Public Data File 88-5

HYDROLOGIC AND WATER QUALITY INVESTIGATIONS RELATED TO PLACER MINING IN INTERIOR ALASKA, SUMMER 1987

Ву

Stephen F. Mack, Mary A. Moorman and Linda Harris

Alaska Division of Geological and Geophysical Surveys

January 1988

THIS DOCUMENT HAS NOT RECEIVED OFFICIAL DGGS REVIEW AND PUBLICATION STATUS.

794 University Avenue, Suite 200 Fairbanks, Alaska 99709

TABLE OF CONTENTS

List of Figures
List of Tables
Executive Summary
Introduction
Methods8
A. Discharge
B. Water quality
1. Turbidity and total suspended solids
2. Fortymile drainage water chemistry
Results and Discussion
A. Discharge14
B. Turbidity
C. Sediment load
D. Fortymile drainage water chemistry24
Conclusions
Acknowledgements
References Cited
Appendices
1. 1987 sediment and discharge data29
2. 1987 discharges at automated sites51
3. Fortymile drainage water chemistry
4. Seasonal turbidity and discharge figures60
5. Specific locations of sampling sites68

LIST OF FIGURES

	Location of interior Alaska sampling sites
	LIST OF TABLES
1.	Summary of discharge values
3.	Monthly and seasonal sediment loads23

Hydrologic and Water Quality Investigations Related to Placer Mining in Interior Alaska, Summer 1987

By Stephen F. Mack, Mary A. Moorman, and Linda Harris

EXECUTIVE SUMMARY

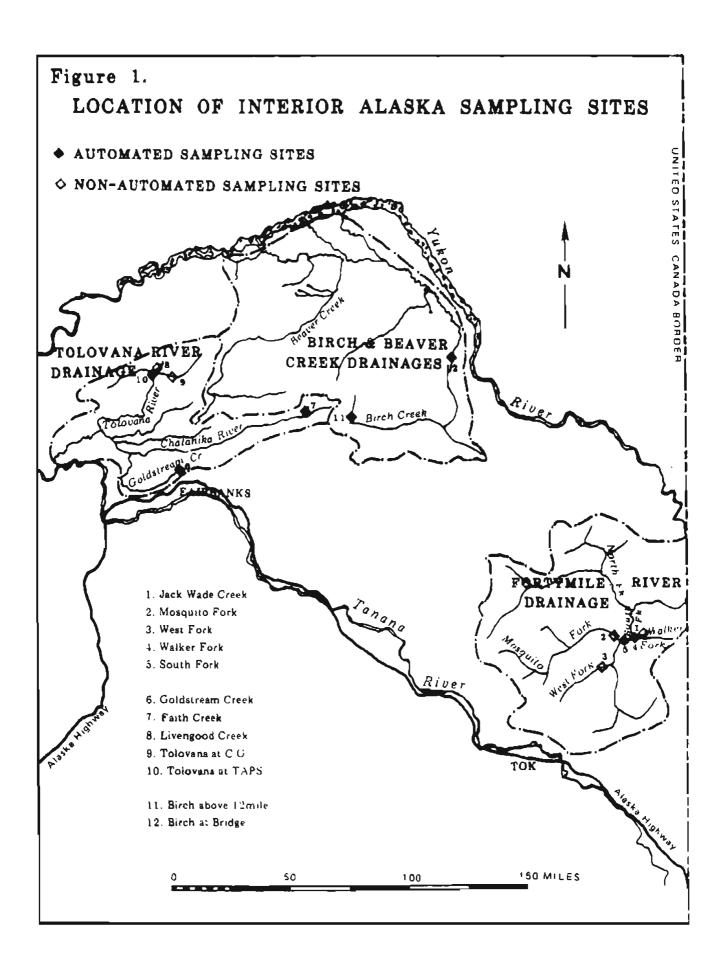
Alaska Division of Geological and Geophysical Surveys (DGGS) investigators, working cooperatively with personnel from the Alaska Department of Fish and Game and Environmental Conservation, and from the U.S. Bureau of Land Management monitored total suspended solids (TSS), turbidity, and discharge at selected sites affected by placer mining in the Tolovana River, Birch Creek and Fortymile River drainages in interior Alaska. At seven sites we had automated equipment for both collecting samples and recording water levels. At five sites we collected grab samples, observed water levels, and measured stream flows when we were in the area. We also collected samples for water chemistry analysis at 12 sites in the Fortymile drainage.

In the drainages we observed, during the 1987 field season runoff ranged from 7.40 inches (Birch Creek above 12mile Creek) to 1.13 inches (Goldstream at Ballaine Road). Median turbidity varied from 230 NTU at Birch Creek above 12mile Creek to 1.0 NTU at Mosquito Fork at the Taylor Highway Bridge. The sites in the Fortymile drainage had the lowest turbidity with average turbidity at all Fortymile sites below 5 NTU. At all sites monitored in both 1986 and 1987 average and median turbidity were lower. At the Birch Creek drainage sites average sediment load was higher in 1987, however. One explanation for this is the large amount of reclamation work done in 1987. Water chemistry results showed Alaska Department of Environmental Conservation primary contaminant concentrations for drinking water exceeded for chromium in samples from Walker Fork above the South Fork and West Fork at the Taylor Highway Bridge, and for mercury in a sample from South Fork at the Taylor Highway Bridge.

INTRODUCTION

During the 1987 summer, Alaska Division of Geological and Geophysical Surveys (DGGS) investigators continued the field-season-long monitoring of interior Alaska streams affected by placer mining begun in 1984. We worked closely with investigators from the Alaska Department of Fish and Game (ADF&G) and the Alaska Department of Environmental Conservation (ADEC) to collect water samples and record water levels at sites as much as 350 road miles apart. Monitoring in 1984-86 concentrated on small streams in the Birch Creek drainage. The results from previous years are reported in "Hydrologic and Water Quality Investigations Related to the Occurrence of Placer Mining in Interior Alaska, Summers 1984-5" and "Hydrologic and Water Quality Investigations Related to the Occurrence of Placer Mining in Interior Alaska, Summer 1986 (Mack and Moorman, 1986; and Mack and Moorman, 1987).

Our initial plan for the 1987 field season was to pool the available automated equipment owned by DGGS, ADF&G, and ADEC to maintain monitoring of turbidity, total suspended solids, and discharge at a few important sites in the Birch Creek drainage (Birch Creek at the Steese Highway Bridge and Birch Creek above Twelvemile Creek), at Faith Creek above the Steese Highway and at Goldstream Creek at Ballaine Road. We started monitoring these sites in late May-early June. From our experience of the previous years we believe that our most useful data comes from sites that have automated water samplers and water level


recorders operating throughout the field season. In most cases, manual grab sampling programs are too labor intensive to be done frequently enough to get a good average of the season-long conditions. Also with manual techniques it is difficult to account for possible diurnal variation and to collect samples during infrequent events, such as floods.

Because of the data needs of court-ordered environmental impact statements, the U.S. Bureau of Land Management (BLM) provided funding for DGGS to collect discharge, turbidity, total suspended solids (TSS), and water chemistry data from streams in the Fortymile drainage and in the upper Tolovana River drainage. We started the discharge, turbidity and TSS monitoring on July 6 in the upper Tolovana drainage at Tolovana at the Trans Alaska Pipeline System (TAPS) crossing (automated, below all mining), Livengood Creek at the Livengood Road (non-automated), and Tolovana at the BLM Campground (non-automated, above mining). started on July 14 in the Fortymile drainage, regularly monitoring sites at the West Fork Dennison at the Taylor Highway (non-automated, above mining), Mosquito Fork at the Taylor Highway (non-automated), South Fork at Taylor Highway Bridge (automated), Walker Fork at Taylor Highway Bridge (automated), and Jack Wade Creek above the BLM Campground (non-automated). We also collected some samples at on-river sites downstream of the South Fork site when river transport was available. During August 18 through August 22 we collected samples for water chemistry analysis at eleven sites in the Fortymile drainage. We were

able to collect numerous samples at the non-automated sites because of the cooperation of the BLM recreation rangers stationed in the Fortymile drainage and by frequent visits to the Tolovana drainage. The results from the monitoring done in the Fortymile and Tolovana drainage have also been reported to the BLM EIS investigation team in a separate document (Mack, Moorman, and Harris, 1987).

The resulting discharge, turbidity, and TSS monitoring network for the 1987 summer included seven automated sites and five non-automated sites in the Birch Creek, Tolovana River and Fortymile River drainages. Samples continued to be collected and water levels recorded at these sites until late September-early October. Figure 1 shows the location of interior Alaska sites regularly monitored this summer.

The data reported here are from analyses done in the DGGS laboratory in the case of water quality results, or from discharge ratings developed by DGGS investigators in the case of discharge estimates. However, it is important to note the field work necessary to collect the samples and record water levels was truly a cooperative effort among DGGS, ADF&G, ADEC, and BLM personnel. Water quality samples from the Goldstream drainage were mostly collected by ADF&G. Samples and water level data from the Tolovana, Faith Creek, and Birch Creek sites were largely collected by Leslie Simmons of ADEC. The work in the Fortymile was greatly assisted by John Bauer of ADEC and by BLM recreation rangers stationed in the area.

METHODS

A. Discharge. Velocities used to calculate discharge in most cases were measured with a Marsh McBirney Model 201 Flowmeter. At sites with bridges (Birch Creek at Bridge, Walker Fork, South Fork at Bridge, and Mosquito Fork) when wading the stream was not possible, velocities were measured from the bridge using a Price AA meter suspended from a hand line or a crane. Where depth was greater than 2.5 feet, velocities were measured at two and eight tenths of the depth from the surface. At depths less than 2.5 feet, velocities were measured six tenths of the depth from the surface. Discharges were calculated using the standard midpoint method (USDOI, 1981) from at least twenty velocity measurements taken across the stream cross section where width permitted (most cases).

Gage locations were chosen based on having a history of previous monitoring and on proximity to bridges for high flow measurements. The sites were situated sufficiently downstream of any mining or tributary so that the stream was well mixed at the sampling site. At each location the specific site was chosen by looking for a cross section that would provide the most change in stage for change in stream discharge and the least turbulence around the staff gage. Staff gage water surface levels were recorded whenever agency personnel were in the vicinity. At Birch Creek at Bridge, Birch Creek above Twelvemile Creek,

Faith Creek above Steese Highway, Goldstream Creek at Ballaine Road, South Fork at the Taylor Highway Bridge, Walker Fork at the Taylor Highway Bridge, and Tolovana River at the TAPS crossing, continuous water surface levels were recorded with Omnidata DP320 Stream Stage Recorders. The DP320 is a small, battery operated device with a submersible pressure transducer which measures and records water levels between 0 to ten feet to the nearest hundredth of a foot. Water level data are stored in a solid state memory called a data storage module. At all sites the water level recorders monitored water levels at 30 minute intervals.

Rating curves were developed for each site by taking at least four discharge measurements at different water levels throughout the season. At the Tolovana River at TAPS crossing and at the West Fork of the Dennison Fork in the Fortymile drainage, peak flows were estimated using the slope-area method (Dalrymple and Benson, 1984). The rating curves were then used to estimate discharge from the observed or recorded water levels.

We determined seasonal runoff to have an estimate of the relative amount of water available at the sites we were monitoring. Runoff was calculated by multiplying the seasonal average discharge by 120 days (the assumed length of an operating season), dividing by the drainage area, and converting the units into inches.

B. Water Quality. Water quality analyses done in 1987 for this report were conducted in the field and in the DGGS hydrology lab located on the University of Alaska, Fairbanks campus in the Water Research Center. Some trace metal analyses were also performed with the generous help and use of equipment of the UAF Forest Soils Laboratory.

Procedures prescribed in the EPA publication no. EPA-600/ 4-79-020, "Methods for Chemical Analyses of Water and Wastes," were followed whenever possible (EPA, 1983). Other sources of methods were the USGS "Techniques of Water-Resources Investigations, Book 5, Chapter Al"; the APHA-AWWA-WPCF "Standard Methods for the Examination of Water and Wastewater, Sixteenth Edition"; and procedures outlined in the user manuals of certain instrumentation (Skougstad et al., 1979; APHA, 1985). The lab is a participant in EPA analytical quality assurance studies, and has participated in the USGS Standard Reference Water Sample Quality Assurance program since 1980. For all analyses calibrations were performed using in-house analytical standards and blanks, and were monitored and verified by running previously analyzed Standard Reference Water Samples along with the water samples collected for this study.

1. Turbidity and total suspended solids. Samples for these analyses were collected from automated samplers or by grab methods in well-mixed reaches at sampling sites. When automated samplers were employed, the intake hose for the sampler was installed at a well-mixed location in the stream at middepth with the intake nozzle pointing

upstream. The automated samplers were programmed to composite into one bottle four samples taken six hours apart each day.

Most turbidity determinations were done in the lab because the lab served as a receiving point for samples coming in from more than one collecting agency, and because some of the more turbid samples required several serial dilutions to bring their turbidity down to readable levels. During 1987 the instrument used was a Turner Designs Model 40 laboratory turbidimeter.

Total suspended solids (TSS) samples were filtered through prewashed, dried and weighed glass fiber filters, according to EPA specifications. The size of the aliquot was dependent upon the amount of material suspended, but ranged from 25 ml to a liter. Sediment load was calculated by multiplying discharge (in cfs) by TSS (in mg/l) and a constant of 0.0027 to convert the units into tons per day. Sediment yield was calculated by multiplying the seasonal average sediment load by an assumed 120 day field season and dividing by drainage area.

2. Fortymile drainage water chemistry. For the Fortymile drainage water chemistry analyses, field determinations conducted at each sampling site included temperature using an Omega Model 727C handheld digital thermocouple, and pH using a Corning Model 3D portable pH meter

and Orion Ross combination electrode. The pH meter was calibrated at each site and used for electrometric titrations of alkalinity using standardized dilute sulfuric acid.

Samples collected at each site were: filtered untreated and filtered acidified aliquots for determining dissolved major anions, cations and trace metals; nonfiltered untreated aliquots for determining turbidity and total suspended solids; and nonfiltered acidified samples for determining total recoverable metals. All acidified samples were collected in pre-acid-washed bottles, and acidified with Ultrex grade nitric acid, to a concentration of 1.5 ml acid per liter sample. The filtered samples passed through 0.45 micron membrane filters.

One hundred m1 aliquots of unfiltered acidified samples were heated with 2 ml 1:1 nitric acid and 10 ml 1:1 hydrochloric acid until they were reduced to 25 ml. They were then filtered through 0.45 micron membrane filters and the filtrate volume adjusted to 100 ml with distilled deionized water. These samples were analyzed for total recoverable trace metals. Also included in these analyses were filtered acidified samples to determine the dissolved concentrations of these constituents. Sodium (Na), potassium (K), strontium (Sr), arsenic (As), and mercury (Hg) were analyzed by atomic absorption spectrophotometry using various techniques and instruments. Na and K were analyzed on a Perkin-Elmer (P-E) 5000 using an air-acetylene flame; Sr on a P-E 603 using

a hydride system (MHS-1) with 5%NaBH₄ in 2% NaOH as the reductant. Beryllium was determined using the flame emission mode on a P-E 4000 and a nitrous oxide-acetylene flame. The remaining trace elements and major cations were determined on a Beckman SpectroSpan V DCP plasma located in UAF Forest Soils Laboratory. They include aluminum (Al), boron (B), barium (Ba), chromium (Cr), cadmium (Cd), iron (Fe), manganese (Mn), lead (Pb), selenium (Se), silicon (Si), zinc (Zn), calcium (Ca), and magnesium (Mg). DCP spectrophotometry has been favorably received throughout the scientific community and is being reviewed by EPA for certification in the very near future as an acceptable analytical technique for trace metals.

Total dissolved anions were determined in filtered untreated samples on a DIONEX ion chromatograph according to method 429 of Standard Methods for the Examination of Water and Wastewater (APHA 1985).

Detectable levels of Cl, NO3, and SO4 only were found.

Hardness and total dissolved solids were calculated from the above analytical data.

RESULTS AND DISCUSSION

Appendix 1 contains the turbidity, total suspended solids, discharge and sediment load data from the 1987 field season. We have ordered the data chronologically by site and by drainage area. This appendix contains two types of sediment data: 1) samples from automated samplers are composites of four samples which we consider representative of a daily average; and 2) grab samples which are representative of instantaneous conditions. In Appendix 1 the data from automated samplers are matched with daily average discharges. The grab sample data are matched with measured discharges or with instantaneous discharges estimated from observed or recorded water levels. Appendix 2 contains discharge data from each site that had an automated water level recorder. This appendix has daily average discharges in a concise calendar-like format and includes discharges for all days that the recorder was operating, including days for which no TSS or turbidity Appendix 3 contains the Fortymile water chemistry results. exists. Appendix 4 contains graphs of daily turbidity and discharge values at These figures vividly show the seasonal variation and automated sites. relationships of turbidity and discharge at the sites we monitored with automated equipment.

A. Discharge. Table 1 summarizes the monthly average discharges at the sites regularly monitored in 1987. Of the sites also monitored in 1986, Faith Creek averaged less in 1987 while Birch Creek above 12mile and

Birch Creek at the Steese Highway Bridge had higher average flow in 1987. Of note is the disparity in runoff between the sites. The Fortymile sites are similar and relatively low. The Upper Tolovana sites have runoff similar to the Fortymile sites. The Birch Creek sites and Faith Creek have much higher runoff values. The lowest runoff was in Goldstream Creek.

Table 1. Summary of Discharge Values

Monthly averages of discharge in cfs

Averages of continuous observations except where noted

Aver	ages of	f conti	nuous	observat	ions excep	t where	noted
						Season	2
Location	Area	June	July	August	September	Average	Runoff
		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(in)
Fortymile Draj	nage						, ,
Jack Wade Creek	48.6		51.5	28.0	22.9	30.7	2.82
Mosquito Fork	1170		1270	368	445	598	2.28
West Fork	579		553	226	191	299	2.30
Walker Fork	394		272	232	243	246	2.78
South Fork	2750		1800	821	677	1010	1.64
Tolovana Drain	age						
Goldstream Creek	77.2	24.0	15.7	23.0	15.8	19.6	1.13
Faith Creek 86		107	80.4	141	149	123	8.99
Faith Creek 87 Livengood Creek	61.0	113	51.6	134	103	100	7.34
Livengood Creek	20.1		11.1	13.9	6.2	10.9	2.42
Tolovana at CG	140		230	145	36.7	145	4.62
Tolovana at TAPS	249		73.3	293	57.9	158	2.83
Birch Creek Dr	ainage						
Birch 12mile 86		207	125	71.2	76.5	120	6.26
Birch 12mile ₁ 87 Birch Bridge 85	85.4	196	147	149	74.8	142	7.40
Birch Bridge 85	2150	4600	1710	1930.	ı. 3790 8281	3010	6.24
Birch Bridge 86	2150	3730	2370	700	8281	1910	3.96
Birch Bridge 87	2150	4120	2570		1010	2520	5.23

 $^{^{2}\}mathrm{Runoff}$ value assumes the season average is the average value for a 120 day summer season.

One should interpret the runoff estimates with caution. These

values assume a 120 day season (June through September); however, the data from the Fortymile and Upper Tolovana sites are the result of monitoring that began in mid July. In interior Alaska June flows are higher than the average for the summer season. The high runoff at the Faith Creek and Birch Creek above 12mile sites are indicative of the relatively high altitude, steep slope nature of the drainages above these sites. The low runoff at the Goldstream at Ballaine Road site may indicate that significant amounts of streamflow are being lost to ground water in this drainage.

B. Turbidity. Table 2 shows the monthly and seasonal turbidity averages and seasonal medians at sites regularly monitored in 1987. The median is that value which divides a series so that one half or more of the observations are equal to or greater than it and one half or more of the observations are equal to or less that it (Croxden, Cowden, and Klein, 1967). Because values like turbidity can be no smaller than zero but have no real upper limit, infrequent, extreme events such as floods can produce large turbidity values which distort the mean or average value. The median may better represent the normally observed turbidity value and indicates the extent to which the average is affected by extreme events.

In general, turbidity was lowest in the streams monitored in the Fortymile drainage. In 1987 little difference existed between the

streams with mining upstream and the West Fork Dennison which has no mining activity upstream of the sampling site.

The sites in the Tolovana drainage represent three different and hydrologically separate mining areas: Goldstream Valley (Goldstream at Ballaine), Faith Creek (Faith Creek above Steese) and Livengood (Livengood Creek, Tolovana at Campground, and Tolovana at TAPS). The streams from these different areas eventually meet in Minto Flats. Goldstream Creek is a small creek near Fairbanks with a number of mining operations in the drainage. The values reported here were collected by personnel from the Alaska Department of Fish and Game and are discussed in more detail in a separate report (Weber and Robus, 1987). Faith Creek is one of the headwater creeks of the Chatanika River, a popular recreational stream for Fairbanks residents. It has been heavily mined and has received much attention from agency personnel in the past few years (Townsend, 1987). Monitoring indicates that turbidity levels continued to drop in 1987.

The streams with mining upstream in the Livengood area had middleof-the range average and low median turbidity values when compared to
the other mined streams monitored. The data from these streams show the
largest difference between the average and median turbidity values.
Mining operations in the Livengood area reported little discharge to
streams (Peterson, 1987). A large storm passed through the drainage in
late July and early August. Runoff from this storm produced turbidity

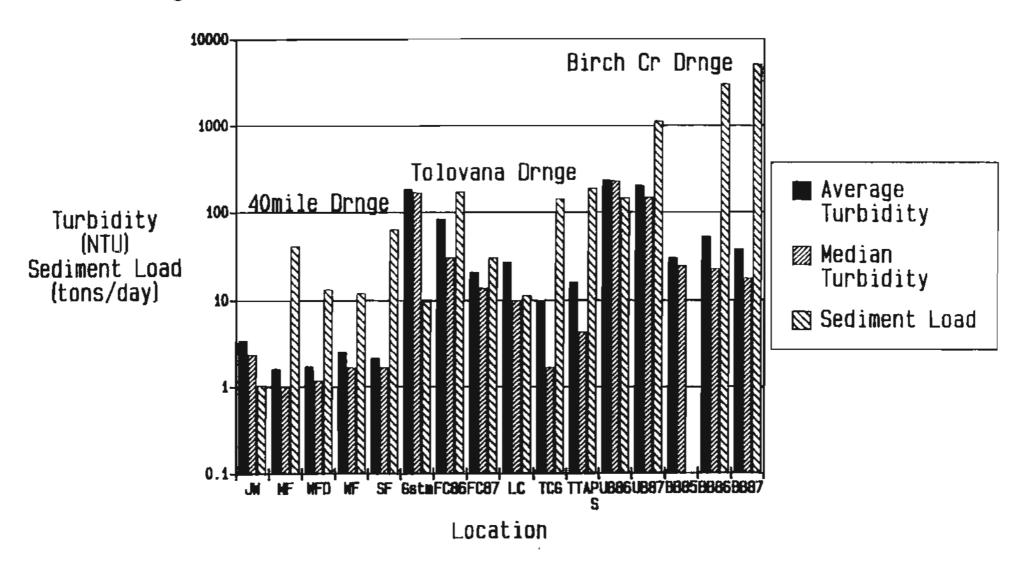
values that greatly affected the averages reported here. This is most pronounced with the data from the the Tolovana at Campground site. While the average is relatively high, the median value is similar to the medians reported from the Fortymile drainage sites. If the value from the July 31 sample is disregarded, the averages from this site correspond to the Fortymile data. High turbidity from this drainage may be more of a nonpoint nature, for example, storm runoff from a disturbed area, than from a point source such as placer mining.

Table 2. Summary of Turbidity Values

Monthly averages in Nephelometric Turbidity Units (NTU)

Averages of data from automated samplers except where noted

indicates site has no mining upstream


Location June July August September Average Media Fortymile Drainage Jack Wade Creek 3.9 1.7 5.1 3.5 2.4 Mosquito Fork at Bridge 3.7 1.0 0.9 1.7 1.0)
Jack Wade Creek 3.9 1.7 5.1 3.5 2.4) ?
Jack Wade Creek 3.9 1.7 5.1 3.5 2.4 Mosquito Fork at Bridge 3.7 1.0 0.9 3.7 1.6) ?
Morganito Fork at Bridge $\frac{1}{2}$	2
mondation for an affade 2.7 1.0 0.5 1.7 1.0	7
West Fork Dennison 2.7 1.3 1.5 1.8 1.5	
Walker Fork at Bridge 2.1 2.9 2.5 2.6 1.	
South Fork at Bridge 3.7 1.8 1.7 2.2 1.	,
Tolovana Drainage	
Goldstream at Ballaine 22 266 205 185 17	١
Faith Creek 86 46 77 158 17 85 3	
Faith Creek 87 31 11 20 24 21 1 Livengood Creek 55 18 7.9 27 1	
Livengood Creek 1 55 18 7.9 27 1	
Tolovana at Campground 25 3.2 1.1 10 1.	
Tolovana at TAPS 6.7 32 4.9 16 4.	t
Birch Creek Drainage	
Birch ab 12mile 86 255 201 237 251 236 23	נ
Birch ab 12mile 87, 240 362 148 82 206 15	3
Birch at Bridge 85 47 23 35 18 31 2	5
Birch at Bridge 86 79 110 6.3 19 54 2	3
Birch at Bridge 87 72 31 24 12 38 1	3

In the Birch Creek drainage, values at Birch Creek above 12mile Creek remained high, relative to other areas, but decreased from the 1987 average and median. The seasonal average and median at the lower site at the Steese Highway Bridge also showed a decrease.

c. Sediment Load. Sediment load represents the amount of material transported by streams and rivers. Table 3 presents the monthly and seasonal sediment load averages and the sediment yield based on the seasonal sediment load divided by drainage area. Figure 2 compares the seasonal turbidity averages and medians to seasonal sediment load at the monitored sites. Two cautions should be noted when interpreting these values. First, monitoring in the Fortymile and Upper Tolovana drainages did not begin until mid July. At most other sites the highest sediment discharges are earlier in the season. Secondly, the averages from the sites that do not have automated equipment can be more greatly affected by extreme events. This is especially true for the data from the Tolovana at Campground site. If the July 31 storm event is disregarded, the monthly average is 0.21 tons/day, the seasonal average becomes 1.32 tons/day and the sediment yield is 1.13 tons/mi².

In the Fortymile drainage sediment load reflects the size of the drainage - larger streams carried more material. The effect of the high values during the high flows that were occurring at the start of the monitoring period is seen by the higher July averages and, to a lesser extent, by the seasonal averages. The yield values are all in the 2-5

Figure 2. Turbidity and sediment load at monitoring sites.

tons/mi² range. Based on the monitoring done this year, it doesn't appear that sediment yield for sites affected by placer mining is much different than natural erosion rates as shown in the yield estimate for the West Fork Dennison site.

Streams in the Tolovana drainage carried proportionately more material than those in the Fortymile. At the Tolovana at TAPS site with nine percent of the drainage area of the South Fork Fortymile site, 295 percent more material was moved by the river. At the Tolovana at TAPS site where TSS samples were collected four times daily and water levels monitored continuously, the seasonal average is not biased by one sample as at the sites monitored periodically. However, flood events were still responsible for most of the sediment load. If 11 days (out of 74 total days) during the two high flow events are neglected, the sediment load average for the monitoring period is 16.7 tons per day, a decrease It should be noted that the wide discrepancy between of 91 percent. the July and August monthly averages at the two Tolovana sites is because the late July-early August peak was measured and sampled at the upper site on July 31 and did not reach the lower site until August 1.

As noted above the July and seasonal averages for the Tolovana at Campground site were greatly affected by the July 31 sample value. Because of this the July and seasonal averages in Table 3 are probably high and are not representative of normal values at an unmined site in this drainage. The July 31 sample does demonstrate that, in this

drainage, large events have a dramatic effect at sites unaffected by mining. The natural erosion rates or sediment yield for sites unaffected by mining in the upper Tolovana are probably higher than those in the Fortymile drainage.

Goldstream at Ballaine had relatively high turbidity levels yet the sediment load averages and the yield value are both low for the sites monitored in this drainage. This is due to the relatively low runoff at this site (Table 1). Based on 1987 monitoring less streamflow is available for dilution than at other sites.

1987 Faith Creek sediment loads decreased from those measured in 1986. We believe natural erosion rates at this site would be similar to those at Boulder Creek in the Birch Creek drainage (approximately 5 tons/mi²). Thus, while the sediment load, on average, has decreased it is still much higher than background levels.

The sites monitored in the Birch Creek drainage show the biggest impact from mining. At the sites affected by mining the sediment loads and yields are the highest of the three drainages monitored by us. At a site unaffected by recent mining monitored in 1986, Boulder Creek at the USGS gage, sediment load and yield values were similar to values found in the Fortymile drainage. The load values for Birch Creek above 12mile Creek showed a dramatic increase in 1987. The high loads at this site were mostly related to high flows and probably represent sediment from

non-point sources (disturbed areas) more than point sources (such as mining operations). One explanation for this is the relatively high amount of reclamation work that was being done this summer in the Birch Creek drainage (Peterson, 1987). The increase at the Birch Creek at the Steese Highway Bridge site was not as dramatic but was a significant increase over the previous year and is much higher than natural erosion rates.

Table 3. Monthly and Seasonal Sediment Loads
Monthly and seasonal averages in tons per day
Averages of data from automated samplers except where noted
indicates site has no mining upstream

indicates site has	a	Yield ² ,				
Iggotion	Tuna	T., 1.,	A	Cantanhau	Season	
	June	agray	August	september	Average	(tons/mi ²)
Fortymile Drainage						
Jack Wade Creek		2.15		0.46		2.59
Mosquito Fork at Bridge		86.6		1.38	41.7	4.28
west rock bennison		21.6	1.70	1.67	13.5	2.80
Walker Fork at Bridge		13.4	8.78	7.91	12.3	3.75
South Fork at Bridge		158	15.1	7.83	64.3	2.81
Tolovana Drainage						
Goldstream at Ballaine	5.6	11.5	10.9		9.9	15.4
Faith Creek 86	57.2	31.3	548	57.9	174	342
Faith Creek 87 .	119	8.9	22.1	13.6	30.9	60.8
Faith Creek 87 Livengood Creek		31.1		0.19		68.6
Tolovana at Campground 14	l	428		0.27		123
Tolovana at TAPS		14.7	506	2.57		91.5
lotovana ac iAF5		14.7	300	2.57	100	71.3
Birch Creek Drainage						
Boulder at Gage 86	2.65	1.89	0.30	0.14	1.25	4.53
Birch ab 12mile 86	420	79.2				206
Birch ab 12mile 87	4580	1110	426			1620
				32.0 567	1 3100	173
Birch at Bridge 86	7270	1450				
Birch at Bridge 87	8660	6580	1100		5260	294

²Yield is the seasonal sediment load divided by drainage area. It assumes the season average value represents the average for a 120 day season.

D. Fortymile Drainage Water Chemistry. As mentioned above the water

chemistry results for eleven Fortymile drainage sites are in Appendix 3. As a point of reference, the Alaska Department of Environmental Conservation lists primary maximum contaminant concentrations for public drinking water supplies for As (0.05), Ba (1.0), Cd (0.010), Cr (0.05), Pb (0.05), Hg (0.002), and Se (0.01) in milligrams per liter (mg/l). Secondary maximum contaminant concentrations are Cl (250), Cu (1.0), Fe (0.3), Mn (0.05), pH (6.5-8.5), Na (250), SO₄ (250), TDS (500), and Zn (5) in mg/l with the exception of pH. Primary contaminant concentrations are established for protection of public health. Secondary concentrations represent reasonable goals for drinking water quality and mainly affect the aesthetic qualities of drinking water (DEC 1982).

For the Fortymile drainage primary concentrations were not exceeded in any dissolved samples. For total recoverable samples the chromium concentration was exceeded at Walker Fork above the Fortymile (0.052) and West Fork Dennison (0.060). The mercury concentration was exceeded once with the South Fork sample (0.003). For secondary contaminants, levels were exceeded for pH at Buckskin Creek (6.23), North Fork above South Fork (6.47), South Fork above North Fork (6.31, and West Fork Dennison (8.52 and for iron at Jack Wade Creek (dissolved (D) 0.31), Mosquito Fork (total recoverable (TR) 0.32, D 0.31), Napoleon Creek (TR 1.57), South Fork above North Fork (TR 0.51), South Fork at Bridge (TR 0.35, D 0.39), Uhler Creek (TR 0.74), West Fork Dennison (TR 0.52, D 0.46).

CONCLUSIONS

The fourth year of DGGS seasonal monitoring of streams impacted by placer mining was characterized by steady refinement of techniques, broadening of geographical scope, and multiagency cooperation. We concentrated our efforts on maintaining automated equipment throughout the summer at sites important to information users. By enlisting the part-time efforts of personnel from interested agencies we were able to cost-effectively acquire important information about the impacts of placer mining from geographically distant sites.

When measured by sediment levels (turbidity, TSS, or sediment load and yield) the impact of mining in the Birch Creek, Tolovana River, and Fortymile River drainages is not equal at the sites we monitored. The samples from the Birch Creek site had much higher levels than those from the Tolovana drainage sites. The values from the mining-affected Fortymile sites in 1987 were not much different than those of an unmined site in the drainage and were consistently low throughout the summer when compared to the values from mining-affected sites monitored in the other drainages.

Monitoring gave mixed signals as to whether sediment levels were lower than in previous years. If median turbidity is considered, values

were lower at every site for which comparative data exists. Sediment load estimates, however, indicated much more material was carried by the monitored streams in the Birch Creek basin in 1987.

Discharge monitoring and runoff estimates indicate that a universal statement that 1987 was a wet year or a dry year cannot be applied to the interior Alaska streams observed by us. Runoff estimates showed a large difference between the sites. The Birch Creek sites and Faith Creek had the most runoff; the Fortymile sites had the lowest as a drainage; and Goldstream at Ballaine had the lowest single site runoff.

ACKNOWLEDGEMENTS

Besides the individuals mentioned in the introduction, the authors would like to acknowledge the valuable contributions of Shirley Liss who collected the samples for water chemistry analysis at the Fortymile drainage sites and who assisted in many ways in the lab and Scott Ray who assisted with the water chemistry analyses.

REFERENCES CITED

- Alaska Department of Environmental Conservation, 1982, Drinking water regulations: Title 18, Chapter 80 of the Alaska Administrative Code, Register 83, 1982, Juneau, Alaska, 20 p.
- APHA, 1985, Standard methods for the examination of water and wastewater (16th ed.): Washington, D.C., 1268 p.
- Croxton, F.E., Cowden, D.J., and Klein, S.K., 1967, Applied general statistics (3rd ed.): Englewood Cliffs, N.J., Prentice-Hall, Inc., 754 p.
- Dalrymple, Tate and Benson, M.A., 1984, Measurement of peak discharge by the slope-area method: Techniques of Water-Resources Investigations of the United States Geological Survey, Book 3, Chapter A2, Washington, D.C., U.S. GPO, 12 p.
- Mack, S.F. and Moorman, M.A., 1986, Hydrologic and water quality investigations related to the occurrence of placer mining in interior Alaska, summers 1984-85: Alaska Division of Geological and Geophysical Surveys Public-data File 86-16, unpublished report, 138 p.
- Mack, S.F. and Moorman, M.A., 1987, Hydrologic and water quality investigations related to the occurrence of placer mining in interior Alaska, summer 1986: Alaska Division of Geological and Geophysical Surveys Public-data File 87-10, unpublished report, 88 p.
- Mack, S.F., Moorman, M.A., and Harris, Linda, 1987, Water quality and discharge data from selected sites in the Fortymile and Tolovana drainages, summer 1987: Alaska Division of Geological and Geophysical Surveys Public-data File 87-32, unpublished report, 39 p.
- Peterson, Judd, 1987, Personal communication, October 1987: Alaska Division of Mining, Fairbanks, Alaska.
- Skougstad, M.W. et al (eds.), 1979, Methods for determination of inorganic substances in water and fluvial sediments, Techniques of Water Resources Investigations, Book 5, Chapter Al, U.S. Government Printing Office, Washington, D.C., 626 p.
- Townsend, A. H., 1987, Placer mining in the upper Chatanika River system, 1980-1986: Technical Report 97-2, Juneau, Alaska Department of Fish and Game, Division of Habitat, 29 p.

- U.S. Department of the Interior, 1981, Water measurement manual: Denver, Colorado, U.S. Bureau of Reclamation, U.S. Government Printing Office, 327 p.
- U.S. Environmental Protection Agency, 1983. Methods for chemical analyses of water and wastes: EPA Publication EPA-600/4-79-020, Cincinnati, Ohio, Environmental Monitoring and Support Laboratory, Office of Research and Development.
- Weber, P.K. and Robus, M.H., 1987, Water quality and aquatic habitat assessments of Goldstream Creek drainage: Technical Report 87-3, Juneau Alaska, Alaska Department of Fish and Game, Division of Habitat, 54 p.

APPENDIX 1. 1987 SEDIMENT AND DISCHARGE DATA

North Fork above South Fork30
South Fork above North Fork30
Walker Fork at Bridge31
Jack Wade Creek
South Fork at Bridge
Mosquito Fork at Bridge34
West Fork Dennison
Goldstream at Ballaine
Goldstream at Minto Flats
Faith Creek at Steese Hwy40
Livengood Creek at Livengood Rd43
Tolovana River at BLM Campground43
Tolovana River at TAPS Crossing43
Birch Creek at Bridge46
Birch Creek above 12mile Creek

APPENDIX 1. 1987 Sediment and Discharge Data

Fortymile Drainage

_	.				Sediment	
Location	Date	Time	TSS			Discharge (cfs)
40Mile b OBrien	071687	1236	29.5		(, ~~,	(018)
40Mile b OBrien	072287	1715	12.8	2.6		
Chicken Cr ab mt		1000	2.9		0.02	2.49
Hutchinson Cr	081687	1245	10.0	10		
North Fork a Hut	081687	1245	1.6	1.0		
North Fork ab SF		1310	17.0	4.7		
North Fork ab SF		0945	2.3			
North Fork ab SF		1415	6.4			
North Fork ab SF		1400	1.2		4.02	1240
North Fork ab SF		1150	3.4			
North Fork ab SF	091787	1600	0.4	0.40		
South Fork ab NF		1400	70.4		1410	7400
South Fork ab NF		0945	1.1		4.60	1550
South Fork ab NF		2100	5.5		23.0	1550
South Fork ab NF		1100	5.2	4.8	24.0	1710
South Fork ab NF		1150	0.4	1.3		
South Fork ab NF	091787		0.8	1.4	2.38	1100
Buckskin Creek	081987	1330	0.4		0.04	33.7
Butte Creek	081987	1710	50.3	1.4	0.55	4.06
Uhler Creek	071587	1500	8.7		0.69	29.2
Uhler Creek	081987	1510	17.8	4.3	0.91	19.0
Uhler Creek	082687	1935	1.2	2.4		
Uhler Creek	091787	1430	0.8	1.0		
	071587	1615	30.6	21	0.10	1.26
	081987	1100	20.1	6.3	0.02	0.28
Weaver seepage	091687	1330	7.0	1.1		
Napoleon Creek	071587	1600			0.00	19.9
Napoleon Creek		1054	23.2	4.1	0.34	5.39
	082687	1300	2.1	0.90		
Napoleon Creek	091687		8.4	3.6		
Walker F ab 40m	081987	0930	3.0	2.2		
Walker Fork	071487	1927	36.5	4.6	02.1	022
Walker Fork	071587	1921	94.5	6.5	82.1 166	833
Walker Fork	071687		32.9	2.8		652
"alkel FOLK	0,100,		34.9	4.8	39.7	447

Appendix Location	1. 1987 Date	sediment Time	and disch TSS (mg/l)		Sed load (tons/day)	Discharge (cfs)
			,	, -,	(// /	(010)
Walker Fork	071787		16.4	1.8	13.3	300
Walker Fork	071887	1135	21.8	1.4	12.5	213
Walker Fork	071987		4.8	0.70	2.22	171
Walker Fork	071987	1345	1.6	0.80		
Walker Fork	072087		1.9	1.0	0.72	141
Walker Fork	072187		18.5	1.8	9.50	190
Walker Fork	072287	0720	5.4	1.2	2.54	174
Walker Fork	072287		6.7	0.90	3.07	170
Walker Fork	072287	1550	2.8	1.1	1.28	169
Walker Fork	072287	1600	1.6	0.70	0.73	169
Walker Fork Walker Fork	072387		17.6	2.6	11.7	247
Walker Fork	072487 072587		17.6	1.3	12.6	265
Walker Fork	072587		6.4	1.0	4.12	238
Walker Fork	072087		3.7	0.80	1.93	193
Walker Fork	072887	1135	3.9 1.2	2.1	1.59	151
Walker Fork	072987	1135	10.3	1.4	0.40	124
Walker Fork	073087	1133	6.1	0.90 1.3	3.17 2.23	114
Walker Fork	073187		26.9	5.3	22.9	136
Walker Fork	080187		94.7	12	103	315 403
Walker Fork	080287		76.0	15	99.0	483
Walker Fork	080287	1340	11.6	4.5	15.3	488
Walker Fork	080387	20.1	27.7	4.3	32.5	434
Walker Fork	080487		13.9	1.7	12.5	333
Walker Fork	080587		8.3	2.6	5.62	251
Walker Fork	080687		3.7	1.4	1.97	197
Walker Fork	080687	2120	0.8	1.5	0.39	181
Walker Fork	080787		3.2	1.2	1.45	168
Walker Fork	080887		11.5	1.0	4.66	150
Walker Fork	080987		4.0	0.70	1.50	139
Walker Fork	080987	1538	0.8	0.80	0.29	133
Walker Fork	081087		3.0	0.70	1.02	126
Walker Fork	081187		1.5	0.70	0.45	111
Walker Fork	081287		2.9	0.75	0.77	98.2
Walker Fork	081387		3.1	0.55	0.78	92.6
Walker Fork	081487		2.0	0.65	0.80	148
Walker Fork	081587		11.4	1.3	8.56	278
Walker Fork	081687		11.4	1.7	9.70	315
Walker Fork	081787		6.7	1.9	5.93	328
Walker Fork	081887		8.7	3.0	7.99	340
Walker Fork	081987		8.1	3.5	6.54	299
Walker Fork	082087		9.8	2.6	9.50	359
Walker Fork	082187		6.9	4.9	6.33	340
Walker Fork	082287	0040	35.3	3.2	26.5	278
Walker Fork Walker Fork	082287	0940	1.9	2.5	1.48	288
Walker Fork	082387 082487		5.0	3.1	3.11	230
Walker Fork	082487		10.9	1.9	5.77	196
Walker Fork	082587		5.1 6.1	1.2	2.40	174
"WINGT LOTY	00200/		0.1	1.3	2.60	158

Appendix 3 Location	l. 1987 Date	sediment Time	and disch TSS (mg/l)	arge data. Turbidity (NTU)	Sed load (tons/day)	Discharge (cfs)
Walker Fork	082787 082887 082987 083087 083087 083187 090187 090287 090387 090487 090587	2120	4.2 4.3 7.8 6.9 0.8 30.7 77.8 9.4 4.0 1.9	2.8 1.1 4.4 3.1 1.7 6.8 4.1 2.4 1.6	1.68 1.66 2.86 2.98 0.41 14.5 31.7 3.65 1.46 0.69	148 143 136 160 192 175 151 144 135
Walker Fork	090687 090787 090887 091587 091687 091787 091887 091887	1400 1400	3.5 0.8 2.3 2.6 3.4 10.9 9.1 26.4 5.1 22.1	1.0 1.2 2.1 1.6 1.2 1.9 1.8 5.9 2.0 6.1	1.37 0.32 0.84 0.86 2.85 8.27 7.03 24.6 4.92 21.2	145 146 136 123 311 281 286 345 358
Walker Fork Walker Fork Walker Fork Walker Fork Walker Fork abJW Walker Fork abJW		1320 1635 1040	11.1 5.4 2.3 24.8 15.7 8.2	5.0 2.1 1.4 1.6 5.7 3.4	10.3 4.78 2.15	344 328 347
Walker Fork abJW Walker Fork abJW	081287 082287	1230 0925	3.9 3.1	1.1		
Jack Wade Creek	071687 071987	1815 1030 1320 0730 1600 0945 1345 0905 1345 1230 0900 0915 1135 1330 1455 1330 0913	48.8 14.5 1.9 9.6 7.4 3.7 1.3 2.1 0.8 0.9 2.9 1.6 1.4 1.2 1.3 1.3 1.3	8.2 4.1 2.7 2.6 2.4 4.6 1.1 0.75 1.2 1.6 1.8 1.6 0.95 2.4 4.2 16 2.1 2.8	12.5 2.28 0.23 1.03 0.79 0.20 0.26 0.13 0.04 0.03 0.23 0.09 0.08 0.05 0.05 0.04 0.37 0.41 0.31	94.5 58.3 44.6 39.7 20.3 74.9 22.5 18.9 13.4 29.3 20.3 20.3 16.9 11.4 13.4 24.1 27.5

Appendix 1. 1987 Location Date	sediment Time	and disch TSS (mg/l)	Turbidity	Sed load (tons/day)	Discharge (cfs)
Jack Wade Creek 091887	0845	27.3	6.6	3.38	45.8
Jack Wade Creek 092287	1245	1.3	1.4	0.08	24.1
Jack Wade Creek 100787	1310	5.6	2.4	0.60	39.7
			2.4	0.00	39.7
South Fork at Br 071587	1821	34.6	7.7	600	6420
South Fork at Br 071687	1450	194	8.6	2700	5170
South Fork at Br 071787		66.7	8.7	625	3470
South Fork at Br 072287		34.1	3.2	62.6	680
South Fork at Br 072287	1430	2.8	1.4	5.14	680
South Fork at Br 072387		26.8	2.7	50.7	700
South Fork at Br 072487		7.3	1.9	13.4	680
South Fork at Br 072587		17.8	1.9	33.6	700
South Fork at Br 072687		8.5	1.8	16.8	730
South Fork at Br 072787		8.2	2.2	16.2	730
South Fork at Br 072887	1250	6.9	3.8	14.3	770
South Fork at Br 072987	1250	10.1	3.1	21.3	780
South Fork at Br 073087 South Fork at Br 073187		4.8	1.3	9.59	740
South Fork at Br 0/318/		4.8	1.4		
South Fork at Br 080287		11.3	1.7		
South Fork at Br 080387		10.5	1.3	15.0	530
South Fork at Br 080487		6.8 10.2	2.5	10.5	570
South Fork at Br 080587		5.4	4.8 2.5	16.8	610
South Fork at Br 080687		3.6	1.5	8.89 5.54	610
South Fork at Br 080787		3.3	1.3	5.08	570 570
South Fork at Br 080887		12.4	1.2	19.1	570
South Fork at Br 080987		5.8	1.9	10.5	670
South Fork at Br 081087		9.5	0.95	17.2	670
South Fork at Br 081187		10.8	1.6	19.8	680
South Fork at Br 081287		5.3	1.6	10.2	710
South Fork at Br 081387		6.3	1.2	11.9	700
South Fork at Br 081487		8.1	3.0	13.1	600
South Fork at Br 081587		5.7	2.0	11.5	750
South Fork at Br 081687		9.5	2.2	21.0	820
South Fork at Br 081787		8.5	2.7	23.4	1020
South Fork at Br 081887		10.2	2.0	39.7	1440
South Fork at Br 081887	1600	4.0	2.1	15.6	1440
South Fork at Br 081987		11.2	1.9	38.7	1280
South Fork at Br 082087		7.1	3.1	28.2	1470
South Fork at Br 082187		3.3	1.9	13.7	1540
South Fork at Br 082287	1224	5.6	2.0	16.8	1110
South Fork at Br 082387		1.9	1.3		
South Fork at Br 082487 South Fork at Br 082587		2.7	1.1		
South Fork at Br 082587	0945	3.7	1.2	0.00	220
South Fork at Br 082587	1150	0.4 1.2	1.0	0.83	770
South Fork at Br 082687	1130	3.1	1.5 1.1	2.46	760
South Fork at Br 082787		4.4	0.90		
South Fork at Br 082887		5.3	1.8		

Appendix 1. 19	87 sediment	and disch	narge data.		
Location Date	Time	TSS	Turbidity	Sed load	Discharge
		(mg/1)	/NTII)	(tons/day)	
		(1119/11)	(110)	(cons/day)	(cfs)
South Fork at Br 08288	1430	0.4	1.1	0.63	580
South Fork at Br 08298		2.2	1.2	0.03	380
South Fork at Br 08308		2.1			
South Fork at Br 08318			1.2		
South Fork at Br 09018		14.9	2.2		
		12.6			
South Fork at Br 09028		9.7	1.3	12.3	470
South Fork at Br 09038		3.8	1.4		
South Fork at Br 09048		3.7	1.1		
South Fork at Br 09058		2.4	0.95		
South Fork at Br 09068		1.4	1.1		
South Fork at Br 09078		2.8	2.3		
South Fork at Br 09088		3.7	0.95	4.00	400
South Fork at Br 09098		2.9	1.6	3.76	480
South Fork at Br 09108		3.5	1.2	3.97	420
South Fork at Br 09118		3.5	2.3	4.44	470
South Fork at Br 09118	7 1230	0.8	1.2	1.02	470
South Fork at Br 09128	:7	3.2	2.1	4.75	550
South Fork at Br 09138	7	1.8	1.6	3.21	660
South Fork at Br 09148	: 7	2.0	1.9	3.73	690
South Fork at Br 09158		3.4	1.7	6.61	720
South Fork at Br 09168		10.0	3.8		
South Fork at Br 09178		6.8		16.7	620
South Fork at Br 09188			2.4	12.3	670
South Fork at Br 09198		2.5	1.3	4.66	690
South Fork at Br 09208		2.8	1.5	5.52	730
South Fork at Br 09218		3.4	1.4	7.89	860
South Fork at Br 09218		1.3	1.6	3.86	1100
South Fork at Br 09228		7.1	2.9	24.9	1300
		16.9	3.3	59.3	1300
South Fork at Br 10078	7 1340	5.6	2.2	30.2	2000
Mosquito Fork 07148	7 1200	61.6	8.0	400	2000
Mosquito Fork 07168	7 1630	57.5		499	
Mosquito Fork 07228			6.9	345	2220
Mosquito Fork 07228		1.7	1.5	2.05	447
Mosquito Fork 07298		3.4	1.0	3.37	367
Mosquito Fork 08028		2.0	1.1	1.71	317
-		2.2	1.4	4.79	807
		1.6	1.3	1.65	382
- .		1.3	0.70	0.92	263
		0.9	0.55	0.48	198
Mosquito Fork 08188		3.5	1.2	3.98	421
Mosquito Fork 08228		1.6	1.1	1.47	339
Mosquito Fork 08258		0.9	0.75	0.69	283
Mosquito Fork 08268		1.2	0.60	0.82	252
Mosquito Fork 09018		1.8	0.80	0.87	179
Mosquito Fork 09088	7 1140	0.9	0.95	0.38	157
Mosquito Fork 09098	7 1032	1.2	0.70	0.49	151
Mosquito Fork 09158	7 1510	0.4	0.95	0.22	205
Mosquito Fork 09158	7 1625	0.9	0.80	0.50	205
Mosquito Fork 09188		0.8	0.80	0.45	208
				. –	

		Appendix	1. 1987	sediment	and disch	arge data.		
	Loca	tion	Date	Time	TSS		Sed load	Discharge
					(mg/1)		(tons/day)	(cfs)
							, , , , , , , , , , , , , , , , , , , ,	(/
ì	íosqu i	to Fork	092287	1500	1.3	1.2	0.90	256
ì	10squi	to Fork	100787	1426	4.0	1.4	6.51	603
W	Fork	Dennison	071487	1042	51.6	6.4	187	1340
		Dennison	071687	1652	19.7	4.9	56.4	1060
W	Fork	Dennison	072187	1345	4.6	1.3	3.77	304
W	Fork	Dennison	072287	1310	2.3	0.90	1.62	260
		Dennison	072887	1135	4.6	1.3	2.33	188
		Dennison	072887	1655	4.7	1.3	2.39	188
		Dennison	072987	1720	4.0	1.3	1.80	167
		Dennison	080287	1035	3.0	1.0	2.46	304
		Dennison	080687	1020	3.0	1.2	2.46	304
		Dennison	080987	0915	1.2	0.80	0.60	185
		Dennison	081287	1020	2.2	1.2	0.74	125
		Dennison	081887	1035	8.0	2.3	9.68	448
		Dennison	082287	1425	1.6	1.6	1.29	299
		Dennison	082587	1255	2.1	1.2	1.08	191
		Dennison	082687	1300	1.1	1.0	0.52	176
		Dennison	090187	1105	1.4	1.0	0.43	113
		Dennison	090887	1035	1.6	1.1	0.36	84
		Dennison	090987	1055	0.8	1.1	0.18	83
		Dennison	091587	1445	2.9	1.4	1.17	150
		Dennison	091887	1130	1.2	1.0	0.57	176
		Dennison	092287	1230	11.5	3.1	16.8	541
W	Fork	Dennison	100787	1447	3.6	1.2	3.73	384

Appendix 1. 1987 Sediment and discharge data. Tolovana Drainage

Location	date	time	TSS	Turbidity Comments
Flume b mine	092487	1250	mg/l 99.5	NTU 190
Gilmore Creek	061687		35.2	80
Gilmore Creek		1400	508	850
Gilmore Creek	073187	1330	1110	2300
Gilmore b mining	092487	1203	39.0	230
Goldstream 14mus	061887		33.2	4.4 14 miles upstream
Goldstream 2.5mu	061887		11.7	5.3 2.5 mi upstream
Goldstream Dun T	063087		19.5	9.3 1 Mi. Dunbar Trail
Goldstream a Bal	052287		196	39
Goldstream a Bal			176	75
Goldstream a Bal			37.8	40
Goldstream a Bal			31.8	45
Goldstream a Bal			33.9	27
Goldstream a Bal			169	18
Goldstream a Bal			190	12
Goldstream a Bal			64.8	16
Goldstream a Bal			48.4	18
Goldstream a Bal			35.8	10
Goldstream a Bal			50.7	24
Goldstream a Bal			45.5	22
Goldstream a Bal			37.8	18
Goldstream a Bal			47.5	14
Goldstream a Bal			278	17
Goldstream a Bal			84.9	14
Goldstream a Bal			348	160
Goldstream a Bal		1500	110	150
Goldstream a Bal		1300	233	200
Goldstream a Bal			169	170
Goldstream a Bal			145	
Goldstream a Bal			226	180
Goldstream a Bal			218	320
Goldstream a Bal			152	310
Goldstream a Bal			129	230
Goldstream a Bal				160
Goldstream a Bal			168	210
Goldstream a Bal			143	200
Goldstream a Bal			188	250
			331	340
Goldstream a Bal	0/258/		252	330

Appendi	X	1.	1987 se	diment	and disc	harge dat	:a.	
Location			Date	Time	TSS	Turbidit		Comments
					(mg/l)	(NTU)	•	
					2,	, ,		
Goldstream	a	Bal	072687		316	400		
Goldstream	a	Bal	072787		220	310		
Goldstream	a	Bal	072887		188	270		
Goldstream	a	Bal	072987		240	330		
Goldstream	a	Bal	073087		232	330		
Goldstream	a	Bal	073187		423	380		
Goldstream	a	Bal	073187	1400	483	450		
Goldstream	a	Bal	080187		494	390		
Goldstream	a	Bal	080287		315	360		
Goldstream	a	Ba1	080387		279	330		
Goldstream	a	Bal	080487		137	180		
Goldstream	a	Bal	080587		179	260		
Goldstream	a	Bal	080687		216	320		
Goldstream			080787		162	260		
Goldstream			080887		165	190		
Goldstream			080987		435	270		
Goldstream			081087		238	230		
Goldstream			081187		148	190		
Goldstream			081287		84.0	170		
Goldstream			081387		82.6	140		
Goldstream			081487		60.8	150		
Goldstream			081587		94.7	150		
Goldstream			081687		93.4	190		
Goldstream			081787		156	150		
Goldstream			081887		74.4	130		
Goldstream			081987		44.1	120		
Goldstream			082087		115	140		
Goldstream			082187		88.4	150		
Goldstream			082287		63.0	170		
Goldstream			082387		99.0	180		
Goldstream			082487		93.7	190		
Goldstream			082587		93.4			
Goldstream						210 190		
Goldstream					71.7 39.5	170		
Goldstream				1000	79.5	170		
Goldstream				1020	17.2	60		
Goldstream	a	ват	100687	1520	8.8	60		
Goldstream	2	GGP	071497	1400	198	170	a +	Goldstream Rd.
Goldstream				1100	22.4	85	a c	Goldstream Rd.
Gordscream	a	GSK	092201	1100	22.4	8.5		
Goldstream	a	MS	061787		26.8	16	at	Martin Siding
Goldstream	_	wi-	060207		25 3	E 2		
					35.3 20.4	5.3 5.3		
Goldstream								
Goldstream					24.2	6.2		
Goldstream					30.9	5.6		
Goldstream					22.0	7.1		
Goldstream	a	Mln	060887		18.0	5.3		

Appendi Location	ĹΧ	1.		iment Time	and disc TSS (mg/l)	harge dat Turbidit (NTU)	
Ø-13.							
Goldstream					27.2	5.4	
Goldstream					26.7	5.8	
Goldstream					16.3	5.5	
Goldstream					23.2	5.2	
Goldstream					20.8	5.9	
Goldstream					22.4	5.3	
Goldstream					17.7	4.2	
Goldstream					16.2	4.5	
Goldstream					29.9	8.5	
Goldstream					35.9	3.6	
Goldstream					32.6	9.3	
Goldstream					34.8	8.7	
Goldstream					31.7	7.0	
Goldstream					28.1	5.5	
Goldstream					32.7	11	
Goldstream					35.4	6.8	
Goldstream					29.9	9.0	
Goldstream					24.4	8.8	
Goldstream					18.5	4.1	
Goldstream					15.5	5.4	
Goldstream					16.0	7.5	
Goldstream					12.8	4.3	
Goldstream					16.3	7.1	•
Goldstream					18.6	3.9	
Goldstream					21.5	8.4	
Goldstream					16.7	8.0	
Goldstream					24.6	7.0	
Goldstream					30.1	7.4	
Goldstream					21.9	6.1	
Goldstream					58.3	9.6	
Goldstream					16.9	5.9	
Goldstream					18.4	6.8	
Goldstream					17.6	7.9	
Goldstream					16.7	3.9	
Goldstream					14.6	3.3	
Goldstream					16.4	3.6	
Goldstream					17.7	6.9	
Goldstream					33.0	11	
Goldstream					15.9	5.5	
Goldstream					14.5	4.0	
Goldstream					18.4	9.0	
Goldstream					53.3	11	
Goldstream					26.8	8.0	
Goldstream			-		17.8	13	
Goldstream					18.1	13	
Goldstream	a	Min	081787		133	190	
Goldstream	а	SCR	061787		13.1	13	at Chaon Crash Band
Goldstream				1030	11.7		at Sheep Creek Road above May
u u u u u u	_	1	332207	1030	11./	40	above may

Appendix 1. Location	1987 sediment Date Time	and discharge da TSS Turbidi (mg/l) (NTU)	
Goldstream a mth	082187 1400	24	algae growing in bottle
Goldstream a wrt	081387 1120	70	by Wright's, algae in
Goldstream a wrt	082987 1330	110	by Wright's, algae in
Goldstream ab St	063087	9.3 8.3	ab Standard Creek
Goldstream abMay Goldstream abMay disch		72.8 160 109 45	ab confl. with May's
Goldstream at Br	063087	19.6 9.5	at Bridge Lake
Goldstream b May Goldstream b May		919 1300 181 210	
Goldstream b OCC Chatanika	062087	56.4 10	b old channel of
Goldstream b Ped Gilmore	092487 1210	30.4 110	b confl Pedro and
Outlet Minto Lak Outlet Minto Lak		5.86 4.7 4.81 3.9	1.5 meter
Pedro Creek Pedro Creek Pedro Creek	061687 071487 1400 073187 1330		
Pedro ab Gilmore	092487 1202	15.1 45	5
Pedro b 2mines	092487 1318	104 110	
Steamboat Cr	092487 1255	9.8	3
Tom Creek	092487 1230	0.81 0.45	Upper Gilmore trib
Twin Creek abmin	092487 1307	1.04 0.40) ab mining

Appendix 1. Location	1987 sediment Date Time		charge dat Turbidity (NTU)		Sed Load (ton/d)
Faith at Steese 05 Faith at Steese 05 Faith at Steese 06	52987 53087 53187 60187 60287 60387 60487 60587 60687 60787 60887 61087 61187 61187 61287 61387 61487 61587	557 351 380 209 223 154 133 180 117 142 42.1 221 87.3 79.3 220 1480 274 83.5	55 39 50 27 38 20 22 21 14 21 8.5 30 37 55 90 120 35 17	313	471
Faith at Steese Of Faith at Steese Faith At St	61587 61587 61687 61687 61887 61987 62087 62187 62287 62287 62387 62487 62587 62687 62787 62687 62787 70287 70387 70387 70587 70787 70887	32.9 26.1 149 42.1 20.8 15.5 22.8 14.1 17.0 13.0 1380 494 143 76.8 50.7 47.5 48.5 32.8 20.5 12.6 12.6 12.6 12.6	9.2 9.1 15 5.0 4.4 3.4 13 10 8.8 13 8.5 210 47 20 15 17 20 19 19 13 4.8 3.6 3.1 6.2 11	98.1 153 137 83.3 74.9 64.7 58.7 58.7 48.3 348 310 135 83.2 63.6 52.0 47.8 43.3 38.7 34.5 32.5 29.7 27.9 28.0	6.9 61.5 15.5 4.7 3.1 3.9 3.8 2.2 2.2 1.5 1300 414 52.1 17.3 8.7 6.7 6.2 4.0 3.4 1.9 1.1 1.0 0.9 1.5
Faith at Steese 0 Faith at Steese 0	71087 0917 71187 71287 71387	5.5 24.3 24.3 17.4	14 13 14 14	30.3 28.7 27.1 26.8	0.4 1.9 1.8 1.3

Appendix 1. Location			and dischar		~ ' · ·	
Location	Date	Time	TSS	Turbidity	Discharg	e Sed Load
			(mg/1)	(NTU)	(cfs)	(tons/day)
Faith at Steese	071487		11.6	13	36.8	1 2
Faith at Steese	071587		9.5	8.0	38.7	1.2
Faith at Steese	071687		9.9	4.8	33.5	1.0
Faith at Steese	071787		12.0	6.6		0.9
Faith at Steese	071887		6.5	6.7	29.4	1.0
Faith at Steese	071987		8.3	5.6	26.8	0.5
Faith at Steese	072087		10.7		24.7	0.6
Faith at Steese	072087		2.7	4.5	27.4	0.8
Faith at Steese	072187		14.1	2.7	25.5	0.2
Faith at Steese	072287		10.9	4.9	25.7	1.0
Faith at Steese	072387		11.2	4.3	24.8	0.7
Faith at Steese	072487		334	7.2	27.2	0.8
Faith at Steese	072587		57.0	38	236	212
Faith at Steese	072687		25.2	23 24	103	15.8
Faith at Steese	072787		13.0	17	59.3	4.0
Faith at Steese	072887		11.3	14	46.1	1.6
Faith at Steese	072987		8.8	8.4	39.8	1.2
Faith at Steese	073087		12.5	7.2	37.0	0.9
Faith at Steese		1615	14.7	9.0	67.0 67.0	2.3
Faith at Steese	080487	1010	54.6	55		2.7
Faith at Steese		1108	115	48	84.6 84.6	12.5
Faith at Steese		1120	70.8	75	84.6	26.2
Faith at Steese	080587	1120	38.0	50	73.3	16.2
Faith at Steese	080687		15.8	17	65.2	7.5
Faith at Steese	080787		18.6	12	79.8	2.8 4.0
Faith at Steese	080887		43.5	25	149	17.5
Faith at Steese	080987		31.6	23	139	11.8
Faith at Steese	081087		15.3	14	102	4.2
Faith at Steese	081187		7.9	5.3	85.3	1.8
Faith at Steese	081287		10.8	4.2	72.9	2.1
Faith at Steese	081387		5.8	2.9	71.2	1.1
Faith at Steese	081487		187	19	229	115.7
Faith at Steese	081587		111	9.6	248	74.5
Faith at Steese	081687		41.9	12	218	24.7
Faith at Steese	081787		33.4	13	174	15.7
Faith at Steese	081887		30.3	12	156	12.8
Faith at Steese	081987		180	20	284	138
Faith at Steese	082087		105	13	236	66.9
Faith at Steese	082187		43.4	11	186	21.8
Faith at Steese	082187	1655	10.5	11	186	5.3
Faith at Steese	082287		65.9	15	155	27.6
Faith at Steese	082387		28.6	11	140	10.8
Faith at Steese	082487		24.5	14	122	8.0
Faith at Steese	082587		26.5	15	108	7.8
Faith at Steese	082687		31.1	24	102	8.6
Faith at Steese	082787		26.8	21	99.3	7.2
Faith at Steese	082887		15.5	16	88.2	3.7
Faith at Steese	082987		15.8	14	87.2	3.7
Faith at Steese	083087		36.7	16	90.0	8.9
						-

Appendix 1. Location	. 1987 sed: Date	iment Time	and discha TSS (mg/l)	arge data. Turbidity (NTU)	Discharge (cfs)	e Sed Load (tons/day)
Faith at Steese	e 083187		26.1	6.8	83.5	5.9
Faith at Steese			38.5	7.2	83.1	8.6
Faith at Steese			52.9	6.6	141	20.2
Faith at Steese			45.0	8.1	147	17.8
Faith at Steese			65.6	11	172	30.4
Faith at Steese			96.7	9.0	201	52.4
Faith at Steese	≥ 090687		50.6	8.1	166	22.6
Faith at Steese	≥ 090787		28.8	5.5	153	11.9
Faith at Steese			26.5	5.5	151	10.8
Faith at Steese			21.5	8.3	136	7.9
Faith at Stees			42.3	50	124	14.2
Faith at Steese		1535	44.2	75	124	14.8
Faith at Stees			115	110	115	35.9
Faith at Steese		1655	79.6	65	115	24.8
Faith at Steese			72.5	20	105	20.6
Faith at Steese			28.9	27	93.1	7.3
Faith at Steese			61.8	16	84.5	14.1
Faith at Steese			16.0	6.9	79.8	3.4
Faith at Steese			16.3	13	74.9	3.3
Faith at Stees			26.7	26	71.1	5.1
Faith at Steese			29.7	26	66.2	5.3
Faith at Steese			28.5	40	63.0	4.8
Faith at Stees			25.7	35	60.2	4.2
Faith at Steese			33.6	50	56.4	5.1
Faith at Steese			30.8	34	53.6	4.5
Faith at Steese			16.7	21	51.3	2.3
Faith at Steese			17.7	15	49.4	2.4
Faith at Stees			20.8	13		
Faith at Stees			8.9	8.4		
Faith at Stees			8.4	6.7		
Faith at Steese			6.8	5.5		
Faith at Steese			22.5	5.6		
Faith at Stees	e 100287	1648	2.6	3.6		

Appendix 1 Location	1. 1987 Date	sediment Time	and discharged TSS (mg/l)	Turbidity	Sed load (tons/day)	Discharge (cfs)
Livengood Cr Livengood Cr Livengood Cr Livengood Cr Livengood Cr Livengood Cr Livengood Cr Livengood Cr	070687 071487 071787 072487 073187 081087 081887 082187	1315 1250 1620 1430 1313 1700 1220 1213	12.9 29.1 20.3 28.7 1200 213 129 8.8	11 21 10 11 220 40 38 12	0.08 0.15 0.10 0.15 155 1.59 13.3 0.45	2.17 1.95 1.83 1.88 47.8 2.77 38.0 18.9
Livengood Cr Livengood Cr Livengood Cr Livengood Cr Livengood Cr Livengood Cr Livengood Cr	082487 082887 083187 090987 091587 092287 092987	1600 1125 1355 1610 1320 1351 1215	12.7 13.1 11.5 10.5 18.9 6.4 4.5	3.3 6.1 5.8 7.4 8.1 7.7 8.5	0.40 0.23 0.18 0.26 0.37 0.06 0.06	11.7 6.59 5.74 9.06 7.16 3.26 5.30
Ready Bullion Cr Ready Bullion Cr		1300 1252	230 37.0	32 5.6		
Tolovana at CG	070687 071387 071787 072487 073187 081087 081887 082187 082487 082487 082887 093187 090987 091587 092287	1230 1505 1705 1530 1400 1840 1320 1200 1400 1100 1425 1650 1456 1420 1049	1.9 25.1 0.76 4.6 721 5.4 11.5 4.6 2.6 2.3 2.5 3.85 1.2 0.81 0.64	1.2 4.3 0.90 0.80 120 2.6 8.4 1.9 3.1 1.4 2.0 1.7 1.1 0.90 0.75	0.05 0.47 0.02 0.31 2140 2.04 10.6 2.77 0.56 0.26 0.29 0.95 0.08 0.04	10.2 6.9 9.5 25.3 1100 140 342 223 79.8 42.3 42.5 91.2 24.3 18.5 12.6
Tolovana at TAPS		1500	4.3 7.2 8.5 7.1 10.7 7.4 5.4 5.7 8.0	4.7 2.5 3.6 2.9 3.6 5.4 3.5 4.0	0.26	22.7
Tolovana at TAPS Tolovana at TAPS Tolovana at TAPS Tolovana at TAPS	071587 071687 071787	1524	2.1 4.6 6.8 3.3 0.77	5.4 3.8 4.8 4.5 3.6	0.09 0.19 0.04	15.4 21.3 21.1

Appendix 1. 1987 Location Date	sediment Time	and disch			D:>
Location Date	line	(mg/l)		Sed load (tons/day)	
Tolovana at TAPS 071887		8.6	4.3	0.51	22.0
Tolovana at TAPS 071987		8.1	3.3	0.53	24.3
Tolovana at TAPS 072087		10.0	2.7	0.76	28.0
Tolovana at TAPS 072187		8.1	2.8	0.63	29.0
Tolovana at TAPS 072287		8.6	2.5	0.68	29.3
Tolovana at TAPS 072387		11.5	2.6	1.01	32.7
Tolovana at TAPS 072487		13.6	4.0	1.93	52.7
Tolovana at TAPS 072487	1355	10.3	3.2	1.26	45.2
Tolovana at TAPS 072587		69.1	21	18.2	97.6
Tolovana at TAPS 072687		79.9	15	23.9	111
Tolovana at TAPS 072787		25.5	4.2	5.01	72.7
Tolovana at TAPS 072887		18.4	3.7	2.73	55.0
Tolovana at TAPS 072987		14.5	5.3	1.78	45.5
Tolovana at TAPS 073087		30.1	10	5.13	63.1
Tolovana at TAPS 073187		226	45	319	523
Tolovana at TAPS 073187	1232	918	150	1250	506
Tolovana at TAPS 080187		2240	170	6710	1110
Tolovana at TAPS 080287		616	65	919	552
Tolovana at TAPS 080387		238	35	224	348
Tolovana at TAPS 080487		229	20	141	229
Tolovana at TAPS 080587		65.7	8.3	30.5	172
Tolovana at TAPS 080687		50.3	5.0	18.7	138
Tolovana at TAPS 080787		58.9	9.1	22.1	139
Tolovana at TAPS 080887		72.9	11	40.2	204
Tolovana at TAPS 080987		210	24	173	305
Tolovana at TAPS 081087		121	14	86.8	266
Tolovana at TAPS 081087	1520	27.4	7.7	17.3	234
Tolovana at TAPS 081187		63.8	7.6	58.9	342
Tolovana at TAPS 081287		34.5	6.2	11.2	120
Tolovana at TAPS 081387		39.9	5.7	9.73	90.3
Tolovana at TAPS 081487		426	50	143	124
Tolovana at TAPS 081587		2020	220	3330	610
Tolovana at TAPS 081687		758	100	1380	677
Tolovana at TAPS 081787		369	70	616	618
Tolovana at TAPS 081887	2240	244	18	301	457
Tolovana at TAPS 081887 Tolovana at TAPS 081987	1140	82.5	15	101	455
Tolovana at TAPS 081987		364	35	496	505
Tolovana at TAPS 082087		285	27	378	491
Tolovana at TAPS 082187	1226	385	45	363	349
Tolovana at TAPS 082187	1235	411	130	389	350
Tolovana at TAPS 082387		172	16	118	255
Tolovana at TAPS 082487		78.1 55.1	8.1	40.9	194
Tolovana at TAPS 082487	1430	16.3	4.8 3.3	24.4	164
Tolovana at TAPS 082487	1430	36.8		5.41	123
Tolovana at TAPS 082587		31.2	4.1 5.7	12.6	127
Tolovana at TAPS 082787		22.5	4.4	8.85 5.50	105
Tolovana at TAPS 082887		24.9	3.9	5.34	90.5 79.4
Tolovana at TAPS 082887	1210	6.8	2.5	1.52	
1010 valia at TAPS VOZBO/	1210	0.4	4.5	1.52	82.8

Ag	per	ndix	1. 1987	sediment	and disch	arge data.		
Locati			Date	Time	TSS		Sed load	Discharge
					(mg/1)	(NTU)	(tons/day)	(cfs)
					, ,	, ,	. , 1,	()
Tolovana	at	TAPS	082987		13.1	3.0	2.53	71.5
Tolovana	at	TAPS	083087		37.4	4.9	6.79	67.2
Tolovana	at	TAPS	083187	1315	4.7	1.7	0.90	70.8
Tolovana	at	TAPS	090187		36.7	3.1	6.11	61.7
Tolovana	at	TAPS	090987		19.9	3.5	4.98	92.6
Tolovana	at	TAPS	090987	1430	7.59	3.0	1.86	91.0
Tolovana	at	TAPS	091087		83.2	21	24.7	110
Tolovana	at	TAPS	091187		61.5	17	15.6	94.0
Tolovana	at	TAPS	091287		10.3	2.7	2.23	80.3
Tolovana					11.3	2.3	2.14	70.0
Tolovana					13.7	2.8	2.37	64.0
Tolovana				1245	9.7	2.1	1.47	56.2
Tolovana					12.7	4.4	1.69	49.3
Tolovana					6.5	2.5	0.89	50.7
Tolovana					4.6	2.0	0.61	49.1
Tolovana					3.5	2.8	0.44	46.9
Tolovana	at	TAPS	092087		3.5	2.1	0.43	45.9
Tolovana					3.0	1.9	0.36	45.0
Tolovana					13.8	4.9	1.62	43.4
Tolovana				1336	5,2	3.1	0.67	47.5
Tolovana					28.8	9.7	3.34	42.9
Tolovana					17.8	6.2	1.94	40.4
Tolovana					8.7	3.3	0.93	39.4
Tolovana					7.4	2.6	0.76	37.9
Tolovana					3.8	3.0	0.37	35.8
Tolovana					9.1	2.9	0.88	35.8
Tolovana					5.4	4.1	0.52	35.4
Tolovana	at	TAPS	092987	1510	1.9	2.7	0.17	32.9
Most Die	m = 1 .		000107	1200	0 0	2.0		
West Fk 1	TOT	ovana	ORSTR/	1300	8.8	2.0		

Appendix 1. Location	1987 sedi Date	iment Time	and discha TSS (mg/l)		Discharg (cfs)	e Sed Load (tons/day)
Birch Creek Drai	nage					
Birch at Bridge	052887	1545			1870	
Birch at Bridge	052987		254	30	4110	2820
Birch at Bridge	053087		573	95	4530	7010
Birch at Bridge	053187		181	35	4120	2010
Birch at Bridge	060187		231	40	4340	2710
Birch at Bridge	060287		238	60	3900	2510
Birch at Bridge	060387		288	50	4880	3800
Birch at Bridge	060487		1180	120	9180	29200
Birch at Bridge	060587		1640	190	7070	31300
Birch at Bridge	060687		4110	360	4140	45900
Birch at Bridge Birch at Bridge	060787		2310	200	2690	16800
Birch at Bridge	060887		170	25	1990	911
Birch at Bridge	060987 061087		74.6	18	1740	350
Birch at Bridge	061187		935 1060	130	7860	19800
Birch at Bridge	061287		201	170 45	4530	13000
Birch at Bridge	061387		107	23	2830 2450	1530
Birch at Bridge	061487		356	40	6330	710
Birch at Bridge	061587		1440	170	6290	6080 24500
Birch at Bridge	061687		375	65	4850	4910
Birch at Bridge	061787		496	34	5950	7970
Birch at Bridge	061887		215	22	4870	2830
Birch at Bridge	061987		113	18	3080	936
Birch at Bridge	062087		76.3	15	2280	470
Birch at Bridge	062187		71.8	15	1800	349
Birch at Bridge	062287		48.9	16	1510	199
Birch at Bridge	062387		39.3	16	1320	140
Birch at Bridge	062487		23.8	10	1180	75.8
Birch at Bridge	062587		43.1	13	1100	128
Birch at Bridge	062687		962	120	9480	24600
Birch at Bridge	062787		703	120	7960	15100
Birch at Bridge	062887		164	29	3850	1700
Birch at Bridge	062987		123	15	2440	810
Birch at Bridge	063087		101	13	1790	490
Birch at Bridge	070187		102	11	1510	415
Birch at Bridge	070287		123	12	2000	665
Birch at Bridge	070387		243	22	2510	1650
Birch at Bridge	070487		186	27	1910	960
Birch at Bridge	070587		155	19	1480	618
Birch at Bridge Birch at Bridge	070687		88.3	15	1240	296
Birch at Bridge	070787 070887	1022	50.0	13	1090	147
Birch at Bridge	070887	1822 0700	8.5 13	9.1	980	22.5
Birch at Bridge	070987	5700	49.7	7.7	918	32.2
Birch at Bridge	071087		21.4	7.3 8.2	918	123
Birch at Bridge	071187		30	16	931	53.8
Birch at Bridge	071287		20.9	12	1040 1050	84.2
ac bridge	011201		20.3	14	2030	59.3

Appendix 1.	1987 sedi	iment	and discha	arge data.		
Location	Date	Time	TSS		Discharge	e Sed Load
			(mg/l)	(UTU)	(cfs)	(tons/day)
			(=-3/ = /	(1122)	(-10)	(cons/day)
Birch at Bridge	071387		124	20	1770	591
Birch at Bridge	071487		583	36	4430	6980
Birch at Bridge	071587		446	35	4540	5470
Birch at Bridge	071687		101	17	2890	788
Birch at Bridge	071787		41.2	9.6	1970	219
Birch at Bridge	071887		27.0	9.6	1500	109
Birch at Bridge	071987		25.4	9.3	1270	87.1
Birch at Bridge	072087		27.0	11	1150	83.8
Birch at Bridge	072187		16.1	8.2	1070	46.5
Birch at Bridge	072287		19.9	4.9	1010	54.3
Birch at Bridge	072387		66.8	10	1060	191
Birch at Bridge	072487		630	45	1720	2920
Birch at Bridge	072587		1840	210	10500	52200
Birch at Bridge	072687		3320	190	10500	94100
Birch at Bridge	072787		1320	120	5300	18900
Birch at Bridge	072887		557	40	3380	5090
Birch at Bridge	072987		547	23	3000	4430
Birch at Bridge	073087		375	22	3080	3120
Birch at Bridge	073087	1054	42.3	15	3080	352
Birch at Bridge	073187	100 (428	26	2960	3420
Birch at Bridge	080187		606	85	3890	
Birch at Bridge	080287		484	55 55	3490	6370
Birch at Bridge	080387		312	36	3620	45 5 60 3 0 50
Birch at Bridge	080487		263	31	2700	1910
Birch at Bridge	080587		214	22	2760	
Birch at Bridge	080687		175	23	1940	1310 918
Birch at Bridge	080787		166	22	1700	762
Birch at Bridge	080887		165	25	1550	691
Birch at Bridge	080987		188	29	1500	759
Birch at Bridge	081087		140	24	1480	55 7
Birch at Bridge	081187		119	22	1390	447
Birch at Bridge	081287		99.7	19	1280	345
Birch at Bridge	081387		111	18	1200	358
Birch at Bridge	081387		17.3	11	1200	56
Birch at Bridge	081487		249	30	1220	819
Birch at Bridge	081587		273	41	2580	1900
Birch at Bridge	081687		330	60	4760	4200
Birch at Bridge	081787		102	29	3720	1020
Birch at Bridge	081887		56.6	12	3120	477
Birch at Bridge	081987		47.2	14	2640	336
Birch at Bridge	082087		47.0	13	2500	317
Birch at Bridge	082187		98.4	20	4180	1110
Birch at Bridge	082187	1205	74.5	18	4180	841
Birch at Bridge	082287		62.9	18	3740	635
Birch at Bridge	082387		36.1	13	2950	288
Birch at Bridge	082487		25.3	11	2420	165
Birch at Bridge	082587		26.0	11	2050	144
Birch at Bridge	082687		16.3	9.4	1820	80.1
Birch at Bridge	082787		17.7	11	1660	79.3
-					• •	

Appendix 1. 1987 sediment and discharge data.						
Location	Date	Time	TSS	Turbidity	Dischar	ge Sed Load
			(mg/1)	(NTU)	(cts)	(tons/day)
Birch at Bridg	e 082887		17.1	12	1610	74.3
Birch at Bridg			42.0	13	1550	176
Birch at Bridg			16.5	13	1500	66.8
Birch at Bridg			28.2	15	1730	132
Birch at Bridg			25.4	16	1690	116
Birch at Bridg			17.6	12	1600	76.0
Birch at Bridg		1130	7.5	8.4	1600	32.4
Birch at Bridg			35.4	11	1000	02.14
Birch at Bridg	e 090487		25.8	9.1		
Birch at Bridg	e 090587		20.2	11		
Birch at Bridg	e 090687		23.2	10		
Birch at Bridge	e 090787		24.8	17		
Birch at Bridg	e 090887		19.5	12		
Birch at Bridg			15.9	13		
Birch at Bridg	e 091187	1011	8.77	10		
Birch at Bridg	e 100287	1035	5.3	14	698	10.0
Birch ab 12mil	e 061587	1740	172	92	226	105
Birch ab 12mil		1750	562	88	226	343
Birch ab 12mil			6330	273	285	4870
Birch ab 12mil			17100	240	278	12800
Birch ab 12mil			2590	150	178	1250
Birch ab 12mil			1110	151	145	435
Birch ab 12mil			588	223	125	198
Birch ab 12mil	e 062187		790	273	113	240
Birch ab 12mil	e 062287		406	260	102	112
Birch ab 12mil	e 062387		415	235	88.5	99
Birch ab 12mil	e 062487		272	193	78.0	57
Birch ab 12mil			16220	703	407	17800
Birch ab 12mil			14400	450	450	17500
Birch ab 12mil			1490	266	243	979
Birch ab 12mil			1030	228	168	468
Birch ab 12mil			5300	103	133	1900
Birch ab 12mil			3720	150	119	1200
Birch ab 12mil			2430	200	137	899
Birch ab 12mil			1760	220	144	684
Birch ab 12mil			1290	370	123	430
Birch ab 12mil			1190	360	105	338
Birch ab 12mil			1340	230	89.2	323
Birch ab 12mil			1040	300	80.4	226
Birch ab 12mil			1010	360	75.9	207
Birch ab 12mil			386	130	70.9	73.8
Birch ab 12mil			452	120	85.0	104
Birch ab 12mil		0740	279	340	96.7	72.7
Birch ab 12mil		0740	308	340	96.7	80.4
Birch ab 12mil			410	400	96.7	107
Birch ab 12mil			585	550	99.1	157
Birch ab 12mil			634	550	106.1	182
Birch ab 12mil	e 071387		1190	500	124.7	401

Appendix 1.	1987 sed	iment	and discha	rge data.		
Location	Date	Time	TSS		Discharge	e Sed Load
			(mg/1)	(NTU)	(Cfs)	(tons/day)
			. 2,	(- /	()	(00112) ddy)
Birch ab 12mile	071487		2170	550	182.3	1070
Birch ab 12mile	071587		720	380	144.3	281
Birch ab 12mile	071687		339	290	119.7	109
Birch ab 12mile	071787		371	370	100.2	100
Birch ab 12mile	071887		316	360	91.1	77.8
Birch ab 12mile	071987		263	270	87.1	61.8
Birch ab 12mile	072087		253	270	82.6	56.5
Birch ab 12mile	072187		205	200	80.4	44.5
Birch ab 12mile	072287		264	220	76.7	54.6
Birch ab 12mile	072387		401	250	80.8	87.4
Birch ab 12mile	072487		7770	1500	560	11700
Birch ab 12mile	072587		4750	450	449	5760
Birch ab 12mile Birch ab 12mile	072687		1840	300	222	1100
Birch ab 12mile Birch ab 12mile	072787		904	180	155	379
Birch ab 12mile Birch ab 12mile	072887		343	210	128	119
Birch ab 12mile	072987 073087		369	280	131	130
Birch ab 12mile	073087	1420	1270	320	197	677
Birch ab 12mile	073187	1420	367	230	197	195
Birch ab 12mile	080187		9360 2130	700	330	8340
Birch ab 12mile	080287		573	190	227	1310
Birch ab 12mile	080387		285	170	170	263
Birch ab 12mile	080487		273	160 170	141	108
Birch ab 12mile	080587		245	220	139	102
Birch ab 12mile	080687		268	260	125	82.6
Birch ab 12mile	080787		271	300	112 106	81.4
Birch ab 12mile	080887		250	230	108	77.5 72.8
Birch ab 12mile	080987		156	120	110	46.2
Birch ab 12mile	081087		268	75	104	75.1
Birch ab 12mile	081187		113	30	96.5	29.4
Birch ab 12mile	081287		80.8	85	92.3	20.1
Birch ab 12mile	081387		102	100	88.6	24.4
Birch ab 12mile	081387	1310	42.8	34	88.6	10.2
Birch ab 12mile	081487		5900	650	219	3490
Birch ab 12mile	081587		3520	360	263	2500
Birch ab 12mile	081687		930	90	212	532
Birch ab 12mile	081787		1130	140	216	658
Birch ab 12mile	081887		492	150	179	239
Birch ab 12mile	081987		1230	190	221	734
Birch ab 12mile	082087		2510	180	243	1650
Birch ab 12mile	082187		618	110	206	343
Birch ab 12mile	082287		309	80	173	144
Birch ab 12mile	082387		301	80	151	123
Birch ab 12mile	082487		171	55	137	63.4
Birch ab 12mile	082587		132	27	124	44.1
Birch ab 12mile	082687		117	65	117	37.1
Birch ab 12mile	082787		73.2	40	116	22.8
Birch ab 12mile	082887		84.7	70	108	24.8
Birch ab 12mile	082987		102	100	105	28.8

Ar	pen	dix 1.	1987 sed	iment	and disch	arge data.		
Loca	atio	חי	Date	Time	TSS		Discharg	e Sed Load
					(mg/1)	(NTU)	(cfs)	(tons/day)
						, ,	, ,	, , , , , , , , , , , , , , , , , , , ,
Birch	ab	12mile	083087		150	70	98.6	39.9
Birch	ab	12mile	083187		162	55	98.5	43.0
Birch	ab	12mile	090187		206	37	96.5	53.7
Birch	ab	12mile	090187	1720	29.1	34	96.5	7.6
Birch	ab	12mile	090287		531	110	97.0	139
Birch	ab	12mile	090387		96.0	50	99.8	25.9
Birch	ab	12mile	090487		63.3	40	95.3	16.3
Birch	ab	12mile	090587		81.2	75	88.3	19.4
Birch	ab	12mile	090687		97.7	95	88.0	23.2
Birch	ab	12mile	090787		100	95	89.8	24.2
Birch	ab	12mile	090887		130	140	88.1	31.0
		12mile	090987		140	130	84.4	32.0
		12mile	091087		96.7	95	83.6	21.8
Birch	аb	12mile	091187		173	210	81.9	38.3
		12mile	091187	1252	36.7	70	81.9	8.1
		12mile	091287		197	150	78.9	41.9
Birch	ab	12mile	091387		192	90	75.6	39.2
		12mile	091487		343	150	82.2	76.1
		12mile	091587		286	100	95.3	73.6
		12mile	091687		255	80	72.8	50.1
		12mile	091787		104	90	70.4	19.7
		12mile	091887		143	95	68.1	26.3
		12mile	091987		165	40	65.2	29.1
		12mile	092087		61.6	50	64.4	10.7
		12mile	092187		69.1	75	62.8	11.7
		12mile	092287		101	30	60.9	16.5
		12mile	092387		133	65	59.4	21.4
		12mile	092487		118	110	58.5	18.6
		12mile	092587		126	90	58.0	19.7
		12mile	092687		63.0	35	56.7	9.6
		12mile	092787		17.3	14	55.8	2.6
		12mile	092887		37.4	8.7	53.8	5.4
Birch	ab	12mile	100287	1356	8.2	6.0	52.3	1.2

APPENDIX 2. 1987 DISCHARGES AT AUTOMATED SITES

Walker Fork at Bridge	52
Goldstream at Ballaine	
Faith Creek at Steese Hwy	54
Tolovana River at TAPS Crossing	55
Birch Creek above 12mile Creek	56
Birch Creek at Bridge	57

APPENDIX 2. 1987 Discharges at automated sites.

Walker Fork at the Taylor Highway Bridge Discharge in cubic feet per second

Max 893 Min 88.9 Avg 246

Da	1	June	July	August 403	September 151
	2			483	144
	3			434	135
	4			333	135
	5			251	145
	6			197	146
	7			168	136
	8			150	128
	9			139	129
	10			126	169
	11			111	270
	12			98	343
	13			93	353
	14		833	148	364
	15		652	278	311
	16		447	315	281
	17		300	328	286
	18		213	340	345
	19		171	299	356
	20		141	359	344
	21		190	340	328
	22		170	278	347
	23		247	230	
	24		265	196	
	25		238	174	
	26		193	158	
	27		151	148	
	28		124	143	
	29		114	136	
	30		136	160	
	31		315	175	
Mon	Avg		198	232	243

Appendix 2. 1987 discharges at automated sites.

Goldstream Creek at Ballaine Road, 1987 Discharge in cubic feet per second

Max 54.3 Min 8.1 Avg 20.2

Stage affected by beaver dams in late August-early September

3 4 5 6 7 8 9	32.4 28.9 25.6 23.0 21.8 21.8 22.4	12.4 10.5 9.8 9.6 10.1 10.2	22.7 20.2 18.0 15.8 18.6 36.0 43.2 33.7	31.2 31.5 17.0 12.2 11.9 17.1 9.4 10.4	11.1 11.1 10.6 12.0
17 18 19 20 21 22 32.4 23 31.9 24 29.9 25 27.4 26 25.4 27 24.9 28 23.8 29 23.5 30 24.5 31 24.7	24.8 21.3 19.4 18.2 17.8 15.8 14.6 14.3 16.5 24.3 22.9 19.4 16.7 14.9	15.8 13.9 12.9 15.5 16.7 16.4 15.8 22.5 27.8 22.0 18.1 16.2 15.6 16.6 31.3	16.6 16.2 20.8 25.0 23.5 21.8 19.0 17.8 16.5 16.1 16.2 17.5 25.5 32.8 28.5	13.7 14.5 14.9 15.3 14.5 15.5 15.0 15.2 15.5 13.8 12.0 11.2 11.4 11.8	11.4

Appendix 2. 1987 discharges at automated sites.

Faith Creek at Steese Highway
Discharge in cubic feet per second
Max 650

Max 650 Min 21.9 Avg 98.4

Di	ay 12345678901123145678901 112345678901 122223456789031	98.1 153 137 83.3 74.9 64.7 58.7 48.2 41.3 348 310 135 83.2 63.6 52.0	July 47.8 43.3 38.7 34.5 32.5 29.7 27.9 28.0 30.3 28.7 27.1 26.8 36.8 38.7 33.5 29.4 25.5 25.7 24.8 27.4 25.5 25.7 24.8 27.0 39.0 67.0 297	August 177 134 98.5 84.6 73.3 65.2 79.8 149 139 102 85.3 72.9 71.2 229 248 218 174 156 284 236 186 155 140 122 108 102 99.3 88.2 87.2 90.0 83.5	September 83.1 141 147 172 201 166 153 151 136 124 115 105 93.1 87.7 84.5 79.8 74.9 71.1 66.2 63.0 60.2 56.4 53.6 51.3 49.4
Mon	Avg	113	51.6	134	103

Appendix 2. 1987 discharges at automated sites.

Tolovana River at TAPS crossing
Discharge in cubic feet per second
Max 1390

Max 1390 Min 21.1 Avg 145

_					
Da	ay	June	July	August	September
	1			1108	61.7
	2 3			552	58.2
	3			348	56.3
	4			229	56.0
	5			172	56.6
	6		22.7	138	69.3
	7			139	79.3
	8			204	75.2
	9			305	92.6
	10			266	110
	11			171	94.0
	12			120	80.3
	13			90.3	70.0
	14			124	64.0
	15			610	56.2
	16			677	49.3
	17		21.3	618	50.7
	18		22.0	457	49.1
	19		24.3	505	46.9
	20		28.0	491	45.9
	21		29.0	349	45.0
	22		29.3	255	43.4
	23		32.7	194	42.9
	24		52.7	154	40.4
	25		97.6	127	39.4
	26		111	105	37.9
	27		72.7	90.5	35.8
	28		55.0	79.4	35.8
	29		45.5	71.5	35.4
	30		63.1	67.2	
	31		523	65.2	
Mon	Avg		80.5	287	57.9

Appendix 2. 1987 discharges at automated sites.

Birch Creek above 12Mile Creek Discharge in cubic feet per second

Max 1010 Min 47.6 Avg 133

D.		7	~			
Da	ay ,	June	July	August	-	
	1		137	227	96.5	79.8
	2		144	170	97.0	52.3
	3		123	141	99.8	
	4		105	139	95.3	
	5		89.2	125	88.3	
	6		80.4	112	88.0	
	7		75.9	106	89.8	
	8		70.9	108	88.1	
	9		85.0	110	84.4	
	10		96.7	104	83.6	
	11		99.1	96.5	81.9	
	12		106.1	92.3	78.9	
	13		124.7	88.6	75.6	
	14		182.3	219	82.2	
	15	226	144.3	263	95.3	
	16	285	119.7	212	72.8	
	17	278	100.2	216	70.4	
	18	178	91.1	179	68.1	
	19	145	87.1	221	65.2	
	20	125	82.6	243	64.4	
	21	113	80.4	206	62.8	
	22	102	76.7	173	60.9	
	23	88.5	80.8	151	59.4	
	24	78.0	560	137	58.5	
	25	407	449	124	58.0	
	26	450	222	117	56.7	
	27	243	155	116	55.8	
	28	168	128	108	53.8	
	29	133	131	105	51.9	
	30	119	197	98.6	60.3	
	31		330	98.5	30.3	
	_		550	70.5		
Mon	Avg	196	147	149	74.8	66.0

Appendix 2. 1987 discharges at automated sites.

Birch Creek at Steese Highway Bridge Discharge in cubic feet per second Max 15500

Max 15500 Min 698 Avg 2661

Da	ıv	May	June	July	August	September
	1		4340	1510	3890	1690
	2		3900	2000	3490	1600
	3		4880	2510	3620	1000
	4		9180	1910	2700	
	5		7070	1480	2260	
	6		4140	1240	1940	
	7		2690	1090	1700	
	8		1990	980	1550	
	9		1740	918	1500	
	10		7860	931	1480	
	11		4530	1040	1390	1310
	12		2830	1050	1280	1270
	13		2450	1770	1200	1220
	14		6330	4430	1220	1150
	15		6290	4540	2580	1070
	16		4850	2890	4760	1000
	17		5950	1970	3720	969
	18		4870	1500	3120	962
	19		3080	1270	2640	936
	20		2280	1150	2500	912
	21		1800	1070	4180	888
	22		1510	1010	3740	874
	23		1320	1060	2950	858
	24		1180	1720	2420	839
	25		1100	10500	2050	822
	26		9480	10500	1820	797
	27		7960	5300	1660	781
	28	1870	3850	3380	1610	768
	29	4110	2440	3000	1550	758
	30	4530	1790	3080	1500	737
	31	4120		2960	1730	, , , ,
	_			2333	2,30	
Mon	Avg	3658	4123	2573	2379	1010

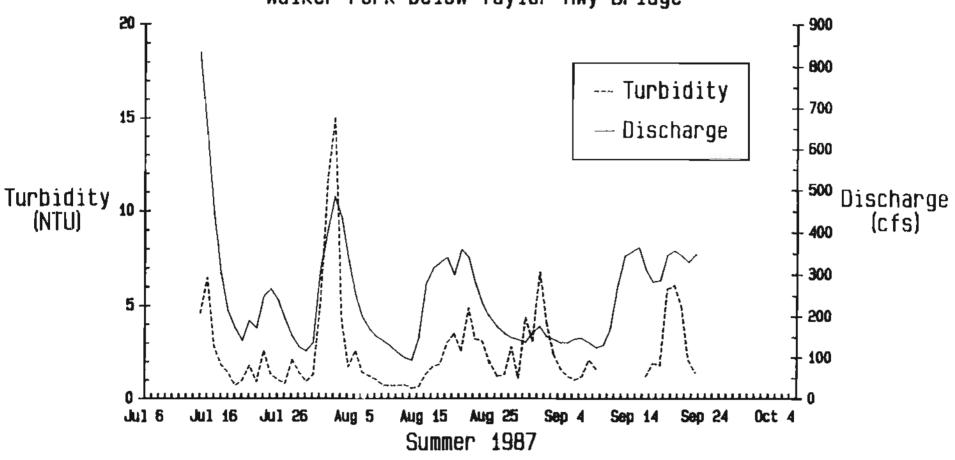
APPENDIX 3. Fortymile drainage water chemistry

With trace metals, 'T' represents total recoverable, 'D' represents dissolved

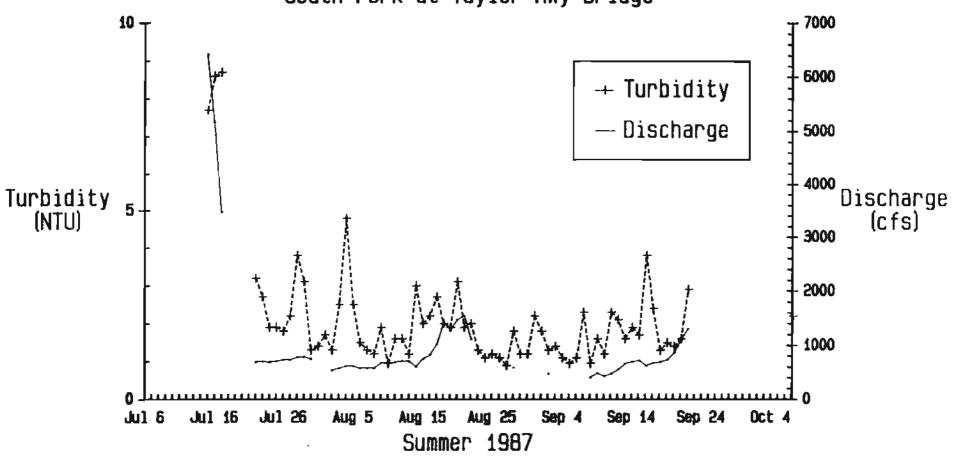
Stream Reach	Date	TIME	TSS	SL	TURB	105	DISCHARGE	PH	ALK	HARDNS	коз	CL
			mg/l_	_t/d	บาบ	_mg/l_	cfs	as	CaCO3	as CaCO3	mg/l	mg/(
8uckskin Creek	8-19-87	1400	0.4	0.04	0.60	43	33.7	6.23	70.9	94.8	<0.01	0.16
Jack Wade Creek	8-22-87	900	2.9	0.23	1.6	24.8	29.3	6.84	40.7	48.7	0.27	0.08
Mosquita Fork	8-18-87	1300	3.5	3.98	1.2	27.2	421	8.12	44.5	49.0	0.06	0.44
Napoleon Creek	8-19-87	1100	23.2	0.34	4.1	33.0	5.39	6.81	54.0	57.6	0.21	0.35
North Fork ab SF	8-20-87	1100	1.2	4.02	0.85	43.4	1240	6.47	71.0	78.1	0.02	0.72
South Fork ab NF	8-20-87	1300	5.2	24.0	4.8	22.9	1710	6.31	37.7	40.9	0.02	0.15
South Fork at Bridge	8-18-87	1600	4.0	15.6	2.1	22.6	1440	7.79	37,4	36.4	0.04	0.14
Uhler Creek	8-19-87	1530	17.8	0.91	4.3	17.6	19.0	7.90	29.0	33.5	0.22	0.01
Walker Fork at Bridge	8-22-87	1030	1.9	1.48	2.5	35.4	288	6.55	58,8	46.6	<0.01	0.09
Walker fork at 40m	8-19-87	930	3.0		2.2	26.7		7.83	44.0	48.6	0.06	0.16
West Fork Dennison	8-18-87	1100	8.0	9.68	2.3	14.7	448	8.52	23.4	29.5	<0.01	0.63

Trace metals are reported in mg/t Stream Reach \$04 ĸ F Na Μg Ca \$1 8a As ΑL Αŧ As mg/l _mg/t___mg/t_ _mg/l_ _mg/l_ _mg/l_ mg/l_ _mg/1_ 0.067 Buckskin Creek 27.6 1,08 <0.001 5.07 0.090 3.09 29.6 <0.01 0.031 < 0.002 <0.002 0.048 < 0.002 Jack Wade Creek 12.4 2.04 1.34 <0.001 3.21 14.2 <0.01 <0.002 0.298 0.239 Mosquito Fork 8.09 4.02 0.62 <0.001 3.55 13.7 0.1 0.007 <0.002 <0.002 0.107 0.085 2.64 0.88 <0.001 16.2 0.024 <0.002 0.935 0.171 Napoleon Creek 3.88 4.10 0.2 <0.002 North Fork ab SF 20.4 3.79 0.72 <0.001 5.67 21.9 <0.01 0.010 <0.002 <0.002 0.193 0.054 South Fork ab NF 7.26 3.58 0.60 <0.001 <0.01 3.39 10.8 0.009 <0.002 <0.002 0.320 0.121 South Fork at Bridge 6.12 3.55 0.52 <0.001 2.96 9.7 <0.01 0.007 < 0.002 <0.002 0.216 0.147 3.30 <0.001 1.97 0.013 < 0.002 Uhler Creek 1.64 0.72 10.1 0.17 <0.002 0.697 0.28 0,143 Walker fork at Bridge 11.0 3.45 0.92 < 0.001 4.51 11.2 <0.01 0.032 <0.002 <0.002 0.179 11.3 Walker fork at 40m 11.6 3.59 0.93 < 0.001 4.95 <0.01 0.034 < 0.002 <0.002 0.204 0.128

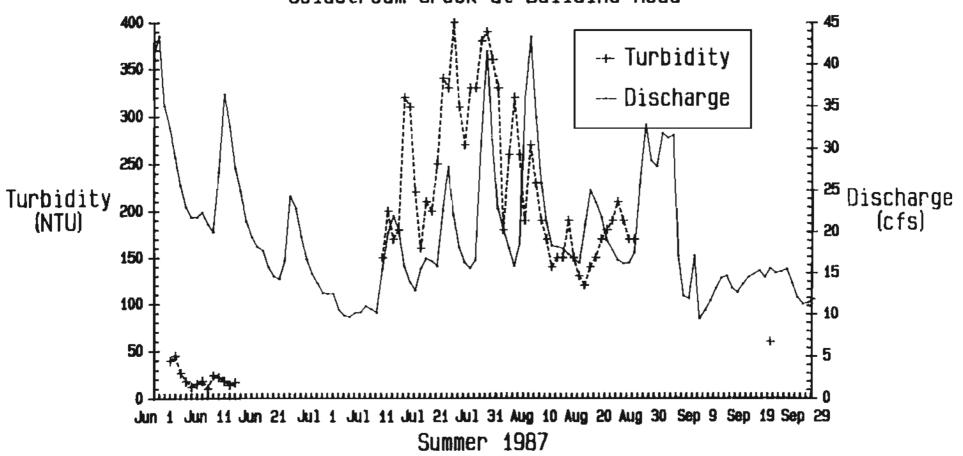
APPENDIX 3. Fortymile drainage water chemistry
With trace metals, 'T' represents total recoverable, 'D' represents dissolved

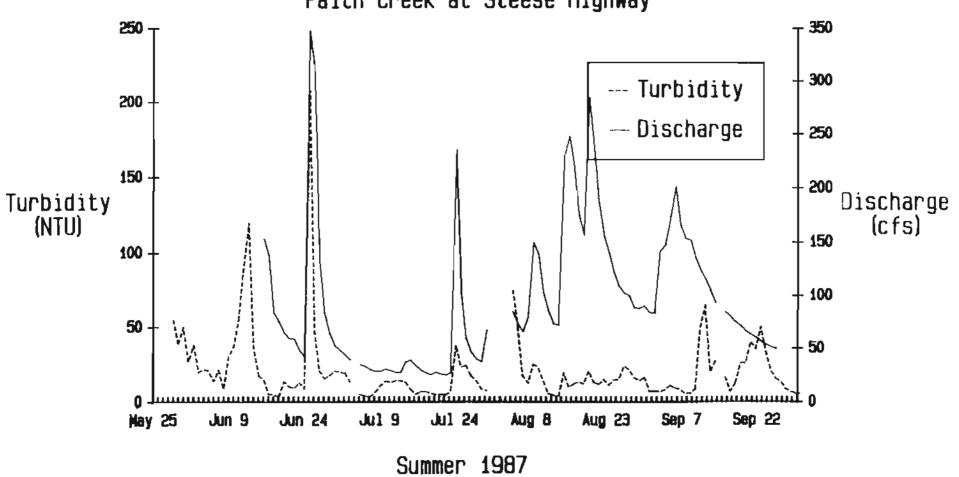

	Trace me	etals are	reported	d in mg/l_								
Stream Reach	8	8	8e	ве	Cd	Cd	Cr	Cr	Cu	Cu	۶e	Fe
	T	_0	_1	_0	T	_0		_0	t	_0	_1_	_0
8uckskin Creek	0.022	<0.01	<0.02	<0.02	<0.01	<0.01	0.005	<0.002	0.040	0.026	0.05	0.10
Jack Wade Creek	<0.01	<0.01	<0.02	<0.02	<0.01	<0.01	0.006	<0.002	<0.005	0.019	0.30	0.31
Mosquito fork	<0.01	<0.01	<0.02	<0.02	<0.01	<0.01	0.013	<0.002	0.019	0.019	0.32	0.31
Napoleon Creek	<0.01	<0.01	<0.02	<0.02	<0.01	<0.01	0.021	<0.002	<0.005	0.007	1.57	0.19
North Fork ab SF	<0.01	<0.01	<0.02	<0.02	<0.01	<0.01	0.039	<0.002	<0.005	0.011	0.04	0.09
South Fork ab NF	<0.01	<0.01	<0.02	<0.02	<0.01	<0.01	0.035	<0.002	<0.005	0.037	0,51	0.26
South fork at Bridge	<0.01	<0.01	<0.02	<0.02	<0.01	<0.01	0.004	<0.002	<0.005	0.015	0.35	0.39
Uhler Creek	<0.01	<0.01	<0.02	<0.02	<0.01	<0.01	0.035	<0.002	0.005	0.007	0.74	0.29
Walker Fork at Bridge	<0.01	<0.01	<0.02	<0.02	<0.01	<0.01	0.049	<0.002	<0.005	0.016	0.22	0.20
Walker fork at 40m	0.021	<0.01	<0.02	<0.02	<0.01	<0.01	0.052	<0.002	<0.005	0.018	0.26	0.20
West Fork Dennison	<0.01	0.010	<0.02	<0.02	<0.01	<0.01	0.060	<0.002	0.014	0.02	0.52	0.46

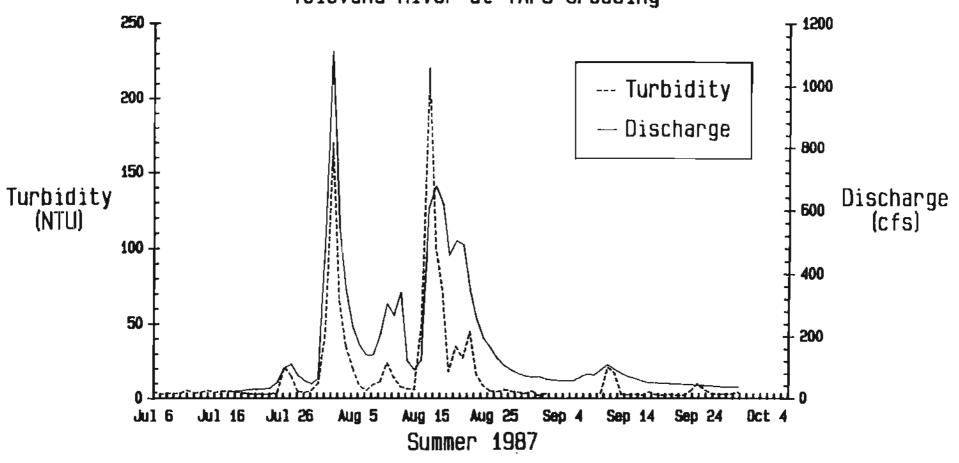
Stream Reach	Pb T	P6 0	Ma	Mn O	Нg	∺g D	Se T	Se D	sí	Si D	Zn	Žn
Stream Reach									T .			
Buckskin Creek	0.03	<0.03	0.007	<0.005	0.002	<0.001	<0.02	<0.02	1,92	3.92	<0.02	_D <0.02
Jack Wade Creek	<0.03	<0.03	0.043	0.037	<0.001	<0.001	<0.02	<0.02	2.16	4.19	<0.02	<0.02
Mosquito Fork	<0.03	<0.03	0.012	0.007	<0.001	<0.001	<0.02	<0.02	2.02	3.73	<0.02	0.03
Napoleon Creek	<0.03	<0.03	0.033	0.007	<0.001	<0.001	<0.02	<0.02	3.57	4.45	0.02	<0.02
North Fork ab SF	<0.03	<0.03	0.008	<0.005	<0.001	<0.001	<0.02	<0.02	2.05	3,12	<0.02	<0.02
South Fork ab NF	<0.03	<0.03	0.018	0.008	<0.001	<0.001	<0.02	<0.02	3.37	4.21	<0.02	0.02
South fork at Bridge	<0.03	<0.03	0.018	0.012	0.003	<0.001	<0.02	<0.02	4.50	3.83	<0.02	<0.02
Uhler Creek	<0.03	<0.03	0.031	0.014	<0.001	<0.001	<0.02	<0.02	4.98	3.60	<0.02	<0.02
Walker fork at Bridge	<0.03	<0.03	0.019	0.011	<0.001	<0.001	<0.02	<0.02	4.00	3.83	<0.02	<0.02
Walker fork at 40m	<0.03	<0.03	0.017	0.009	<0.001	<0.001	<0.02	<0.02	4.09	2.67	<0.02	<0.02

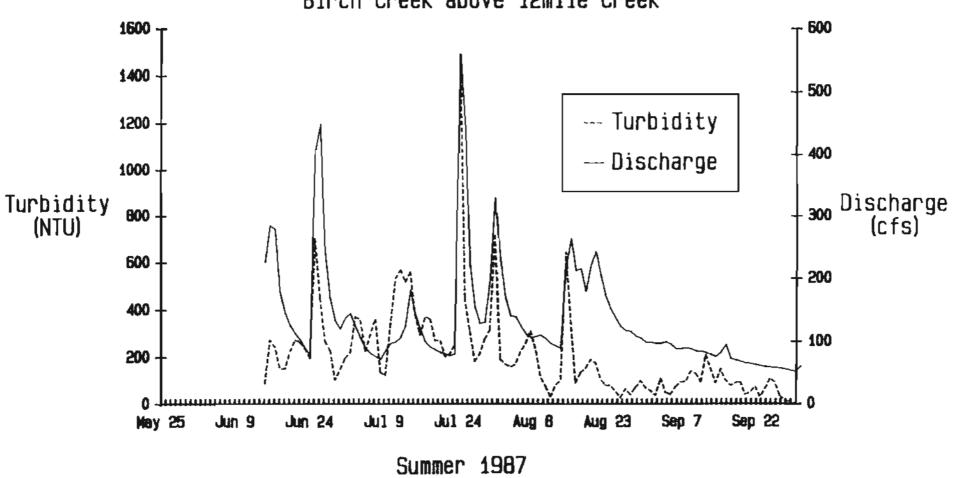

APPENDIX 4. SEASONAL TURBIDITY AND DISCHARGE FIGURES

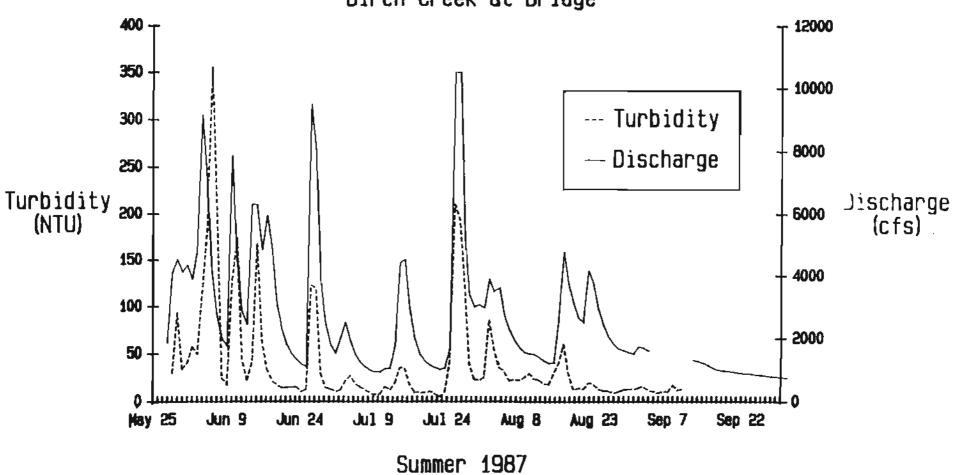
Walker Fork at Bridge
South Fork at Bridge
Goldstream at Ballaine6
Faith Creek at Steese Hwy6
Tolovana River at TAPS Crossing6
Birch Creek above 12mile Creek6
Birch Creek at Bridge6


Appendix 4. Figure 1. Turbidity and discharge Walker Fork below Taylor Hwy Bridge


Appendix 4. Figure 2. Turbidity and discharge South Fork at Taylor Hwy Bridge


Appendix 4. Figure 3. Turbidity and discharge Goldstream Creek at Ballaine Road


Appendix 4. Figure 4. Turbidity and discharge Faith Creek at Steese Highway


Appendix 4. Figure 5. Turbidity and discharge Tolovana River at TAPS Crossing

Appendix 4. Figure 6. Turbidity and discharge Birch Creek above 12mile Creek

Appendix 4. Figure 7. Turbidity and discharge Birch Creek at Bridge

APPENDIX 5. Specific Locations of Sampling Sites.

Site Name	Full Name	MTRS Description				
Fortymile drainage						
Jack Wade Creek	Jack Wade Creek at BLM campground	upstream of campground in SW\(\frac{1}{2}\), NE\(\frac{1}{2}\), Sec 35, T27N, R19E, CRM				
Walker Fork	Walker Fork below Taylor Highway Bridge	downstream of bridge in NE\(\frac{1}{2}\), SW\(\frac{1}{2}\), Sec 35, T27N, R19E, CRM				
South Fork at Bridge	South Fork of the Forty- mile River at the Taylor Highway Bridge	at the bridge in the SE4, SW4, Sec 6, T26N, R19E, CRM				
Mosquito Fork	Mosquito Fork of the Fortymile River above Taylor Highway Bridge	50 above the bridge in the NW $\frac{1}{4}$, NW $\frac{1}{4}$, Sec 1, T26N, R17E, CRM				
West Fork	West Fork of the Dennison Fork at the Taylor High- way Bridge					
Buckskin Creek	Buckskin Creek at the South Fork	100 feet upstream of confluence with South Fork in SE4, NE4, Sec 34, T8S, R30E, FM				
Napoleon Creek	Napoleon Creek at the South Fork	200 feet upstream of confluence with South Fork in SW4, NW4, Sec 20, T27N, R19E, CRM				
North Fork ab SF	North Fork Fortymile above confluence with South Fork Fortymile	1/4 mile upstream of confluence in NE¼, NE¼, Sec 10, T85, R30E, FM				
South Fork ab NF	South Fork Fortymile above confluence with North Fork Fortymile	1/4 mile upstream of confluence in NE4, NE4, Sec 10, T8S, R30E, FM				
Uhler Creek	Uhler Creek at the South Fork	200 feet above the confluence with the South Fork in the NW\(\frac{1}{4}\), SW\(\frac{1}{4}\), Sec 23, T8S, R30E, FM				

Appendix 5. Specific Locations of Sampling Sites. Full Name Site Name MTRS Description Walker Fork ab SF Walker Fork above South 300 feet above the confluence with the South Fork Fork in the SEA, SWA, Sec 19, T27N, R19E, CRM Tolovana Drainage Goldstream at Bal-Goldstream Creek at upstream of bridge in laine the Ballaine Road the NW1, SW1, Sec 18, TIN, RIW, FM Bridge Faith at Steese Faith Creek at Steese above bridge in SE%, Highway NE 1, sec 6, T5N, R7E, Livengood at Bridge Livengood Creek at the downstream of bridge in Livengood Road Bridge the NE%, NE%, sec 21, T8N, R5W, FM Ready Bullion Creek Ready Bullion Creek at at the bridge in the the Livengood Road Bridge NE4, NW4, sec 21, T8N, RSW, FM upstream of the bridge in Tolovana at TAPS Tolovana River at the Trans Alaska Pipeline the SW\(\frac{1}{2}\), NE\(\frac{1}{2}\), Sec 5, T7N, crossing R5W, FM beside campground in the Tolovana at CG Tolovana River at the SE1, SE1, Sec 36, T8N, BLM campground R4W, FM Birch Creek Drainage

Birch Creek above 1/4 mile above Birch ab 12mile confluence in SW4, Twelvemile Creek NW1, sec 33, T7N, R10E, FM 200 ft. above bridge on Birch at Bridge Birch Creek at Steese left bank in SE4, NE4, sec Highway Bridge 1, T10N, R16E, FM