	10	30			30
Dixa sp.				24.0	21.0	20	20				10 10	200
Palpomyfa sp.	290	40	60 20	240 10	240	30	30		10		10	250
Prosimulium sp.	3260	1910	8560	5210	710	280	5820	330	180	120	20	10
Unidentified Tipulidae	3260	1310	8360	3210	710	10	3620	330	100	120	20	10
Outdesictifed Tibulione						- 10						
Hymenoptera												
Unidentified Hymenoptera	30							10	10			
Turbellaria			30	40	10		30		60	30	10	40
Nematoda	10	20		20	240	110	50	60			10	
Oligochaeta	420	70	30	570	340	870	140	640	130	20	140	790
Pelecypoda					130	20		80				
Castropoda								10				
Arachnida Acarina	110	100	50	340	270	140	320	30	70	240	250	680
Crustacea	110	100	30	340	210	140	320	30	70	240	230	600
Cladocera		50		40				10	10	30		
Ostracoda	10	20	10	40	220	20	10	50	120	40		100
Copepoda		10		20	30	10			40			30
Total number of			_									
invertebrates/m ²	7880	4460	14520	12350	15970	8750	18470	7640	6480	7690	5610	10840
Total number of taxa (based on												
number of insect families and												
other invertebrates)	19	17	18	19	17	15	15	15	19	17	16	15
Shannon-Weaver Diversity (ndex	2.35	2.19	1.70	2.17	1,42	1.42	1.46	1.53	2.48	2.30	1.90	1.86
Evenness	0.55	0.54	0.41	0.51	0.35	0.36	0.37	0.39	0.58	0.56	0.48	0.48
C10411493	4.55	0.54	5.41	0.51	0.10	0.50	V.3/	0.39	0.56	0.50	0.40	0.40

Density (numbers/m²), number of taxa, diversity, and evenness of benthic invertebrates collected in Lone Creek, Beluga coal area, June 14, 1984. Appendix D-6.

							Site					
Taxon	-	Ξ	7	۸۱	-	=	111	2	-	~ =	=	2
Insecta Ephemeroptera Unidentified												
Ephemeroptera Baetis bicaudatus	40	10 320	160	10	10 360	30 670	30 80	30 190	280 200	520 1500	120 1360	180 320
Baetis tricaudatus	30	130	140	70	30	30	80 130		2 60 310	240 1290	150	961
Cinygmula sp. Epecrus sp.	01	3	30	2	}			09				
Ephemerella doddsi		04	10	10	20				30	70	30	20
Enterection introducts/ E. inermis complex Unidentified Heptageniidae	240	10	410	10 520	04	96	150	10	210	260	210	100
Plecoptera Unidentified Plecoptera Unidentified Capniidae						10			10	01		10
Unidentified Chloroper11dae	150	480	260	120	470	250	390	130	180	510	300	100
Isoperia sp. Unidentified Perlodidae Zapada <u>oregonensis</u>	30 70	20	3 %	0 %	04	10,00	20 10	1 3 2	20 20	2		30
Trichoptera Unidentified Trichoptera	0.3	?	,	20		0.5	130	20		,	10	010
Clossosoma sp.	40 260	350	60 80	70 20	06	20	70	40 260	10	0 4 0	30	200
Onocosmoecus sp. Psychon lyna sp.	20				2		50	60	3	2	3	2
Unidentified Limnephilidae Rhyacophila sp.			10	30		01	160	420	30		01	9

Appendix D-6 (cont.)

							Site					}
Taxon	-	_	7	2	-	11	8	^	_	Ξ	11. 11.	2
Diptera Chelifera sp. Unidentified Chironomidae Dictanta sp	4790	10 177 02	2640	8380	7850	8800	13250	10 8410 30	20 3310 30	4680	3320	7040
Palpomyta sp.	170	205	900	0,5	0	30	10	20	10	20	10	0,
Simulium sp.	12770	8680	34050	3970	2570	16120	570	330	1610	910	1420	1440
Hymenoptera Unidentified Hymenoptera		10								10		
Collembola	10											
Turbellaria	70	10	10		09	10	20	20	80			20
Nematoda	240	8 6	2 5	3 C	140	180	9 8	25	20	910	30	30
Uligochaeta Pelecypoda	097	35	2	200	066	024	202	076	<u> </u>	010		2
Arachnida												
Acarina	180	110	20	230	20	20	250	130	280	180	90	190
Cladocera									110	160	10	40
Ostracoda Copepoda		20	10	20	70	01	20	0	8 %	999	902	8 <u>C</u>
Total number of	02,00	19000	09114	13780	12800	26850	16050	03601	75,60	0.011	0008	10460
Total number of taxa (based on number of taxa families and			3		2			3	95	07611		3
other invertebrates)	17	20	18	16	16	15	19	19	22	19	16	21
Shannon-Weaver Diversity Index	1.72	1.83	0.90	1.58	1.82	1.41	1.19	1.47	2.59	2.55	2,38	1,75
Evenness	0.42	0.42	0.22	0.39	0.45	0.36	0.28	0.35	0.58	09.0	0.59	0,40

Density (numbers/m²), number of taxa, diversity, and evenness of benthic invertebrates collected in Middle Creek, Beluga coal area, August 29, 1984. Appendix D-7.

							Site					
Taxon	_	=	111	۸۱	_	=	2	//	_	_=	Ξ	2
Insecta Ephemeroptera												
Baetis sp.	570	710	320	02	430	630	340	230	280	200	560	210
	30			20					70	200	80	20
Entremis complex	250	Cac	000	500	01	08.7	10	120	10	1230	40	20
Rhithrogena sp. Unidentified Siphlonuridae	257	S	3	3 0	2	3	20	2	882	10	100	200
Plecoptera Unidentified Plecoptera					02					}	=	,
Unidentified Capatidae	380	1450	024	067	240	900	480	05.1	071	190	287	0//
Chloroperlidae	96	20	10	06			20		50	80	25	00 ر
Unidentified Perlodidae					,	,			20	3	2	
Skwala sp. Zapada cinctipes	90	09	110	0,	310	30 530	310	01	30	320	870	170
Zapada oregonensis	0 4	0 †)	70 70		10	20				20	04	20
Trichoptera		9		9	9	-	06			10		
Abatania sp.	10	10	2	2 2	350	240	80	9		2		
Brachycentrus sp.	2	20	20	: 1		20	01	:	190	310	140	
Collsomyla sp. Clossosoma sp.	800	620	480	70 280	100	04	0,4	30	30 1560	40 3620	1030	740
Arctopsyche sp.									10	0 0	92	
Unidentified Limnephilidae	30	30	30	20	30			10	10	30	04.0	6
Rhyacophila sp.		2	22						10	10	3	2

Appendix D-7 (cont.)

			}				Site					1
Taxon	-	1	111	۸۱	-	=	111	٨	-	-	111	2
Diptera Chelifera sp. Unidentified Chironomidae Dicranota sp.	2300	5170	10	10 2430 10	230 9900 190	40 15980 280	20 8770 250	20 7230 170	30 1980 80	120 2890 120	1480	1140
Hespercenopa sp. Palpomyla sp. Pericoma sp.	100	10 220 260	130	290 120	1740	1610 1560	430 970	90	2D 440	30 2020	2005	280
Frosimulium sp. Simulium sp. Tipula sp.	130	09	0 %	20		30		10	01	01	0	
Hymenoptera Unidentified Hymenoptera		10			01			50	10			
Collembola								20	30			
Turbellaria	88	120	20	10	6	۶	2	20	09	99	240	30
Nematoda 01 (gochaeta Pelecypoda Gastropoda	260	240	20	80	270 270 620 20	071	250 50 10	40 10 10	06	130	180	320
Arachida Acarina	760	670	450	30	550	790	390	580	240	019	20	0 7
Cladocera Cladocera Ostracoda Copepoda	70 180	10 80 380	100	10 20 100	40 480 910	130	011 05	40 350 20	130 390 130	80 280 10	20	00 03 03 03
Total number of invertebrates/m² Total number of taxa (based on	6730	10740	4610	0994	18470	23400	13230	97.70	0999	13080	6350	5530
number of insect families and other invertebrates)	20	22	19	21	22	18	54	22	27	26	24	20
Shannon-Weaver Diversity Index	3.28	2.77	2.99	2.54	2.72	1.95	2.11	1.71	3.29	3.16	3.39	3.32
Evenness	92.0	0.62	0.70	0.58	0.61	0.47	94.0	0.38	0.69	0.67	0.74	0.77

Density (numbers/m²), number of taxa, diversity, and evenness of benthic invertebrates collected in Lone Creek, Beluga coal area, August 29, 1984. Appendix D-8.

7	7	_	\ <u>=</u> }	<u>>1</u>		=	Site 8	2		=		≥
	006	190	360	280	0.470	099	280	150	130	350	420	270
	20	20	40	04		10	20		40	70	100	22
	380	10 560	10 510	470	10 180	790	30	30 80	30	190	230	190
		20		10	10		2		10	2	20 20	2
_ ~	067	1360	730	630	1000	2230	06	210	920	04	011	580
	20	160	120	170	100	140	30	01	200	30	30	20
		10		10				30	10	10	10	
æ	890	00,	110	170	9	330	10	04	270	240	130	09
	120	2	3	30	20	20	10	20			2	
	20	70	20	100		20	930	310				
_	120	04	04	170	20	20	40	10	20	70	80	
	270	044	470	099	200	840	1180	630	380	140	4 20	30
	20	30	56				10		10		ì	10

Appendix D-8 (cont.)

							Site					
Taxon	-		111	۸۱	-	=	111	۸۱	-	=	=	>
Diptera Chelifera sp. Unidentified Chironomidae	10	10	10	15560	1240	3540	830	20 1900	50 1890	380	20	770
Dicranota sp. Palpomyia sp. Pericona sp.	220 680 1390	230 390 2180	330	440 490 1610	240 200 120	250 180 1060	02 01	30 00	380 20 2310	08 051	260 10 760	10 120 210
Collembola	2	2	8	10		2			2 0	3	2 02	02
Turbellaria Nematoda Olgochaeta Pelecooda	60 1160 320	07	120	40 20 10 10	40	0012	270	190	330	20 70 70	10 20 300	90 20 840
Arachnida Acarina	880	1020	200	800	130	470	150	, oo	230	140	370	90
Cladocera Ostracoda Copepoda	70 330 40	300 300 710	0,00	500 500 40	20 20 20	110 210 60	30	55	70 460 120	80 190 30	120 160 10	80 170 40
Total number of invertebrates/m² Total number of taxa (based on	13740	30570	17160	22380	0911	11600	0954	4340	8880	2720	5230	3710
number of insect families and other invertebrates)	23	24	22	24	19	23	18	19	25	22	25	20
Shannon-Weaver Diversity index Evenness	3.28	1.91	2,14	1.98	3.25	3.25	2.99	2.84 0.67	3.38	3.74	3.56	3.36

Appendix E. Three-factor analysis of variance table, where the variable is benthic-invertebrate abundance (in numbers/meter²) during June and August 1983 and 1984, in Middle and Lone Creeks, Beluga coal area, Alaska. The number of samples used in this analysis = 96.

Source of variation	Degrees of freedom	Sum of squares	Mean sum of squares	Calculated F	Critical F ^a	Conclusion
stream	1	0.038	0.038	0.587	$F_{0.05[1,72]} = 4.00$	Accept H _o
site	2	3.023	1.511	23.182	$F_{0.05[2,72]} = 3.15$	Reject Ho
date	3	0.607	0.202	3.106	$F_{0.05[3,72]} = 2.76$	Reject H
stream X site	2	1.299	0.649	9.963	$F_{0.05\{2,72\}} = 3.15$	Reject H
stream X date	3	0.536	0.179	2.742	$F_{0.05[3,72]} = 2.76$	Accept H _o
site X date	6	0.718	0.120	1.836	$f_{0.05[6,72]} = 2.25$	Accept Ho
stream X site X date	6	0.361	0.060	0.923	$F_{0.05[6,72]} = 2.25$	Accept II o

^a There are no critical values for $v_2 = 72$, so the values for the next lowest degrees of freedom, $v_2 = 60$, were used.

Appendix F. Wet-weight biomass (grams/m²) of benthic invertebrates collected from sites in Middle and Lone Creeks, Beluga coal area, during June and August 1983 and 1984. Biomass is summed for each stream, site and month.

Wet-weight	Biomass	(grams/m²)
------------	---------	------------

		М	iddle Cree	·k	-	1	one Creek		
			site				site		
Month	Sam <u>p l e</u>	1	2	5		7	В	11	
June	1	6.73	12.45	6.94		18.71	14.12	5.36	
1983	1 {	8.17	16.61	5.28		21.21	31.05	11,45	
	111	18.75	6.87	11.99		40.88	19.46	7.99	
	١٧	9.78	8.78	4.13		24.69	6.04	18.73	
		Σ 43.43	44.71	28.34	116.48	105.49	70.67	43.53	219.69
August	ı	9,40	7.41	3.13		14.01	10.64	3.08	
1983	1.)	9.41	10.73	6.31		8.79	11.01	21.78	
	13.1	9.90	8.81	7.08		14.77	7.35	11.13	
	IV	7.78	11.32	8.25		8.64	15.25	5.90	
		∑ 36.49	38.27	24.77	99.53	46.21	44.25	41.89	132.35
anuL	1	9.89	13.41	7.77		17.11	17.60	9.99	
1984	13	5.62	11.57	14.47		20.49	26.09	13.17	
	111	12.77	11.25	6.47		23.67	16.81	10.05	
	1 V	7.51	7.83	5.83		10.95	21.61	12.74	
		∑ 35.79	44.06	34.54	114.39	72.22	82.11	45.95	200.28
August	1	10.11	6.84	8.46		6.07	5.40	9.11	
1984	1 L	8.41	8.88	12.72		8.25	12.08	4.86	
	111	7.18	5.51	7.73		8.20	10.51	6.96	
	١٧	6.24	3.79	4.59		9.03	6.65	3.78	
		Σ 31.94	25.02	33.50	90.46	31.55	34.64	24.71	90.90
		Σ 147.65	152.06	121.15	420.86	255.47	231.67	156.08	643.22

Appendix G-1. Habitat parameters at benthic-invertebrate sampling sites.

June 15, 1983

				Middle	Creek							
				1			S	ite 2				5
Time			-	1250				1140				1021
Water temperature (°C)				10.3				10.6				10.4
Stream width (ft)				8.0				12.0				12.0
Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grasses				- - 20 90				- - 100				10 40 40 10
Benthos Collection Point Stream substrate composit Boulder Rubble Gravel Sand/silt	l ion (% - 20 80	1 l 50 50	111 - 40 60	1V - 40 50 10	1 - - 80 20	11 - - 90 10	111 - 60 40	IV - - 80 20	1 - 60 40 -	70 30	111 - 40 60	70 30
Water depth (ft) Water velocity (ft/sec)	0.15	0.15	0.2	0.2	0.15	0.1 a_	0.5	0.55	0.7 2.51	0.7	0.3	0.3

				Lone (Creek							
				7			S	ite 8				11
Time				1417				1602			(0905
Water temperature (°C)				10.2				12.8			1	10.5
Stream width (ft)				16.0				18.0				16.5
Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grasses				- - 60 40				10 70 20				10 30 60
Benthos Collection Point Stream substrate composit	1 :ion (%	11	111	١٨	I	11	111	17	1	1)	111	17
Boulder Rubble Gravel Sand/silt	50 40 10	70 30	70 30	40 60	- 80 20	70 30	- 80 20	100	- 90 10	40 60	45 45 10	- 60 40
Water depth (ft)	0.4	0.3	0.35	0.3	0.4	0.3	0.3	0.5	0.3	0.7	0.9	0.7
Water velocity (ft/sec)	2.16	1.30	1.70	0.83	1.28	0.75	2.50	0.24	0.95	2.74	2.16	2.74

^a Missing data.

Appendix G-2. Habitat parameters at benthic-invertebrate sampling sites.

August 25, 1983

				Middle	Creek		S	íte				
				1				2				5
Time				1318	•			1210			1	046
Water temperature (°C)				8.8				8.7				7.8
Stream width (ft)				8.0				11.0			1	12.0
Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grasses				100				100				10 40 30 20
Benthos Collection Point Stream substrate composite Boulder Rubble Gravel	80	30 70	111 2 30 70	IV - - 100	I - - 100) - 100	111	IV - - 100	70 30	80 - 20	50 30 20	1V 50 25 25
Sand/silt	20	-	•	-				^	-	-	-	-
Water depth (ft) Water velocity (ft/sec)	0.2	0.2	0.2	0.1	0.1	0.1	1.36	0.7	0.8	0.7		0.25
			<u>Lone Creek</u> Site									
				7			·	8				11
Time				1455		·		1616			(0910
Water temperature (°C)				11.0				11.3				8.2
Stream width (ft)				14.0				17.0				16.0
Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grass				10 70 20				10 70 20				10 20 70
Benthos Collection Point Stream substrate composit Boulder Rubble Gravel Sand/silt	l ion (% 50 40 - 10	11) - 40 - 60	30 20 50	1V 40 60	90 10	- 20 70 10	- 40 60	70 30	! - 100	80 20	111	1V - 90 -
Water depth (ft)	0.3	0.3	0.35	0.3	0.3	0.1	0.2	0.3	0.33	0.58	0.58	0.42
Water velocity (ft/sec)	1.25	0.80	1.36	1.59	1.95	1.59	1.43	2.50	1.92	2.86	1.58	0.80

Appendix G-3. Habitat parameters at benthic-invertebrate sampling sites. June 14, 1984.

				M{ddle	Creek		s	ite 2				
				1			5					
Time				1145				1050			(3944
Water temperature (°C)				11,1				10.6				9.9
Stream width (ft)				8.0				10.0			1	6.0
Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grasses				- 50 50				100				10 50 30 10
Benthos Collection Point Stream substrate composit Boulder	ion (%	11	111	1V	1 -	11	111	IV -	1		111 90	١٧
Rubble Gravel Sand/silt	40 60	60 40	30 70	50 50	50 50	- 50 50	100	40 - 60	80 20	90 10	10	70 30
Water depth (ft)	0.25	0.25	0.25	0.2	0.5	0.45	0.25	0.15	0.9	0.5	0.45	0.3
Water velocity (ft/sec)	1.1	1.0	1.3	1.6	1.1	0.4	1.2	0.8	1.4	1.8	0.7	0.4
				Lone (Creek							
				7			S	ite 8				11
îî me				1230				1330			,	0840
Water temperature (°C)				12.0				12.4				10.2
Stream width (ft)				16.0				12.0				20.0
Riparian habitat (%) Conifers Deciduous trees Shrubs/brush Grass				70 30				- 20 70 10				80 20
Benthos Collection Point Stream substrate composit	l %) noi:	11	111	1V	ŧ	li	114	١٧	1	۱ŧ	111	۱۷
Boulder Rubble Gravel Sand/silt	80 20	90	70 30	- 80 20	50 40 10	50 40 10	100	40 40 20	40 40 20	90 10	100	90
Water depth (ft)	0.25	0.35	0.3	0.6	0.5	0.6	0.6	0.45	0.6	0.6	0.8	0.4
Water velocity (ft/sec)	1.1	0.7	1.8	1.1	1.7	1.9	1.4	1.1	1.4	1.7	2.0	1.1

Appendix C-4. Habitat parameters at benthic-invertebrate sampling sites.

August 29, 1984.

				Middle	Creek		c	ite				
				1			3	2				5
Time				1450				1410				1300
Water temperature (°C)				7.2				7.0				6.6
Stream width (ft)				8.0				12.0				16.0
Stream substrate composit	} :ian (%	 }	111	١٧	ŧ	11	Ш	W	I	11	111	١٧
Boulder Rubble Gravel Sand/silt	40 60	40 50 10	60 40	80 20	- 90 10	100	100	- 80 20	95 5	80 10 10	100	50 40 10
Water depth (ft)	0.5	0.5\$	0.25	0.2	0.2	0.2	0.25	0.8	0.6	0.55	0.4	0.2
Water velocity (ft/sec)	1.2	0.2	1.2	0.2	0.7	1.2	1.3	0.6	1.0	0.9	0.3	0.2
				Lone (Creek							
				7			3	ite 8				11
Time				0930				1040				1140
Water temperature (°C)				5.5				6.4				6.4
Stream width (ft)				18.0				12.0				20.0
Benthos Collection Point Stream substrate composit	l tion (9) l	Ш	IV	1	11	111	1V -	1	11	111	۱۷ -
Boulder Rubble Gravel Sand/silt	90 10	100	80 20 -	80 10 10	50 50	60 40 -	40 60 -	- 60 40	70 30	100	90 10	70 30
Water depth (ft)	0.3	0.3	0.3	0.45	0.2	0.5	0.45	0.4	0.25	0.3	0.6	0.2
Water velocity (ft/sec)	0.8	0.5	1.4	0.8	1.0	1.2	1.2	0.6	1.1	2.0	2.1	0.5