Public-data File 91-16

PRELIMINARY ROCK GEOCHEMISTRY FROM THE NORTHEASTERN CRAIG A-1 QUADRANGLE, ALASKA

Ъy

Karen H. Clautice, Thomas K. Bundtzen, and Shirley A. Liss

Alaska Division of Geological and Geophysical Surveys

April 1991

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

> 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645

INTRODUCTION

This preliminary report lists the results from geochemical analyses of 49 rock samples collected September 6-10, 1990 north of the Dolomi Bay area, Prince of Wales Island, Southeast Alaska. The samples were collected as part of an initial reconnaissance for a geologic mapping project of the Craig A-1 Quadrangle. Analyses and rock descriptions are listed in Tables 1 and 2, sample locations are shown on Plate 1.

This on-going study of the Craig A-1 quadrangle is being conducted as part of a cooperative agreement between the U.S. Bureau of Mines and the Alaska Division of Geological and Geophysical Surveys to investigate the geology and mineralization of the Ketchikan Mining District.

SAMPLING AND ANALYTICAL METHODS

Most rock samples represent individual grab samples of approximately 1 kg. Composite and chip samples are noted in the sample descriptions.

Samples were analyzed by either Chemex Labs, Inc., North Vancouver, B.C. or Bondar Clegg & Company Ltd., North Vancouver, B.C. as noted in Table 1. Sample preparation methods and analytical techniques, including detection and upper limits used by the two labs are listed in the appendix to this report. In addition, analytical techniques are abbreviated below each element in Table 1 as follows:

FA+AA 30g	Fire assay + Atomic absorption, 30 g sample
FA+AA 10g	Fire assay + Atomic absorption, 10 g sample
FA - Grav.	Fire assay, gravimetric
AAS	Atomic absorption spectroscopy
ICP	Inductively coupled arc-plasma
XRF	X-ray fluorescence

Results are listed in parts per million(ppm) unless otherwise indicated.

Map no.	Field no.	Lab.1	Au ppb	Au ppb	Au oz/T	Ag	Al%	Ba	Ba	Ве	Bi	Ca%	Cd	Co	Cr
			FA+AA 30g	FA+AA 10g	FA-Grav.	AAS	ICP	ICP	XRF	I CP	ICP	ICP	1CP	I CP	1Cb
1	905AL269	с	35	-	-	<0.5	7.90	180	•	3.0	<2	5-96	<0.5	32	59
2	90KC131a	с	<5	-	-	<0.5	9.23	190	-	1.0	<2	1.25	<0.5	2	18
3	90SAL266	С	>10000	-	0.354	<0.5	0.14	10	-	4.0	44	12.30	<0.5	63	21
4	90KC118	с	4070	-	-	<0.5	0.23	20	-	0.5	44	13.90	<0.5	19	31
5	905AL267	С	560	-	-	<0.5	0.17	20		<0.5	42	13.90	<0.5	7	114
6	9081416	B	-2	1526	-	0_4	2.64	6	<20	-	<1	1.20	<1	47	258
7	908T415	в	-	<5	-	0.9	0.05	7	300	-	<1	>10.00	<1	9	62
8	90KC148	С	<5	-	-	<0.5	6.73	70		<0.5	2	1.26	<0.5	13	61
9	90SAL233	С	80	-	-	<0.5	5.31	210	-	<0.5	4	1.07	<0.5	6	63
10	90KC116	С	450		-	<0.5	0.40	50	-	<0.5	8	3.66	<0.5	18	280
11	90KC167	С	>10000	-	0.878	<0.5	0.26	10	-	3.5	26	11.90	<0.5	190	58
12	90BT425	В	-	1029	-	0.6	0.13	<5	<20	-	<1	2.16	<1	12	13
13	90KC114	C	>10000	-	1.874	23.5	0,33	20	-	<0.5	128	0.03	<0.5	14	100
14	90KC135	С	<5	-	-	<0.5	5.75	110	•	<0.5	2	9.18	<0.5	19	40
15	9081426	8	-	<5	-	0.6	0.16	17	90	-	<1	2.36	<1	9	8
16	90KC130	с	10	-	-	<0.5	0.65	90	-	<0.5	104	22.60	<0.5	<1	14
17	90KC168	с	650	-	-	<0.5	0.19	10	•	<0.5	4	17.40	<0.5	6	63
18	90BT451	8	-	<5	-	0.4	1.72	106	2000	-	<1	0.21	<1	38	62
19	90KC163	С	<s< td=""><td>-</td><td>-</td><td><0.5</td><td>9.32</td><td>1300</td><td>-</td><td>1.5</td><td><2</td><td>2.88</td><td><0.5</td><td>9</td><td>17</td></s<>	-	-	<0.5	9.32	1300	-	1.5	<2	2.88	<0.5	9	17
20	90KC165	С	135	-	-	<0.5	0.54	30	•	<0.5	32	0.41	<0.5	550	220
21	90KC141	с	<5	-	-	<0.5	4.81	190	-	0.5	z	0.53	<0.5	223	178
22	90SAL232	С	15	-	-	<0.5	7.56	540	•	<0.5	<2	5.47	<0.5	13	143
23	90KC149a	С	<5	-	-	<0.5	6.77	20	-	<0.5	42	2.22	<0.5	29	389
24	90KC149b	с	<5	-	-	<0.5	9.14	1480	-	0.5	20	1.45	<0.5	8	76
25	90KC157	с	<5		-	<0.5	7.92	710	-	1.0	<2	3.61	<0.5	9	65

Table 1. Rock analyses from the Dolomi area, Prince of Wales Island, Southeast Alaska (Values listed in parts per million unless otherwise noted.)

18 = Bondar Clegg & Company Ltd., North Vancouver, B.C.; C = Chemex Labs, Inc., North Vancouver, B.C.

2- = Not analyzed

Мар ло.	Cu	Fe%	к%	Mg%	Mn	Mo	Na%	Ni	Р	Pb	Sr	Ti %	v
	1CP	ICP	100	I CP	I CP	ICP	ICP	ICP	ICP	1 CP	ICP	ICP	ICP
1	575	7.60	0.69	2.48	1765	6	3.40	17	980	10	268	0.71	297
2	7	3.86	3.53	0.41	430	4	4.60	1	310	6	32	0.09	<1
3	474	16.20	0.04	5.53	515	4	<0.01	31	<10	<2	174	<0.01	10
4	165	12.70	0.06	6.51	730	<1	<0.01	6	<10	34	175	<0.01	7
5	2630	4,42	0,06	6.54	870	<1	0.04	4	<10	2	220	<0.01	8
6	116	5.90	<0.05	2,79	700	<1	<0.05	92	-	<2	41	-	61
7	28	7.31	<0.05	6.35	800	<1	<0.05	4	-	4	127	-	10
8	22	5.07	0.15	1.19	1425	<1	3.52	4	470	Z	318	0.32	87
9	30	2.78	1.28	0.83	465	2	1.39	1	290	4	77	0.08	8
10	108	4.08	0.11	1.81	260	<1	0.05	9	60	<2	64	<0.01	10
11	60	22.50	0.06	5.18	670	3	0.02	28	<10	8	166	<0.01	14
12	32	3.31	<0.05	>10.00	800	<1	<0.05	3	-	3	189	-	13
13	>10000	12.50	0.06	<0.01	60	<1	<0.01	30	<10	94	6	<0.01	2
14	65	6.49	0.84	1.77	970	1	1.96	7	540	<2	161	0.31	95
15	4	2.76	0.08	8.31	700	<1	<0.05	12	-	3	242	-	16

<1

5

2

1

<1

<1

4

5

6

1

0.05

0.04

<0.05

5.81

0.05

2.67

0.96

0.25

0.68

3.74

<10

<10

410

300

730

1300

850

1410

1430

-

6

6

40

8

59

36

21

182

11

15

<2

<2

<2

<2

24

2

4

<2

4

<2

Z73

194

160

19

98

253

102

210

122

5

0.01

<0.01

0.19

0.08

0.13

0.40

1.24

0.79

0.35

-

Table 1. Rock analyses from the Dolomi area, Prince of Wales Island, Southeast Alaska (cont.)

16

17

۱8

19

20

21

22

23

24

25

2

124

452

403

58

29

81

86

8

>10000

2.12

5.29

7.17

2.52

4.40

3.64

8.34

6,26

3.88

>25.00

0.26

0.08

0.33

1.21

<0.01

0.65

1.91

0.07

2.37

1,41

9.68

8.91

1.17

0.78

0.40

0.28

1.53

5.75

2.68

1,48

795

1140

400

650

120

130

345

920

360

290

W

1 CP

<10 <10

<10 <10

<10

<10

<10

<10

<10 <10

<10

<10

<10 <10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

<10

20

11

42

58

59

53

Z29

219

361

239

Zn

I CP

132

16 32

50

60

262

29

74 56

24

46

19 102

68

31

38

56

50

34

58

16

72

190

110

82

Table 1. Rock analyses from the Dolomi area, Prince of Wales Island, Southeast Alaska (cont.)

Map no.	As	sb	Te	ца Га	٢	Sn	Нg
	ICP	ICP	ICP	ICP	ICP	XRF	AA
-	·	'	'				'
2	`	'	'	'		،	•
м	,	•	•	,		,	•
4	•	۰	'	'	ł		'
2		,	,	٠	·		'
6	10	ŝ	<10	£	Ś	6	0-042
7	10	Ŷ	<10	Ļ	S	Ŷ	0-06
80	'		•	•	٠		¢
6	•		·	•	•	,	,
10	،				•		`
11	•		•		,	,	,
12	6	Ą	<10	Ļ	9	ŝ	0.025
13	ı				٠	,	•
14	•	,	,	,	,	,	•
15	ν	ĉ	<10	2	16	Ş	0,014
16	•			,	,	•	•
17	,		,			•	,
18	80	ŝ	<10	~	2	ŝ	0.034
19	•			•	,		'
20	،		•	•	,		'
21		•	،	•	٢		'
22	,		,		٢	•	ſ
23	•	,	٢	•	٢	،	ſ
24	'		,		,		,
52	•		,	,	,		,

Map no.	Field no.	Lab.1	Au ppb	Au ppb	Au oz/T	Ag	Al%	Ba	Ва	Be	Bi	Ca%	Cd	Co	Cr
			FA+AA 30g	FA+AA 10g	FA-Grav.	AAS	I CP	I CP	XRF	I CP	ICP	ICP	I CP	I CP	1CP
26	90BT446	B	-2	<5	-	0.7	0.17	70	440	-	<1	<0.05	<1	8	228
27	90BT447	В	•	<5	-	0.7	5.28	102	1600	-	<1	0.64	<1	24	25
28	90KC159	С	<5	-	-	<0.5	8.42	110	-	<0,5	28	4.47	<0.5	37	46
29	90BT402	В	•	75	-	5.1	1.24	20	80	•	<1	4.77	<1	292	57
30	90BT437	В	-	<5	-	0.4	1.17	129	1800	-	<1	1.37	<1	9	75
31	90BT444B	в	-	<5	-	0.8	2.59	49	330	-	<1	0.29	<1	21	111
32	90BT443	в	-	<5	-	0.4	0.90	11	<20	-	<1	0.58	<1	34	65
33	90BT441	В	-	<5	-	0.6	2.26	27	20	-	<1	0.87	<1	18	23
34	90BT440	в	-	<5	-	<0.2	1.12	26	210		<1	0.89	<1	45	148
35	908T438	В	-	<5	-	0.5	3.71	75	1300	-	<1	0.24	<1	11	41
36	90KC100	с	190	-	-	<0.5	3.22	90	-	<0.5	20	11.25	1.0	230	31
37	90BT408	в	-	8	-	4.5	0.62	28	<20	-	<1	8.6	41	116	57
38	908T448	в	-	<5	-	0.5	2.26	15	50	-	<1	0.38	<1	5	81
39	90KC113	С	20	-	~	1.5	3.66	200	-	<0.5	46	0.15	<0.5	6	211
40	90KC161	С	90	-	-	12.5	3.99	160	-	<0.5	<2	7,60	<0.5	28	73
41	90BT419	в	-	<5	-	0.3	0.29	7	<20	-	<1	1.07	<1	<1	37
42	90SAL237	С	10		-	<0.5	8.51	800	-	<0.5	36	2.33	<0.5	17	328
43	908T421	в	-	27	-	0.9	0.42	19	120	-	<1	>10.00	<1	47	190
44	90SAL245	с	<5	-	-	0.5	2.37	410	-	<0.5	82	15.75	<0.5	<1	433
45	90SAL261	С	<5	-	-	<0.5	7.40	220	-	<0.5	36	5.69	<0.5	17	40
46	905AL216	с	5	-	-	<0.5	4.15	300	-	<0.5	24	9.68	<0.5	32	553
47	90KC125	С	70	-	-	<0.5	0.19	70	-	<0.5	<2	>25.00	<0.5	<1	8
48	90BT424	В	-	<5	-	0.7	0.13	<5	110	•	<1	2.09	<1	12	14
49	90SAL217	С	10	-	-	1.0	0.78	70	-	<0.5	<2	>25.00	<0.5	1	22

Table 1. Rock analyses from the Dolomi area, Prince of Wales Island, Southeast Alaska (cont.)

^{18 =} Bondar Clegg & Company Ltd., North Vancouver, B.C.; C = Chemex Labs, Inc., North Vancouver, B.C.

^{2- =} Not analyzed

Table 1.	Rock analyses for	rom the Dolo	omi area,	Prince of	Wales	Island,	Southeast	Alaska ((cont.)

Map no.	Cu	Fe%	κ%	Mg%	Mn	Mo	Na%	Ní	Р	Pb	\$r	Ťi%	v	u .	Zn
	ICP	ICP	I CP	1CP	ICP	I CP	ICP	ICP	I CP	1 CP	ICP	ICP	ICP	ICP	I CP
26	112	>10.00	0.05	<0.05	<100	7	<0.05	16	-	3	8	-	11	<10	<1
27	77	>10.00	<0.05	5.00	600	1	<0.05	10	•	4	27	-	146	<10	172
28	103	10.75	0.13	4.46	890	<1	0.23	19	1900	2	272	1.06	473	<10	184
29	3450	>10.00	0.07	0.20	1500	3	<0.05	6	-	32	421	-	29	<10	97
30	48	6.10	0.23	1.24	<100	14	<0.05	11	-	4	34	•	113	<10	69
31	97	7.29	Q_11	1.72	1200	10	<0.05	42	-	15	18	-	125	<10	146
32	7	5.66	0.28	0.14	800	2	<0.05	7	-	3	22	~	66	<10	5
33	147	>10.00	<0.05	1.22	900	<1	0.11	5	-	3	84	•	201	<10	55
34	76	5.20	0.20	0.32	<100	12	<0.05	80	-	<2	29	-	42	<10	28
35	143	>10.00	0.12	1.92	500	1	<0.05	7	-	<2	20	-	126	<10	145
36	3850	15.10	0.16	1.09	6740	46	0.03	2	110	80	546	0.06	169	<10	1135
37	625	8.37	<0.05	0.13	19100	12	<0.05	3	-	32	37	-	21	<10	17593
38	38	6.94	<0.05	1.37	600	3	<0.05	4	-	<2	14	•	70	<10	111
39	195	21.80	0.77	0.22	175	22	0.64	45	390	28	68	0.17	127	<10	36
40	69	19.95	0.70	0.80	690	16	1.03	66	550	22	254	0.31	178	<10	48
41	3	6.27	0.21	0.27	600	3	0.07	1	-	3	9	-	2	<10	6
42	52	13.65	2.04	1.20	635	12	1.80	79	1320	12	Z48	0.51	269	<10	50
43	88	4.50	0.29	5.40	300	1	<0.05	541	-	4	200	-	30	<10	208
44	5	2.48	1.06	7.84	755	<1	0.38	97	<10	4	378	0.05	67	<10	96
45	37	3.60	3.78	3.59	110	2	0.27	6	220	2	237	0.30	169	<10	74
46	43	4.49	1.47	4.61	375	<1	0.43	106	1040	4	180	0.17	152	<10	54
47	6	1.44	0,04	2.68	780	<1	0.02	9	160	2	139	0.01	10	<10	24
48	31	3.22	<0.05	9.94	800	<1	<0.05	3	-	4	183	-	13	<10	18
49	16	2.62	0.30	3.12	430	2	0.17	4	100	4	348	0.04	21	<10	16

Table 1. Rock analyses from the Dolomi area, Prince of Wales Island, Southeast Alaska (cont.)

Map no.	As	Şþ	1e	La	۲	Sn	ВH
	ICP	ICP	ICP	ICP	ICP	XRF	AA A
56	ŝ	Ŷ	¢10	ŗ	ъ	ර	0.022
27	19	ŝ	<10	2	4	ŝ	0.032
28	•		,	•	ſ	•	'
\$	17	\$	<10	2	6	11	0.059
30	18	5	<10	4	13	1	0-035
;			4	ļ	¢		
51	\$	Ŷ	0L>	=	Ø	٥	750.0
32	12	÷	<10 <	Ś	16	ц	0.043
33	ŝ	Ŷ	<10	2	6	5	0.025
34	37	Ŷ	<10	ŗ	2	8	0.029
35	11	ŝ	<10	S	6	\$	0.030
36	•	،	•	,	ł	•	•
37	12	ŝ	<10	₽	2	7	2-436
38	ŝ	ŝ	<10	un.	12	9	0-029
39	•	•	٠	•	•	•	,
40	•	•	4	•	ı	•	ì
41	ŝ	\$	<10	10	80	11	0.029
42	•	،	•	,		•	'
43	29	ŝ	<10	-	м	ŝ	0.129
44	•	ì	•	,	,	•	,
45	4		,	ı	,	4	,
46	•		,	•	Ņ	'	'
25	•	'		٠	•	,	`
48	6	Ş	<10	4	6	9	0.036
49	•	•	•	,	•	,	

.

Table 2. Rock sample descriptions

Map no.	Field no.	Description
1	905AL269	Pyritic, light-colored phase(?) (possibly dike) in syenite quarry
2	90KC131A	Brick red-colored med. grained hornblende(?) syenite, carbonate veinlets with pyrite, mafic minerals very altered
3	90SAL266	Chalcopyrite/pyrite pod in quartz-carbonate zone
4	90KC118	Pods to 5 cm in diam. of massive pyrite and chalcopyrite in 5 m wide zone of quartz-carbonate breccia
5	90SAL267	Black phyllitic shale
6	9081416	Quartz-carbonate zone with pods of pyrite and chalcopyrite, chip-channel over 1 m
7	90BT415	Disseminated sulfides in muscovite-rich schist and dolomite; two zones each about 10 m thick sampled
8	90KC148	Limonite encrusted outcrop of actinolite schist
9	90SAL233	Pale green schist with pyritic quartz veins.
10	90KC116	Pyrite-chalcopyrite bearing quartz-carbonate breccia
11	90KC167	Massive pyrite/chalcopyrite pods to 10 cm diam. in quartz-carbonate breccia
12	90BT425	Pyrite pods in quartz carbonate zone 2-3 m thick, chip-channel across 2 m
13	90KC114	Chalcopyrite-bearing quartz vein, 10 cm wide
14	90KC135	Quartz chlorite schist interlaminated with siliceous pyrite-rich layers, sample from 15 cm wide pyritic zone
15	90BT426	Pyrite pods in quartz carbonate
16	90KC130	Quartz-carbonate breccia zone with trace pyrite, abundant quartz veining
17	90KC117	Quartz-carbonate breccia with chalcopyrite
18	90BT451	Pyrite-rich quartz sericite schist zone, 6 m thick, part of larger felsic meta-tuff horizon
19	90KC163	Numerous small cross-cutting barite(?) veinlets in light green calcareous quartz sericite schist
20	90KC165	Massive pyrite from 20 x 60 cm vug at margin of fine grained mafic dike
21	90KC141	Iron-stained quartz chlorite schist with minor pyrite and chalcopyrite in 10 cm wide quartz vein
22	905AL232	Calcareous quartz muscovite schist, pyrite along foliations
23	90KC149A	Light gray-green, síliceous aphanitic dike about 1 m wide, finely disseminated sulfides
24	90KC1498	Dark gray calcareous graphitic quartz muscovite schist, finely disseminated sulfides along foliations
25	90KC157	Iron stained, gray, calcareous graphitic actinolite schist, most of outcrop is gray-green quartzite

Table 2. Rock sample descriptions (cont.)

Map no.	field no.	Description
26	90B1446	1.2 m thick quartz vein with ferricrete vug fillings and calcite breccia
27	90BT447	Pyrite-rich quartz sericite schist horizon; 1 m chip channel
28	90KC159	Iron-stained quartz muscovite schist associated with minor quartz veining
29	90BT402	Chalcopyrite, pyrite, and magnetite in folded layers within greenschist; sampled over 1 m interval
30	90BT437	Pyrite-rich quartz-sericite schist; part of larger felsic metatuff section; 2 m thick chip-channel
31	908T444b	Gossanous quartz sericite schist horizon in marble/schist unit
32	908T443	Gossanous, tuffaceous semischist with ferricrete fracture fillngs; 2 m chip-channel
33	90BT441	Pyrite-rich quartz sericite schist horizon, 3 meters thick; believed to be stratigraphically equivalent to no. 34
34	90B1440	Pyrite-rich quartz sericite schist layer 1 m thick; part of larger meta-tuff package; believed to be stratigraphically equivalent to no. 35
35	9081438	Pyrite-rich quartz sericite schist zone; 2.5 m chip channel
36	90KC100	Sulfide-magnetite-garnet zone in metasomatic(?) zone within chlorite actimolite schist
37	90BT408	Sulfide-magnetite-garnet zone in amphibole-rich metasomatic(?) zone within chlorite actinolite schist, sampled over 2 m
38	90BT448	Pyrite-rîch quartz sericite schist, 2 m chip channel
39	90KC113	Quartz sericite schist, pyrite and chalcopyrite along foliations
40	90KC161	Quartz sericite schist, sulfides along foliations
41	90BT419	Mineralized sericite-sulfide metakeratophyre tuff; grab sample over 3 meters
42	90SAL237	Pyritic, gossanous material
43	90BT421	Sulfide-bearing metarandesite on basalt
44	90SAL245	Dolomite and mica schist with green stain, some dendritic pyrite
45	90SAL261	Pyritic, calcareous mica schist; mica mineral is green
46	905AL216	Limestone with green malachite(?) stain and pods of micaceous schist (about 1% of rock)
47	90KC125	FeO-stained, quartz carbonate altered zone (igneous origin?) 10 m wide, cutting gray marble
48	9081424	Malachite-stained calcite veins in bleached marble
49	90SAL217	Pyritic marble

APPENDIX

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5

ORDER		ELENENT	LO DETECTI	WER ON LINIT	EXTRACTION	ME THOD
1	1 ، ، ۵	No Gold - Eire Assav	ς	PPR	Fíra-Accav	Fire Accau da
2	Ag	Silver	0.2	PPN	HNO3-HC1 Pot Extr.	Ind. Coupled Plasm
3	Cu	Copper	1	85M	HNO3-HC1 Hot Extr.	Ind. Coupled Plasm
4	РЪ	iead	2	PPH	HRO3-HC1 Hot Extr.	Iro. Coupled Plasm
5	Zn	Zinc	1	PPM	HNO3-HCl Hot Extr.	Ind. Coupled Plasm
6	Мo	Molybdenum	ì	PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasm
7	Ni	Nickel	1	PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasm
8	Co	Cobalt		PPN	Hu03-rCl Hot Extr.	Ind. Coupled Plasm
9	Cd	Cadmium	1	PPM	HN03-HC1 Hot Extr.	Ind. Coupled Plasm
10	As	Arsenic	5	PPM	HN03-HC) Hot Extr.	Ind. Coupled Plasm
11	Sb	Antimony	5	85M	HN03-HCl Hot Extr.	Ind. Coupled Plasm
12	۶e	Iron	0.01	P01	HNO3-HC1 Kot Extr.	Ind. Coupled Plasm
13	Яn	Manganese	0.01	PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasm
14	Īe	Tellurium	10	PPR	HN03-HC1 Hot Extr.	Ind. Coupled Plasm
15	8a	8arium	5	PPH	HN03-HC1 Hot Extr.	Ind. Coupled Plasm
16	Ĉr	Chromium	1	ррм	HNO3-HCl Hot Extr.	Ind. Coupled Plasm
17	V	Vanadium	1	89M	HN03-HC1 Hot Extr.	Ind. Coupled Plasm
18	W	Tungsten	10	PPN	HNO3-HC1 Hot Extr.	Ind, Coupled Plasm
19	La	Lanthanum	1	PPM	HNO3-HC) Hot Extr.	Ind. Coupled Plasm
20	A	Aluminum	0.02	139	HNO3-HCl Hot Extr.	Ind. Coupled Plasm
21	Kg	Magnesium	0.05	PCT	HN03-HCl Hot Extr.	Ind. Coupled Plasm
22	Cà	Calcium	0,05	PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasm
23	Na	Sodium	0.05	PCT	HN03-HC1 Hot Extr.	Ind. Coupled Plasm
24	К	Potassium	0.05	PCT	KNO3-HC1 Hot Extr.	Ind. Coupled Plasm
25	Sr	Strontium	1	PPN	HND3-HC1 Hot Extr.	Ind. Coupled Plasm
26	Y	Yttrium	1	22M	RN03-HC1 Hot Extr.	Ind. Coupled Plasm
27	81	8ismuth	1	PPN	HNO3-HC1 Hot Extr.	Atomic Absorption
28	Hg	Nercury	0.010	PPX	HN03-HC1-SnS04	Cold Vapour AA
29	8a	Bariun	20	PPN		X-Ray Fluorescence
30	Sn	Tin	5	29 %		X-Ray Fluorescence

6 F

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Chemex Labs Ltd. 994 West Glendale Ave., Suite 7 Sparks, Nevada, 89431

SAMPLE PREPARATION CHEMEX CODE DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION 20B 8 Assay ring to approx 150 mesh 294 8 Assay ring to approx 150 mesh 290 8 Assay total ICP digestion charge

SAMPLE PREPARATION

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205	22	Geochem ring to approx 150 meeb
294	22	Crusb and split (0-10 pounds)
232	22	PERCHLORIC-NITRIC-HYDROFLUORIC D

ANALYTICAL PROCEDURES			
CODE DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983 Au ppb: Fuse 30 g sample Ag ppm: 24 element, rock & core Al %: 24 element, rock & core 565 Ba ppm: 24 element, rock & core 561 Bi ppm: 24 element, rock & core 562 Cd ppm: 24 element, rock & core 563 Co ppm: 24 element, rock & core 563 Co ppm: 24 element, rock & core 563 Co ppm: 24 element, rock & core 564 Cd ppm: 24 element, rock & core 565 Cr ppm: 24 element, rock & core 566 Cr ppm: 24 element, rock & core 567 Cu ppm: 24 element, rock & core 568 Cr ppm: 24 element, rock & core 569 Cr ppm: 24 element, rock & core 569 Fe %: 24 element, rock & core 569 K %: 24 element, rock & core 569 Mg %: 24 element, rock & core 569 Mn ppm: 24 element, rock & core 569 Mn ppm: 24 element, rock & core 564 N1 ppm: 24 element, rock & core 565 Pb ppm: 24 element, rock & core 566 Sr ppm: 24 element, rock & core 579 Ti %: 24 element, rock & core 570 Mppm: 24 element, rock & core 571 M ppm: 24 element, rock & core 572 V ppm: 24 element, rock & core 573 M ppm: 24 element, rock & core 574 M ppm: 24 element, rock & core 575 M ppm: 24 element, rock & core 575 M ppm: 24 element, rock & core 576 M ppm: 24 element, rock & core 577 M ppm: 24 element, rock & core 578 M ppm: 24 element, rock & core 579 Ti %: 24 element, rock & core 579 Ti %: 24 element, rock & core 579 M ppm: 24 element, rock & core 570 M ppm: 24 element, rock &	PA-AAS AAS ICP-AES	5 0.5 0.01 10 0.5 2 0.01 0.5 1 1 0.01 0.01 0.01 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.2 1 0.01 0.2 1 0.01 0.5 1 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 2 0.01 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.01 0.5 1 0.5 1 0.5 1 0.01 0.5 1 0.01 0.5 1 0.01 0.5 1 0.01 0.5 1 0.01 0.0	10000 200 25.0 10000 25.0 10000 10000 10000 10000 25.0 20.0 20.0 20.0 20.0 10000 10000 10000 10000 10000 10000 10000 10000

. .