Public-data File 88-19

GEOLOGY AND MINERAL RESOURCES OF IDITAROD MINING DISTRICT,
IDITAROD 8-4 AND EASTERN 8-5 QUADRANGLES,
WESTCENTRAL ALASKA

Вy

T.K. Bundtzen, M.L. Miller, K.F. Bull, and G.M. Laird

Alaska Division of Geological and Geophysical Surveys

May 1988

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

794 University Avenue, Suite 200 Fairbanks, Alaska 99709

CONTENTS

<u>1</u>	age
Introduction and acknowledgments	1
Bedrock geology	l
Quaternary geology	7
Structural geology	10
Economic geology	10
Introduction	10
Mining history	12
Placer mining methods	18
Lode deposits	19
Introduction	19
	19
Golden Horn deposit	
Chicken Mountain gold prospects	22
Prospects north of Flat	22
Other prospects	29
Mineralized dikes	29
Coal	29
Geomorphology of placer deposits	30
Chicken Mountain stream placers	30
Placer deposits of Otter Creek drainage	33
Discussion of lode and placer deposits	35
Bibliography	37
Description of map units	39
Unconsolidated deposits	39
Sedimentary and volcanic rocks	41
Plutonic rocks	43
Metamorphic rocks	44
negation for the control of the cont	-
FIGURES	
Figure 1. Schematic section of Cretaceous sedimentary rock units	
in Iditarod B-4 and eastern B-5 Quadrangles showing	
interfingering relationships of individual lithologic	
units	n nlate
2. Otter and Black Creek valleys with Chicken Mountain in the	n prace
foreground, looking south-southwest	9
	9
3. Aerial shot of Ruby Creek area south of Iditarod-Nixon Fork	
fault showing anticline of 'upper' sands plunging	
underneath Kls section	11
4. Pre-1987 aerial shot of Golden Horn deposit showing location	
of shaft and trenches; keyed to table 8	20
5. Photograph of enechelon quartz-freegold t cinnabar veins,	
Idaho Bench, offsite from summit of Chicken Mountain	23
6. Aerial photograph interpretation showing Chicken Mountain	
stream drainage evolution	n plate
7. Prince Creek drainage looking north showing older terrace	•
or bench levels on eastern limit and modern stream on	
western limit	32

TABLES

			Page
Table	1.	Fossil identifications in the Iditarod B-4 and eastern B-5	
		Quadrangles, Alaska	2
	2.	Paleocurrent data from Cretaceous sedimentary rocks,	
		Iditarod B-4, eastern B-5 Quadrangles, Alaska	4
	3.	Major oxide analyses and CIPW norms of igneous rocks,	
		Iditarod B-4, eastern B-5 Quadrangles, Alaska	6
	4.	Analytical data for K-Ar determinations	8
	5.	Gold and silver production in the Iditarod/Flat district,	
		1910–1987	13
	6.	Partial dredge statistics for Iditarod district	16
	7.	Production from the Golden Horn lode mine	17
	8.	Analytical results from mines, prospects, and mineral	
		occurrences, Iditarod B-4 and eastern B-5 Quadrangles,	
		Alaska	24

GEOLOGY AND MINERAL RESOURCES OF IDITAROD MINING DISTRICT, IDITAROD B-4 AND EASTERN B-5 QUADRANGLES, WESTCENTRAL ALASKA

by T.K. Bundtzen, M.L. Miller, K.F. Bull, and G.M. Laird and G.M. Laird

INTRODUCTION AND ACKNOWLEDGMENTS

The Iditarod B-4 and eastern B-5 Quadrangles lie in the central portion of the Kuskokwim Mountains, a maturely dissected upland of accordant rounded ridges and broad, sediment-filled lowlands. Elevations range from 280 feet (88 meters) in the Iditarod flats near the abandoned townsite of Iditarod (pl. 1) to a 2,850 feet (868 meters) high unnamed mountain 5 km north of Discovery (pl. 1). The study area constitutes most the Iditarod mining district, an important Alaskan gold precinct which has been in near continuous development and production since its discovery on Christmas Day, 1908. The technical results presented here are prepared in cooperation with the U.S. Geological Survey, which is completing their studies in the Iditarod Quadrangle under a program funded under the Alaska Mineral Resource Assessment Program. Publication costs of the enclosed multicolored map were provided by Doyon Regional Corporation.

We thank John and Mary Miscovich, John and Richard Fullerton, Alvin Aghoff, Ken Dahl, Ann Williams, and other residents and miners of the Iditarod district for their valuable assistance and correspondence concerning the geology and resources of the study area. The assistance of Bruce Gamble, R. Game McGinsey, and Linda Angelloni (USGS), and Mark S. Lockwood (formerly with DGGS) is gratefully acknowledged. Jason Bressler (WGM, Inc., Anchorage) who previously mapped the Chicken Mountain and Black Creek areas, shared valuable insights with the authors.

BEDROCK GEOLOGY

The oldest exposed units crop out in the western part of the study area and consist of recrystallized, black radiolarian chert, tuffaceous sandstone, andesitic basalt flows and flow breccia, and volcanic agglomerate (PzJc, pl. 1). This poorly exposed unit is believed to be equivalent to the Innoko Terrane (Patton, 1978; Patton and others, 1980; Chapman and others, 1982; Miller and Bundtzen, 1987). Based on field mapping in the Iditarod D-1, D-2, and C-3 Quadrangles (Bundtzen and Laird, 1982; Bundtzen and Laird, 1983; Bundtzen and others, 1988), we believe that Innoko Terrane lithologies underlie the Cretaceous section north of the Iditarod-Nixon Fork Fault.

The major stratigraphic units in the study area are poorly exposed sandstone, conglomerate, siltstone, and shale of the Kuskokwim Group, which was first defined by Cady and others (1955), and ranges in age from late Early to Late Cretaceous. Limited fauna collections made during this investigation are of Turonian (early Late Cretaceous) age (table 1). Two contrasting stratigraphic sections of the Kuskokwim Group are juxtaposed against the Iditarod-Nixon Fork Fault, which bisects the region into two roughly equal areas. Layered rock units southeast of the Iditarod-Nixon Fork fault consist of a folded and highly deformed section of undifferentiated turbidites (Kls) successively overlain by lithic sandstone (Ks) coarse volcaniclastic pebble sandstone (Kcs) and siliceous

Alaska Division of Geological and Geophysical Surveys, 794 University Avenue, Suite 200, Pairbanks, Alaska 99709.

<sup>2 99709.

2</sup> U.S. Geological Survey, Branch of Alaskan Geology, 4200 University Drive, Anchorage, Alaska 99508.

3 Geology Department, University of Alaska-Fairbanks, Fairbanks, Alaska 99775.

Table I. Fossil identifications in the Iditarod B-4 and eastern B-5 Quadrangles, Alaska. $^{\rm I}$

Map no.	Field no.	Location and description of collection site	Fossil identification and age estimate
	84BT23 9	62°29'00" lat; 157°53'10" long on eastern slope of high elongate 'hornfels' mountain at 1,700 ft elevation in hornfels.	Conifer leaf similar to those described by Hollick (1930) as Sequoia obovata, now regarded as Metasequoai cuneata. Dicot leaves of platanoid affinity; vein orientation most similar to those of Late Cretaceous-Early Tertiary; could be as old as Cenomanian but probably Turonian to Paleocene in age.
	848797	62°21'15" lat; 157°53'50" long; in placer mine cut along Prince Creek at 380 ft elevation; in Ksh unit.	Complete <u>Inoceramus</u> <u>hobetsensis</u> of probable Turonian age.
	84BT17	62°26'10" lat; 157°40'00" long; along bluff on northwest bank of Bonanza Creek at 600 ft elevation. Shells found at base of turbidite cycle.	Three complete Inoceramus shells of probable late Cretaceous age; specific age determination in process.

Identifications by John W. Miller (USGS; fauna) and Robert Spicer (University of London Goldsmith's College, England; flora).

fine grained sublithic sandstone (Kfss) units that may indicate a coarsening and then shallowing(?) upward marine regime at least 5,000 m thick. The stratigraphic base is not exposed in the study area. The Kls, Ks, and Kcs units exhibit graded beds, flutes and other high-energy flow regime indicators whereas the Ksss unit contains stacked cosets and other cross stratification features generally lacking in high energy flow regime environments. In the Ruby Creek area, the stratigraphic succession may be a series of at least two nearly identical, large-scale, cyclic, depositional sequences. A less viable explanation for the apparent repetition of beds would be one or several poorly exposed thrust faults structurally juxtaposing the older Kls unit above younger Kcs-Ks-Kfss-Kfs lithologies. Poor exposure and lack of detailed fossil control prevented the authors from reaching any firm conclusions that could adequately explain the apparent repetition of the section. Poorly exposed, somewhat enigmatic volcanic agglomerate and brecciated chert (Kac) crop out in the Widgeon Creek drainage. The stratigraphic position of Kac unit is unknown but it may be equivalent to volcanogenic units of mid-Cretaceous(?) or Late Cretaceous-Early Tertiary age exposed in the northeastern Iditarod Quadrangle (Miller and Bundtzen, 1987; Bundtzen and others, 1988).

Northwest of the Nixon-Iditarod fault the estimated 2,200 m thick section is similar to that described near Moore Creek (Bundtzen and others, 1988) to the northeast. The oldest recognized unit consists of shale (Ksh) overlain by calcareous turbidites rich in Inoceramus shell fragments and plant debris (Ktls). Increasing amounts of flora rich, medium to coarse grained lithic sandstone and siltstone (Ks, Kcs) overlie the calcareous sands. In these units the presence of Ta-c Bouma intervals (Mutti and Ricci Lucchi, 1972), sand-shale ratios of about 4:1, and channeled sandstone bodies, is suggestive of multiple wedge-shaped, turbidite fan cycles. Near the top of the section, significantly 'cleaner' sublithic quartz rich sandstone, and plant-rich shale (Kfss) dominate the rock lithologies. The Kfss lithologies do not have turbidity current or high flow regime sedimentary structures and instead contain siltstone and shale interbeds with abundant stacked cosets and other low flow regime cross-stratification features. The sedimentary structures present suggest that Kfss may represent a marginal sea or shallow marine environment. The Kfss unit is believed to be equivalent to lithologies at the top of the Cretaceous section southeast of the Iditarod-Nixon Fork fault previously discussed. Sparce paleocurrent data (table 2) from high energy flow regime indicators in turbidites indicate southerly or southwestly current directions.

Quartz rich sublithic sandstone, quartz pebble conglomerate, and plant bearing shale and siltstone of the Kqs unit form the distinctive western margin of the Kuskokwim Group in the study area. The presence of leaf beds, uncommon coal seams and coquina composed of brackish-to-subtidal-to-nonmarine pelecypods suggest that the unit represents a shoreline section with nonmarine components. This very distinctive assemblage of rock types extends to Mosquito Mountain (Iditarod A-6 Quadrangle) some 65 km southwest of Flat and discontinuously to Fossil Mountain (Medfra Quadrangle) some 150 km to the northeast and represents the western edge of the Kuskokwim Group sedimentary basin (Miller and Bundtzen, 1987). Field relationships strongly suggest that the Kqs unit represents a stable shoreline sequence that successively overlaps the sedimentary sequence in the form of an upward marine regression (fig. 1, pl. 1). The absence of consistant unidirectional cross laminations, the relatively poor sorting observed in coarser siliceous conglomerate and sands, and the laminated nature of quartz rich units in both the Kfss and Kqs unit suggest that both units could represent a storm(?) dominated shoreline-shallow marine shelf section similar to that described in the present gulf of Alaska (Sharma and others, 1972) or the present day Oregon Shelf (Kulm and others, 1975).

Intruding and overlying the Cretaceous clastic rocks are Late Cretaceous-Early Tertiary subaerial volcanic rocks, comagnatic monzonitic plutons, peraluminous rhyolite

Table 2. Paleocurrent data from Cretaceous sedimentary rocks, Iditarod B-4, eastern B-5 Quadrangles, Alaska.

Map (field) no.	Azimuth (corrected for tilt)	Mean	Flow regime
1(84BT18)	190° 185° 180° 165° 190°	182°	upper (flute casts)
2(84BT17)	245° 220° 230° 240°	234°	lower (crossbeds)

sills and altered mafic dikes. The volcanic rocks are exposed in mine cuts at Otter Creek, as roof pendants on Chicken Mountain, and on outlier ridges east of Swinging Dome. The volcanic rocks are subdivided into porphyritic andesite and altered crystal tuff (TKvi) and minor olivine augite basalt (TKvm). Both units have been metasomatically altered by underlying and slightly younger monzonitic plutons and volcanic rocks commonly contain biotite, chlorite, and sphene replacing original mafic minerals in phenocrysts and in the groundmass. Because volcanic rocks retain much of their original extrusive textures and mineralogy, they are not depicted as hornfels on plate 1. Four separate plutonic bodies are exposed on Chicken Mountain, in the valley of Otter and Black Creeks at the head of Boulder Creek, and on Swinging Dome. The Chicken Mountain, Boulder Creek, and Black Creek bodies contain variable amounts of olivine biotite monzodiorite, biotitediopside monzonite, and minor biotite quartz monzonite; the Chicken Mountains pluton also contains a small but significant percentage of biotite olivine gabbro and olivinebronzite picrite-variation wehrlite. The Swinging Dome pluton appears to be composed of near equal amounts of biotite-diopside monzonite and biotite quartz monzonite. The reaction relationship olivine-clinopyroxene-orthopyroxene-biotite + amphibole can be demonstrated in all four plutons and suggests that a well developed differentiation process occurs in the plutons. Accessory minerals include zircon, edenite, chrome spinel, and ilmenite; magnetite is nearly lacking in the plutonic samples examined and overall opaque mineral contents is low (<3 percent)—unusual for these mainly intermediate rocks. Pan concentrate data from residual sites directly on plutonic rocks also contain richterite, radioactive zircon, fluorapatite, hyperstene, hastingsite, and enstatite-suggesting these minerals also occur in the plutons (Bundtzen and others, 1987).

Peldspar geothermometry calculations by Bull (1988) show crystallization temperatures in monzodiorite on Chicken Mountain of 608-694°C; monzonite on Chicken Mountain of 583-741°C; and quartz monzonite also on Chicken Mountain of 417-1,376°C. Bull (1988) also demonstates, when plotting the feldspar crystallization temperatures on the granite minimum curve, emplacement pressures of the Chicken Mountain stock at 1.0-1.5 kilobars—equal to 1-4 km of depth. These results indicate shallow, epizonal conditions of magma formation.

The three plutonic bodies on Chicken Mountain, Black Creek, and Boulder Creek appear to be aligned in a N. 5 E. direction over a distance of 15 km, which is similar to a near identical alignment of monzonitic plutons north of the Iditarod-Nixon Fork fault (I-NF) in the Moore-Moose Creek area 75 km northeast of Chicken Mountain (Bundtzen and others, 1988).

All plutons in the study area have thermally metamorphosed enclosing host lithologies leaving prominant resistant ribs and rims of dark gray dense hornfels nearly exclusively derived from Cretaceous clastic rocks. Thermal alteration extends up to 2 km away from plutonic-sediment contacts. The hornfels aureole gradationally blends with unaltered Cretaceous clastic rocks away from the plutons.

Numerous intermediate dikes and altered mafic dikes intrude the Cretaceous sedimentary rocks north of the I-NF fault. Corundum normative, garnet-bearing, biotite alaskite sills and dikes intrude the I-NF fault strands, the Moose Creek Fault and in other areas. The alaskite dikes intruding the I-NF fault have been radiometrically dated at approximately 65 m.y. and constitute the primary evidence for a minimum age for the fault.

Whole rock major-oxide chemical analyses and CIPW norms for igneous rocks in table 3 are similar to analyses previously published for time-equivalent, igneous lithologies to the northeast (Moli and others, 1981; Bundtzen and Laird, 1982, 1983a, 1983b). On the average, volcanic rocks and monzonitic plutons in the regional sense are part of a meta-

Table J. Major caide analyses and ClPV norms of ignecus rocks, Iditared D-5, eastern D-5 Quadrangles, Alasks.

· j

Map no.	1 8481742	2 B4877415	3 84.87 280	BAAID 35a	5 CD4A45	6 B4.493140a	7 84AF13 25A	64GL003	Section.	10 8487311	11 84813064	12 656T112	13 84 B T103	14 64.8T98	15 8481288
Kock type	Mongo-diorite (Tim)	Ardeelte (IIIvi)	(Interest	Te de la	(1) de 1	(1 d)	Ander Ite (TXVI)	(The d	(B)	Andes (te (TKv ()	mdes (Le (Tkva)	(Tie)	Cabbra'	Montrond Le (TKs)	porphyry (TKI)
\$10,	£.7	17.80	53.10	54.01	50.17	2,2	\$7.37	60,68	\$6.35	59.03	\$3.64	49.64	2.65	17.85	74.93
0,14	17.20	17.67	13.05	34.87	14.60	25.03	15.56	15.02	٤٢.٧	17,88	11.98	17.13	7.X	19.61	14.35
re co	2.35	7.11	2.27	2, 31	2.20	2, 21	3.06	17.21	2.93	2.86	7.08	2,73	3.76	2,31	0.15
re6 3	3.0	1.68	5.57	6.68	4.73	4.56	27.72	2.55	4.39	2,84	\$.07	0.52	3.25	2.88	1.28
QQQ.	6.09	6.03	0.17	97.0	0.12	0.16	6,12	0.0	0.12	0.10	0.16	0.03	0.05	0.08	00.0
O.	5.95	1.89	7.42	6.40	8.55	9.04	1.26	19.2	4.19	2,73	95.6	0.43	3,32	4.27	0.0
043	6.19	0.87	1	5.62	6.17	10.8	\$.55	17.4	7.69	5,65	9,40	0.62	5,49	3.97	0.0
0,0%	3.46	3.28	1.72	2.75	2,30	2.55	47.3	11.7	3.46	9,78	2.05	3.63	3.02	3.55	0.61
9 ,	60.7	69.9	0. Xe	0.35	97.0	0.88	2.85	0.98	0.56	2.86	7.38	۲,17	7. 12	5.28	\$.39
To	0.05	0.61	0.73	0.63	0.70	0.73	0.56	0.71	1.43	1.36	0.58	0.23	0.76	0.65	91,10
70.	6.59	0.33	97.0	61.0	0.13	0.14	7, 0	0.21	0,28	17.0	0, 30	0.17	95.0	0.57	6.63
ا 1913	1,08	1.9	6.23	6.33	3	5.68	\$.	\$.22	8.10	7	*	1.62	1.80	0.5	7
- 6 Beteil	100,001	84.66	99.39	£,	\$9.23	99.33	99.62	60.65	99.13	99.65	49.76	100.33	98,11	\$1.46	99.00
-							Korns								
Quarte		15, 331	13,697	14.196	8.364	11.635	4.651	39,368	7.739	14,676	7.56	30.508	20.34.3	3,795	\$2,135
Corumbu		7.7	0.000	6,223	0.000	1.165	0.000	000.0	0.000	0.090	0,000	5.755	\$.133	0000	7.617
Or they bese		39.306	2.413	2.245	2.368	5.557	378.005	6.169	3.639	17.150	14.620	25.018	20.493	31.628	37.452
Albite		28.446	15.623	32.25	21,663	23.050	37.450	39.752	12.195	28.163	18.031	32.730	26.532	99,00	5.116
Anorthite		2.216	28.733	26,915	31.062	25.584	16.524	19.489	26,302	15.123	11,100	1,996	9.166	13.962	0, 16)
Diopeide		0.000	11,565	000.0	1.649	0.000	8.514	1.862	8,4%	0.00	11.074	0.000	0.000	1.818	0.000
Myperatese		5,229	22, 20%	23,385	29,530	27,571	4.686	1.973	11.279	6.446	26.661	1.062	11.633	12,155	6.16
OI 1v Inc		0.000	0.000	0.000	000.0	0,000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000	1110
Magnetite		3,136	3.533	3,635	3.551	3,424	3.193	3.414	4.672	4,208	3.135	1.064	1.462	3. 195	9
Benat ite		0,000	0.000	000'0	0.000	0000	0.000	000	0,000	0.000	0.000	1.023	0.000	0.000	1.47
Jimenite		1.187	1.570	1.670	1,480	1.41	1.137	1.43)	2.987	2.621	1,145	0.44	1,699	1,559	1410
Apatite	·	0.783	0.646	0.470	80.0	0,346	0.642	0.518	0.713	0.%3	0.722	0,400	1.298	1.771	. (0.10)
Ibtel		100.00	106.60	300.00	100.00	100.00	90.00	100.00	100.00	00.001	100.00	160.00	100.00	360,00	100.00
Differention index		83.08	81.73	,	12.39	;	16.23	65.28	43.59	59.43	40.36	68.26	67.36	65.K)	15.05

Analytical results by 1.4, Delignating K-roy fluorestence methods, Edg. Minutals Laboratory, Fairbanks, Aleabs. Ediquitous efficient of morth olikes (in the figh for intersity in the study size.

aluminous, alkali-calcic suite whereas the rhyolite and alaskite sills are pre-aluminous calcalkaline magmas. Bull (1988) presents major oxide data with stronger alkaline trends than shown in our data (table 3). Eight of Bull's plutonic rocks are quartz normative and ten are nepheline normative. Two of nepheline normative samples contain leucite as well. Hence the intrusions underlying Chicken Mountain and Black Creek are olivine bearing quartz-alkalic variants of the regional 'Kuskokwim trend' igneous suite. Potassium-argon ages from biotite, muscovite, amphibole, and whole rock sample splits of all igneous types range from 64.3 to 70.9 m.y., (table 4) typical of the 'Kuskokwim trend' summarized by Wallace and Engebretson (1984).

QUATERNARY GEOLOGY

Eight Quaternary geologic units were subdivided on the basis of photogeology and ground reconnaissance. Most of the study area was not glaciated during Pleistocene time; however, morphological features including breached divides, planated summit levels and crude 'U' shaped upper valley forms suggest that prior to 70,000 year B.P. (Early Wisconsin Age), the summits of Chicken Mountain and the head of Boulder Creek contained permanent snow fields or limited glacial ice. Accordant rounded ridges underlain by Paleozoic-Cretaceous sedimentary rocks average 1,400 feet (426 m) elevation and are in marked contrast to the igneous cored massifs averaging 2,300 feet (700 m) in elevation. In the former area, a trellis drainage system developed, whereas a radial drainage system characterizes the igneous-cored Chicken Mountain area. Terrace levels and slope deposits (Qat, Qaf, Qsf, Qc) evolved in respond to several factors including: 1) the erosion of slopes and stream valley walls during Late Tertiary and Quaternary time in a periglacial environment and 2) influence of structural controls, mainly faults and folds as they affect uplift and landform tilting in the region.

An asymmetrical valley, one in which opposing sides have markedly different inclinations, is the characteristic stream profile in the Iditarod mining district. Here the steep valley walls face north or east while the more gentle slopes face south or west. This is considered normal asymmetry (Melton, 1960) and is probably the result of greater solifluction activity on south or southwesterly slopes due to the larger intervals of thermal exposure (in contrast to valley slopes of northerly or easterly aspect which receive less thermal collection). Hence the permafrost thaws differentially and colluvial materials are moved down the south or west facing slopes and advance toward east or north-facing, frozen buttresses. This has the effect of forcing perennial streams to migrate south or west and position active channels against the steepened frozen valley wall. During migration, the stream leaves a successive series of older bench or alluvial terraces depicted as Qaf and Qat units on the map. A southwesterly or westerly stream migration is generally evident throughout the study area. The effects of asymmetrical valley evolution on distribution of heavy mineral placer deposits are discussed in the economic geology section of this report.

The summit of Chicken Mountain and the upland north of Granite Creek exhibit inactive but well preserved cryoplanation terraces (fig. 2). 'Cryoplanation' occurs on ridge crests and hilltops when nivation erodes bedrock in transverse nivation hollows causing entrenchment of the hollows. Frost action, water piping, and wind deflation act in concert with nivation to produce the terrace like rubble products of the cryoplanation feature. On Chicken Mountain both ridge crest and hilltop cryoplanation forms are present between 2,120 ft (646 m) elevation and the 2,380 ft (725 m) summit. Scarp heights vary from about 8 ft (2.5 m) to over 35 ft (10 m) and the scarps average face measures 22°. From a distance the surfaces appear planar but they are actually broad convex slopes dipping several degrees to the south that contrast with steeper surrounding surface features. Prominant monzonite tors remnant of earlier cryoplanation levels characterize the western slopes of Chicken Mountain. The main Chicken Mountain cryoplanation terrace covers some 6 km²

Table 4. Analytical data for K-Ar determinations.

Map no. Rock type Mineral dated	1(84BT242) ^a Monzo- diorite Biorite	2(84BT240) ^a Rbyolite dike Whole rock	3(81BT'Flat') ^b Gabbro Blotite	4(83BT360a) ^a Monzo- diorite Amphibole	4(83BT360b) ^a Monzo- diorite Biotite	5(84BT288a) ^a Peraluminous rhyolite Biotite	5(84BT288b) ^a Peraluminous rhyolite Whole rock
K,0 (wt. Z)	9.229	4.148	7.423	0.313	7.857	8.479	5.468
Sample wt. (g)	0.1211	1.6184	0.1892	0.9128	0.2398	0.0977	1.4318
40 Ar(rad)	98,7154	42.5965	68.8885	3.1500	81.80	86.2536	51.5209
(moles/g) x 10 ⁻¹¹ 40 40 (rad) 1 40 (rad)	4.1862	4.1448	3.7466	4.0700	4.200	4.1061	3.8030
∞40 ¹ Ar(rad)	84.05	85.96	70.00	37.61	20.20	77.98	97.09
Age ± 1 6 (m.y.)	70.65 ± 2.12 69.97 ± 2.1	69.97 ± 2.1	65.0 ± 3.9	68.70 ± 2.1	70.9 ± 2.1	69.32 ± 2.0	64.30 ± 1.9

Constants used in age calculations δ + = 0.581 x 10^{-10} yr δ = 4.962 x 10^{-10} yr δ = 4.962 x 10^{-10} yr δ K/K total = 1.167 x 10^{-4} mol/mol

^aAnalyses by Robin M. Cottrell and D.L. Turner, Alaska Cooperative Geochronology Laboratory. ^bAnalyses by D. Krummenaker, San Diego State University.

Figure 2. Otter and Black Creek valleys with Chicken Mountain in the foreground, looking south-southwest. Note flattened cryoplanation terrace on Chicken Mountain.

while the prominant upland surfaces north of Granite Creek are 2 and 4 km² in area. Bedrock rubble veneer ranges from 1 to 3 m in depth and is sometimes thicker on the oldest rims of the terrace levels.

Eolian silt deposits of variable thickness once covered most of the area during Pleistocene time, but subsequently silt has been retransported downslope by water mechanisms to form silt fans at valley wall apexes. These deposits are generally ribbed with ice and are continuously frozen in valley fills, although some patches on southerly slopes are thawed.

STRUCTURAL GEOLOGY

The Iditarod-Nixon Fork fault (I-NF) a major transcurrent fault in western Alaska, and the major structural feature we observed, bisects the map area diagonally in a southwest-to-northeast direction. The valley of Bonanza Creek marks its trace for most of its length in the study area.

This fault juxtaposes a thin 2,200 m thick section to the northwest against a much thicker (>5,000 m) turbidite dominated section in the southeast. Faint escarpments along Bonanza Creek suggest Quaternary activity. Since 65 to 69 m.y. old rhyolites were also emplaced along the fault, the I-NF system shows evidence of movement since that time. Miller and Bundtzen (1988, in press) have proposed a right lateral offset solution of 94 km since Late Cretaceous time for the I-NF fault. These workers suggest that volcanic stratigraphy in the Donlin Creek area (Iditarod A-5 Quadrangle) is equivalent to similar rocks in the Moore Creek area (Iditarod C-3 Quadrangle) to the northeast.

The Golden Horn fault in the north-central part of the study area juxtaposes hornfels against stratigraphically lower volcanics north of Otter Creek. The fault trends N. 5 E. and appears to control the emplacement of at least three monzonitic plutons. It is similar to a N. 5-10 E. plutonic alignment described by Bundtzen and others (1988) near Moore Creek.

Volcanic and sedimentary rocks northwest of the I-NF fault have been folded into broad, open northeast trending synclines and anticlines with amplitudes of 2 to 3 km; plunge directions of these structures appears to be to the southwest. The structural deformation southeast of the I-NF fault consists of a series of doubly folded anticlines and synclines and transcurrent high angle faults with significant right lateral drag features. An apparent repetition of the Kuskokwim Group section south of Ruby Creek (pl. 1) may be represented by several nearly identical cycles of sedimentary deposition (fig. 3). A less viable alternative would be one or a series of imbricate thrust faults poorly delineated in the rock section.

Drag features and disrupted fold axes suggest significantly more compressional stress directed at the stratigraphic section southeast of the Iditarod-Nixon Fork fault. The main Nixon-Iditarod fault may have acted as a structural buttress against which compressional stress is directed from a southeast direction.

ECONOMIC GEOLOGY

Introduction

The study area centers on the Iditarod mining district, which has been in continuous production from 1910-1987 and ranks as Alaska's third largest producer of placer gold. Total production through 1987 is estimated at 1,450,894 ounces (45,122,803 g) gold, 196,624 ounces (6,115,006 g) silver, and minor amounts of tungsten and mercury mainly from



Figure 3. Aerial shot of Ruby Creek area south of Iditarod-Nixon Fork fault showing anticline of 'upper' sands plunging underneath Kls section.

placer mineral deposits (tables 5 and 6). Some 2,706 ounces (84,156 g) of gold (or 0.182 percent of the districts total) has been derived from the Golden Horn lode deposit (table 7).

Lodes consist of vein-disseminate and shear zone deposits in both plutonic stocks and overlying cap rocks that contain gold, tungsten, mercury, antimony, and silver. A continium of residual, elluvial, modern stream and terrace placer deposits derived from the lodes have all been exploited for their gold values.

Mining History

Much of the following is discussed in further detail in Smith (1915), Brooks (1916), Eakin (1913, 1914), Mertie and Harrington (1924), Mertie (1936), and Kimball (1969), and will only be summarized here. Placer gold was first identified at Discovery near the present John Miscovich family mine on Otter Creek (pl. 1) on Christmas Day 1908, by gold prospectors W.A. Dikeman and John Beaton. During the following summer (1909), many prospectors, including several hundred from the boom towns of Fairbanks and Nome, arrived into the country. Miners and equipment traveled by boat along the Yukon River, up 900 km of the Innoko River, and 200 km of the Iditarod River to the settlement of Iditarod. Equipment was then transported overland 10 km to the mining camps, principally the settlement of Flat at the confluence of Flat and Otter Creeks. Because of these access difficulties actual production was not initiated until the winter of 1910. Rich, shallow, easily accessible placer deposits were quickly discovered, and the gold production rapidly grew to an all time high of 169,312 ounces (5,265,603 g) gold and 29,778 ounces (926,095 g) silver by 1912. Nearly 2,500 people were actively engaged in mining, prospecting, and general commence in the region during this time (Eakin, 1914, p. 34); 975 of these were miners. Based on examination of state and federal production records, Otter and Flat Creeks became the largest stream producers and accounted for 235,721 (7,330,923 g) and 477,039 ounces (14,835,912 g) of gold respectively from 1915 to 1986. These figures do not account for undistributed values of 482,382 ounces (15,002,080 g) of gold (or 33.2 percent of the total) recorded during 1910-1914, most of which was produced from Otter and Flat Creeks (Bundtzen and others, 1987). Assuming that Otter and Flat Creeks' share of this 1910-1914 undistributed production is the same as that known from other available records. Otter and Flat Creeks account for approximately 1,067,000 ounces (33,183,700 g) of gold or about 74 percent of the districts' total production. By 1912 gold had also been discovered on Happy, Willow, Black, and Chicken Creeks and Glenn Gulch; gold was discovered on Prince and Granite Creeks in 1913, Slate Creek in 1915, and Boulder Creek in 1917. Hence virtually all known commercial placer deposits within the study area had been discovered in the 9 years after the 1908 discovery. Gold production remained relatively high through 1917 but began to markedly drop off after the United States entrance into World War I, when many miners left the region to join the war effort. Production steadily fell in the late 1920s and early 1930s but picked up after President Franklin D. Roosevelt raised the price of gold to \$35 per ounce from the long time standard of \$20.67 per ounce. Production activities peaked for a second time in 1941 at 23,257 ounces gold (refined) but dropped off after the United States's entrance into World War II. Federal Order L208, enacted in late 1942 allowed for gold mining in the Iditarod area only on a permit basis because it was considered nonessential to the war effort. Placer mining in the Iditarod-Flat area again rose after the war for a number of years, but steadily declined in the 1950s due to inflation vs. the fixed price of gold, and the existence of more attractive, post-Korean war military and civilian construction efforts nearby such as Tatalina and Sparvohn Air Force stations, which offered experienced placer miners better paying jobs. Small levels of activity continued through the 1960s although mining records are poor for the years 1967-1979. The federal price decontrol of gold in 1972 led to a modest revival of placer mining

Table 5. Gold and silver production in the Iditarod/Flat district, 1910-1987. 1

_	Year	Volume gold (oz)	Volume silver (oz)	No. of mines or mining companies reporting	Employment 13	Total bullion value (\$)	Source
	1910	24,187	4,254	16	250	520,000	Mertie and Harrington (1924)
	1911	120,937	21,270	30	850	2,610,000	II .
	1912	169,312	29,778	36	975	3,500,000	11
	1913	89,977	9,551	30	750	1,860,000	н
	1914	99,652	10,578	29	500	2,030,829	"
	1915	99,168	10,526	24	485	2,059,000	11
	1916	94,339	10,013	15	400	1,960,000	н
	1917	72,568	11,050	12	NA	1,532,000	Smith (1933a)
	1918	59,990	8,278	4	NA	1,255,000	
	1919	35,074	4,770	15	90	726,000	n
	1920	24,400	3,347	10	NA	505,000	u
	1921	16,935	2,353	22	214	354,000	n
	1922	13,550	1,828	17	164	282,000	U
ť	1923	11,030	1,544	18	144	229,000	11
13	1924	10,019	1,653	30	135	207,100	**
ı	1925	10,793	1,618	9	ΝA	223,100	**
•	1926	12,143	1,687	23	120	251,000	II .
	1927	7,270	1,090	9	NA	151,000	и
	1928	14,329	2,221	15	NA	296,200	11
	1929	13,401	2,412	17	102	277,000	"
	1930	8,901	1,339	11	90	184,000	Smith (1933b)
	1931	11,850	1,599	10	90	231,000	Smith (1933b)
	1932	17,610	2,641	18	125	364,000	Smith (1934)
	1933	13,050	1,774	19	125	261,000	Smith (1934)
	1934	16,400	2,205	18	NA	574,000	Smith (1937)
	1935	13,085	1,724	18	150	458,000	Smith (1937)
	1936	15,608	1,769	10	135	546,300	Smith (1938)
	1937	19,828	2,696	8	32	694,000	Smith (1940)
	1938	21,171	2,880	11	250	741,000	Smith (1940)
	1939	22,171	3,325	10	NA	776,000	Smith (1942)
	1940	22,942	3,120	10	NA	803,000	Smith (1942)
	1941	23,257	3,232	19	142	814,000	Smith (1944)
	1942	16,628	1,394	15	NA	582,000	Smith (1944)

Table 5. (con.)

	Year	Volume gold (oz)	Volume silver (oz)	No. of mines or mining companies reporting	Employment 13	Total bullion value (\$)	Source
	1943	4,225	659	6	NA	147,875	Unpublished U.S. Mint Records
	1944	NA	NA	NA	NA	NA	n
	1945	1,114	171	8	NA	38,990	11
	1946	8,301	1,178	12	NA	290,535	U
	1947	10,550	1,392	13	NA	369,250	II
	1948	9,850	1,008	NA	NA	344,750	11
	1949	8,268	1,314	11	62	289,380	н
	1950	8,183	975	12	59	286,405	Williams (1950)
	1951	6,096	909	9	NA	213,360	
	1952	6,778	1,058	8	NA	237,230	**
	1953	8,423	1,354	14	NA	294,805	H
	1954	6,798	1,088	7	NA	237,930	lT
	1955	6,142	910	8	NA	214,970	Unpublished U.S. Mint Records
- 1	1956	8,784	1,225	7	ΝA	307,440	11
14	1957	8,434	1,252	5	NA	295,190	Unpublished State of Alaska Records
	1958	7,187	1,025	7	NA	251,545	"
J	1959	5,762	837	6	NA	201,670	11
	1960	7,576	1,093	6	NA	267,200	U.S. Mint Rec.
	1961	5,911	871	5	NA	206,885	н
	1962	4,918	707	5	NA	172,130	State of AK. Rec.
	1963	5,219	743	5	NA	182,665	II
	1964	5,490	777	4	NA	192,150	11
	1965	4,662	672	4	NA	163,170	II
	1966	4,319	660	3	NA	151,165	H ·
	1967	NA	NA	NA	NA	NA	**
	1968	2,241	314	5	NA	78,435	
	1969	760	101	2	NA	26,600	
	1970	458	51	1	NA	16,030	u
	1971-79	11,150	1,732	3	NA	3,200,000	0
	1980	2,820	375	3	3	1,201,320	
	1981	3,535	445	3	22	1,452,885	
	1982	4,560	638	4	24	1,824,000	11
	1983	4,400	590	4	23	1,760,000	H

Table 5. (con.)

Year	Volume gold (oz)	Volume silver (oz)	No. of mines or mining companies reporting	Employment 13	Total bullion value (\$)		Source	
1984	2,500	315	3	20	900,000	11		
1985	3,630	486	5	20	1,179,750	*1		
1986	4,180	468	5	22	1,588,400	*1		
1987	4,500	612	4	23	2,025,000	11		
Undistributed	35,728	<u>NA</u>	<u>NA</u>	<u>NA</u>	NA			
Totals	1,450,894	196,624			48,681,399			

Production compiled using cited references above. Much of the data from 1910-42 is from U.S. Geological Survey records; production in the late 1940's and 1950's are from the U.S. Bureau of Mines and U.S. Mint returns, and 1959-87 are mainly State of Alaska records. Gold prices were \$20.67 from 1910-33; \$35/oz from 1934-72; and variable prices since then.

NA = records not available or not applicable.

Table 6. Partial dredge statistics for Iditarod district. Yukon Gold Company (Flat Creek), from Brooks (1916).

Season 1912 1913 1914 1915	Duration 8/15-10/29 5/8-11/25 5/4-11/11 5/4-11/17	Number of days 75 201 191	Cubic yards handled 172,333 496,756 668,737 926,956	Yield total ounces gold 19,547 40,029 35,782 40,928	Ounce/ yd ³ 0.113 0.081 0.054 0.044	Operator <u>costs</u> \$ 79,114 \$319,560 \$335,560 NA		
			Investment Co.	•				
Season	Duration	Number of days	Cubic yards handled	Yield total ounces gold	Ounce/	Operator costs		
1926	6/1-10/25	146	260,290	NA	NА	NA		
		North Americ	ean Dredging Cr.	dredge				
Season	Duration	Number of days	Cubic yards handled	Yield total ounces gold	Ounce/ _yd³	Operator costs		
1926	NA	175	208,220	NA				

NA = not available.

Table 7. Production from the Golden Horn Lode Mine. 1

Year	Ore (tons)	Gold (oz)	Silver (oz)	Lead _(lb)	Zinc (1b)	Value at time of sale(\$)
1925	11.1	371.4	23.5			4,160
1926	11.0	131.5	14.0	- -		2,719
1934-35	250.0	1,390.0	1,403.0	- -	~ -	50,000
1936	21.0	103.8	107.0			3,634
1937	40.0	196.0	202.0	- -		6,452
Undistributed	194.9	514.1	871.0	9,336	653	6,790
Total	528.0	2,706.8	2,620.5	9,336	653	73,755

Does not include development and production tests of tailings from Golden Horn dump by Golden Horn Mining Co. in 1986 and 1987.

in the area. At present (1987) five placer mines employing 20 individuals actively produce gold, and several mineral firms engage in exploratory activities.

Lode production and exploration have been confined to the Golden Horn shear zone on Black Creek, in the Granite Creek Drainage, and on the summit of Chicken Mountain. The Golden Horn gold-tungsten-antimony deposit near the confluence of Black and Otter Creeks was discovered in 1922 by John Warren, who installed a small stamp mill and processed surface and underground ores. The property was later acquired and developed by W.E. Dunkle. From 1925 to 1937 extraction of 528 tons of high grade ores from underground workings yielded 2,706 ounces (84,156 g) gold, 2,620 ounces (81,482 g) silver, and 9,336 pounds (4,243 kg) of lead (table 7). No further production from underground workings are known. Extensive subsurface rotary drilling (3,000 m) and trenching of the Golden Horn lode deposit was undertaken by a consortium of Union Carbide, WGM, Inc., General Crude, and GCO minerals beginning in 1977, but inconclusive results caused the exploration to cease in 1981. The present owner, John Miscovich, has processed and shipped tungsten-rich scheelite-gold concentrates from placer mining activities directly overlying or adjacent to the Golden Horn mine and dumps.

Several veins were explored with underground drifting and surface trenches in the Granite Creek drainage between 1926-1934, but production (if any) is unknown.

A number of enchelon, quartz-gold-cinnabar veins on Chicken Mountain have been explored since 1926. In 1956, the U.S. Bureau of Mines collected 276 soil samples and conducted limited auger drilling over a 3 km² area but came up with inconclusive results (Kimball, 1969). James Walper staked the properties for gold, rare earth elements and zirconium in 1960, and in 1970, WECO Mining Corporation staked, trenched, and again sampled some of the properties worked on earlier by the USBM work. In 1987, Electrum Resources, under option agreement with Doyon Regional Corporation, conducted extensive trenching and sampling of the Chicken Mountain gold properties.

Placer Mining Methods

The first mining methods employed were those utilizing pick and shovel and open-cut mining methods, which worked placer deposits averaging 3 m deep (shallow), and covered by 0.5 to 1 m of muck overburden. Because the placers were generally, thawed, expensive drift mining methods such as those used in the deeper districts of the interior (Fairbanks, Tofty, Richardson, Ruby, and Tolstoi districts) were unnecessary. Mechanized methods soon were employed to remove overburden and heavy steam machinery including large 'scraper' plants were utilized on virtually all streams—especially Otter and upper Flat Creeks—during the first two decades of mine activity.

In 1912 the Yukon Gold Dredging Company, headquartered in Dawson, Yukon Territory, installed the first floating, bucketline, stacker dredge in the district. The dredge was positioned for initial production on the Marietta claim group, a large bowl-shaped area at the head of Flat Creek immediately below mineralized source rock on Chicken Mountain. The dredge worked its way back and forth across the bowl eventually moving downstream to the confluence of Flat and Otter Creeks, where in 1918 it was permanently shut down and dismantled. The 6 ft³ bucket capacity, electric dredge worked extremely rich virgin ground throughout its 7 years of production and over 136,000 ounces of gold were recovered in the first four years of operation (table 6).

In 1914, a small 2-1/2 ft³ flume dredge was constructed and operated by the Riley and Marston Co. at Discovery on Otter Creek. This dredge worked ground upstream to the mouth of Granite Creek but details of these early operations are unknown. In 1916 a 2-

1/2ft³, revolving, screen dredge was built by the Union Construction Company for Otter Dredging Company and installed at the mouth of Black Creek. In 1917, the North American Dredging Company moved a 2-1/2 ft3 bucket-line dredge from Black Creek to lower Otter Creek. It is not clear from historical records whether or not this the latter 'gold boat' was the Otter Dredging Company unit or whether it was a separate installation. There are no historical records of more than two dredges operating in the Otter Creek drainage. The North American Dredging Company dredged through the original townsite of Flat in 1929 moving houses and other structures on timbers. The dredge was shut down in 1931 but later resumed operations in 1937. The Riley Creek Investment Company operated continuously on upper Otter Creek from 1914 until 1938, when it underwent a major overhall and was equipped with a new diesel power plant. Except for the World War II shutdown, both dredges on Otter Creek were in more-or-less continuous production until 1957; the Flat townsite was dredged at least two more times (J. Miscovich, personal commun., 1985). Afterward the North American and Riley Creek Investment Company boats' were operated intermittently, the former finally mothballed in 1963 and the latter in 1968.

In 1936, Sunshine Mining Company, based in Coeur d'Lane, Idaho, entered the district and attempted to develop a large low grade placer resource on Willow and Flat Creeks. Their efforts ultimately failed, but a number of large pieces of equipment including a 1-3/4 yd³ capacity dragline were later sold to mine operators. Since the early and mid 1930s, the small placer mining activities have used buildozer/dragline or buildozer/hydraulic operations to remove overburden and process pay gravels. In 1987, five mine operations (John and Richard Fullerton, Flat Creek; Otter Dredging Company, Otter Creek; Alvin Aghoff, Prince Creek; Ann Williams, Granite Creek; Ken Dahl, Idaho Bench) utilized various mechanized, nonfloat, mine methods to economically extract gold deposits of the area.

LODE DEPOSITS

Introduction

Metal bearing hard rock deposits are known principally for their gold and silver values, but elevated or anomalous values of tungsten, tellurium, zirconium, bismuth, tin, antimony, mercury, and niobium have also been discovered. Most deposits and occurrences are confined to monzonitic stocks and associated hornfels and metavolcanic strata overlying or adjacent to the former plutons. Additionally anomalous concentrations of chromium, cobalt, and nickel have been identified within altered mafic dikes.

Golden Horn Deposit

The Golden Horn deposit is a series of more-or-less enchelon, vertical-dipping, quartz-gold-scheelite + cinnabar-stibnite veins that intrude hybabyssal phases of the Black Creek stock. Its production history, dating back to 1924, was previously summarized (table 6). The zone is best exposed on a gradual slope 1 km south of the center of Otter Creek valley (fig. 4). The mineralizing structures appear to continue in a N. 5 E. direction for at least 2 km as exposed in a series of old and new trenches and more recently in a wide mine cut completed by Otter Creek Dredging Company. Recently excavated surface exposures show a series of veins and shears centimeters to 2 m thick each that occur within a 100 m wide zone in monzonite. The veins strike N. 10 E. to N. 35 E. and generally dip steeply or vertically; uncommonly, veins strike N. 65 E. (John Miscovich, personal commun., 1988). The polymetallic deposit has a complex history of formation probably related to the crystallization of the monzonite and related intrusions. Bundtzen and Swanson (1984) Swanson and others (1987), and Buil (1988) have described evidence for extensive magma

Figure 4. Pre-1987 aerial shot of Golden Horn deposit showing location of shaft and trenches; keyed to table 8. View to the south.

differentiation throughout the Innoko-Iditarod igneous belt. Both the Chicken Mountain and Black Creek stocks show: 1) successive rimming of olivine by clinopyroxene by biotite, 2) the replacement of zoned plagioclase by orthoclase, 3) several biotite phases including a late stage biotite alteration throughout the groundmass, and 4) ubiquitously late amphibole rimmings other mafic minerals. The sequence of events seen in outcrops and float samples show that medium grained phaneritic monzonite is altered by porphyro aphanitic monzonite porphyry, which is in turn cut by a pegmatitic aplite. Thin and polished section analysis indicates the following phases of mineralization and alteration in order of occurrence:

- 'griesen-like' or muscovite-biotite-quartz as thin enchelon veinlets cutting monzonite
- extensive sericite-ankerite-quartz with minor chrome-phengite mainly as veinlets or massive replacement in all igneous lithologies.
- black sulfide(?)-clast-supported breccias (black material originally thought to be dravite) and minor chalcopyrite in both monzonite and altered monzonite porphyry.
- 4) arsenopyrite-scheelite-gold-quartz accompanied with extensive chlorite alteration along structural conduits.
- 5) lead sulfosalt-(gold?) introduced in shears and faults accompanied by sericite(?) alteration in monzonite
- 6) quartz-stibnite + cinnabar (in 10 cm in 1 m thick veins) sometimes indistinguishable from phase 5).

Bull (1988) examined intact drill core from the Union Carbide consortium exploration efforts of 1978-1981 and provides additional detailed information concerning the alteration paragenesis. Her work shows dolomite veining and dolomite-quartz matrix brecciation phases occurring as distinct alteration phases between phases 3 and 4 above. During field investigations, black breccias within phase 3 were thought by the senior author to be composed of tournaline; however Bull (1988) demonstrated through laboratory identification that the amorphous-like black infilling material is undetermined sulfides mainly rich in iron. Bull also found rare purple fluorite crystals in sericitized monzonite and disseminated scheelite as a primary (magmatic) mineral phase in monzo-diorite.

Fluid inclusion measurements by the senior author on quartz believed to be from phase 5 alteration-mineralization (sample from Golden Horn dump) yield low NaCl, high CO₂ values with narrowly bracketed 148°C average temperatures of hemogenation (N=14). After plotting arsenopyrite-pyrite mineral compositions on a fS₂-T plot (after Kretshmar and Scott (1976), Bull (1988) arrived at equilibrium temperatures of 300-350°C--suggesting the arsenopyrite-scheelite-gold (phase 4) mineralization is within the mesothermal range. This limited data suggests multiple mineralized pulses spanning the mesothermal and epithermal temperature ranges.

Assays of selected mineralized zones from Golden Horn are summarized in table 8. Gold grades from our work range from ≤0.01 to 11.5 oz/ton; no definite average grade could be determined for specific channel sample intervals. Gold grades reported by Andrews and others (1978) and Adams and Siems (1982) seem to suggest that large areas of ankeritic-sericite alteration adjacent to the main Golden Zone mineralized zone ranges from 0.005 to 0.03 oz/ton gold. They report their best drill intersections as 1) 31 ft (95 m) of 0.056 oz/ton gold; 2) 202 ft (616 m) of 0.024 oz/ton gold; and 3) 109 ft (33.0 m) of 0.018 oz/ton gold—ail within 200 m of the Golden Zone shaft.

Besides the gold our data---mainly U.S. Geological Survey laboratory results---show anomalous or elevated levels of bismuth, tellurium, zirconium, chromium, fluorine, tin, and

yttrium. Andrews and others (1978) report 'scattered' occurrences of tin, platinum, and uranium in placer concentrates from Black Creek. Bundtzen and others (1987) reported 0.8 to 1.3 ppm platinum metals, cassiterite, ilmenorutile (niobium), cinnabar, and argentopyrite (silver sulfide) from Black Creek mine concentrates.

Chicken Mountain Gold Prospects

The flat, cryoplanation surface covering the upper part of Chicken Mountain is underlain by a crudely north-south, irregularly defined zone containing thin, stockwork-like, auriferous quartz veins hosted in medium-grained monzonite. The most conspicuous areas of vein concentration occur in the Idaho Bench at the headward bowl of Flat Creek and 250 m to the east, in the head drainage of Chicken Creek (fig. 5). The two exposed areas of veins (prior to 1987) comprise 110 m² and 272 m² respectively; most of the remaining slopes (including the area in between the two prospect areas) is buried and overlain by colluvium and vegetation. In both prospect areas thin auriferous veinlets occur in conjugate vein orientations with N. 45-20 E., 60-70 NW. being dominant and N. 50-60 W., 80 NE. being secondary. Vein density varies widely; they are as close as 50 cm or separated by as much as 2 m. The veins range in thickness from 1/2 cm to 5 cm and average 2 cm. The veins are composed of quartz and ankerite(?) and minor amounts of cinnabar, stibnite or antimony sulfosalt(?), and free gold. Additionally, geochemical analyses (Nos. 103-107, 108, pl. 1, table 8) of samples show elevated levels of bismuth, beryllium, arsenic, yttrium, lead, and zinc besides anomalous gold, mercury, and antimony.

The vein stockworks are conspicuously localized in the cupola phase of the monzonite directly below a thermally altered andesite-basalt roof pendant that forms the summit of Chicken Mountain. The paucity of vein density in the overlying volcanics suggest they served as a 'cap' for the mineralization. Overall, both the Idaho Bench and Chicken Creek prospects appear to be gold-base metal stockwork zones superficially similar to those encountered in protore or distal phased porphyry copper systems (Titley and Hicks, 1966).

Prospects North of Flat

Auriferous quartz veins cut monzonite and altered volcanic rocks in the Granite Creek drainage and in Malemute pup. The Malemute Gulch (loc. 46, pl. 1) occurrence was staked in 1926 by Fred Lurber, a local Flat prospector. Mine development was reported for the years 1929-1934, but production (if any) is unknown. The mine workings were completely overgrown with vegetation at the time of our visit and the following discussions are based on examination of rubble and summaries by Mertie (1936) and Meyer (1984). An adit explored a N. 25 E. (striking) 80 SE. (dipping) vein system in the northern edge of the Black Creek monzonite north of Otter Creek valley. Just west of the dump, rubble of mafic volcanic rock forms hillslope scree. The vein system contains thin quartz stringers and shears 1 to 4 cm thick over a 1/2 m width; the veins contain arsenopyrite, minor cinnabar, and carry gold values. A sample of mineralized material from the dump was analyzed (table 8, no. 46).

The Granite Creek prospects near the head of Granite Creek consist of thin, 1 to 2 cm thick quartz-arsenopyrite veins in olivine metabasalt of the TKvm unit (no. 8-11, y, pl. 1). Two adits 80 vertical meters apart have been driven into the zone, and it is uncertain whether or not the adits explores the same or dissimilar veins. Based on material in the dumps, the tunnels are judged to be approximately 15 to 20 m long and two veins are identified: one vein in outcrop strikes N. 15 E. and dips 80 SE. while the other in outcrop strikes N. 22 E and dips 70 SE. Both are similar to the Malemute Pup and Golden Horn systems. Analyses of material from the upper zone show (no. 8-a, pl. 1) weak, gold, arsenic, and antimony anomalies.

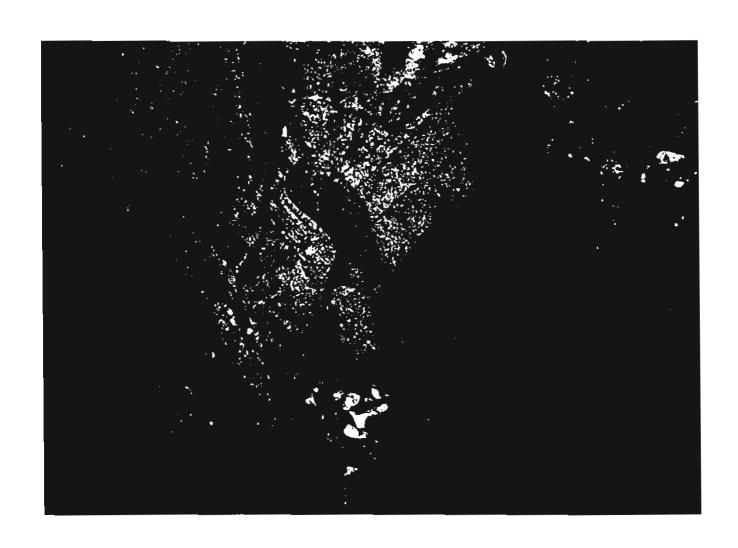


Figure 5. Photograph of enechelon quartz-freegold ± cinnabar veins, Idaho Bench, offsite from summit of Chicken Mountain.

337

Remarks	Gossan in sandstone-shale rubble	Rhyolite dk (quartz porphyritic rhyolite)	Hornfelsed quartzose sandstone sample	Rhyolite dike	Hornfels sed with quartz vein	Brecciated quartz vein	Brecciated hornfels	Breceiated hornfels plus dike rubble	Vuggy quartz from caved adit area	Mafic voluntes-be stained	Quartz win in metubasalt	quartz-tion וכל פנים בעננות mafic volcanic (from dump)	Tron states durite volcanic (from domp)	Kandom אוקאהה האווא אוליות האוליות אוקאהה האוולאור Kandom אולאהה האוואאור	Quartz rich samustone chip sample	Quarte rich andstone chip sample	Intermediate dike? chip sample	Limey suncetone chip sample	Altered mafic dike	Nunzonire, trench UC-15	Cray sandatione	Gray sandscene	Background metabasult chip sample	Background, Ksh unit	Background, Ksh unit	Background, horntels	Wartz-cinnabar-stibnic vein	Background, monzodiorite	Stibnite vein	Background, 'Flat gabbro'	Monzonite, fine grained (background)	Pan concentrate from Chicken Creek trench near KB108	Monzunite, medium grained (background)	Quartz-cinnabar vein, trench 8-1	Quartz-cinnabar-stibnite vein	Mineralized hornfels (sandstone)	Quartz-stibnite vein
Hg (ppm)	1.4 Gossal			0.20 Rhyo1		,35 Brecc.	1.6 Brecc		>10 Vuggy	.12 Nafic	(Nuare		.02 Iron	Kandor	Quart	Quart	.04 Interi		Alter	Nunzoi	Cray :	Cray	Backg	Backe	Backe	Backg	0.54 Quart	Backg)	1.30 Stibno	1.3 Backg	Monzor	2.8 Pan co	Monzul	0.18 Quartz	1,21 Quarta	Minera	. 74 (wart
Ba (ppm)	20	20	20	50	20	Q.	150	200	8	200	200	200	300	1,000	200	200	200	240	1,000		1	•	1,500	1,200	1,000	1,400	1,000	2,300	200	1,400	1,700	1,500	1,300	2,000	2,000	1,000	1,000
Field no.	RKACE 192	86ACE38A	84BI238	86ACE 37 ²	86AGE36 ²	86ACE35A	B6ACE35B ²	B6ACE 342	B6ACE33A	86AGE33B	84BT300 ² ,	86ACE32A	86ACE32B	84BT301 ² ,	85AA16942	85AA1696,	85AM287a	85AM287c	86BT335A	85KB228,	85KB229 [°] ,	85KB230	84 BT 3 10,	86BT423	86BT421,	86BT425	85KB74 ² ,	86BT428	85KB60 ²	86KB60_	86KB69 ³	85KB1Q8 ²	86KB1 3	85KB97 ²	85KB752	85KB44 ²	85KB458 ²
110.	-	, ,	, m		~	P 9	વુ	7	ŭ	ЯΓ	3 1	<u>5</u>	98°	П	12	13	14.	14.6	5	<u>×</u>	7-	U,	-7.	2;	Ξ.	<i>4</i> .	23 23	د.	7.7	28	53	30	I۲	35	3.3	7,	랖

)

•

Мар	field	Au	Ag	Cu	Pb	Zn	Мо	SÞ	As	Co	Ní	Cr	Sn	w	Be	Νъ	Bi	Cđ	В	La	Y	Th
HO.	no.	_(ppb)	<u>(ррж)</u>	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(bbm)	(ppm)	<u>(ppm)</u>	<u>(ppan)</u>	(ppm)	<u>(ppm)</u>	(mqq)	(ppm)	(bbm)	(ppm)	(ppm)	(ppm)
	2	010.000	20	750	3 000	10	ND	5,000	45,000	ND	ND .	ND	ND	ND	NID	ND	8	5.2	10	ND	ND	ND
36	85KB2 ² 85KB5 ²	240,000 84,000	20 20 50	150 100	1,000 700	10 30	ND	880	3,800	ND	ND	<10	ND	10,000		ND	24	3.0	<10	ND	ND	ИD
37	85KB18 ²	210,000	50	20	1,000	10	ND	120	48,000	ND	<5	ND	ND	ND	ND	ND	11	$\frac{3.0}{4.9}$	<10	NĐ	ND	ND
38 39	85KB94	200	0.5	5	ND	ND	ND	2	1,100	ND	7	ND	ND	>5,000	ND	ND	ND	0.2	15	NĐ	ND	ND
40a	85KB95 ²	2,600	100	_	100	ND	ND	15,000	12,000	10	10	ND	ND	<50	ND	МĎ	ND	3.1	20	МD	MD	ND
40b	86KB12 ³	23	ND	150		ND	ND	7	54	7	28	59		3				ND		21		7
41	87BT Flat trench	9,000	- "	54	4	10	ND	51,000	6,100	3	14	110	ND	ND		3	ND	~ -			1,400	ND
42a	86BT431	11		45	11	97	ďΝ	7	75	46	100	230	7	ND		22	ND				38	8
42b	86BT430 ³	ND		24	17	69	3	ND	13	25	120	340	ND	ND		16	ИD				23	8
43a	84MSL159	13	<u>18</u>			ND	ND	50.3	25	75	100	64		ND		~ ~	~ ~	ŅD	- ~	<u>59</u>		7.1
4.30	84MSL123	12	ND			200	(1)3	23.0	33	<u>350</u>	260	140		ND				ND		14		1.3
430	84MSL122 ²	1,150	ND	30	6.17	65	ND	6	40	30	100	200	ND	ND	1.5	ND	ND	- 4	70	50	50	ND
44	84BT305 ²		ND	50	6-D	70	ND	48	100	15	150	200	ND	ND	2	ND	מא "	.1	500	ND	50	ND
45	86BT3712	- ~	ND	20	15	90	ND	ND	ND	20	50	100	ИĎ	MD	<u>1</u>	ND	ND	0.1	100	טא	20	ND
46	86BT4172		ND	20	30	もう	ND	ND	ND	20	5	20	ИD	ND	1	ND	ND	ND	30	ИD	30	NL
÷7	86BT416 ²		ND	20	ND	50	מא	10	NID	20	50	150	ND	ND	1	ND	(IA	0.1	50	ND	20	ND
49	86BT4142		MD	20	ሃኮ	75	₩D	ND	NĐ	20	100	150	ИD	ND	ND	ND	ND	0.2	50	ИD	15	Nb
1 50	86BT4182		ND	10	አቦ	45	ND	ND	ND	10	30	100	ND	ND	NIO CIM	VID.	ND	ND	50	ND	10	MÐ
L 51	86BT413 ²		ND	20	ND	85	ND	ND	ND	20	50	100	ND	ND	1	МD	ND	ND AND	50	NĐ	10	ND 3
on the	84AM141A	7	5	~ -		ND	ИД	1.1	10	48	290	810		ND				ND UN		11 28		3.3 7.7
1 526	84AM141B	αи	ND			ND	3	0.7	6	21	83	130		ND			~ ~	ND ND		20 الا		2.4
53	84AM139A	ND	ND			NI)	8	0.9	5	41	170	560 67		ND 4				NL		20		7.3
54	84AM126~	ДИ	ND		* *	ND	ND	0.9	14	13	53 200		ND	ND	NO	ND	ND	QN QN	10	ND	20	7.5
>5	84AMI 24a	ND	ND	30	30	ND	ND	ND	ND	50 50		1,000 200	ND	ND	1,5	ND	ND	ND	100	50	50	
50	84AM12a 1	ND	ND	30	50	ИD	ďΝ	DN D	ND 3	35	100 120	4 20		ND				ND		14	3.	3.3
57.0	84AM138A2	ND	ND			ND	ND	0.7 ND	ND 2	50	150	700	ND	ND	1	ND	ND	ND	15	NU	20	ND
576	84AM138A	- ~	ND	30	30	85	ND ND	ND	10	30	100	290	ND	ND	1	ND	ND	ND	100	20	30	ND
58	84BT11 ²	ND	ND	30	<10	75 95	ND	ND	ND		700	1,500	ND	ND	1,5	ND	ND	NU	20	หท	30	ND
59	8461.142	ND	ND	100	20 10	80	ND	10	10	70 50	100	200	ND	ND	<u>1</u>	ND	1	. 2	150	ND	30	NĐ
60	84BT279 ²		ND ND	20 15	ND	75	ND	8	ND	20	50	70	ND	ND	1	ЙD	ND	.1	150	ND	30	ND
61	84BT280 ²		ND	50	ND	10	5	ND	ND	10	100	200	ND	ND	ND	ND	ND	ND	70	15D	10	ND
62	848T17c*	ND ND	ND	30	ND	100	ND)	ND	ND	50	100	300	ND	ND	1.0	ND	0.2	ND	100	ND	50	
63	84AM1.7a	ND SO	ND ND	20	15	55	ИĎ	ND	ND	30	100	200	מא	ND	1	ND	ND	0.1	200	ND	20	Nb
64a	84AA1593A2	50 ND	ND	50	מא	65	ND	ND	ND	100	100	2,000	ND	ND	ND	ND	ND	0.2	15	ND	30	พบ
646	84AA1593b2	ND	ND	50	10	50	ND	ND	ND	15	70	200	ND	ND	1	ND	МD	0.2	150	<20	20	ND
65a	84AA1592a ² 84AA1592b	ND	ND	20	ND	45	<5	ND	ND	10	50	30	ND	ND	ND	ND	МD	0.1	7υ	٧D	מא	NU
656	84AA1590	ND	ИD	50	30	90	ND	ND	ND	50	100	20υ	αи	ND	1	30	ND	0.2	100	<20	50	ND
66	84MSL143 ²	NI:	VD.	10	lu	.45	141)	840	עא	15	5	20	ΝU	ND	ND	ND	ND	0.2	150	20	ND	ИD
6.7	041121143	III.	1.0	•••	• • •			-														

· 🛊

Remarks	Quartz sulfide vein Golden Horn	Quartz sulfide vein Golden Horm	Quartz sulfide vein Golden Horn	Scheelite bearing vein Golden Born	Sulfide sample Colden Horn	Background, monzonite	From high grade vein, 12 in. channel; 76 ppm Selenium	Rackground, metabasalt	Background, metabasalt	Nineralized hornfels; from rich	Mineralized wein in hornfels tailings	Herorets in tarlings	herrite is entire to minal fine grefsen	Rackground, 12 to unit	Background, J.D unit	Buclgrand, Klls unit	Background, Kes unit	buckground, Kls unit	Kackground, Kils unit	Natic dike chip sample	Shale chip sample	Mafic Utke chip sample	Timey somistions chip sample	Mafic dike	Background diorite	Mafic dike? chip sample	Altered intermediate(?) dike	Background sandstone chip sample	Altered mafic dike chip sample	Background sandstone sample	Fresh andestre dike	Altered mafic dikc with calcite veins	Background Kcs	Lithic wandstone	Altered maffe dike	Iron stained fine sandstone	Quartz veins in sandstone	N-C sandstone	Eackground KIs unit
Hg (ppm)	1.8	2.2	10.0		14.					1	:	90.0	:							:	:	,	;	£	ÖN,	:		1.7	0.4	:	•	707	2	.02	.02	.32	. 50	. 26	1.70
Ba (ppm)	20	<20	20	20	150	2,800	ND	1,600	1,900	Ð	ND	1,000	1,000	200	1,000	300	300	200	300	380	570	2,500	780	200	1,000	880	700	1,000	1,000	200	200	700	700	1,000	1,500	1,000	200	2,000	3,000
Field no.	E5KB2	85KB\$_	85KB18,	85KB94,	85KB95,	86KB12 ³	878I Flat trench	86BT431	86BT430	84MSL159,	84MSL123,	84MSL122	64BT305,	8681371	86BT417,	86BT416,	86BT414 ²	8681418,	86874134	84AM14.1A [*]	84AM141B.	84AM1394 [±]	84AM126*	84AF124a	84AM12a	84AM138A,		84BT11,	8461.14	84BT279,	84BT280,	84BT17c ⁴	84AM17a	84AA1593A2	84AA15930,	84AA1592a,	84AA1592p	84AA1590,	84MSL143 ²
Map no.) %	37	27	39	409	40b	14	420	42b	434	43P	43c	77	57	46	47	67	50	5.1	52a	424	53	75 .	5.5	56	57a	576	58	88	60	6.3	62	63	649	979	65a	65L	92	1.1

Map	Field	Αu	Ag	Cu	Pb	Zn	Мо	Sb	As	Co	N1	Cr	Sn	W	Be	Np (Bi	Cd	B (+==)	La (non)	Y (200)	Th (non)
no.	no.	(ppb)	(ppm)	(ppm)	(ppm)	(bbw)	(ppm)	(ррш)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ррж)	(ppm)	(ppm)	(ppm)
	2	AUT)	NT	50	ND	60	ND	54	100	50	100	1,000	ND	ND	<1	ND	ND	.3	20	ND	15	ND
68	84MSL146 ² 86AGE69 ²	ND	ND ND	10	ND	100	ND	ND	ND	10	70	30	ND	ND	<1	ND	ND	ND	100	ND	10	ND
69 70	86AGE68 ²	NTO	ND	10	ND	95	ND	ND	60	15	70	50	ND	ND	ND	ND	ND	0.2	100	ND	15	ИD
70 71	86AGE65 ²	ND	ND	20	ND	100	ND	ND	ND	20	70	150	ND	ND	ND	ND	ND	ND	20	מא	15	ND
72	84AA15672		. NID	50	30	95	NID	ND	ND	30	100	100	ND	ND	1	מא	ND	0.3	200	ND	50	'ND
. 72	84AA1568 ²	~ -	ND	70	50	95	5	ND	10	30	150	200	ND	ND	1.5	ND	ND	0.3	300	20	50	ND
74	86BT406	25		19	10	130	ND	5	150	10	18	130	12	ND			ΝD			'	33	<u>63</u>
75	84AA1565 ²		ND	50	30	60	ND	ND	ND	20	100	150	ND	ND	ΝD	ND	ND	ND	200	NĐ	50	ND
76	84AA15662		ND	50	20	80	ND	ND	ND	50	150	500	ND	ND	ND	ND	ND	MD	200	ND	30	ND
77	86BT404 ²	ND	NID	7	20	90	ND	ND	ND	20	50	300	ND	ПD	ИD	ND	ND	ND	50	ND	10	ND
78	84AA1563 ²		<.5	50	10	70	MD	ND	מא	20	100	100	ND	ND	1	ND	ND	0.2	200	<20	50	MD
79	86AGE72		ND	15	ND	110	ND	ND	10	15	70	70	ND	MD .	ND	ND	ND	0.3	50	ND	15	ND
80	84AM93A2	ND	ND	5	30	08	ND	ND	20	5	5	<10	ND	ND	2	ND	<1	<.1	500	50	20	ND
81	86AH3412		ND	30	10	110	ND	ND	10	10	70	70	ND	ND	1	ND	NED.	0.3	2,000	CAN	20	ND ND
82	86BT409 ²	ND	ND	10	15	70	ND	170	180	10	50	30	ND	ND	1	MD 	ND	<.1	100	ND ND	10	ND MD
83a	86BT392b2	<50	ND	20	20	60	ND	28	ND	10	50	150	ND	ND	1	NI)	ND	ND	200	ND	10 <10	NED NED
83b	86AGE73b2	ND	ND	5	30	50	<5	>1,000	10	ND	<5	<10	ND	ND	2	NO	ND	ND	150	MD MD	<10	NED NED
83c	86AGE73g2	<50	1	10	300	50	ND	>1,000	120	7	20	50	ND	ND	1.5	NTD	ND	ND ND	200	ND 13		3.6
N 84	85AM68A	8	ND			ND	ND	1.0	3	ND	ND	ND		ND				ND MD	100	VD T2	20	ND
ο _{85a}	86BT39la 2	2,900	ND	20	15	80	ND	ND	ND	20	50	100	ND	D D	1	MD MD	ND Com	ND ND	100	ND	20	ND
1 85b	86BT3911g ² ,	2,400	ND	50	15	85	ND	ND	10	20	50	50	ND	ND	1	ND ND		ND	30	20	ND	NEO CBN
86	86BT390 [*]	ND	ND	<5	20	65	ND	ND	ND	ИD	5	<10	ND	ND	1	ND	ND MD	0.1	70		ND	MD
87	86DB263	ND	NED	5	20	85	ND	ND	ND:	5	10	10	ND ND	מא	1.5	ND	ND 70	ND	50	30 ND	ND	0.7
88	84BT98 ¹	3,400	10	100	ND	ND	<u>5</u>	2.1	4	D D	ND 1	ND a coo	CIN CIN	1,380	ND ND	ND ND	78 ND	.2	30	ND	30	ND
90	84RB2 1	ND	ND	100	70	65	ND	ND	ND	100 40	1,000	2,000	ND 	ND On				ND	JU - ~	11		3.2
91	84AM06	ND	ND			ND	ND	0.5	3		150	700 200	ND	ND	MD.	ND	NTD	ND	20	ND	50	ND D
92	84BT06 2	ИD	ND	70	ND	75	<5	ND O	ND 2	100 56 20	70 380			ND	, LD			ND		14	- 4	3.5
93	84AM03 ¹ 3	ND	ND			ND	ND	0.2	3	20	380 26	1,000		ND		14	ND				18	5
94	86BT403 2	69		14	13	55	ND	6 ND	4 ND	30			10 ND	ND	1	מא	ND	ND	10	ND	20	ND
95	86BT393a2	ND	ND	10	<10	45	ND ND	ND ND	9	22	200 37	500 150	ND	ND		17	ND		~ =		37	9
96	86BT393b	ND		15	9	42 89	3	ND	12	21	53	200	8	ND		21	ND				26	4
97	86BT401 ²	ND		34 6	6	24	ND	ND	ND	15	23	150	6	ND		1.6	ND				28	9
98	86BT399 ²	ND		-	50	55	NED	ND	ND	30	100		NID	ND	ND	ND	ND	ND	10	MD	30	ND
99	86BT394 ² 3	₩D	ΝD ~ ~	50 19	18	97	ND D	ND ND	22	42	150	500 570 670 300		ND		11	ND				19	ND
100a	86BT395a3	1.5	- +	50	14	66	4	ND 100	31	45	210	670	12 7	ND		14	ND				20	6
100ь	86BT395b2	1.2 ND	ND	30	30	40	ND	ND	10	30	150	300	ND	ND	2	ND	ND	ND	10	<20	15	ND)
101	86BT396a*	au	KD.	30	20	-10	,447															

Мар	Field	Ва	Hg	
no.	no.	(ppm)	(ppm)	Remarks
				
68	64MSL146 ²	500	. 90	Altered mafic dike
69	86AGE69 ²	200		Mg sandstone
70	86AGE68 ²	300	1.1	Iron stained chips in sandstone rubble
71	86AGE65 ²	1,000	.06	Felsic dike rubble
72	84AA15672	1,000		Sandstone
73	84AA1568 ²	1,000		Sandstone
74	86BT406 ³	230	- +	Background Kls
75	84AA15652	1,000		Sandstone
76	84AA1566 ²	700		Sandstone
77	86BT404 ²	700	1.4	Background, rhyolite dike
78	84AA1563 ²	1,000		Sandstone
79	86AGE722	300		F-M sandstone
80	84AM93A2	2,000	2.0	Rhyolite chip sample (background)
81	86AM3412	200		Mg sandstone
82	86BT409 ²	300	1.4	Mineralized rbyolite with quartz
83a	86BT392b2	500	1.4	Mineralized rhyolite with quartz
83b	86AGE73b2	100	0.7	Quartz-stibnite vein
83c	86AGE73a ²	500	0.35	Quartz-stibnite vein chip sample
84	84AMO8A	2,300		Intermediate dike chip sample
85a	86BT39la2	500	.18	Mineralized rhyolite with quartz
85b	86BT391b ²	300	.10	Mineralized rhyolite with quartz
86	86BT390 ²	500	1.7	Mineralized rhyolite
87	86DB263	1,000	4.7	Tkf grab sample
88	84BT98 ¹	<20	.82	Stockwork veinlets in monzonite; cinnabar recognized
90	84RB2 ²	1,500	0.42	Altered mafic dike chip sample
91	84AM06	680		Mafic dike chip sample
92	84BT06 ²	300	.12	Background, sandstone
93	84AM03	1,800		Mafic dike chip sample
94	86BT403 ³	300		Background, Kfs unit
95	86BT393a 2	1,000	.06	Background hornfels
96	86BT393b	1,200		Background, hornfels
97	86BT401	930		Background distal TKhf unit
98	86BT399	820		Background, hornfels near GH Fault
99	86BT394 ²	1,500	.12	Background meta-andesite
100a	86BT395a	2,200		Background, biotite gabbro
100Ъ	86BT395b	1,500		Background, monzonite (TKm)
101	86BT396a	1,000	.12	Background meta-basalt
101	000 £ 1600	2,000		

•

Map	Field	Au	Ag	Cu	Рь	Zn	Мо	SР	As	Со	Ni	Cr	Sn	W	Be	Nb	Bi	Cd	В	La	Y	Th
no.	no.	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(рржа)	<u>(ppm)</u>	(ppm)	(ppm)	(ppm)	(ppm)	(bbm)	(ppm)	(ppm)	(ppm)	(ppm)	<u>(bbw)</u>	(ppg)	(ppm)
	3			-			100		10	30	100	560	12	NT)		10	NTD.		~ •		18	7
102	86BT396b	NID .	-	40	14	69	ND	6	19	30 ND	180 5	<u>560</u> 50	12 ND	ND ND		19 ND	ND 2		100	NID	<10	, Civi
103	84BT102 ² 2	2,400	10	50	300	130	ND	470	760	ND	_		ND	ND	20	ND	2	4.5	200	NID	10	ND
104	84BT102A2	55,000	<u>5</u>	50	700	140	ND	76	1,600	20	70	200			<u>5</u> 3	ND	110	1.6 0.9	200	ND ND	10	· ND
105	84BT102B2	1,350	1	50	100	50	ND	24	220	20	50	200	ND	ND ND	5	ND	<u>5</u> ND			20	1.5	1ND
106a	85KB158A2	50	1	100	30	45	<5	18	360	15	70 100	200 300	NID NID	ND		ND	ND	0.8 0.6	200 1,000	ND	20	ND
106b	85KB158D2	ND	1.5	100	50	60	<5	18	230	20	100				5	ND	ND	1.2	500	20	30	ND
106c	85KB158E2	1,200	10	200	2,000	300	5	110	520	30	100	500 100	10 ND	50 ND	5	ND	4	0.4		ND	20	ND
106d	85KB158G2	8,700	5	1.00	100	50	ND	10	150	20	70				_	ND	ND ND	0.4	500 100	ND	20	ND
106e	85KB158H ²	950	<u>5</u>	300	70	65	ND	6	60	30	200	500	ND	ND	10 7					50	30	ND
106f	85KB15812	8,200	7	100	100	50	ND	44	880	30	100	500	ND:	МD	-	ND	14	1.8	50	50	20	ND
106g	85KB158J [*]	100	1	100	50	65	ND	16	150	30	100	500	ND	ND	5	ND	ND	0.6	500			ND
106k	86KB126	200	1.5	200	1,500	1,000	ND	ND	230	20	70	300	NZD	ND	2.0	ND	ND	2.8	500	30	15	
1061	86KB127	1,100	2.0	150	<u>70</u>	ND	ND	ND	190	20	100	300	ND	ND	2.0	ND	ND	1.4	100	30	20	CTM
106m	86KB125	ND	1.0	200	1,000	<u>300</u>	ND	ND	80	50	100	300	ND	MD	2.0	ND	МD	0.7	100	MD 200	20	ND
107	85KB120 3	150,000	15	200	100	30	<5	<u>360</u>	>2,000	20	30	200	ND	<50	10	ND	70	5.2	<10	100	100	ND
108	86BT3983	ND		2	10	31	ND	ND	16	21	21	120	10	ND		20	ND				22	14
109	85BT118 ²		<.5	70	20	25	<u>7</u>	4	30	30	100	200	ND	<50	2	МD	ND	ДN	200	ND	20	ΝD
110a	86BT410	12		41	16	84	2	ND	22	16	40	250	4	ND		17	ND				20	2
[≈] 110b	86KB2 [*] 3	ND	ND		~ ~	ND	1.3		4	120	1,040	2,050		2				ND		19		5
1 111	86BT4112	ND		16	7	90	מא	ND	<u>8</u>	18	52	210	5	ND		2	WD		- *		26	8
112	86AGE742	ND	ND	20	20	65	ND	<u>86</u>	60	20	70	100	ND	ND	1	ND	ND	ИD	1,500	ND	20	ND
115	84BT288 -		MD	ИD	50	50	ND	12	ИD	<5	5	<10	ND	МD	2	ND	ИD	<.1	300	MD	ND	МD
116	86AGE752	ND	ND	30	30	65	ND	30	ND	30	100	200	ND	ND	NED	ND	ND	ND	100	ND	10	ND
117	85BT2582	ND	ND	10	10	25	ND	12	ND	10	10	20	ИD	ND	1	ND	ND	ND	ND	20	20	ND
118	85BT2602	ND	ND	10	10	30	ND	6	40	20	30	50	20	NID	<u>1</u>	ND	ND	ND	2,000	30	30	ŒN
119	86BT400	85		6	8	28	ND	ND	46	18	47	220	3	ND		18	ND				21	6
121	86BT4Q2 ³	ND		6	10	65	ND	ND	NĎ	18	34	120	5	ND		16	ND				23	6
122	84L02 ²	ND	ND	70	50	75	ND	N D	ND	<u>50</u>	200	1,000	ND	ND	ND	ND	ND	ИD	30	ИD	50	ND
123	84GL03 ²	ND	ND	30	30	45	<5	ND	ND	30	70	200	ND	ND	ND	ND	ND	ND	50	<u>50</u>	30	ND
124	84BT301	ND	0.5	70	30	25	ND	12	ND	50	200	1,000	ND	ND	2.0	МD	2.0	0.2	20	30	ND	ND
128a	84AM137a	- +	ND	100	70	120	ND	2	MD	70	200	1,000	ND	ND	ND	ND	MD	NID	15	МD	30	ďΜ
128b	84AM137b2	ND	ND	30	ND	75	ND	ND	10	30	70	150	ND	ND	1.5	ND	ND	0.2	100	<20	30	ND
128c	84AM137c ²		ND	150	50	65	ND	2	10	50	150	200	NID	ND	1	ND	ИD	ND	100	<20	50	MD
133	85DB265	ND	ND	7	10	60	ND	ND	60	ND	5	ND	ND	ND	1.5	ND	ND	ND	100	50	ND	MD
134a	86AGE62a2		ND	7	10	90	ND	ND	ND	30	50	<u>500</u>	ND	ND	ND	ND	ND	0.1	10	ND	10	ND
134b	86AGE62g ²	ND	ND	20	<10	110	ND	ND	ND	15	50	100	ND	ND	ND	ND	ND	ND	70	ND	MD	ND
135	86AGE61 ²		ND	20	ND	80	ND	ND	ND	20	50	100	ND	ND	ND	ND	ND	0.1	50	МD	15	ИD

102
103
103
104
105
106a 85KB158A ² 1,000 Chip channel, mineralized vein stockwork in monzonite 106b 85KB158D ² 1,000 Chip channel, mineralized vein stockwork in monzonite 106c 85KB158E ² 1,000 Chip channel, mineralized vein stockwork in monzonite 106d 85KB158C ² 1,000 Chip channel, mineralized vein stockwork in monzonite 106e 85KB158D ² 1,000 Chip channel, mineralized vein stockwork in monzonite 106f 85KB158D ² 1,000 Chip channel, mineralized vein stockwork in monzonite 106g 85KB158D ² 1,000 Chip channel, mineralized vein stockwork in monzonite 106k 86KB126 2,000 ND Dahl claim vein 106m 86KB127 1,500 0.90 Dahl claim vein 106m 86KB125 1,500 0.16 Dahl claim vein 107 85KB120 ³ 2,000 >6.0 Chicken Creek trench mineralized stockwork in monzonite 108 86BT398 ³ 900 Background, TKm monzonite 109 85BT118 ² 1,000 Quartz vein in Chicken Mt. stock 110 86BT410 ³ 590 Background, hornfels 110 86KB2 ³ 190 ND Ultramafic (background) 111 86BT411 ³ 1,200 Background hornfels 120 1
106b
106c 85KB158E
106d
106e 85KB158H ² 1,000 Chip channel, mineralized vein stockwork in monzonite 106f 85KB158I ² 1,000 Chip channel, mineralized vein stockwork in monzonite 106g 85KB158J 1,000 Chip channel, mineralized vein stockwork in monzonite 106k 86KB126 1,000 ND Dahl claim veins 106l 86KB127 1,500 0.90 Dahl claim vein 106m 86KB125 1,500 0.16 Dahl claim vein 107 85KB120 ² 2,000 >6.0 Chicken Creek trench mineralized stockwork in monzonite 108 86BT398 ³ 109 85BT118 ² 1,000 Quartz vein in Chicken Mt. stock 110 86KB2 ² 190 ND Ultramafic (background) 111 86BT411 ³ 1,200 Background hornfels
106f 85KB1581
106g 85KB158J 2 1,000 Chip channel, mineralized vein stockwork in monzonite 106k 86KB126 2,000 ND Dahl claim veins 1061 86KB127 1,500 0.90 Dahl claim vein 106m 86KB125 1,500 0.16 Dahl claim vein 107 85KB120
106k 86KB126 2,000 ND Dahl claim veins 1061 86KB127 1,500 0.90 Dahl claim vein 106m 86KB125 1,500 0.16 Dahl claim vein 107 85KB120 2,000 >6.0 Chicken Creek trench mineralized stockwork in monzonite 108 86BT398 900 Background, TKm monzonite 109 85BT118 1,000 Quartz vein in Chicken Mt. stock 110 86BT410 590 Background, hornfels 110 86KB2 190 ND Ultramafic (background) 111 86BT411 1,200 Background hornfels
1061 86KB127 1,500 0.90 Dahl claim vein
106m
107
107
108 86BT398 ³ 900 Background, TKm monzonite 109 85BT118 ² 1,000 Quartz vein in Chicken Mt. stock 110 86BT410 ³ 590 Background, hornfels 110 86KB2 ² 190 ND Ultramafic (background) 111 86BT411 ³ 1,200 Background hornfels
109 85BT118 ² 1,000 Quartz vein in Chicken Mt. stock 110 86BT410 ³ 590 Background, hornfels 110 86KB2 ² 190 ND Ultramafic (background) 111 86BT411 ³ 1,200 Background hornfels
110 86BT410 ³ 590 Background, hornfels 110 86KB2 ² 190 ND Ultramafic (background) 111 86BT411 ³ 1,200 Background hornfels
110 86KB2 ² 190 ND Ultramafic (background) 111 86BT411 ³ 1,200 Background hornfels
111 86BT411 1,200 Background hornfels
,
115 84BT288 500 Mineralized rhyolite chip sample
116 86AGE75 500 0.10 Hornfels shale
117 85BT258 700 0.2 Porphyry phase of monzonite
118 85BT260 700 ND Tourmaline rich monzonite
119 86BT400 660 Background, slightly hornfelsed Kfss unit
121 86BT402 790 Background Kfss unit
,
, ,
123 84GL03 1,000 0.14 Intermediate? dike
124 B4BT301 1,000 ND Mafic dike
128a 84AM137a 700 Altered intermediate dike
128b 84AM137b ² 500 .28 Iron stained altered dike
128c 84AMI37c 500 Altered siltstone
133 85DB265 150 0.72 Background sediments
134a 86AGE62a 500 Px monzonite-dk?
134b 86AGE62g ² 200 2.30 Iron stained Fg sandstone
135 86AGE61 ² 300 Fg sandstone

Мар	Field	Αu	Ag	Cu	Рb	Zn	Мо	Sb	As	Co	N1	Cr	Sn	W	Be	20 1.	P-1	Cd	ĸ	La	Y	Σħ
no.	no.	(ppb)	(ppm)	(ppm)	(ppm)	<u>(ppma)</u>	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)									
	2																					
136	84AA1570 _	~ -	NTD	20	20	90	ND	MD	ND	50	100	200	ND	ND	ND	ND	ИD	ND	200	ΝĎ	30	ND
137a	84AA1569a ²		ND	50	50	70	ND	ND	10	50	150	700	ND	ND	ND	ND	ND)	0.2	100	20	20	ND
137b	84AA1569b2		ND	70	<u>70</u>	100	<5	ND	20	50	100	200	ND	МD	ND	ND	ND	ND	200	ND	30	ND
138	86AGE78 ²	WD	ND	10	15	70	ND	ND	ND	20	50	70	ND	ND	1	ND	ND	0.1	70	ND	10	ND
139a	86AGE77A2	ND	ND	30	10	100	ND	10	ND	50	50	500	ND	ND	ND	ND	ND	ND	10	ND	20	ND
139b	86AGE77B2	ND	ND	20	1.5	85	ND	ND	ND	20	50	70	ND	ND	1	ND	ND	02	50	ND	15	ND
140	86AGE76A ²	ND	MD	15	ND ON	70	ND	6	ND	10	50	50	MD	ND	NTD	ИD	ND	ND	100	ND	10	ND
141	84RB08 ²	ND	ND	70	20	55	ND	ND	ND	50	700	5,000	ND	ND	ND	NĐ	ND	ND	20	ND	30	MD

^{*}Samples collected by Marti L. Miller, 1984-86 (AM); T.K. Bundtzen, 1984-86 (BT); G.M. Laird, 1984-85 (CL); Linda Angeloni, 1984 (AAi); Katherine F. Buil, 1985-86 (KB); Bruce Camble (AGE) and Bob Betts (RB).

Analyses by Bondar-Clegg and Company Ltd., North Vancouver, British Columbia, Canada using induced neutron activation method.

Analyses by J. Hoffman and J.T. Ryder, U.S. Geological Survey, Denver, Colorado; Au, Zn, Sb, As, Bi, Cd, and Hg by atomic absorbtion spectrophotometry. Remaining elements by emission spectrophotometry. Detection limits as follows (all in ppm except for ppb on Au): Au(50), Ag(.5), Cu(5), Pb(10), Zn(5), Mo(5), Sb(2), As(10), Co(5), Ni(5), Cr(10), Sn(10), W(spec-50), AA-5), Be(1), Nb(20), Bi(1), Cd(.1), B(10), La(20), Y(10), Th(100), Ba(20), Hg(.02).

Analyses by Tom Laird, Neutron Activation Services, Ltd., Hamilton, Ontario, Canada, using induced neutron activation methods.

ND | = not detected or below standard limits of detection.

^{- - =} Not analyzed.

Мар	Field	Ba	Hg		
no.	no.	(ppm)	(ppm)	Remarks	
	2				
136	84AA1570 2	1,000		Sandstone	
137a	84AA1569a2	3,000		Intermediate(?) dike	
137b	84AA1569B2	1,000		Siltatone	
138	86AGE78 ²	200		Sandstone	
139a	86AGE77A2	500	.04	Intermediate dike	
139ъ	86AGE778 ²	200	.06	Hornfels sandstone	
140	86AGE76A2	200	.14	Hornfels ss with quartz veins	
141	84RB08 ²	700	0.78	Altered mafic dike with quartz veins	

-

•

Other Prospects

A large Fe stained quartz vein intruding hornfels 2 km southwest of the mouth of Black Creek was explored with an adit and two small trenches (fig. 2, pl. 1). The gold vein varies from 3 to 25 cm thick, strikes N. 41 E., dips 60 SE. and yielded anomalous gold and silver from a selected grab sample (no. 26, table 8).

Gossaneous zones and thin quartz stockwork is conspicuous in hornfels and igneous rubble on the prominent 2,840 ft peak northeast of Flat. Bedrock exposures are rare and its difficult to ascertain the specific parameters of individual mineral occurrences; however, chip and grab assays show anomalous beryllium, niobium, arsenic, copper, bismuth, and silver in a 2 km² area at the head of Boulder Creek. The mineralization is localized just above a monzonitic stock which underlies the hornfels; hence the mineralized cupola and hornfels deserve further exploratory work.

Thin arsenopyrite veins in metabasalt were discovered in mine cuts about 1 km west of the Golden Horn deposit. The veinlets strike N. 15-20 E. and dip vertically, but have an unknown or small strike length. Besides elevated gold, antimony, and arsenic, the sample (map no. 4) contains 1,400 ppm yttrium.

A quartz-cinnabar vein was discovered in earlier years during gold dredging activities at the west end of the Flat airstrip. Only occasional chips of mineralized rubble were found during our work, but according to Ken Dahl (personal commun., 1985), the vein was up to 1 m wide and extended in a northerly direction across most of the dredged valley bottom. Several pieces of cinnabar float were found about 50 m on the west end of the airstrip, but it is not clear whether this sporadic material represented 'in place' mineralization.

Mineralized Dikes

Stibnite-quartz stockwork and fracture fillings occur in quartz porphyry (Tkf) along the Nixon-Iditarod fault about 4 km on northeast of the mouth of Prince Creek (loc. 82-86, pl. 1). Extent of stibnite mineralization is limited to a small 1 m² stockwork zone, but a larger zone of silicification some 100 m wide was noted during sampling. Gold anomalies (up to 2,900 ppb Au) are associated with the antimony occurrence.

Altered matic dikes throughout the study area are consistently anomalous in chromium, nickel, and occasionally cobalt. Average chromium values of 1,250 ppm and nickel values of 600 ppm (N=8) are three times above normal background for matic rocks (Krauskopf, 1969).

Coal

Thin coal seams were exploited in early years on the old tramway between Flat and Iditarod, about 1 km south of the ridge crest (loc. 'Coal,' pl. 1). According to Brooks (1914), the bed was 0.3 to 0.8 m thick, had a N. 60 E. strike, and dipped 50° SE. The bed occurs in the Kqs unit, and the now vegetated pits show plant rich, quartz arenite and shale as dominant bedrock lithologies. Mertie (1936) reported calorific values averaging 7,983 and an average Btu value of 14,369 or anthracite by rank. The extremely poor exposures that typify the site prevented any further examination by the authors.

GEOMORPHOLOGY OF PLACER DEPOSITS

The gold placers of the study area are derived from the erosion of mineralized monzonite plutons, volcanic rocks and adjacent hornfels. The style of gold placer concentration differ from drainage to drainage and is dependent on distance from lode sources, stream aspect and degree of bedrock disintegration. The Iditarod-Flat district is one of Alaska's best examples of a progressive evolution from residual to elluvial to stream heavy mineral placer concentrations from mineralized source rock. The streams that have yielded commercial amounts of placer gold are confined to a small 50 km² region centered on Chicken Mountain. The gold-cinnabar-antimony veins, disseminations, and stockworks in the Chicken Mountain monzonite, the Golden Horn deposit, the hornfels aureole north of Otter Creek, and mineralized bedrock within the valley of Otter Creek previously described are the probable sources of placer gold.

Gold fineness data from placer deposits throughout the study area is summarized by Smith (1941) Metz and Hawkins (1981), and Bundtzen and others (1987). The fineness values districtwide range from 822 to 891 and average about 864, based on 112 weighted determinations. Principal heavy minerals include cinnabar, chromite-magnesiochromite, magnetite, radioactive zircon, ilmenite and scheelite, ilmenorutile, garnet, and cassiterite. The overall provenance is somewhat puzzling because mineral assemblages range from epithermal to hypothermal temperatures and from gold-mercury-antimony associations to gold-arsenic-tin-niobium-tungsten metallic suites. The existence of chromium and nickel is unusual because very minor amounts of rocks of ultramafic affiliations have been recognized.

Chicken Mountain Stream Placers

Prince, Slate, Chicken, Flat, and Happy-Willow Creeks, radially drain Chicken Mountain, and all have their headward sources in a small 3 km² region near its summit. These first order streams range in length from 6 to 12 km in length and have asymmetrical profiles with steepest sides on their southern or western limits (fig. 6). Stream gradiants range from 200 m/km near their heads, slowly maturing to 80 m/km at midstream to 40 km/km where the enter major trunk streams off the flank of Chicken Mountain. On modern stream flood plains, the overburden, which is covered by vegetation and overlain by decomposed rock rich regolith, averages 3 to 6 m in thickness mid-stream and 5 to 8 m near stream heads. The thickened overburden occurs near the tops of the drainage basins in the steep (>15° gradient) 'drop-off' zones and bowl shaped depressions that characterize Flat, 'Happy' and Slate Creeks. In these areas it consists of large slide rock slabs which have moved downslope from the summit area of Chicken Mountains. Older terrace levels have significantly thicker overburden than active flood plains. For instance the overburden in mine cuts on Prince and Willow Creeks ranges from 6 to 9 m in thickness and consists of varved frozen silt with up to 50 percent ice content.

Mineralized monzonitic bedrock on Chicken Mountain, the presumed source of placer gold, is hosted in deeply weathered, sandy 'grus' that ranges in depth from 1 to 6 m and averages 4 m in many areas. The physical and chemical disintegration of the monzonite into sand sized particles frees gold and other heavy minerals from vein and other deposits; these heavy minerals tend to sink into the rock debris. Continued removal of light specific-gravity rock-forming minerals and gangue material by wastewater and mechanical disintegration produces an enrichment in gold and in favorable areas, an economically exploitable deposit. These classic residual placers are best observed in the headward slopes of the Happy, Chicken, and Flat Creek drainages such as the Idaho Bench, and the Mohawk and Upgrade claim groups (fig. 6). Much of the original residual gold-heavy mineral accumulations later move downslope under the influence of frost

action, gravity, and in part, water transport. These modified hillslope or 'elluvial' placers are found on steep slopes at the headward bowl of Flat Creek and in the sloped cryoplanation terraces of the Chicken Creek drainage. With continuing influence of stream hydraulics, the hillslope deposits are eventually worked into the auriferous stream placer deposits that have been historically exploited.

A general westward migration of streams during assymetrical valley formation played an important role in the evolution of stream placer deposits around Chicken Mountain. As described previously in the Quaternary geology section, the ground thaws differentially on the more thermally irradiated southern or westerly (afternoon) slopes causing solification activity to move colluvium toward northerly or easterly frozen buttresses (fig. 7). Thus older eastern bench deposits or strath terraces exist on Prince, Slate, Flat, Willow, and Chicken Creeks. Aerial photographic interpretation augmented with field observations have shown that, in one case, stream pyracy has resulted from the westerly migration process. Remnants of high level (1,250 ft; 380 m) bench deposits at the divide between Prince and Chicken Creeks indicate that the upper portion of Prince Creek was captured by Chicken Creek. Consequently it seems probable that the original lode sources of both streams lie in the cupola-stockwork area of the general 'Idaho and Mohawk bench' area and that present configuration of the Prince Creek drainage is not eroding this lode source. Further down Prince Creek, evidence of at least three bench levels have been identified. The two oldest bifurcate a low bedrock rib 1 to 2 km east of the present confluence with Bonanza Creek while the youngest terrace level closely parallels the present stream (fig. 6).

Westerly or southwesterly stream migration best explains the present configurations of Willow and Happy Creeks. The paleo-stream bed of Happy Creek is now preserved as a series of prominent terrace or bench levels on the eastern or northeastern limits of its valley. The ancestral 'Happy' Creek moved westerly leaving various terrace levels on Willow Creek. The terrace levels indicate an ancestral stream course that is markedly to the east of the current position of Willow Creek. In similar fashion Chicken, Flat, and Slate Creeks migrated in mainly a westerly direction leaving bench levels on eastern limits. Midway in Chicken Creek, a massive colluvial landslide has buried an earlier channel of the stream forcing a sharp curvilenear stream diversion around the obstruction.

Gold in bench terrace or bench deposits on Willow and Prince Creeks generally show higher fineness values when compared to that from active floodplains of the modern stream. Two fineness tests of gold from benches on Prince Creek average 876 while gold from the modern stream yields a fineness of 838. According to Mertie (1936), gold bullion from the Willow Bench, the presumed ancestral course of Happy Creek, averages 871, whereas gold fineness down the course of the modern stream valley of Happy Creek averages 864. There appears to be a more typical fineness change on Flat Creek where gold progressively worked downstream increases some 25 to 35 points in fineness (854-881) probably as a result of silver and base metals leaching out of the placer bullion leaving the geochemically stable gold.

In streams where data is available, bench placers contain more gold than modern stream placers. On Prince Creek the bench levels contain about twice the gold grade (0.03 to 0.04 oz gold yd³) than the average of modern stream gravels .015-0.20 oz gold yd³. In the upper bowl of Flat Creek, much of the extremely rich ground worked by the dredge of Yukon Gold Co. and later smaller operators were on the eastern benches. Some 2.8 million yards processed by the dredge during the first 4 years of operation in the basin averaged 0.09 oz gold yd (table 6). The western limit moderns stream gravels yielded grades about 1/4 as high.

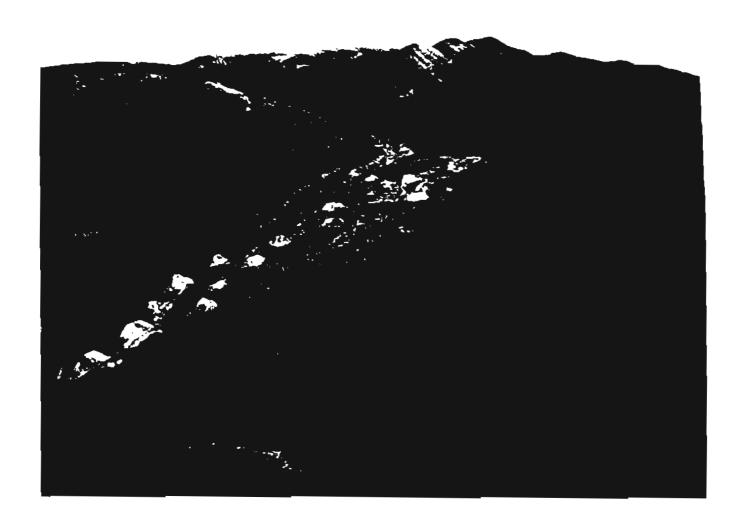


Figure 7. Prince Creek drainage looking north showing older terrace or bench levels on eastern limit (right side of photo) and modern stream on western limit (left side of photo).

Placer gold concentrations on various terrace levels of the 'Willow Bench' have been further modified from crosscutting by eastwest tributaries entering Willow Creek (fig. 6). Gold concentrations appear to be enriched at the intersection of each pup with the older terrace levels. Furthermore fineness values also appear enriched by 10-25 points at these points of intersection.

On Prince Creek heavy mineral concentrate analyses of bench and stream gravels significantly differ. Bench deposits contain a major component of cinnabar, garnet (below garnet bearing rhyolite sills of the lower stream) chrome spinel, stibnite, diopside, tremolite, ilmenite, and zircon. Modern stream gravels on the other hand have a somewhat lower amount of cinnabar, chrome spinel, ilmenite, and diopside, but also have scheelite, and trace cassiterite. Assuming the chrome spinel, ilmenite, diopside, and zircon present in both deposit types are accessory minerals of the pluton, the ore minerals represented in the modern stream deposits could be interpreted as being mesothermal to hypothermal in origin while an epithermal assemblage is represented in ore minerals of the bench deposits. If these assumptions are correct, then mineralization on Chicken Mountain has been progressively stripped away by erosion.

The grain size and physical dimension of placer gold from different streams draining Chicken Mountain are remarkably similar. Placer gold in all drainages exhibit similar sizes and shapes. Nearly 90 percent of the gold consists of small, equant grains in the -80 to -20 mesh range; flake gold is uncommon to rare (fig. 8). The largest nuggets average 25 grams (3/4 ounce). The largest Chicken Mountain area nugget reported by Mertie (1936) was a 57 grams (1-2/3 ounce) piece recovered from the Willow Bench. Fineness values in bench deposits are 862 (Chicken Creek), 871 (Willow), 862 (Happy Creek), 876 (Prince Creek), 855 (Slate Creek), and 878 (Flat Creek). The remarkably similar fineness values for all the streams (range = 23 points for all the placer deposits), strongly indicates a similar if not identical lode source. Additionally heavy minerals identified in concentrates by White and Killeen (1953) and Bundtzen and others (1987) all contain similar mineral species---scheelite, chrome spinel, zircon, amphiboles, cinnabar, and diopside. The specific known lode sources are thin 1/2 to 2 cm thick, auriferous quartz veinlets in the Chicken Mountain monzonite discussed previously; this also explains the uniform sized distribution of the placer gold present in the streams.

Placer Deposits of Otter Creek Drainage

Placer gold deposits in the Otter Creek drainage differ in morphology, gold fineness, size distribution and trace element (heavy mineral content) from those formed around Chicken Mountain. The westerly flowing Otter Creek heads at a major stream divide with the Dishna River 25 km northeast of Flat. Unlike the streams radially draining Chicken Mountain, valley asymmetry is reversed with a steepened northwall and a gradual southern rim underlain by bench gravels which gradually merge with modern stream alluvium. Auriferous gravels are confined to 1) Otter Creek from its confluence with Granite Creek and extending 8 km to a poorly defined area about 3 km downstream from Flat townsite, 2) the last 3 km of Granite Creek, 3) 4 km of Black Creek and its nearby tributary Glenn Gulch, and 4) Boulder Creek (where production of gold was modest). Placers on both Otter and Black Creeks begin on the upstream end of the Black Creek monzonite body which hosts the Golden Horn gold-tungsten shear zone previously described. Placers on Granite and Boulder Creeks, and Malemute Gulch are also immediately below a mineralized monzonite pluton exposed north of Otter Creek. Prior to exploitation, the overburden thickness varied from 3 to 6 m with 1 to 2 m being stream gravel and the remainder organic muck/silt deposits.

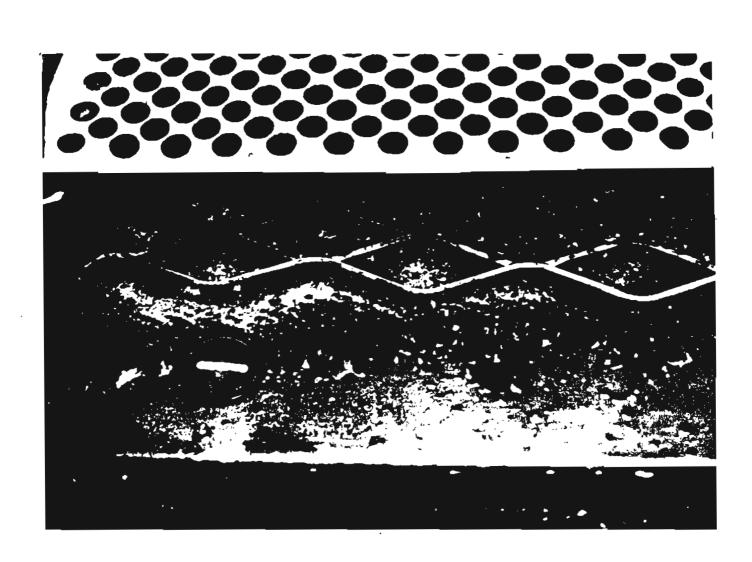


Figure 8. Placer gold from Happy Creek, 1983 Fullerton operation. Note generally fine equant nature gold grains.

Reproducible platinum anomalies (0.8-1.3 ppm) were discovered while analyzing gold bullion from Black Creek. This re-enforces earlier accounts by Andrews and others (1971) and Miscovich (personal commun., 1981) of platinum in the Otter Creek drainage. Although not in economic concentrations, its presence suggests further detailed work with bullion and concentrates is warranted.

In Otter Creek gold fineness decreases downstream from an average of 854 near the Golden Horn deposit to 838 near the Flat Airstrip to about 824 below the town of Flat (Mertie, 1936). The decreasing fineness values in a downstream direction is the opposite of what would be expected by silver-base metal leaching effects and could suggest multiple lodes sources in the valley of Otter Creek. We hypothesize that the high fineness gold is derived from veins and shears in the Black Creek monzonite (which we collectively refer to as the Golden Horn deposits) and the lower fineness bullion emanates from undiscovered deposits in placer cuts downstream.

Otter Creek placer gold is significantly coarser than that found in streams draining Chicken Mountain. Two distinctive types of placer gold from the Otter Creek drainage have been noted over the years: 1) angular fine gold with abundant quartz gangue, 2) rounded nugget gold with an absence of quartz or gangue mineralogy. A 16 oz nugget (548 grams) was recovered in Glenn Gulch in 1933 (Mertie, 1936) and in 1987, John Miscovich found the largest gold nugget in the district's history—a rounded 28 oz (960 gram) piece virtually free of gangue impurities. The larger veins averaging 0.5 m in thickness that are found in the Golden Horn mineralized system are the logical source for the coarse nugget gold found in the Black and Otter Creek drainages.

DISCUSSION OF LODE AND PLACER DEPOSITS

The Golden Horn, Chicken Mountain, Malemute Gulch, and Granite Creek prospects in the Iditarod district can be classified as gold-polymetallic deposits that have characteristics of alkaline related, precious metal systems of the western United States. All four deposits and other occurrences in the study area consist of shallow level, cupola hosted, vein disseminate shear zone, and stockwork concentrations of gold, silver, arsenic, antimony, \pm mercury, \pm and tungsten that also contain elevated levels of bismuth, uranium, zirconium, tellurium, yttrium, and platinum metals. Principal gangue minerals are quartz, tourmaline, and very minor fluorite, but tourmaline is notably absent in the Golden Horn deposit. Virtually all other volcanic-plutonic rocks of the Kuskokwim Igneous Belt contain tourmaline and locally axinite in breccia pipes, veins, and as abundant accessory mineral concentrations (Bundtzen and Swanson, 1984).

Work by Swanson and others (1987) and Bull (1988) show that host plutons at Flat belong to the metaluminous, alkali calcic series. Mafic phases of both the Black Creek and Chicken Mountain stocks are slightly alkaline or 'quartz alkalic' with Peacock indexes of about 51 and feldspathoidal minerals common in CIPW norm calculations (table 3; Bull, 1988).

Limited fluid inclusion homogenation temperatures, trace element chemistry, analyses, ore textures, and crosscutting field relationships indicate that metals in the Golden Horn deposits precipitated in both mesothermal and epithermal temperature environments. The gold-cinnabar-quartz veins in the Idaho Bench on Chicken Mountain were probably exclusively precipitated in epithermal conditions, although conditions of formation in the nearby Chicken Creek veins remain uncertain.

Heavy mineral placer deposits downslope and downstream from the known lode sources in the study area reflect the overall hard rock style of mineralization. The grain

size, fineness, trace element geochemistry, and distribution of placer gold of all streams draining the Chicken Mountain stock are remarkably similar suggesting a near-identical lode source for placers in Prince, Happy, Chicken, Slate, Willow, and Flat Creeks. Microscopic examination of placer gold reported by Bundtzen and others (1987) show cinnabar attached to gold grains which suggests the epithermal conditions of lode formation observed in the Idaho Bench and related occurrences. Likewise the coarse placer gold in Otter and Black Creeks reflect the large shear-veins present in the presumed lode sources at the Golden Horn property. Alkali amphiboles and pyroxenes including edenite, richterite and hastingsite in placer concentrates in the streams also reflect the alkalic nature of the source plutonic rocks. Elevated platinum, niobium, uranium-rich zircon, and bismuth values in placer concentrates can suggest an alkalic metallogeny.

Several inconsistencies between between placer and lode mineral content remain. The trace amounts of cinnabar found in lodes within the Black Creek stock do not account for the abundance of cinnabar found in the nearby placer deposits on Otter and Black Creeks. This may suggest that the shallowest or lowest temperature portions of the mineral deposits have already been removed by erosion or that there are lode cinnabar sources in the area yet to be discovered. Bull (1988) could not find appreciable magnetite and only trace ilmenite in igneous rocks of the area; however, magnetite and ilmenite are abundant in most of the placer concentrates studied by Bundtzen and others (1987). Like the cinnabar question, either magnetite rich lode or rock unit sources remain undiscovered or magnetite rich mineral deposits or igneous rocks have been removed by erosion.

The Late Cretaceous-Early Tertiary volcano-plutonic system and associated mineral deposits at Flat are similar to other alkaline-subalkaline gold districts in the western United States that include Yellow Pine, Idaho, several volcanic plutonic related districts in central Montana, Rosita, Colorado, Ortiz and White Oaks, New Mexico, and to a lessor degree, Cripple Creek and Central City, Colorado (Rich and others, 1985; Thompson and others, 1985; Mutschler and others, 1984; Rogers and Enders, 1982; Segerstrom and Ryberg, 1982; Sims, 1983). Allen and Duttweiler (1988, in process) incorporate these and others into their Rocky Mountain Alkalic Province (RMAP). Igneous complexes in the RMAP most similar to the Flat area, appear to be in the early Tertiary central Montana alkalic province described by Mutshler and others (1985) and Giles (1983). The central Montana igneous complexes 1) are crudely aligned in a north-northeast direction for a distance of 400 km; 2) contain multiple volcanic and plutonic phases that range from mafic to felsic and calc-alkaline to alkaline in chemistry; 3) contain monzonite and monzodiorite as principal plutonic phases; and 4) in many instances, syenite plutons appear to have differentiated in place. Like the Flat-Kuskokwim igneous belt, the Montana igneous complexes have been the source of several million ounces of gold production.

The Zortman-Landusky gold deposits in central Montana area similar to those in the Flat district. The Zortman-Landusky mine contains shear-zone controlled, sericitically altered, quartz-pyrite-fluorite-free gold-telluride deposits hosted in cupola phases of syenite and monzonite. Ankerite-fluorite alteration is ubiqutous and vein disseminate forms of mineralization are reminiscent of occurrence in the Flat study area. Significant differences include 1) Golden Horn is, in part, a mesothermal system while Zortman-Landusky is clearly a low temperature epithermal system; 2) telluride rich zones are common in Zortman lodes while only slightly elevated tellurium values have thus far been recognized in the Flat properties); 3) mercury and tungsten, which are abundant at Golden Horn, do not appear as major constituents in the Zortman-Landusky system even though Thompson and others (1985) list elevated tungsten and molybdenum values in many alkalic gold properties; and 4) igneous protolith ages are 52 million years (K-Ar) at Zortman-Landusky compared to the 63-70 million year ages obtained in our study area (table 4).

In conclusion, both placer and lode mineral deposits can assist in the classification of mineral deposits in the Iditarod-Flat district. Mineralization in the study area has similarities to those in the Rocky Mountain Alkalic Province---specifically those in the central Montana subprovince---but enough differences exist with known deposits to suggest that lode-gold deposits in the Flat district may deserve a separate classification.

BIBLIOGRAPHY

- Adams, H.J., and Siems, P.L., 1982, 1981 Union Carbide Flat Project Report: unpublished Doyon-Joint Venture Report, 35 p.
- Allen, M.L., and Duttweiller, K.A., 1988, Gold metallogeny in the Rocky Mountain Alkalic Province: an isotopic, petrogenic and tectonic study. U.S. Geological Survey Proposal (unpublished), 13 p.
- Andrews, T.C., Bigelow, C.R., Bressler, Jason, Crozer, Norm, Puppo, J., and Tinger, M., 1978, 1977 WGM-Doyon Annual Report, Flat block, v. 18, unpublished Doyon report, 49 p.
- Brooks, A.H., 1914, The Alaskan mining industry in 1912: U.S. Geological Survey Bulletin 542, p. 18-51.
- Brooks, A.H., 1916, The antimony deposits of Alaska: U.S. Geological Survey Bulletin 649, 74 p.
- Bull, Katherine F., 1988, Genesis of the Golden Horn and related mineralization in the Black Creek stock, Flat, Alaska: University of Alaska-Fairbanks unpublished Masters Thesis, 124 p., scale 1 in. = 100 ft, 3 pl.
- Bundtzen, T.K., and Laird, G.M., 1982, Geologic map of the Iditarod D-2 and eastern D-3 Quadrangle, Alaska: Alaska Division of Geological and Geophysical Surveys Geologic Report 72, 1 plate, scale 1:63,360.
- 1983, Geologic map of the Iditarod D-1 Quadrangle, Alaska: Alaska Division of Geological and Geophysical Surveys Professional Report 78, 1 plate, scale 1:63,360.
- Bundtzen, T.K., and Gilbert, W.G., 1983, Outline of geology and mineral resources of upper Kuskokwim region, Alaska: in Proceedings of the 1982 Symposium on western Alaska geology and resource potential: Alaska Geological Society, v. 3, p. 101-119.
- Bundtzen, T.K., and Swanson, S.E., 1984, Geology and petrology of igneous rocks in Innoko River area, western Alaska: 1984 Geological Society of America abstract, Cordilleran section, program 46990, 1984, p. 273.
- Bundtzen, T.K., Miller, M.L., Laird, G.M., and Kline, J.T., 1985, Geology of heavy mineral placer deposits of the Iditared and Innoko precincts, western Alaska: in Proceedings of the seventh annual conference on Alaskan placer mining: Alaska Prospecting Co., p. 35-41.
- Bundtzen, T.K., Cox, B.C., and Veach, N.C., 1987, Heavy mineral provenance studies in the Iditarod and Innoko districts, western Alaska: in Process Mineralogy VII; the Metallurgical Society 1987 AIME/SME joint annual meeting, Denver, Colorado, p. 221-249.
- Bundtzen, T.K., Laird, G.M., and Lockwood, M.S., 1988, Geologic map of the Iditarod C-3 Quadrangle, Alaska: Alaska Division of Geological and Geophysical Surveys Professional Report 96, 16 p., scale 1:63,360, 1 plate (in press).
- Cady, W.M., Wallace, R.E., Hoare, J.M., and Webber, E.J., 1955, The central Kuskokwim region, Alaska: U.S. Geological Survey Professional Paper 268, 132 p.
- Chapman, R.M., Patton, W.W., Jr., and Moll, E.J., 1982, Preliminary summary of geology of eastern Ophir Quadrangle in Coonrad, W.L., ed., The United States Geological Survey in Alaska: Accomplishments during 1980: U.S. Geological Survey Circular 844, p. 70-73.
- Eakin, H.M., 1914, The Iditarod-Ruby region, Alaska: U.S. Geological Survey Bulletin 578, 66 p.

- 1913, Gold placers of the Ruby and Innoko-Iditarod region: U.S. Geological Survey Bulletin 542, p. 279-303.
- Giles, D.L., 1983, Gold mineralization in the laccolithic complexes of central Montana in Symposium on the generation of Rocky Mountain ore deposits: Proceedings of Regional Exploration Geologists Society, Denver, p. 157-162.
- Hollick, Arthur, 1930, The upper Cretaceous floras of Alaska: U.S. Geological Survey Professional Paper 159, 122 p.
- Kimball, A.L., 1969, Reconnaissance sampling of decomposed monzonite for gold near Flat, Alaska: U.S. Bureau of Mines Open-file Report 6-69, 38 p.
- Kline, J.T., and Bundtzen, T.K., 1986, Two glacial records in west-central Alaska in Hamilton, T.D., Reed, K.M., and Thorson, R.M., eds., Glaciation in Alaska, The Alaska Geological Society, p. 123-151.
- Krauskopf, K.B., 1979, Introduction to geochemistry: McGraw Hill Inc., p. 544-545.
- Kretshmar, V.A., and Scott, S.D., 1976, Phase relations involving arsenopyrite in the system Fe-As-S; Canadian Mineralogist, v. 14, p. 364-386.
- Kulm, L.D., Rousch, R.C., Harlett, J.C. Neudeck, R.H., Chambers, D.M., and Runge, E.J., 1975, Oregon continental shelf sedimentation: interrelationships of facies distribution and sedimentary processes: Journal of Geology, v. 83, p. 145-176.
- Melton, M.A., 1960, Intravalley variation in slope angles related to microclimate and erosional environment: Bulletin of Geological Society of America, v. 71, p. 133-144.
- Mertie, J.B., Jr., 1936, Mineral deposits of the Ruby-Kuskokwim region, Alaska: U.S. Geological Survey Bulletin 864-C, p. 115-247.
- Mertie, J.B., Jr., and Harrington, G.L., 1924, The Ruby-Kuskokwim region, Alaska: U.S. Geological Survey Bulletin 754, p. 126.
- Metz, P.A., and Hawkins, D.B., 1981, A summary of gold fineness values from Alaskan placer deposits, University of Alaska Mineral Industry Research Laboratory Report 45, 63 p.
- Meyer, M.P., 1984, Mineral investigations of the Iditarod-George planning block, central Kuskokwim River area, Alaska, 'U.S. Bureau of Mines Open-file Report 9-85, 111 p.
- Miller, M.L., and Bundtzen, T.K., 1985, Metamorphic rocks in the western Iditarod Quadrangle in westcentral Alaska in Iditarod Quadrangle, westcentral Alaska, in Bartsch-Winkler, Susan and Reed, K.M., eds., The U.S. Geological Survey in Alaska--Accomplishments during 1983: U.S. Geological Survey Circular 945, p. 24-28.
- 1987, Geology and mineral resources of the Iditarod Quadrangle, westcentral Alaska: in Sachs, J.S., ed., Third annual McKelvey Forum in mineral and energy resources; U.S. Geological Survey Circular 995, p. 46-47.
- 1988, Right lateral offset solution for the Iditarod-Nixon Fork Fault, western Alaska: U.S. Geological Survey Circulation 996, 8 p.
- Mutschler, F.E., Griffin, M.E., Stevens, D.S., and Shannon, S.S., Jr., 1985, Precious metal deposits related to alkaline rocks in the North American Cordillera---an interpretive review: Transactions of the Geological Society of South Africa, v. 83, p. 355-377.
- Mutti, Emilliano, and Ricci Lucchi, Franco, 1972, Turbidites of the northern Apennines in Introduction to facies analysis: American Geological Institute Reprint Series no. 3, International Geology Review: v. 20, no. 20, p. 125-166.
- Patton, W.W., Jr., Moll, E.J., Dutro, J.T., Jr., Silberman, M.L., and Chapman, R.M., 1980, Preliminary geologic map of the Medfra Quadrangle, Alaska: U.S. Geological Survey Open-file Report 80-811A, scale 1:250,000, 1 sheet.
- Rice, C.M., Harmon, R.S., and Shepard, T.J., 1985, Central City, Colorado: the upper part of an alkaline porphyry molybdenum system: Economic Geology, v. 80, no. 7, p. 1769-1796.
- Rogers, L.M., and Enders, M.S., 1982, Syenite-hosted gold deposits of the Little Rocky Mountains, Montana: Northwest Mining Association Convention: 88th annual meeting, Spokane, Washington, 22 p.

- Sharma, G.D., Naidu, A.S., and Hood, D.W., 1972, Bristol Bay: a model of contemporary graded shelf: Bulletin of American Association of Petroleum Geologists, v. 56, p. 2000-2012.
- Sims, P.K., 1983, Geology of the Central City area, Colorado---A Laramide mining district; in Symposium of the generation of Rocky Mountain ore deposits: Proceedings of Regional Exploration Geologists Society, Denver, Colorado, p. 95-100.
- Smith, P.S., 1915, Mineral resources of the Lake Clark-Iditarod region: U.S. Geological Survey Bulletin 622, p. 247-261.
- 1933a, Past placer-gold production from Alaska: U.S. Geological Survey Bulletin 857-B, p. 93-98.
- 1933b, Mineral industry in Alaska 1931: U.S. Geological Survey Bulletin 844-A, p. 32.
- 1934, Mineral industry in Alaska 1933: U.S. Geological Survey Bulletin 864-A, p. 34.
- 1937, Mineral industry in Alaska 1935: U.S. Geological Survey Bulletin 880-A, p. 38.
 - 1938, Mineral industry in Alaska 1936: U.S. Geological Survey Bulletin 897-A, p. 45.
- 1940, Mineral industry in Alaska 1938: U.S. Geological Survey Bulletin 917-A, p. 42.
- 1941, Fineness of gold from Alaska placers: U.S. Geological Survey Bulletin 910-C, p. 147-267.
- 1942, Mineral industry in Alaska 1940: U.S. Geological Survey Bulletin 933-A, p. 38.
- 1944, Mineral industry in Alaska 1941 and 1942: U.S. Geological Survey Bulletin 943-A, p. 11.
- Swanson, S.E., Bull, K.F., Newberry, R.J., and Bundtzen, T.K., 1987, Late Cretaceous magnetism in Kuskokwim Mountains belt, southwest Alaska: Geological Society of America Abstracts with program: Annual meeting, no. 19, p. 861.
- Titley, S.R., and Hicks, C.L., 1966, Geology of the porphyry copper deposits, southwestern United States: Tucson, University of Arizona, press, 220 p.
- Thompson, T.B., Trippel, A.D., and Davelley, B.C., 1985, Mineralized veins and breccias of the Cripple Creek district, Colorado: Economic Geology, v. 80, p. 1669-1685.
- Wallace, W.K., and Engebretson, D.C., 1984, Relationships between plate motions and Late Cretaceous to Paleogene magnetism in southwestern Alaska: Tectonics, v. 3, no. 2, p. 295-315.
- Williams, J.A., 1950, Mining operations in the Otter recording precinct, Fourth Division, Alaska: Alaska Territorial Department of Mines MR 73-4, 4 p.

DESCRIPTION OF MAP UNITS

Unconsolidated Deposits

Qa <u>STREAM ALLUVTUM</u>...-Unconsolidated silt, sand, and gravel deposited by modern streams; includes flood plain deposits. The latter is commonly covered by sphagnum moss, while extensive willow-alder thicket concentrations occur in mature valley fills. Based on measurements made in mine and road cuts near Chicken Mountain, thickness ranges from 3 to 10 m thick, but is highly variable.

Qht PLACER MINE TAILINGS---Symmetrical or irregular stacked piles of (Qht-hf) water washed, sorted gravels and in-situ slab rock derived from bedrock--- essentially artificially modified stream alluvium. Cobbles are dominantly resistant metabasalt, monzonite, and hornfels derived from Chicken

Mountain and Otter Creek drainage. Fine silt and clay fractions in part removed during the placer mining process. Most Qht tailings in Otter, Black, and Flat Creeks appear as stacked, curvilinear ribs 2 to 6 m high and 1 to 2 m thick derived from three floating, bucketline, stacker dredges in operation from 1912 to 1968. Qht-hf and Qht-m are tailings composed primarily of hornfels and monzonite respectively. Because the dredges dug up to 1 m into bedrock and because the last material to land on tailing piles is bedrock rubble, depiction of these two units probably indicates bedrock type underneath the processed alluvium. Qht tailings on Prince, Chicken, Willow, Black, Upper Otter, Happy, Granite, and Slate Creeks are cone shaped, gravel piles, 3 to 6 m high and 8 to 15 m in diameter, that were stacked by draglines or tractors during non-float, mechanized placer mining activities. Amount of fine material remaining in Qht unit dependant on number of times reworked on placer mining process. Tailings vary from 2 to 6 m thick throughout map area.

- Qsf <u>SILT-FAN DEPOSITS</u>—Moderately stratified silt, sand, and very minor stream gravels deposits produced mainly by water gullying action and incision in loess covered hillslopes; generally involves the subsequent reworking of loess (colian) deposits. Heavily vegetated and contacts with other Quaternary units largely based on air-photo interpretation.
- Qat'

 YOUTHFUL TERRACE ALLUVIUM—Moderately to well sorted, well stratified sand and gravel weakly cemented by iron oxides. Unit is 5 to 10 m above active river floodplains and probably includes some stripped strath terraces in Bonanza Creek valley. Surfaces are generally vegetated, dissected by Holocene streams and mantled with colian silt. No absolute age control is available but unit is believed to be equivalent to Late Wisconsin(?) terrace and glacial deposits in Beaver Mountains to the northeast (Bundtzen and Laird, 1982; Kline and Bundtzen, 1986). Estimated 2 to 5 m thick.
- OLDER TERRACE ALLUVIUM—Moderately to well sorted, well stratified sand and gravel generally cemented by iron oxides to a greater degree than Qat'. Unit is 10 to 30 m above active river floodplains and includes stripped strath terraces throughout map area. Unit is covered by mature vegetation mattee consisting of eolian silt and other poorly drained soils. Extensively dissected by Quaternary streams. No absolute age control is available but believed to be equivalent in age to Early or pre-Wisconsin glacial terrace levels exposed regionwide (Kline and Bundtzen, 1986). Estimated 5 m thick.
- Qaf

 ALLUVIAL FAN DEPOSITS---Poorly sorted, partially stratified, channelized silt, sand, and gravel in alluvial fans. Locally contains significant colluvial component and generally localized at intersection of tributary and trunk streams. Ages not differentiated and can range from pre-Wisconsin to Early Holocene. Thickness variable and ranges from 3 to 20 m.
- Qls <u>LANDSLIDE DEPOSITS</u>---Unsorted diamictic material consisting of angular bedrock blocks, vegetation mattes, stream gravels, and colluvium believed to be transported downslope by mass failure. Largest unit exposed on south side of Chicken Mountain.
- Qc <u>COLLUVIAL DEPOSITS</u>---Composite unit of poorly sorted, generally unsorted silt, sand, and minor gravel in alluvial-colluvial fans, in colluvial

debris slopes, and purely colian silt. Usually forms on slopes and has experienced some downslope movement as a result of water action. Heavily vegetated and general thicknesses variable.

Qu <u>OUATERNARY DEPOSITS UNDIFFERENTIATED</u>—Unconsolidated alluvial, colluvial, and eolian deposits. Eolian deposits are usually ice rich in valley fills. Colluvial and alluvial deposits are bedrock-derived talus and alluvial aprons. Unit almost always obscured by vegetation but good exposures appear in mine cuts on Willow and Happy Creeks, on Bonanza Creek, and in upland areas headward of Moose Creek.

Sedimentary and Volcanic Rocks

TKvm MAFIC VOLCANIC ROCKS—Mainly dark greenish gray to maroon, fine-grained to porphyritic, pyroxene-rich, basaltic andesite, and mafic volcanic breccia. Dominant pyroxene is titanoaugite, with minor component of hyperstene present. Rare olivine grains and phenocrysts from 0.1 to 5 mm in diameter are usually altered to secondary minerals including antigorite. Unit has ubiquitously undergone contact metamorphism by adjacent or underlying plutons and contains secondary biotite, chlorite, and locally amphibole, with metamorphic grades up to the hornblende hornfels facies. Unit very resistant and forms prominent knobs and ridges. Estimated 150 m thick.

TKvi INTERMEDIATE VOLCANIC ROCKS—Light to medium-greenish gray, aphanitic to fine grained, biotite pyroxene andesite and hornblende dacite. Locally contains mafic to intermediate coarse-grained volcanic breccia and greenish siliceous tuff layers 1 to 4 cm thick on Chicken Mountain. Like the TKvm unit, unit has undergone contact metamorphism from adjacent and underlying plutons and secondary white mica, biotite, and hornblende recognized. Less resistant than TKvm and forms rubble-blocky slopes and ridges. Estimated 100 m thick.

Kqs **OUARTZOSE SUBLITHIC SANDSTONE AND SILICEOUS SHALES-**Gray to light gray, fine-to-coarse-grained, locally conglomeratic, well sorted subangular to subrounded, quartz-rich sandstone and shale and siltstone of similar composition. Fine sand layers are locally crossbedded and lack graded sequences. Presence of coal, leaf beds, and coquina beds containing nonmarine or brackish water pelecypods (table 5) suggest that the Kqs unit represents a shoreline section with nonmarine, beach, and subtidal deposits present. Unit extends from the map area in both northeasterly and southwesterly directions for over 200 km but only appears northwest of Nixon-Iditarod fault. Petrographic studies indicate that monocrystalline quartz, polycrystalline quartz fragments, and metamorphic rock fragments predominate, but volcanic-lithic components are present in several samples. Metamorphic clasts may be derived from nearby Precambrian Idaho sequence (Miller and Bundtzen, 1985). Estimated maximum thickness is 800 m but may thin to 200 m to the southeast.

Ksss <u>FINE-GRAINED SUBLITHIC SANDSTONE AND SILTSTONE---Light</u> to dark gray, sometimes olivine-green, fine to very fine grained (minor medium grained), tight, siliceous sublithic sandstone and medium gray, plant rich siltstone and shale. Limited point count analysis (N=3) indicates clast compositions of tightly packed quartz and polycrystalline quartz (50-65 percent), sedigenic sand to shale riprap clasts (10 to 15 percent), and variable

amounts of radiolarian chert, metamorphic fragments, volcanic debris and limestone clasts. Stems and fragments of dicot leaves found in shales and siltstones but invertebrate fossils rare to absent. Crossbeds occur as several stacked costs 3 to 10 cm thick; graded bedding is rare. Kfss unit occurs just below Kqs unit northwest of Iditarod-Nixon Fork fault and near the stratigraphic top of the Kuskokwim group southeast of the Iditarod-Nixon Fork fault. Probably formed in shallow marine conditions. Estimated to be 400 m thick near Flat and 200 m thick on Ruby Creek anticline (pl. 1). Forms conspicuous black lichen covered resistant rubble and individual beds are traceable for 10-20 km along strike.

COARSE SANDSTONE AND PEBBLE CONGLOMERATE—Gray to medium greenish gray, indurated, fine grained to coarse grained, volcaniclastic sandstone interbedded with beds up to 5 m thick of pebble sandstone and pebble conglomerate. Clast composition based on eight samples shows angular clasts of volcanic lithics (20 percent), chert (20 percent), polycrystalline quartz (20 percent) mixed felsic igneous rocks (12 percent), chlorite (6 percent), white mica (2 percent), limestone (6 percent), opaque minerals (4 percent), and amphiboles and pyroxenes (10 percent) in an oxidized matrix of undetermined composition. Coarse Bouma Tab intervals recognized locally *Inoceranus* prisms locally common. Thickness varies widely 50 to 200 m thick and Kcs unit is often wedge-shaped in cross section. Observed on both sides of Iditarod-Nixon Fork fault but stratigraphic correlation between the two fault separated sections is

uncertain.

Ks

TAN CALCAREOUS SANDSTONE AND SILTSTONE—Heterogeneous Ktls unit consisting of gray to tan, locally tan weathered, fine to coarse grained, subangular to subrounded (clasts), lithic rich, distinctly calcareous sandstone with lessor amounts of noncalcareous sandstone and interbedded micaceous Limited point count analysis (N=2) shows subangular to subrounded clasts of altered carbonate (5 percent), chert (15 percent), polycrystalline quartz (15 percent), clipopyroxene(?) and amphibole (3 percent), white mica (9 percent), undetermined mafics and opaques (8 percent), and matrix (35 percent). Unit conspicuously contains Inoceramus prisms, plant stems, and occasional dicot leaf fragments. Rip-up clasts, graded Bouma Tabed intervals, and scour features suggest deposition by turbidity currents. Local distinct tan weathering is believed to be caused by one or several features: 1) extent of oxidation in outcrop, 2) Fe rich fluid flow in sediments, or 3) alteration caused by dike swarm density, which is locally conspicuous. The unit is probably 400 m thick northwest of Iditarod-Nixon Fork fault. Ktls unit is very similar to Kls unit southeast of Iditarod-Nixon Fork fault but latter unit lacks conspicuous tan weathering; hence correlation between the fault separated sections remains speculative.

LITHIC SANDSTONE---Light to medium gray, subangular to subrounded, generally medium-grained lithic sandstone, with minor siltstone and shale. Three thin sections contain quartz, polycrystalline quartz, radiolarian chert, metamorphic rock, white mica chlorite, biotite, and very minor metavolcanic clasts and fragments. Calcareous clasts generally absent and clast provenance is dominantly sedigenic. Exhibits high energy flow regime indicators such as graded bedding Bouma Tabe intervals, and flute casts suggestive of deposition by turbidity currents. Occurs as a thin 100 m thick

unit near base of Cretaceous section northwest of Iditarod-Nixon Fork fault and interbedded throughout section southeast of Iditarod-Nixon Fork fault.

Ksh <u>SHALE AND SILTSTONE---</u>Medium to dark gray, finely laminated siltstone and shale. Traces of burrowing organisms found locally in micaceous shale. Forms base of Cretaceous section northwest of Iditarod-Nixon Fork fault and is estimated to be 250 m thick.

Ks GRAY FINE TO MEDIUM SANDSTONE---Medium to dark gray, fine grained siliceous sandstone similar to those of Kss, but lacking siltstone and shale. Outcrops are more massive in appearance and clast of sand composition very similar to that summarized in Kss unit.

Kac VOLCANIC BRECCIA. CHERT, TUFF, AND SANDSTONE---Dark green to gray, aphanitic to very fine grained, massive to brecciated, distinctly tan oxide weathering, volcanic breccia with minor tuffaceous sandstone and chert. Stratigraphic relationship with enclosing Kuskokwim Group clastic rocks is very uncertain, and we speculate that unit is equivalent to units west of Ganes Creek in Iditarod-2 Quadrangle and north of Moore Creek in Iditarod C-3 Quadrangle; in both locations, volcanic agglomerate and flow rocks are interbedded midway through Cretaceous sedimentary section.

KIS LIMEY SANDSTONE AND SHALE.—Thick heterogeneous unit of medium greenish gray, bleached to dark brown weathered, fine to coarse grained calcareous lithic sandstone and interbedded shale. Unit is similar to Ktls unit northwest Nixon-Iditarod fault except that coarse grained facies less dominant than in Ktls and distinctive Fe-stained, tanned zones that typity Ktls much less intense in Kls. Nevertheless, Kls may be equivalent to Ktls. Kls forms the bulk of sedimentary rock section southeast of Nixon-Iditarod fault and is equivalent to undifferentiated units (Kus) mapped by Bundtzen and Laird (1983) and Bundtzen and others (1987). Total thickness unknown, but the basal unit is at least 5,000 m thick in eastcentral part of map area. Characteristically nonresistant and forms low, rounded hills.

Plutonic Rocks

TKf

RHYOLITE TO DACITE---Light gray bleached, aphanitic to fine grained, locally garnet-bearing, quartz porphyritic, muscovite, biotite dacite, rhyolite, and alaskite. Color index ranges from 3 to 5. K-Ar separates from three samples show radiometric ages of 69.97, 69.32, and 64.30 m.y. (table 4).

MONZONITE AND MONZODIORITE—Light to dark gray, porphyritic hypidiomorphic granular, tourmaline bearing, olivine, biotite, diopside monzonite and monzodiorite. Includes both fine and coarse grained variants (C on plate 1). A typical monzonite on Chicken Mountain contains normally zoned plagioclase (30 percent, An₃₅₋₄₅), interstitial and polikilitic orthoclase and sanadine (20 to 25 percent), clinopyroxene; typically diopside (15 percent), biotite (15 percent), olivine (5 to 8 percent), and minor or trace tourmaline, sphene, hornblende, and zircon. K-spar contains inclusions of plagioclase, biotite, hornblende, and diopside. Color index ranges from 15 to 35. Opaque minerals are very minor (≥2 percent) and where present, appear to be dominantly ilmenite and chrome spinel. Tkm north of Granite Creek and west of Golden Horn fault is very coarse grained with biotite and augite grains up to 1 cm in diameter. Tkm in upper Prince Creek contains

crystallization 'nucleii' of diopside and olivine rimed by biotite (rarely amphibole) and surrounded by medium grained normal groundmass of leucocratic minerals. Not unlike 'orbicular' textures described elsewhere. Apparently intrudes and partially assimilates more mafic Tkg and Tku phases. Bull (1988) mapped separate quartz monzonite phases in northcentral portion of Chicken Mountain stock lumped here in TKm unit.

TKg ALKALI GABBRO---Medium to coarse grained, dark gray, hypidiomorphic granular, olivine, edenite, diopside, bronzite, biotite gabbro. Color index ranges from 30 to 60. Forms a discontinuous rim around Chicken Mountain stock and has been partially assimilated by monzonite and monzodiorite (Tkm). Bull (1988) maps eastern rim of TKg unit on Chicken Mountain as monzodiorite.

WEHRLITE---Coarse grained olivine, diopside, bronzite, edenite, green biotite picrite---variant webrlite---found only on Chicken Mountain. Small pod in southeast corner of Chicken Mountain stock. Orthopyroxene occurs as reaction rim around diopside and olivine; amphibole is edenite (Bull, 1988). Opaque mineralogy is ilmenite (FeTiO₂) and minor chrome-spinel. TKu unit appears to be related directly to alkali gabbro (TKg); both are believed to be partially assimulated by younger(?) monzonite and monzodiorite on Chicken Mountain.

TKmd, DIKES AND DIKE SWARMS---Variety of mafic (TKmd), intermediate TKid (TKid) and undifferentiated (Tkd) dikes and dike swarms most of which are extensively altered to calcite, chlorite, and chrome phengite. The vast majority of TKd unit believed to be mafic dikes (TKmd) now largely altered to silica-carbonate rock. A few mafic dikes contain central unaltered zones with fresh grains of olivine, clinopyroxene, plagioclase, and undifferentiated opaque minerals in a chloritized groundmass.

Metamorphic Rocks

HORNFELS---Brown to gray, massive to porphyroblastic, chlorite + biotite, locally tourmaline rich hornfels largely derived from Kuskokwim Group clastic rocks. Dark gray, massive, aphanitic variants sometimes difficult to distinguish from aphanitic volcanic rocks of TKvi and TKvm units. Unit is very resistant and forms striking hogbacks around Chicken Mountain pluton and two prominant hills north of Otter Creek. The overall distribution suggests that a much larger pluton than is exposed on Chicken Mountain and in Otter Creek underlies much of the Otter Creek drainage.

PzJc CHERT AND VOLCANIC ROCKS---Mixed unit of black, recrystallized radiolarian chert, tuffaceous sandstone, and clinopyroxene, basaltic-andesite flows and flow breccia. Volcanic rocks are metamorphosed to prehnite-pumpellyite facies. Unit is probably equivalent to Innoko Terrane. Assigned Paleozoic to Jurassic(?) age based on Mississippian through Triassic radiolarians found in Ophir Quadrangle (Chapman and others, 1982; Patton and others, 1980) and a possible Jurassic radiolarian from the Iditarod D-1 Quadrangle (Miller and Bundtzen, 1987).

bx- Undifferentiated bedrock; could include all lithologies previously described.