Public-data File 91-220

NATIONAL URANIUM RESOURCE EVALUATION GEOCHEMICAL DATA FOR STREAM- AND LAKE-SEDIMENT SAMPLES IN THE HEALY QUADRANGLE, ALASKA

by

M.A. Wiltse

Alaska Division of Geological & Geophysical Surveys

December 1990

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645

NATIONAL URANIUM RESOURCE EVALUATION GEOCHEMICAL DATA FOR STREAM- AND LAKE-SEDIMENT SAMPLES IN THE HEALY QUADRANGLE, ALASKA

by M.A. Wiltse

INTRODUCTION

Purpose:

In December of 1990 the Alaska Division of Geological and Geophysical Surveys (ADGGS) began a mineral resource evaluation of those lands still available for state selection under the Alaska Statehood Act. As part of that process ADGGS is reviewing the stream- and lake-sediment geochemical data generated during the U.S. Department of Energy, National Uranium Resource Evaluation (NURE) program.

This Public-data File has been released so that a summary of that data is available to interested persons. This publication has not been formally reviewed for technical accuracy or for conformity to the editorial standards of ADGGS.

Scope of data:

ADGGS has reviewed NURE geochemical data for the following 1:250,000 quadrangles:

Anchorage	ANC
Baird Mountains	XBM
Beaver	BVR
Bendeleben	BEN
Bering Glacier	XBG
Bettles	BET
Big Delta	XBD
Black River	BLR
Candle	CAN
Chandalar	CHN
Charley River	CHR
Circle	CIR
Eagle	EAG
Gulkana	GUL
Healy	HEA
Hughes	HUG
Iditarod	IDT
Kateel River	KAT
Lime Hills	LIM
Livengood	LIV
Medfra	MED
Melozitna	MLZ
Misheguk Mountain	MIS
Mount Hayes	XMH
Nabesna	NAB

Nome MOM Norton Bay NOB Nulato NUT Phillip Smith Mountains PSM Point Hope **XPH** Point Lay XPL Ruby RUB Selawik SLK Shungnak SHU Sleetmute SLT Solomon SOL Talkeetna Mountains TLM Tanacross TNX Tanana TAN Teller TEL Umiat UMI Unalakleet UKT Utukok River XUR Valdez VAL Wiseman WIS

Limitations of data:

Our review has been limited to the following elements: Ag, As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, La, Mn, Mo, Ni, Pb, Sb, Sn, Ti, U, U/Th, V, W, Zn

The Nure data set also contains analyses for: Al, Ca, Ce, Cl, Cs, Dy, Eu, Hf, K, Li, Lu, Mg, Na, Nb, Rb, Sc, Sm, Sr, Ta, Tb, Th, Yb, Zr. These data have not been analyzed in the present study.

Because of the procedures used in generating the initial chemical analyses, the NURE geochemical data set has severe limitations. Many elements were determined at only a few sample sites resulting in many samples having incomplete data coverage. The detection limit for many elements is high, making those data of limited effectiveness in delineating mineral resources. Regardless of these and other shortcomings, however, the NURE data do provide information concerning mineralization in many poorly accessible parts of Alaska.

Contents:

This Public-data File (PDF), and the PDFs for the above listed quadrangles, contain a columnar ASCII file on a 5 1/4" high density floppy disk that includes: sample number, replicate code, sample type code, latitude, longitude, and the complete set of elemental analyses available for each sample in the quadrangle. These data are consistently ordered in the file as shown below:

Sample number, Replicate code, Latitude, Longitude, Sample-type code, U Ag Bi Cd Cu Nb Ni Pb Sn W As Zr Mo Be Li Al Au Ea Ca Ce Cl Co Cr Cs Dy Eu Fe Hf K La Lu Mn Mg Na Rb Sb Sc Sm Sr Ta Tb Th Ti V Yb Zn U/Th

All values are entered as parts per million. The data file bears a three letter identification and the extension "ASC" (eg. EAG.ASC for the Eagle Quadrangle data file).

A sample replicate code of "0" indicates that the sample is the initial sample taken at a site and is the code found for most samples. Subsequent samples collected from the same site have successively

ŕ

higher integer designations. Sample type codes range from "01" to "99". The definition of these codes is found in Appendix A "Key to Sample Types".

Within the elemental analysis fields of a sample, values of -999 indicate that no analyses was attempted for that element. Other negative numbers (eg. -5) in an elemental analysis field of a record indicate that the element was not detected at a level equal to the absolute value of the negative number tabulated.

TREATMENT OF DATA

Elements:

Although all the elemental NURE data available for a quadrangle is included in the digital ASCII file supplied with this PDF, only a 24 element subset of data was analyzed for this PDF: Ag, As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, La, Mn, Mo, Ni, Pb, Sb, Sn, Ti, U, U/Th, V, W, Zn.

Grouping of data:

The majority of the Alaska Nure geochemical data is derived from stream sediment or lake sediment samples. Many data sets, however, have a few samples that are subtypes of these two fundamental sample groups. For the purpose of the data review released in this PDF, all subtype samples have been recoded to either the stream sediment type or the lake sediment type, whichever type they most closely resembled. We estimate that less than 1 percent of the samples encountered in this review were recoded.

Following sample-type recoding, brief summary statistics were calculated separately for the stream sediment samples (type=12) and for the lake sediment samples (type=13). These statistics provide a quick reference to the number of samples that have analytical values exceeding the detection limit and provide an indication of the geochemical dispersion of the elements for each sample type.

Single-element Pseudomaps of the data have been made that show the location of all samples having analytical values greater than the mean. This was accomplished by separately standardizing the data for each sample type, recoding all standard scores that were less-than-or-equal-to-zero to zero and then plotting a symbol at each sample site, the size of which is proportional to the elemental standardized value (Z-score) at that sample site. Because Z-scores are measures of standard deviation, this procedure results in a psuedomap with varying symbol size that directly reflects how far a sample's element content is above the mean. The larger symbols correspond to element values that are farthest above the mean value for the element in question. A Symbol-size key is provided in figure 1 which indicates the symbol size for element abundances from 1 to 6 standard deviations above the mean.

THE FOLLOWING RESULTS ARE FOR: TYPE = 12.000

TOTAL OBSERVATIONS: 830

	U	AG	ві	CD	CU
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	829 0.480 45.530 4.983 4.435	6 5.000 7.000 5.500 0.837	81 5.000 17.000 6.136 1.876	88 5.000 24.000 7.045 3.404	772 8.000 302.000 51.035 31.063
	NI	PB	SN	W	AS
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	669 9.000 437.000 48.637 36.375	483 5.000 341.000 13.878 17.878	24 10.000 1310.000 79.875 264.069	33 15.000 117.000 25.364 22.799	71 6.000 138.000 32.676 29.543
	MO	BE	AU	ВА	со
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	•	744 1.000 6.000 2.043 0.671	7 0.170 0.620 0.344 0.187	812 280.000 10240.000 1267.587 912.136	813 3.400 321.500 18.851 13.861
	CR	FE	MN	SB	TI
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	806 10.000 1624.000 123.128 106.359	829 7123.000 311100.000 44485.484 23087.910	829 51.000 15440.000 890.891 765.055	206 2.000 42.000 6.383 4.352	809 565.000 22950.000 5164.340 1979.506
	٧	ZN	UTH	LA	
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	826 15.000 405.000 137.148 58.445	432 46.000 1301.000 180.199 118.294	808 0.142 9.008 0.532 0.569	771 11.000 337.000 40.720 23.949	

THE FOLLOWING RESULTS ARE FOR:
TYPE = 13.000

TOTAL OBSERVATIONS: 519

	Ŭ	AG	ві	CD	СŪ
N OF CASES MINIMUM MAXIMUM	519 0.340 92.530	2 5.000 8.000	33 5.000 12.000	34 5.000	471 7.000
MEAN STANDARD DEV	3.789 6.013	6.500 2.121	5.939 1.749	12.000 6.147 1.617	214.000 43.677 25.993
	NI	PB	SN	W	AS
N OF CASES MINIMUM	387 15.000	220 5.000	8 10.000	6 16.000	24 5.000
MAXIMUM MEAN	235.000 37.432	66.000 11.109	25.000 15.125	49.000 26.167	39.000 15.750
STANDARD DEV	22.816	7.656	6.058	13.992	9.162
	МО	BE	AU	ВА	CO
N OF CASES	0	311	2	485	464
MINIMUM MAXIMUM		1.000 4.000	0.380 1.080	223.000 3585.000	3.100 71.400
MEAN	•	1.810	0.730	950.373	14.330
STANDARD DEV	•	0.647	0.495	413.767	8.288
	CR	FE	MN	SB	TI
N OF CASES	473	519	519	35	474
MINIMUM MAXIMUM	15.000 417.000	3130.000 174000.000	83.000 3878.000	2.000 26.000	731.000 11570.000
MEAN	96.085	30581.563	622.210	7.629	3840.949
STANDARD DEV	48.810	17686.850	423.611	5.750	1521.996
	v	ZN	UTH	LA	
N OF CASES	515	256	440	317	
MINIMUM MAXIMUM	16.000	53.000	0.167	10.000	
MEAN	361.000 108.775	823.000 183.668	19.687 0.649	119.000 30.697	
STANDARD DEV	54.296	79.500	1.103	13.951	

THE FOLLOWING RESULTS ARE FOR: TYPE = 14.000

TOTAL OBSERVATIONS: 3

MEAN

STANDARD DEV

	U	AG	BI	CD	CU
N OF CASES	3	0	1	0	3
MINIMUM	2.440		9.000	•	32.000
MAXIMUM	4.320		9.000	4	43.000
MEAN	3.447		9.000		39.000
STANDARD DEV	0.947	•	•	•	6.083
	ИІ	PB	SN	W	AS
N OF CASES	3	3	0	0	1
MINIMUM	25.000	6.000	,		33.000
MUMIXAM	47.000	25.000		•	33.000
MEAN	34.667	14.000			33.000
STANDARD DEV	11.240	9.849	•	•	•
	MO	BĒ	UА	ва	co
N OF CASES	0	3	0	3	3
MINIMUM		2.000	•	1126.000	8.100
MAXIMUM		2.000	•	1550.000	12.400
MEAN		2.000		1269.000	10.633
STANDARD DEV	•	0.000	•	243.366	2.250
	CR	FE	ИМ	SB	TI
N OF CASES	3	3	3	O	3
MINIMUM	95.000	21280.000	361.000		3816.000
MAXIMUM	165.000	33900.000	825.000		4496.000
$M \subseteq J \setminus J$	120 000	20566 667	500 DDD		1000 333

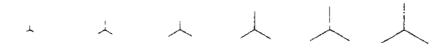
 128.000
 29566.667
 589.000

 35.171
 7178.979
 232.103

4099.333

353.883

	V	ZN	UTH	LA
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	3 87.000 110.000 100.667 12.097	•	3 0.315 0.387 0.357 0.037	3 27.000 53.000 37.333 13.796


THE FOLLOWING RESULTS ARE FOR:

TYPE = 97.000

TOTAL OBSERVATIONS: 1

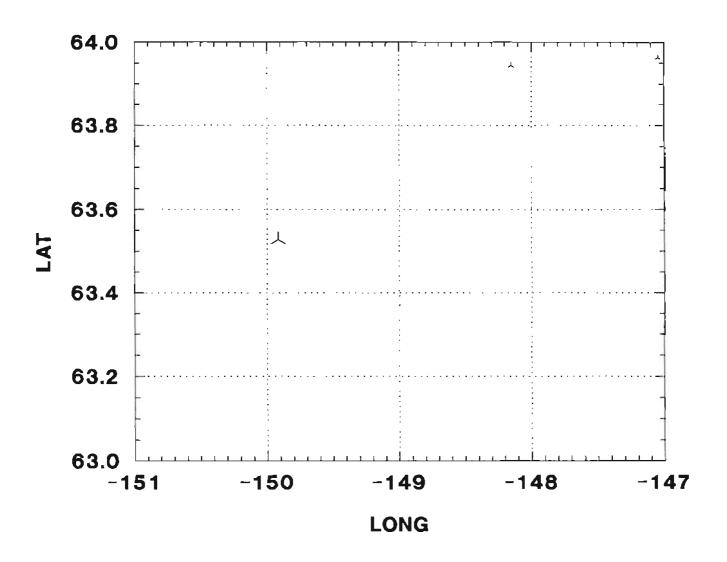
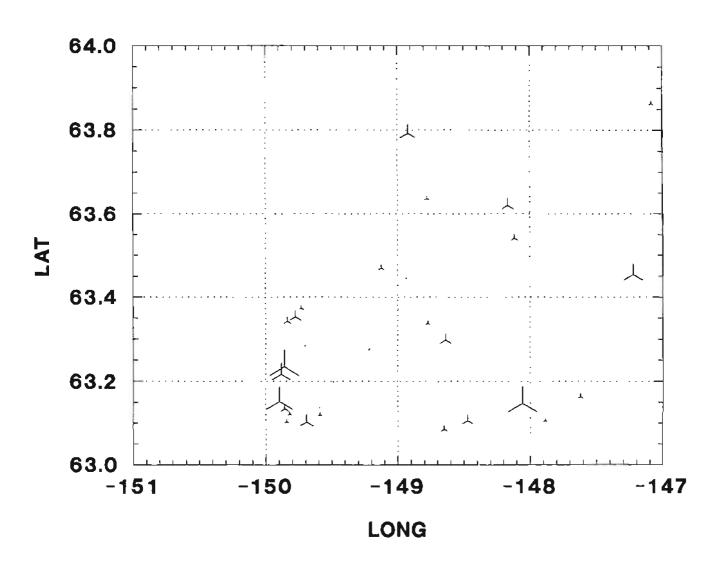
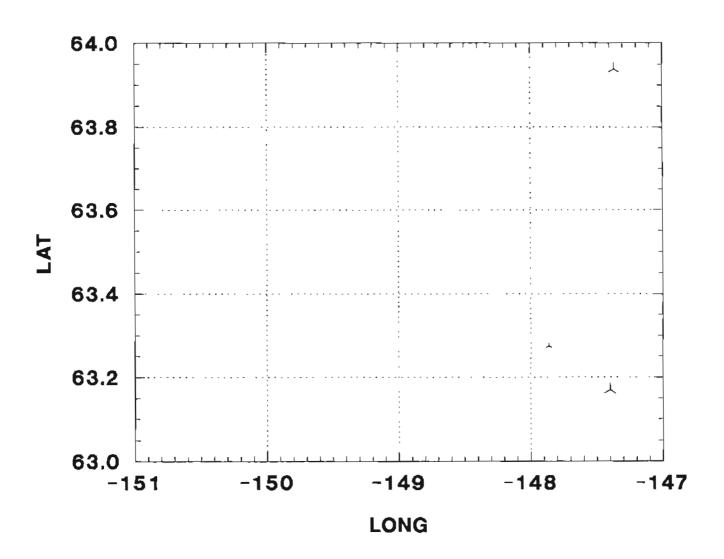
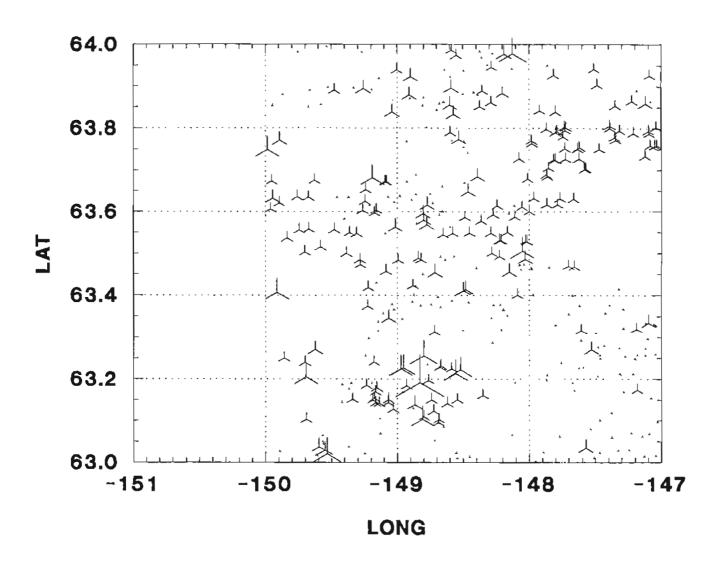

	Ü	AG	BI	CD	cu
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	1 3.120 3.120 3.120	0		· · · · · · · · · · · · · · · · · · ·	1 53.000 53.000 53.000
	NI	РВ	SN	w	AS
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	1 46.000 46.000 46.000	1 23.000 23.000 23.000	0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	MO	BE	AU	ВА	СО
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV		1 2.000 2.000 2.000		1 1087.000 1087.000 1087.000	1 20.700 20.700 20.700
	CR	FE	MN	SB	TI
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	1 150.000 150.000 150.000	1 55130.000 55130.000 55130.000	1 1250.000 1250.000 1250.000	1 4.000 4.000 4.000	1 4467.000 4467.000 4467.000
	٧	ZN	UTH	LA	
N OF CASES MINIMUM MAXIMUM MEAN STANDARD DEV	1 168.000 168.000	1 271.000 271.000 271.000	1 0.416 0.416 0.416	1 27.000 27.000 27.000	

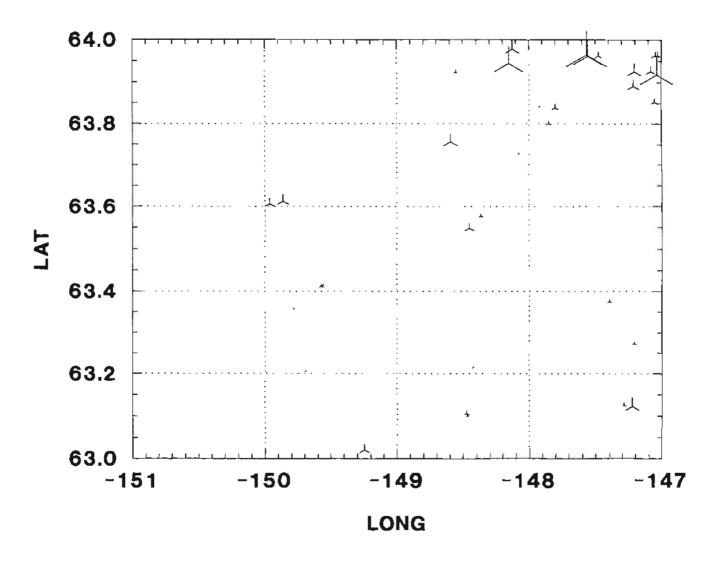
Figure 1. Symbol-size key for single element pseudomaps indicating the size of plotted symbols for values that are from 1 to 6 standard deviations above the mean.

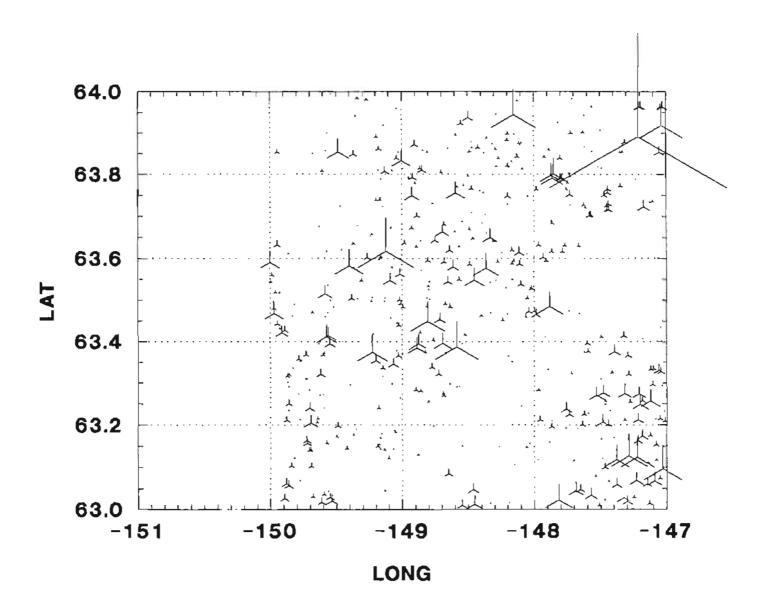


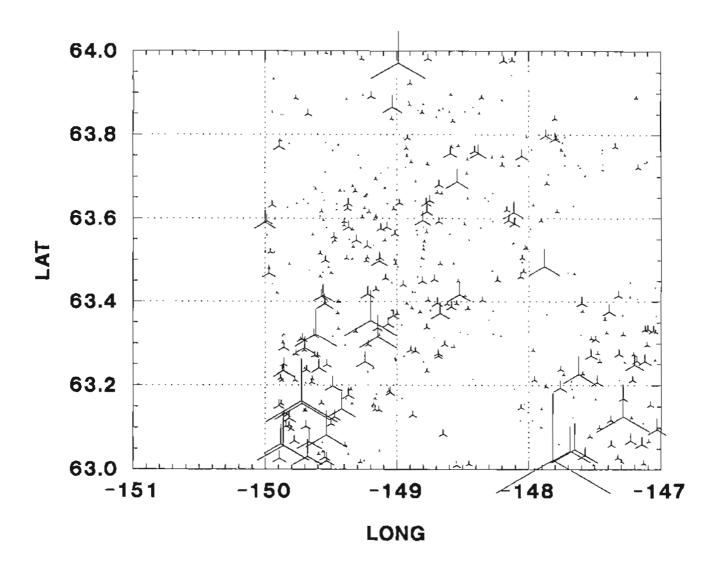
1 2 3 4 5 6
STANDARD DEVIATIONS ABOVE THE MEAN

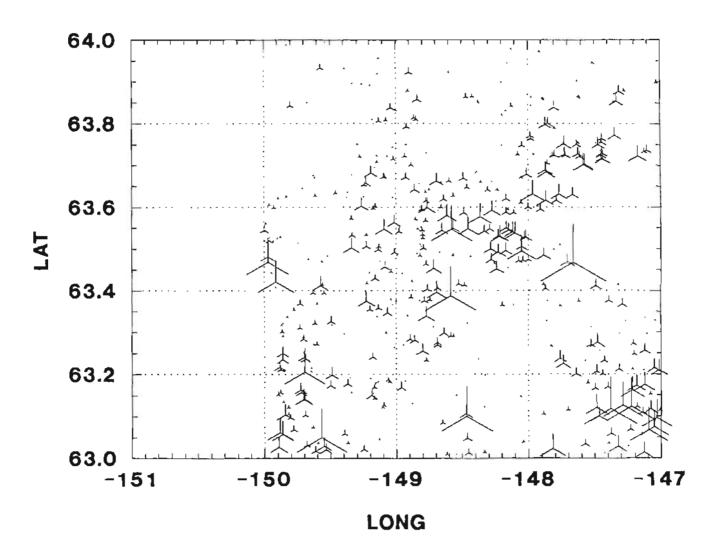

HEAZMAP NURE DATA FOR AG


HEAZMAP NURE DATA FOR AS

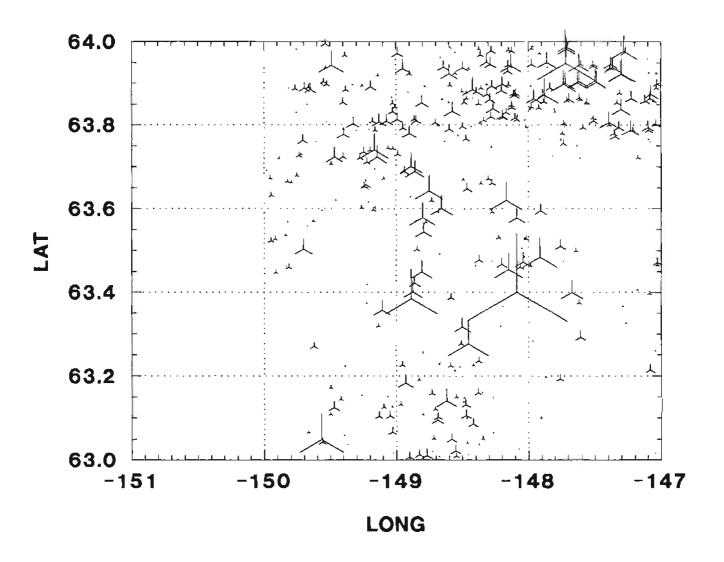

HEAZMAP NURE DATA FOR AU

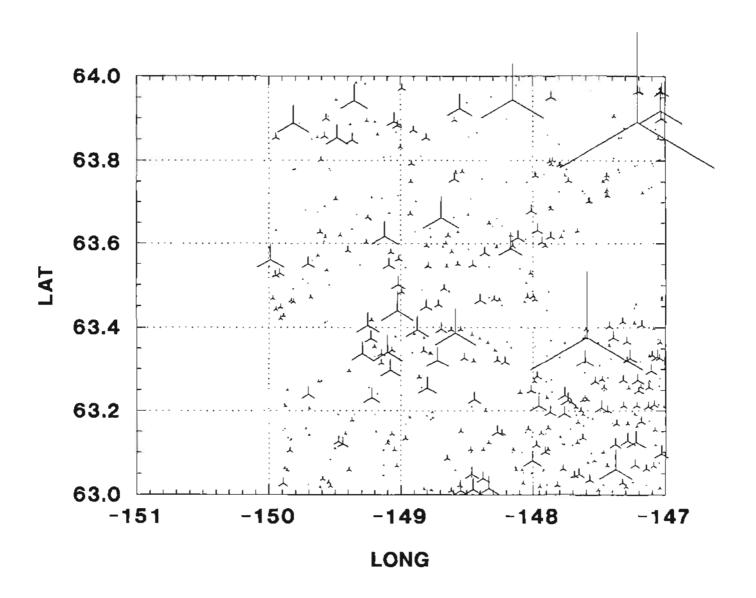

HEAZMAP NURE DATA FOR BE

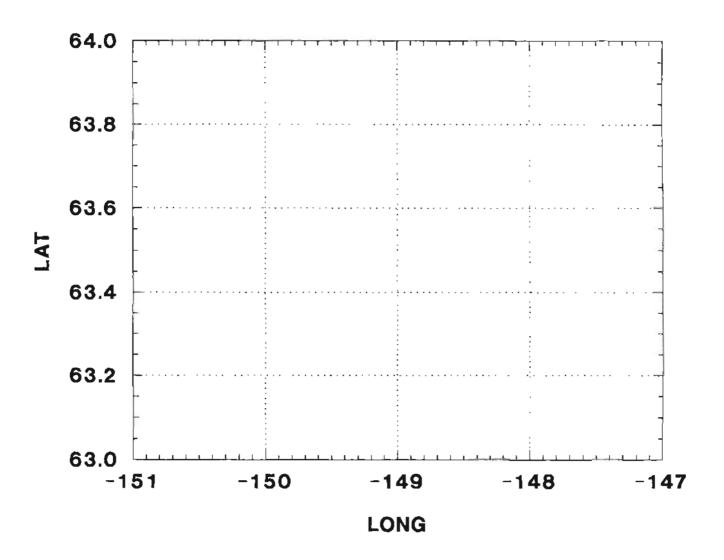

HEAZMAP NURE DATA FOR CD

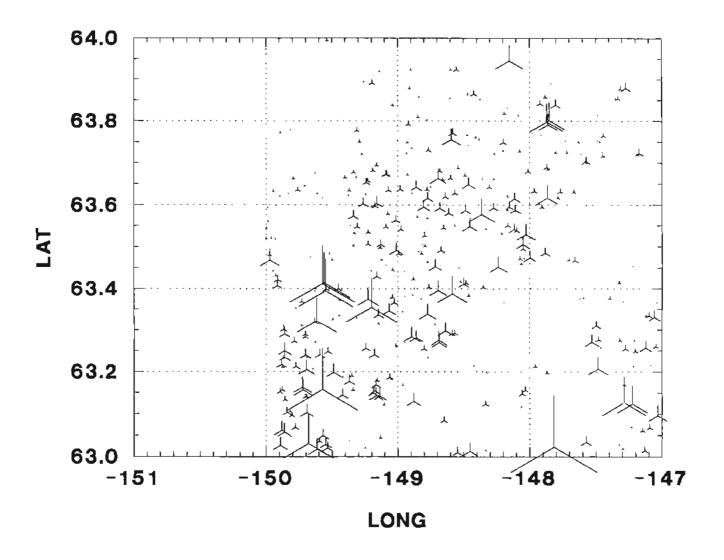

HEAZMAP NURE DATA FOR CO


HEAZMAP NURE DATA FOR CR

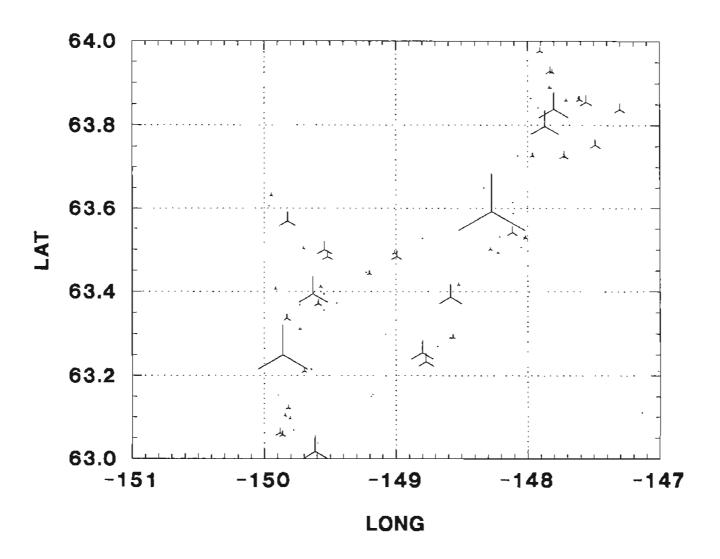

HEAZMAP NURE DATA FOR CU

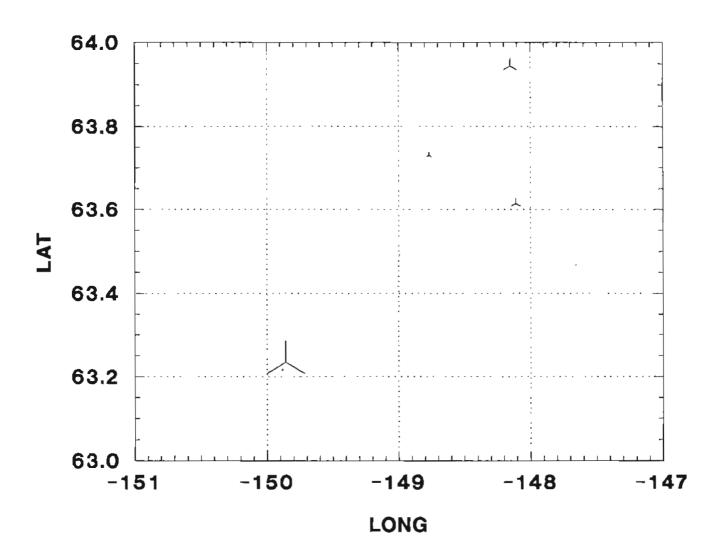

HEAZMAP NURE DATA FOR FE

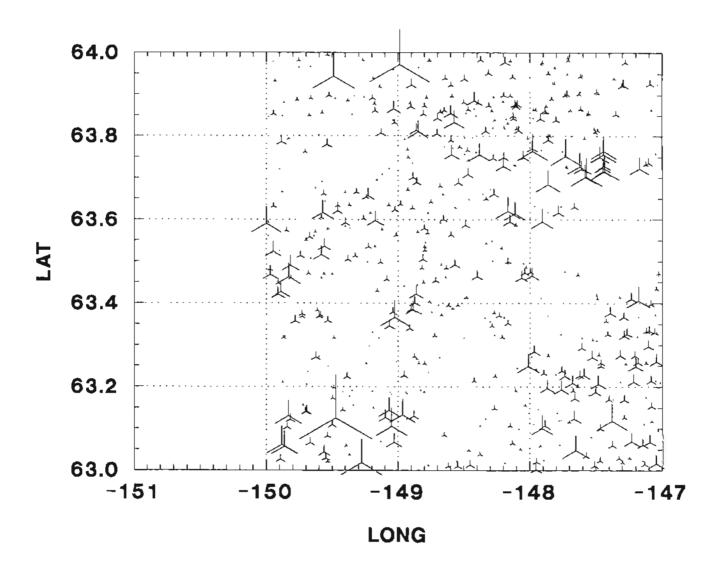

HEAZMAP NURE DATA FOR LA

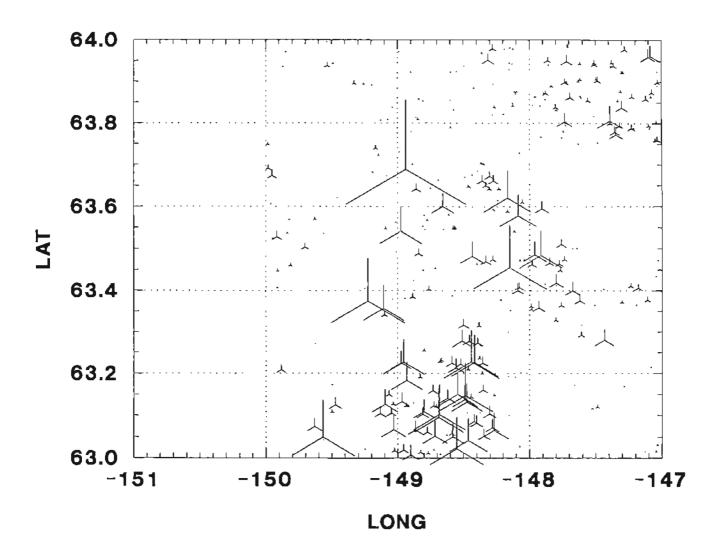

HEAZMAP NURE DATA FOR MN

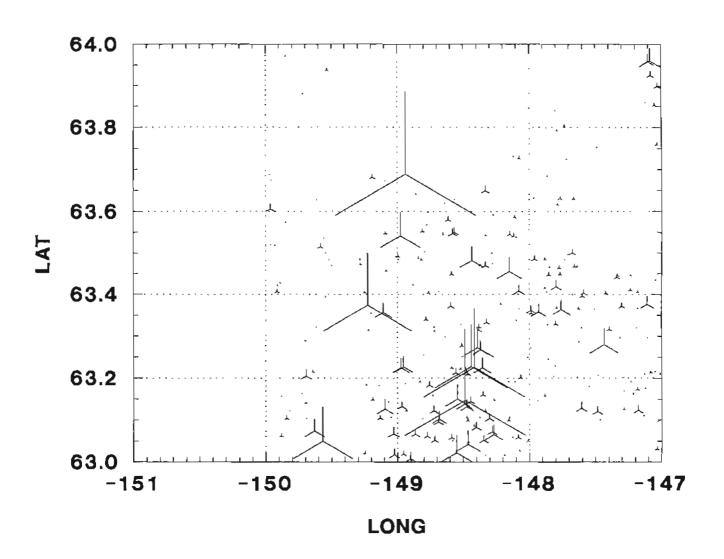

HEAZMAP NURE DATA FOR MO

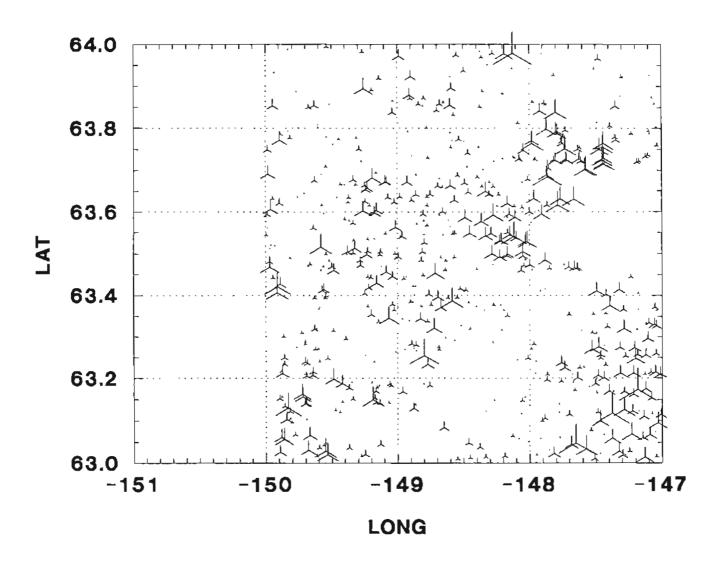

HEAZMAP NURE DATA FOR NI

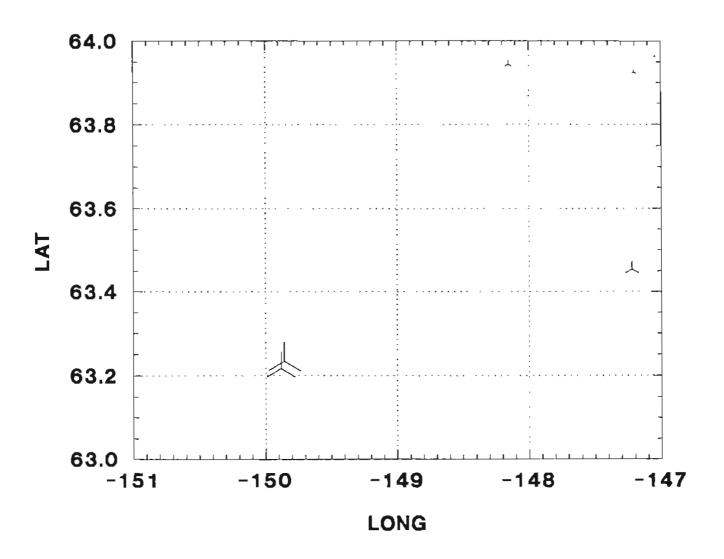

HEAZMAP NURE DATA FOR PB

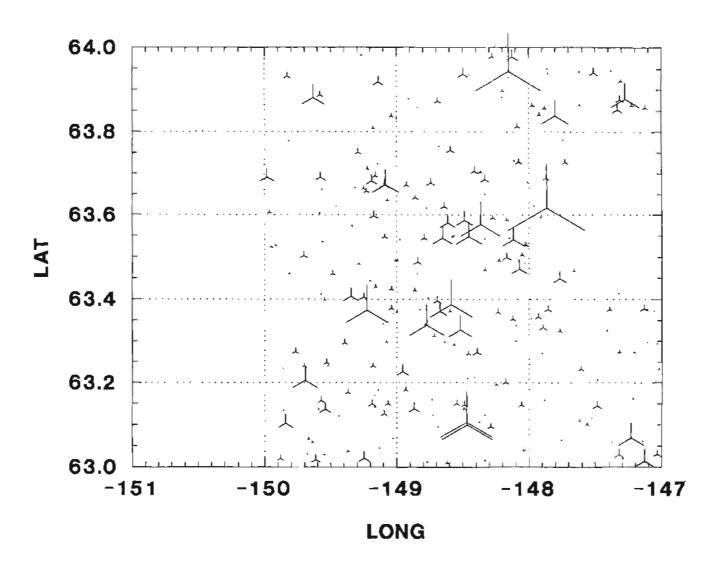

HEAZMAP NURE DATA FOR SB

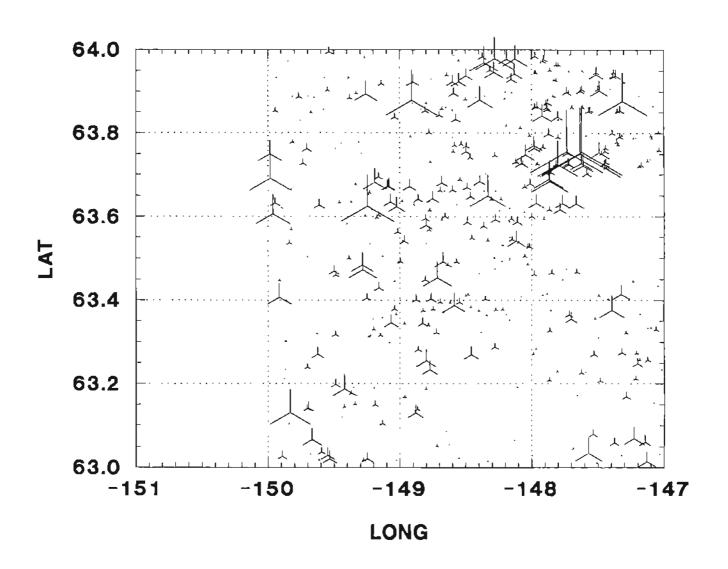

HEAZMAP NURE DATA FOR SN

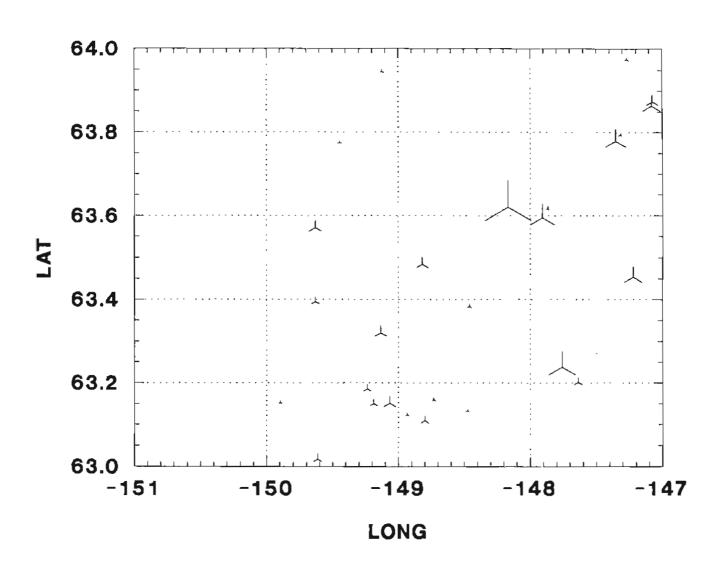

HEAZMAP NURE DATA FOR TI


HEAZMAP NURE DATA FOR U


HEAZMAP NURE DATA FOR UTH


HEAZMAP NURE DATA FOR V


HEAZMAP NURE DATA FOR W


HEAZMAP NURE DATA FOR ZN

HEAZMAP NURE DATA FOR BA

HEAZMAP NURE DATA FOR BI

APPENDIX A

KEY TO SAMPLE TYPES

This numerical key provides the necessary tie between the specific type or form of each sample taken and each individual suite of field and laboratory data to which the sample relates. It defines the various sample types collected by the LASL in the DOE HSSR for uranium.

The two-digit key number assigned to each sample type designates three distinct properties of the samples taken. These properties are: (a) The general sample source (spring, stream, dry stream, etc.); (b) The sample medium (water or sediment); and (c) The treatment given the sample in the field or laboratory prior to its analysis by the LASL.

The <u>key numbers</u> are inserted in the sample type columns of the specially formatted DOE sample numbering system to positively identify the sample type for all LASL sample data submitted.

KEY NO.

SOURCE / MEDIUM / TREATMENT

- 01 Spring water sample untreated.
- 02 Stream water sample untreated.
- 03 Well water sample untreated.
- 04 Natural pond water sample untreated.
- 05 Artificial pond water sample untreated.
- 06 Spring water sample filtered through a 0.45-µ membrane filter and acidified to a pH of ≤1 with reagent-grade nitric acid (HNO₃).
- 07 Stream water sample <u>filtered</u> through a 0.45-μ membrane filter <u>and acidified</u> to a pH of ≤1 with reagent-grade nitric acid (HNO₃).
- 08 Well water sample filtered through a 0.45- μ membrane filter and acidified to a pH of \leq 1 with reagent-grade nitric acid (HNO₃).
- 09 Natural pond water sample filtered through a 0.45-µ membrane filter and acidified to a pH of ≤1 with reagent-grade nitric acid (NNO₃).
- 10 Artificial pond water sample filtered through a 0.45-μ membrane filter and acidified to a pH of <1 with reagent-grade nitric acid (HNO₃).
- 11 Wet spring sediment sample dried at <100°C and sieved to -100 mesh through stainless steel sieves.
- 12 Wet stream sediment sumple dried at ≤100°C and sieved to -100 mesh through stainless steel sieves.
- 13 Wet natural pond sediment sample dried at <100°C and sieved to -100 mesh through stainless steel sieves.

- 14 Wet artificial pond sediment sample dried at <100°C and sieved to -100 mesh through stainless steel sieves.
- 15 Dry stream sediment sample <u>dried</u> at <100°C (if necessary) <u>and sieved to</u>
 -100 mesh through stainless steel sieves.
- 26 Spring water sample acidified to a pH of ≤1 with reagent-grade nitric acid (HNO₃).
- 27 Stream water sample acidified to a pH of ≤1 with reagent-grade nitric acid (HNO₃).
- 29 Natural pond or lake water sample acidified to a pH of ≤1 with reagent-grade nitric acid (HNO₃).
- 31- Wet spring sediment sample <u>dried</u> at <100°C <u>and sieved to -40 mesh</u> through stainless steel sieves.
- 32- Wet stream sediment sample dried at <10. and sieved to -40 mesh through stainless steel sieves.
- 33- <u>Wet natural lake sediment sample dried</u> at ≤100°C <u>and sieved to -40 mesh</u> through stainless steel sieves.
- 35- Dry stream sediment sample dried at ≤100°C and sieved to -40 mesh through stainless steel sieves.
- 41- Wet spring sediment sample dried at ≤100°C and sieved to -80 mesh through stainless steel sieves.
- 42- Wet stream sediment sample <u>dried</u> at ≤100°C <u>and sieved to -80 mesh</u> through stainless steel sieves.
- 43- Wet natural lake sediment sample dried at ≤100°C and sieved to -80 mesh through stainless steel sieves.
- 45- Dry stream sediment sample dried at <100°C and sieved to -80 mesh through stainless steel sieves.
- 51- Wet spring sediment sample dried at ≤100°C and sieved to -170 mesh through stainless steel sieves.
- 52- <u>Wet stream sediment</u> sample <u>dried</u> at ≤100°C <u>and sieved to -170 mesh</u> through stainless steel sieves.
- 53- Wet natural lake sediment sample dried at <100°C and sieved to -170 mesh through stainless steel sieves.
- 55- Dry stream sediment sample dried at <100°C and sieved to -170 mesh through stainless steel sieves.
- 61- Wet spring sediment sample dried at -100°C and sieved to -230 mesh through stainless steel sieves.
- 62- Wet stream sediment sample dried at -100°C and sieved to -230 mesh through stainless steel sieves.
- 63- Wet natural lake sediment sample dried at -100°C and sieved to -230 mesh through stainless steel sieves.

- 65- Dry stream sediment sample dried at -100°C and sieved to -230 mesh through stainless steel sieves.
- 71- Sediment sample collected from the stream bank, dried at <100°C, and sieved to -40 mesh through stainless steel sieves.
- 72- Sediment sample collected from the stream bank, dried at <100°C, and sieved to -80 mesh through stainless steel sieves.
- 73- Sediment sample collected from the stream bank, dried at ≤100°C, and sieved to -100 mesh through stainless steel sieves.
- 74~ Sediment sample collected from the stream bank, dried at $\leq 100^{\circ}$ C, and sieved to = 170 mesh through stainless steel sieves.
- 75- Sediment sample collected from the stream bank, dried at <100°C, and sieved to -230 mesh through stainless steel sieves.
- 96 Dry natural pond sediment sample dried at <100°C (if necessary) and sieved to -100 mesh through stainless steel sieves.
- 97 Dry artificial pond sediment sample dried at <100°C (if necessary) and sieved to -100 mesh through stainless steel sieves.
- 98 Other water These key numbers are to be used only for water (98) or sediment (99) samples coming from a special source and/
- 99 Other sediment or given a special treatment not described for any of the types of samples above.

PDF 91 - 22: ERRATA

ONE ELEMENT WAS OMITTED FROM LISTING OF ELEMENTS ON DISK. THAT ELEMENT WASSE.....IT SHOULD GO BETWEEN AS AND ZR.

CORRECT ORDER OF ELEMENTS ON FILE IS:

AG BI CD CU NB NI PB SN W AS ZR MO BE LI AL AU SE CA CE CL CO CR CS DY EU BA HF K LA LU MN MG NA RB FE SM SR TA TB SB SC TH TI V YB ZN and U/TH

PDF 91-22 - UPDATE

The section of PDF 91-22 which describes the format of the NURE data as it is available on computer disk has changed. Instead of all data on one file/quadrangle in columnar format separated by blanks, it is now split into 3 files/quadrangle with commas and blanks separating the fields. The new files are named "NXXX#.ASC". N is for NURE data, XXX is the 3 character quadrangle identification, and # is 1, 2, or 3. This new version will make it easier for users to input the data directly into Quatro-Pro, Lotus, or other spread sheets with a 250 character limit on record length. In Quatro-Pro use IMPORT option, ASCII file, QUOTE & COMMA delimited. Two records were added in front of the data:

1.) a header record which says

"Part <n>, Quadrangle: <name>"

2.) a record with column headings so users can tell which elements are in the file and the order. The column headings are comma and blank delimited too. The data is still in ASCII format and the commas can be eliminated by using a variety of text editors.

Following are the formats of the 3 files. Column 1 was left blank for all records so that all data in the files could be printed even when the first item is interpreted as a carriage control character.

FILE 1:

Record 1: 55 Characters of text. - starts col 2 and length depends on length of quadrangle name. It is enclosed in quotes.

Record 2: col 2-39

"Samp-Id", "RC", "Lat.", "Long.", "ST" (Sample Type--see main text)

Starting in col 40, 14 groups of: , "Xx" which are the elements names for the columns. For this record they are: U, Ag, Bi, Cd, Cu, Nb, Ni, Pb, Sn, W, As, Se, Zr, and Mo. NOTE: There is NOT a comma after the last item and all items are enclosed in quotes.

Record 3 to end:

col 2-8. 7 digit sample number.

col 9-10 ", " - a comma followed by a blank

col 11-13 replicate code - 3 digits allowed, most values will be 0 or 1 digit.

col 14-24", " followed by Latitude in decimal degrees with 5 decimal places

col 25-35", " followed by Longitude in decimal degrees with 5 decimal places

col 36-39", " followed by 2 digit sample type

Starting in col 40, 17 groups of "," (comma) followed by 8 digit value of element in ppm. Decimal point is present. None of the values require all 8 digits so that leaves a blank space after the comma. NOTE: no comma after the last item.

FILE 2:

Record 1: - Same as for file 1

Record 2: col 2 to 8 - "Samp-Id"

Starting in col 9, 17 groups of:, "Xx", which are element names for the columns. For this file they are: Be, Li, Al, Au, Ba, Ca, Ce, Cl, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, and La. NOTE: no comma at end and items enclosed in quotes.

Record 3 to end:

Col 2-8 7 digit sample number.

Starting in col 9, 17 groups of ",", followed by 8 eight digit value of clement. As in File 1.

FILE 3: Same format as file 2 with different elements. The elements are: Lu, Mn, Mg, Na, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, V, Yb, Zn, and U/Th

NOTE: In the original listing of the elements, Se was accidently left out. It goes between As and Zr.

A copy of this file is included on disk. It is labeled README.NUR. If there are any problems reading this data contact Shirley Liss at DGGS. (907) - 474 - 7147.