Division of Geological & Geophysical Surveys

PUBLIC-DATA FILE 93-5

LAND SELECTION UNIT 5 (BIG DELTA, MOUNT HAYES, FAIRBANKS QUADRANGLES): REFERENCES, MAJOR OXIDE, AND GEOCHEMICAL DATA

by

K.H. Clautice, L.E. Burns, and R.J. Newberry

April 1993

THIS REPORTS HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

Released by

STATE OF ALASKA
DEPARTMENT OF NATURAL RESOURCES
Division of Geological & Geophysical Surveys
794 University Avenue, Suite 200
Fairbanks, Alaska 99709-3645

CONTENTS

	Page
Introduction	1
Geologic summary	1
Index map Area 5	3
Major oxide analyses	4
Normative minerals and gold discriminants	5
Normative mineral ratios	6
Trace element analyses of major oxide samples	7
Geochemical analyses	9
Sample locations	12
Analytical methods and detection limits	13
Select bibliography	14

INTRODUCTION

This report covers Land Selection Unit 5 in east-central Alaska. It includes data compiled and used as part of a mineral evaluation of land remaining to be selected by the State of Alaska from its entitlement under the 1959 Alaska Statehood Act. The assessment was accomplished using previous publications and 2 days of field work by Newberry and Clautice in 1991.

Included herein is a select bibliography of geological literature, geochemical analyses and major oxide data with calculated normative minerals and gold discriminant values.

Normative minerals were calculated using the UAF/PETCAL program that is a modified version of a CIPW Normative calculation provided by the Nevada Geological Survey. The program is written in BASICA, and has been modified by L.E. Burns.

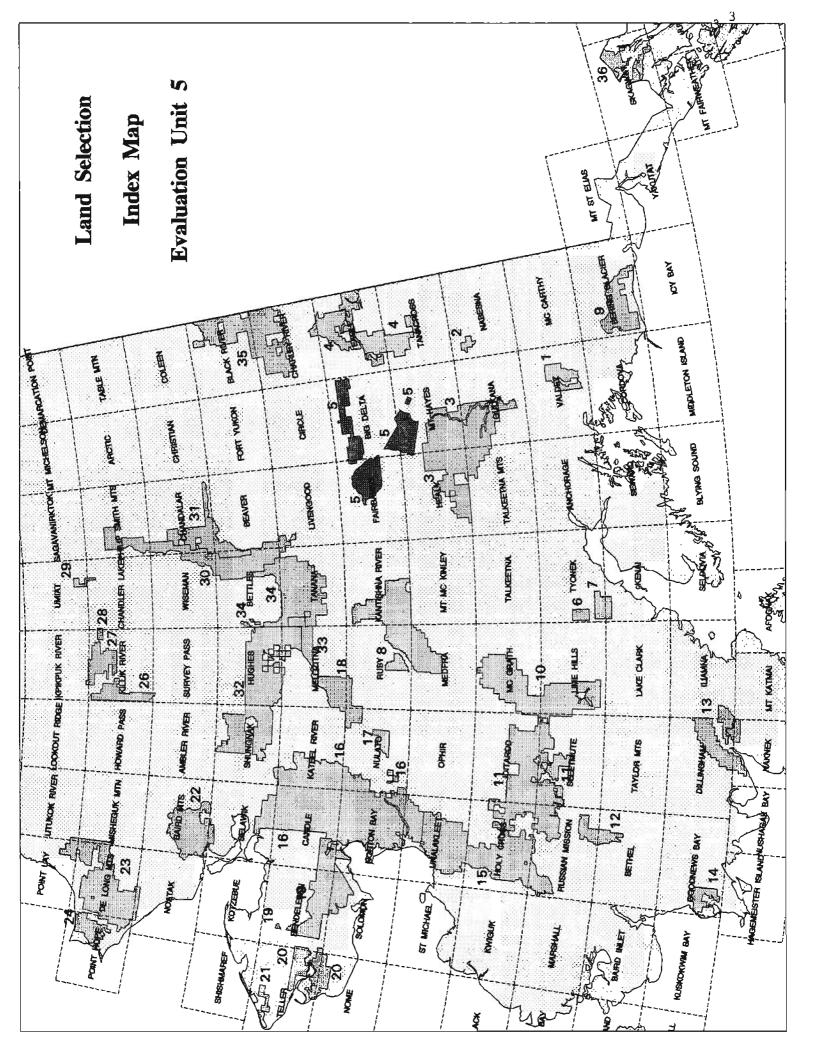
The discriminant scores presented in this report are a reflection of how similar the sampled rocks are to other systems which form gold deposits around the world. The score is based on the discriminant functions developed by Newberry and Burns (1989) and discussed in detail by Burns and others (1991). The discriminant functions statistically determine the extent to which the composition of an unaltered sampled plutonic rock resembles major-oxide compositions of unaltered plutonic rocks associated with gold deposits worldwide.

The discriminant score is a number between 0 and 100; a score of 100 indicates that the composition of the sample is indistinguishable from those of gold-associated plutons; a score of 0 indicates the opposite. The score is <u>not</u> directly proportional to the amount of gold present and does <u>not</u> indicate that there is gold at the sample site, but it is a good estimate of whether the sample belongs to a plutonic <u>system</u> that had the capability of depositing gold.

Some important limitations which must be considered in the interpretation of the scores are:

- 1) Only analyses from relatively unaltered rocks can be used.
- 2) Rocks from porphyry Cu-Mo deposits (because of alteration) and aplites will both typically have a low discriminant score, even though they may be from systems that are related to gold.
- 3) Discriminant scores are not given for alkalic (nepheline-normative) rocks, but these rocks may be related to gold.
- 4) A small percentage of plutonic rocks may appear to be related to gold systems when they are not.
- 5) Since gold deposits appear to be concentrated in the country rock just above a pluton or in the uppermost part of a pluton, and the areal extent of plutonic exposure generally increases with depth of a given pluton, a large, deeply eroded pluton would be less likely to host gold even if the pluton had a highly favorable score.

GEOLOGIC SUMMARY


Unit 5 encompasses 2 million acres in parts of the Big Delta, Mount Hayes, and Fairbanks Quadrangles. Bedrock in the northern areas consists dominantly of greenschist-facies metamorphic rocks, which have been intruded by numerous granitic plutons and are overlain by a thrust klippe of ultramafic rocks. The greenschist unit is thought to be mid-Paleozoic in age (about 320 to 480 million years old); parts of it are interpreted as correlative with volcanogenic massive sulfide-bearing units of the Alaska Range. Two main types of granitic plutons, granodiorite of mainly Late Cretaceous age (about 65 to 98 million years old), and granite of early Tertiary age (about 40 to 65 million years old) are present in the area. The ultramafic rock is thought to be a remnant of an extensive thrust complex; it consists of harzburgite and dunite and is about 1 km thick.

Most of the southern parts of Unit 5 are composed of Quaternary alluvial deposits (Nenana gravels and younger stream sedimentary deposits). Only small areas of bedrock (Cretaceous plutons as discussed above) are exposed.

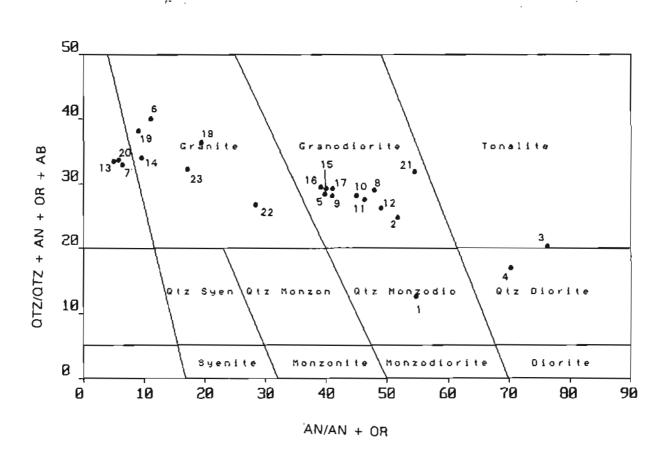
Unit 5 has numerous gold, arsenic, bismuth, tungsten, and tin anomalies in rocks, stream sediments, and panned concentrates. These anomalies are mostly present around the granitic plutons. Major oxide rock geochemistry has been used to show that several plutons in the region have a strong potential for lode gold associations, and several have a good potential for tin greisen systems. Other geochemical indicators suggest that Unit 5 could potentially contain volcanogenic massive sulfide deposits (VMS) as well.

Although no gold placer production has occurred within Unit 5, gold placers could well be present, since placer gold production has occurred immediately south o and north of the study area; additionally the presence of favorable gold -related plutons indicates possible sources for potential gold placers.

Potential ore deposit types that were considered but rejected because of lack of geochemical indicators, critical rock types, and extremely small areas of favorability areas include volcanogenic-type Cleary Sequence gold, tungsten-gold skarns, lead-zinc-silver skarns, prophyry molybdenum deposits and chromite, nickel, and gold deposits potentially associated with ultramafic rocks. The general lack of carbonate rocks restricts the possible size of skarn deposits. Thus, although some skarn prospects are known, the likelihood of large deposits is small.

MAJOR OXIDE ANALYSES (WT%)

	SIO2	AL203	FE2O3	FEO	MGO	CAO	NA20	K20	TIO2	P2O5	MNO	BA	RB	ZR	SR	Υ	NB	LO	SUM*
					_							ppm	ppm	ppm	ppm	mqq	ppm		
1 91RN01	56.8	16.0	2,040	5.3	3.86	6.38	2.59	3.16	0.910	0.30	0.15	1360	118	175	591	17	13	1.39	99.7
2 91RN06	64,0	15.3	1.053	4.1	2.27	4.65	2.66	3.19	0.652	0.14	0.12	1540	117	165	410	55	27	0.77	99.6
3 91 RN08	59.9	17.2	1.313	5.0	2.68	6.45	3.05	1.53	0.833	0.17	0.11	1240	47	150	453	27	16	0.93	99.9
4 91RN10	56.8	16.3	1.132	6.9	3.72	7.47	2.18	2.03	0.993	0.20	0.15	1450	73	174	516	17	32	0.31	99.2
5 91RN14	67.5	14.7	0.646	3.0	1.26	3.31	2.75	4.04	0,475	0.12	80,0	1540	190	201	389	36	22	0.77	99.3
6 91RN17	74.3	12.6	0.231	0.8	0.44	0.88	2.20	5.56	0,161	0.04	0.04	1140	232	88	241	<10	19	0.77	98.3
7 91RN23	74.3	12.3	0.319	1.0	0.13	0.58	3.79	4.97	0,106	0.02	0.03	144	541	217	<10	212	59	0.77	98.7
8 91RN26	66.9	15.3	0.618	2.8	1.34	3.66	3.05	3.15	0,467	0.14	0.09	1530	135	167	350	32	15	0,70	98.8
9 91RN27	67.3	15.3	0.841	2.6	1.27	3.12	3.17	3.58	0,425	0.13	0.09	1000	148	158	407	50	20	0.77	99,1
10 91 RN28	68.0	15.5	0.842	2.5	1.17	3,57	3.16	3,44	0.420	0.14	0.08	1190	141	182	390	33	11	0.54	100,0
11 91KC02	66.3	15.2	0.484	3.2	1.34	4.01	2.64	3.66	0,472	0.10	0.06	1610	150	161	333	28	<10	0,93	99,0
12 91 KC03	65.9	15.5	0.880	3.5	1.83	4.17	2.86	3,40	0.556	0.14	0.10	1520	139	147	403	12	27	0.85	100,3
13 91 KC08	75.6	13.1	0.274	0.5	0.14	0,34	4.07	4.72	0.036	0.02	0.02	130	324	70	<10	101	28	0.54	99.5
14 91 KC09	74.8	13.4	0.424	0.5	0.27	0.76	3.52	5.15	0.089	0.09	0,04	334	298	54	61	11	23	0.47	99.7
15 91 KC10	67.6	14.9	0.737	2.9	1.27	3.37	2.71	4.03	0.471	0.12	80.0	1630	178	218	411	26	17	0.47	99.3
16 91 KC11	68.0	14.6	0.746	3.0	1.31	3.17	2.75	3.99	0.489	0.12	0.08	1510	182	221	387	35	17	0.62	99.5
17 91 KC12	66.5	14.9	0.679	2.7	1.65	3.41	2.64	3.92	0.478	0,14	0.06	1200	175	153	424	31	11	1.23	98.8
18 91 KC14	72.9	13.0	0.366	1.2	0.51	1.55	2.40	5.26	0,183	0.05	0.04	913	224	94	214	16	27	0.62	98.4
19 91 KC15	75.1	12.4	0.342	0.7	0.27	0.65	2.95	5.14	0.104	0.03	0.05	450	272	93	80	18	<10	0.77	98.7
20 91 KC20	74.6	12.3	0.379	1.0	0.14	0,59	3,58	5.27	0.104	0.02	0.03	112	550	225	<10	187	65	0.39	98.7
21 91 KC22	67.2	15.3	0.707	2.9	1.33	3.84	3.07	2.55	0.479	0.14	0.10	837	114	164	327	44	14	0.54	98.7
22 91 KC25	66.1	14.5	1.128	2.8	1.45	2.28	3.50	3.97	0,667	0.32	0.09	2180	319	292	829	33	36	1.23	98.8
23 91 KC25	70.8	13.9	0.724	1.4	0.66	1,29	3,35	4,63	0.379	0.13	0.04	1590	260	233	666	16	22	1.00	98.8


^{*} XRF W.R.A. sums include all elements determined. For summation, elements are calculated as oxides.

NORMATIVE MINERALS AND GOLD DISCRIMINANT SCORE

											AU DISC.
	QTŽ	COR	OR	AB	AN	DIOP	НҮР	MT	ILM	AP	SCORE*
1 91 RN01	9,713		19.154	22.478	23.283	5,869	13.985	3.034	1,773	0,713	100.00
2 91 RN06	21.509		19.208	22.934	20.773	1.492	10.936	1.556	1.262	0.330	100.00
3 91 RN08	16,577		9,203	26,270	29.238	1,826	12.938	1.938	1,610	0.431	100,00
4 91RN10	12,430		12.256	18.846	29,318	5,988	17.387	1.677	1,927	0.473	100.00
5 91 RN14	25.988	0.074	24.390	23.772	15,975		7.639	0.957	0.922	0.284	99.96
6 91RN17	38.359	1.500	33.783	19.140	4.220		2.244	0.344	0.314	0.095	77.43
7 91RN23	32.032		30.077	32.841	1,917	1,216	1.190	0.474	0.206	0.047	93.80
8 91 RN26	26.486	0.568	19.088	26.464	17.682		7.552	0.919	0.910	0.332	99.95
9 91 RN27	25.901	0.868	21.625	27.418	14.954		6.857	1.246	0.825	0.308	98.91
10 91 RN28	26.216	0.528	20.549	27.028	16.979		6.332	1.234	0.806	0.328	98.24
11 91KC02	25.172		22.190	22.918	19.304	0.366	8.174	0.720	0.920	0,238	100.00
12 91 KC03	23.071		20.328	24.484	19.642	0.301	9.487	1,291	1.068	0.328	100.00
13 91KC08	33.071	0.734	28.224	34.848	1.575		1.030	0.402	0.690	0.047	42.02
14 91 KC09	32.728	0.880	30.819	30.162	3.223		1.183	0.623	0.171	0.211	0.00
15 91KC10	26.256	0.244	24,253	23,353	16.229		7.384	1.088	0,911	0.283	99.84
1691KC11	26,872	0.286	23,996	23,681	15.208		7.629	1.101	0,945	0.283	99,87
17 91KC12	25.835	0.463	23.861	23.010	16.484		8.064	1.014	0.935	0.334	99.73
18 91KC14	35.000	0.677	31.892	20.836	7.555		3.020	0.545	0.357	0.119	73.54
19 91KC15	36.979	0.894	31.077	25.538	3.099		1.633	0.507	0.202	0.071	29.24
20 91KC20	32.385		31.772	30.905	1.967	0.765	1.396	0.561	0.202	0.047	84.14
21 91KC22	28.569	0.864	15,436	26,610	18,579		7,630	1.050	0.932	0.322	99,97
22 91KC25A	23,672	1,101	24.234	30.591	9.526		7.114	1,690	1.309	0.765	98.22
23 91KC258	30.390	1.381	28.118	29.130	5.705		3.150	1.079	0.740	0.309	30.38

^{*} An explanation of the gold discriminant score is found within the text of this report.

NORMATIVE MINERAL RATIOS (after Streckeisen and LeMaitre, 1979)

TRACE ELEMENT ANALYSES OF MAJOR OXIDE SAMPLES

	AU ppb FADCP	LI ppm ICP	BE ppm DCP	B ppm DCP	S ppm XRF	CL ppm XRF	SC ppm NA	V ppm DCP	CR ppm NA	CO ppm iCP	Nł ppm ICP	CU ppm ICP	ZN ppm 1	GE ppm DCP	AS ppm NA	SE mqq NA	BR ppm NA	MO ppm ICP	PD ppb FADCP	AG ppm ICP	CD ppm (CP
OTONO	-1	10	4	20	~100	279	20.7	192	140	16	8	15.6	96.2	<10	2	<3	3	<1	<1	0.6	2
91RN01 91RN06	<1	18 12	4	39 18	<100 <100	529	20.7 15.4	101	140	8	3	8.4	89.2	<10	1	<3	4	<1	1	<0.5	<1
91RN08	1 <1	<10	3	15	<100	749	17.7	101	130	11	4	11.0	79.7	16	<1	<3	2	<1	<1	<0.5	<1
91RN10	<1	15	3	44	<100	306	26.2	168	94	15	3	9.3	118.0	<10	4	<3	3	<1	<1	<0.5	<1
91RN14	<1	32	4	14	<100	157	10.7	60	150	5	5	3.8	62.8	<10	3	<3	3	<1	<1	<0.5	<1
\$1501414	~1	02	-	,,,	<100	107	10.7	00	150	J	-	0.0	02.0	~10	•	~~	J	-1		νο.σ	~ 1
91RN17	<1	34	3	18	<100	<100	1.5	17	170	<1	2	70.1	68.2	<10	47	<3	1	<1	1	<0.5	<1
91RN23	<1	79	10	16	<100	236	1.2	<10	150	<1	2	8.0	142.0	<10	1	<3	1	<1	<1	<0.5	<1
91RN26	2	18	2	16	<100	<100	9.8	58	140	5	4	4.0	69.1	<10	<1	<3	2	<1	<1	<0.5	<1
91RN27	3	27	3	14	<100	<100	8.5	54	150	4	3	5,2	71,0	<10	<1	<3	2	<1	<1	<0.5	<1
91RN28	<1	25	4	15	<100	<100	7.1	42	130	2	4	4.4	55,6	<10	<1	<3	1	<1	<1	< 0.5	<1
91KC02	1	22	4	19	4400	397	8.8	60	120	5	3	41.2	44.2	<10	2	<3	2	<1	<1	<0.5	<1
91KC03	<1	24	4	18	245	485	11.7	70	130	7	4	10,9	67.7	<10	1	<3	2	<1	<1	<0.5	<1
91KC08	2	19	4	15	<100	<100	4.7	<10	180	<1	2	3.5	16.7	<10	22	<3	2	. <1	<1	<0.5	<1
91KC09	1	<10	4	279	<100	<100	3.5	<10	150	<1	2	7.6	25.8	<10	8	<3	2	<1	2	<0.5	<1
91KC10	3	30	4	23	<100	203	10.1	57	140	4	3	4.1	57.9	<10	4	<3	2	<1	2	<0.5	<1
91KC11	3	28	6	24	<100	212	10.5	58	160	6	4	3.7	66.5	<10	1	<3	2	<1	2	<0.5	<1
91KC12	<1	21	5	24	<100	168	9.3	67	140	3	5	2.0	47.6	<10	2	<3	2	<1	1	<0.5	<1
91KC14	5	40	5	20	<100	<100	2.1	23	170	1	4	7.6	45.6	<10	8	<3	1	<1	<1	<0.5	<1
91KC15	4	38	5	24	<100	<100	1.5	<10	110	<1	2	6.3	23.6	<10	22	<3	1	<1	1	<0.5	<1
91KC20	3	120	16	56	<100	264	1.2	10	130	<1	2	5.9	138.0	<10	3	<3	2	<1	<1	<0.5	<1
91KC22	3	18	4	15	<100	<100	9.8	63	140	6	3	1.9	69.5	<10	<1	<3	2	<1	<1	<0.5	<1
91KC25A		87	8	25	<100	212	6.1	51	140	3	5	4.8	77.8	<10	1	<3	1	<1	<1	<0.5	<1
91KC25B	15	40	6	28	<100	<100	3.8	29	130	2	2	39,5	41.9	<10	<1	<3	2	<1	<1	<0,5	<1

	SN ppm XRF	SB ppm NA	CS ppm NA	LA ppm NA	CE ppm NA	ND ppm NA	SM ppm NA	EU ppm NA	TB ppm NA	YB ppm NA	LU ppm NA	HF ppm NA	TA ppm NA	W ppm NA	PT ppb FADCP	PB ppm ICP	Bt ppm ICP	TH ppm NA	U ppm NA
91 RN01	12	1.0	6	40.1	75	33	6,2	1.3	0,6	2,0	0.31	4	<1	<3	<10	23	<3	13	3.0
91RN06	<10	0.3	4	35.1	62	25	4.4	1.1	0.5	1.9	0.29	4	<1	<3	<10	31	<3	15	3,8
91RN08	11	0.6	3	24.4	41	17	3.3	1.2	< 0.5	1.5	0.25	3	<1	<3	<10	12	<3	6	1.4
91RN10	<10	0.8	2	31.6	59	27	5.1	1.3	0.5	2.3	0.37	4	<1	<3	<10	16	6	10	2.8
91RN14	<10	0.4	5	45.5	84	34	5.9	0.9	0.6	2.4	0.36	5	<1	<3	<10	18	<3	23	5.8
91RN17	13	0.7	9	33.0	56	17	2.2	0.6	< 0.5	1.2	0,23	3	<1	<3	<10	36	<3	26	3.5
91RN23	15	0.6	13	49.8	114	60	13.7	0.3	2.7	12.4	1.96	8	5	<3	<10	45	<3	42	7.7
91RN26	12	<0.2	7	36.9	69	29	5.0	1.1	0.6	1.9	0,28	4	<1	<3	<10	22	<3	12	2.5
91RN27	11	<0.2	5	33.0	61	25	4.5	1,2	0.6	1.9	0.29	4	<1	<3	<10	21	<3	15	2.9
91RN28	16	<0.2	4	39,1	71	29	4.9	1.2	0.5	1.6	0.25	4	<1	<3	<10	22	<3	14	2.4
91KC02	13	0,4	5	36.2	64	23	4.0	1.0	0.5	1.9	0.28	3	<1	<3	<10	13	<3	16	4.3
91KC03	16	0,3	7	36.6	64	24	3.8	1.0	< 0.5	1.4	0.22	3	1	<3	<10	17	<3	15	3.5
91KC08	<10	0.3	6	8.3	21	14	3.9	<0.2	1.4	5.6	0.86	3	2	<3	<10	46	<3	19	6.2
91KC09	16	2.8	32	8.6	19	11	2.5	0.3	0.5	2.4	0.40	2	3	11	<10	40	<3	20	7.1
91KC10	<10	0.5	4	49.1	88	35	6.0	0.9	0.6	2.2	0.33	4	<1	<3	<10	22	<3	21	4.5
91KC11	<10	0.5	7	46.5	87	34	6.2	1.0	0,7	2,6	0.40	5	1	<3	<10	24	<3	21	7.3
91KC12	16	0.7	8	35.7	62	24	4.1	1.0	< 0.5	1.7	0.25	3	1	3	<10	13	<3	17	6.3
91KC14	<10	0.8	9	32.4	54	18	2.5	0.2	< 0.5	1.7	0.30	3	2	<3	<10	34	<3	30	4.3
91KC15	12	6.4	8	33.0	56	18	2.7	0,3	< 0.5	1.7	0.31	3	1	4	<10	42	<3	42	6.2
91KC20	16	0.5	15	52.7	126	58	13.2	0.3	2.8	12.4	1.86	9	5	6	<10	46	<3	49	12.7
91KC22	<10	<0.2	5	43.7	80	32	5.8	0.9	8.0	2.7	0.39	4	1	<3	<10	16	<3	15	3.0
91 KC25A	<10	0.4	16	120.0	207	76	11.4	2.1	8.0	1.8	*INF	6	1	54	<10	24	4	33	11.1
91KC25B	16	0.4	7	84.3	150	50	7.5	1.3	0.5	1.6	INF	5	2	5	<10	19	<3	37	13.8

*INF - Composition makes detection Impossible by this method

GEOCHEMICAL ANALYSES

	AU	IJ	86	NA	NA %	MG %	AL %	P %	K %	CA %	CA %	SC	SC	T) %	V	CR	CR	MN %	FĘ %	FE %	CO	CO
	NA NA	ICP	ppm ICP	ppm NA	ICP	ICP	≀CP	ICP	ICP	NA NA	ICP	NA NA	ICP	ICP	ICP ICP	NA NA	ICP	ICP	- NA	ICP	NA NA	ICP
91KC01	<5	32	3.2	17000	2.27	2.62	9.11	0.12	3.28	3	5.05	16.8	19.1	0.60	158	130	135	0.10	4.3	5.70	18	27
91KC05	<5	16	2.4	24000	2,95	0.01	6,73	< 0,01	3.98	<1	0,21	4.2	5.1	< 0.01	<2	160	165	< 0.01	0,9	1,32	<5	<1
91KC06	1300	254	1.8	8200	0.91	0.01	3.01	< 0.01	1.88	<1	0.09	1.5	1.7	< 0.01	<2	210	262	< 0.01	0.4	0.52	<5	<1
91KC09	<5	34	3,5	18000	2.17	0.36	7.27	0.03	3.66	<1	1.49	4.4	5.2	0.16	21	150	133	0.03	1.3	1.77	<5	5
91KC15	<5	47	2.6	17000	1.99	0.12	6.58	<0.01	4.46	<1	0.48	1.3	1.6	0,06	2	130	119	0.03	0.7	0,96	<5	2
91KC16	<5	242	9.5	1700	0.49	0.61	13.20	0.03	7.23	<1	0.09	5.0	5.8	0.12	22	100	107	0.04	3.2	4.39	<5	6
91KC17	<5	52	2.8	<500	0,06	0.36	6,68	0.01	3.78	<1	0.02	1,9	2.0	0,10	12	210	209	< 0.01	1.1	1,53	<5	2
91KC18	<5	86	1.3	<500	0.04	0.49	2.44	0,02	0,49	<1	0,08	3.2	2.7	0.14	15	180	159	0.06	2.6	3.13	<5	6
91KC19	<5	36	1.4	<500	0,03	0.21	2.72	0.02	0.17	1	2,94	5.3	5.5	0,23	34	170	185	0.05	5.1	6.69	<5	6
91KC21	<5	49	13,7	18000	2.26	0.88	7.86	0.08	4.69	1	1.52	8.6	9.6	0.45	61	100	88	0.05	2.4	3,25	10	17
91KC23	<5	34	2,0	20000	2.53	0.79	7.86	0.05	2.75	1	1.75	7.7	8.6	0.29	44	140	134	0.05	2.2	2,81	<5	7
91KC24	5 '	<1	< 0.5	<500	0.04	0.03	0.32	< 0.01	0.13	<1	80.0	0.3	< 0.5	< 0.01	<2	230	202	< 0.01	0.5	0.62	<5	1
91KC26	<5	49	5.4	19000	2.51	0.37	7.38	0.05	4.20	<1	0.84	3.2	3.9	0.26	25	150	165	0.02	1.4	1.96	<5	5
91RN02	<5	5	< 0.5	1000	0.13	0.02	0.45	< 0.01	0.31	<1	0.02	0.2	< 0.5	< 0.01	<2	320	284	< 0.01	0.3	0.33	<5	<1
91RN03	<5	<1	<0.5	1700	0,23	0.14	0.72	<0.01	0.23	<1	0.16	0.6	0.5	0,02	7	340	302	< 0.01	0,5	0.62	<5	2
91RN04	<5	27	3.1	13000	1,84	4.72	7,88	0,12	0.86	5	8.73	26,3	27.6	0.99	248	180	156	0,16	8.4	9.48	40	50
91RN05	<5	24	3.5	17000	2.38	1.91	9.87	0.06	2.39	3	4.51	15.6	18.6	0.54	114	150	161	0.06	3.9	4.76	13	20
91RN07	<5	12	3.1	21000	2.75	1.28	8.98	0.05	3.16	1	3.34	12.6	14.4	0.43	78	130	128	0.03	2.3	2.81	<5	7
91RN09	<5	9	1.7	4500	0.62	6.25	6.04	0.03	0.46	7	10.80	42.8	45.0	0.35	262	150	133	0.18	8.0	9.00	37	36
91RN11	<5	18	3.8	13000	2.19	2.73	10.50	0,09	2.16	5	6.46	21.8	27,6	0.75	158	80	90	0,11	4.9	6,61	16	27
91RN12	<5	15	4.6	5000	0,67	2.62	10,30	0,08	1.60	7	10.70	20.5	22.0	0.77	154	230	212	0.12	6,1	6.87	27	37
91RN13	<5	69	5.0	8700	1.22	3.72	11.10	0.07	2.80	<1	0.85	25.1	27.6	0.99	207	180	166	0.11	7.5	9.26	26	37
91RN15	<5	27	3.8	18000	2.54	1.06	9.10	0.05	3.91	1	2.64	9.3	10.7	0.34	57	160	171	0.04	2.6	3,42	7	11
91RN18	<5	36	3.1	7400	1.08	0.16	6.98	< 0.01	4.84	<1	0.08	1.7	2.0	0.07	10	190	179	0.01	1.1	1.42	<5	4
91RN19	<5	37	2.8	9600	1.32	0.17	6.93	< 0.01	4.63	<1	0.09	2.1	2.2	0.06	9	170	147	0.01	0.8	89.0	<5	3
91RN20	<5	68	3.8	4900	0.66	1.39	6.23	0.06	2.60	1	0,95	10.8	11.9	0.57	119	210	153	0.05	3.4	4.38	11	19
91RN21	<5	44	2.0	<500	0.06	0.43	3.40	0.02	0.88	2	3.09	4.3	5.6	0.20	32	210	225	0.07	3.0	4.19	7	9
91RN22	<5	37	36.0	<500	0.08	3.17	3.93	0.03	0.12	8	15.20	5.4	4.8	0.13	32	60	56	2.10	7.3	9.05	31	30
91RN24	<5	48	13.8	17000	2.44	0.06	6.12	< 0.01	3.29	<1	0.49	2.3	2.2	0.06	3	170	191	0.05	2.8	3.61	<5	2
91RN25	8	58	2.4	16000	2.12	0.49	6.70	0.04	2.93	<1	0.85	6.2	6.7	0.15	41	150	159	0.06	2.9	3.44	<5	4

	IN mqq AN	NI ppm ICP	CU ppm (CP	ZN ppm NA	ZN ppm ICP	AS ppm NA	AS ppm ICP	SE ppm NA	8R ppm NA	RB ppm NA	SR ppm NA	SR ppm ICP	Y ppm ICP	ZR ppm ICP	MO ppm NA	MO ppm ICP	AG ppm NA	AG ppm ICP	CD ppm ICP	SN ppm !CP	SB ppm NA	SB ppm ICP
91KC01	<100	10	12	80	98	2	<3	<5	<1	90	<500	543.0	23.5	16.6	<5	<1	<5	<0.1	<1	<10	1.0	<5
91KC05	<100	<1	2	<50	18	15	17	<5	<1	210	<500	36.7	20.1	24.3	<5	1	<5	<0.1	<1	<10	1.9	<5
91KC06	<100	2	5	<50	28	15	14	<5	<1	110	<500	33.0	6.3	9.0	<5	<1	<5	1.0	5	<10	3.6	<5
91KC09	<100	6	5	50	42	2	5	<5	<1	120	<500	183.0	15.0	42.9	<5	<1	<5	< 0.1	7	<10	0.6	<5
91KC15	<100	3	9	<50	38	35	38	<5	<1	180	<500	63,6	11.1	54.8	<5	<1	<5	<0.1	132	<10	12.0	14
91KC16	<100	2	587	170	295	450	489	<5	<1	430	<500	45.5	2.7	37.6	27	36	27	13.3	<1	395	240.0	201
91KC17	<100	3	68	<50	77	2100	2270	<5	1	260	<500	38.8	5.8	38,5	8	4	<40	1.6	<1	24	160.0	200
91KC18	<100	12	5	<50	29	57	62	<5	<1	30	<500	8,4	8,2	10,0	8	7	<5	<0,1	<1	<10	64,0	63
91KC19	<100	13	7180	550	691	13	12	62	<1	<30	<500	309,0	8.3	20.5	12	12	120	79.4	3	<10	77.0	82
91KC21	<100	8	51	120	183	<2	11	<5	<1	200	<500	196.0	30.4	4.0	<5	<1	<5	0.3	<1	<10	1.2	8
91KC23	<100	4	17	<50	49	<2	<3	<5	<1	130	<500	239.0	18.1	10.5	<5	<1	<5	< 0.1	<1	<10	0.4	<5
91KC24	<100	9	17	<50	14	<2	<3	<5	<1	<30	<500	1.5	0.9	1.0	<5	3	<5	0.3	<1	<10	0.6	8
91KC26	<100	5	32	50	39	3	8	<5	1	180	<500	500.0	16,1	59.7	63	106	<5	< 0.1	<1	<10	0.4	<5
91RN02	<100	4	4	<50	21	<2	5	<5	<1	<30	<500	6.6	0.9	2.6	<5	<1	<5	< 0.1	<1	<10	0.4	<5
91RN03	<100	5	7	<50	14	5	5	<5	1	<30	<\$00	21.7	1.1	2.1	<5	<1	<5	<0.1	<1	<10	0.6	<5
91RN04	<100	53	145	100	131	12	11	<5	<1	30	<500	164.0	44.7	27,1	<5	<1	<5	0.1	31	<10	1.2	9
91RN05	<100	5	47	<50	62	7	4	<5	<1	70	<500	402.0	19.2	22.9	<5	3	<5	< 0.1	<1	<10	0.5	14
91RN07	<100	3	47	<50	30	14	14	<5	1	80	<500	332.0	21.6	40.8	<5	<1	<5	< 0.1	<1	<10	1.0	6
91 RN09	<100	25	174	150	145	17	<3	<5	<1	<30	500	401.0	25.1	35.9	<5	<1	<5	0.1	<1	<10	1.4	8
91 RN11	<100	s	17	70	119	5	7	<5	<1	<30	<500	610,0	27.5	23.2	<5	<1	<5	< 0,1	<1	<10	0.8	<5
91RN12	100	57	106	110	110	7	8	<5	<1	40	<500	671.0	23,6	61.0	<5	1	<5	<0,1	<1	<10	0.8	<5
91RN13	100	78	75	130	143	5	8	<5	1	100	<500	157.0	12.6	21.2	<5	<1	<5	< 0.1	<1	<10	1.0	<5
91RN15	<100	4	21	<50	54	110	60	<5	<1	110	500	427.0	22.9	35.9	<5	<1	<5	< 0.1	<1	<10	1.0	<5
91RN18	<100	2	755	60	79	280	247	<5	<1	200	<500	57.6	9.2	50.2	5	6	<20	6.0	<1	50	11.0	10
91RN19	<100	5	37	<50	27	90	77	<5	<1	210	<500	64.9	7.3	52.7	<5	3	<5	0.4	<1	<10	4.3	<5
91RN20	<100	16	68	80	91	92	93	<5	<1	100	<500	104.0	14.2	37.8	5	<1	<5	<0.1	<1	<10	2.1	<5
91RN21	100	24	11200	3400	3800	33	28	16	<1	30	<500	313.0	15.7	14.7	7	6	130	90.4	8	<10	50.0	43
91RN22	<100	18	88	41000	49700	13	10	32	<1	<30	<500	828.0	14.7	7.4	<5	<1	15	9.5	206	<10	19.0	25
91RN24	<100	2	29	370	416	6	10	<5	<1	370	<500	20.0	111.0	80.5	<5	7	<5	0.1	1	<10	1.6	<5
91RN25	<100	2	44	410	476	640	582	<5	<1	150	<500	169.0	14.7	8.4	<5	<1	<20	2.1	6	<10	59.0	66

	CS ppm NA	8A ppm NA	BA ppm ICP	LA maq NA.	CE ppm NA	GN mqq AN	M2 ppm AN	EU ppm NA	T8 ppm NA	YB ppm NA	LU ppm NA	HF ppm NA	TA ppm NA	W ppm NA	W ppm ICP	IR ppb NA	PB ppm ICP	BI ppm ICP	TH ppm NA	U ppm NA
													•							
91KC01	6	1300	1230	39	73	30	5,5	1.5	< 0.5	1.8	0,31	4	1	<4	<10	<20	8	<3	13,0	4.8
91KC05	5	<100	36	6	15	10	2.3	0,4	1,6	6.6	0,96	4	2	<4	<10	<20	59	<3	18.0	6.7
91KC06	5	100	76	2	7	<10	0.9	0.2	0.7	2.2	0.31	1	<1	<4	<10	<20	22	<3	12.0	6,9
91KC09	7	600	663	22	38	20	3.7	0.4	0,7	2.8	0.42	3	2	<4	<10	<20	26	<3	20,0	5.7
91KC15	7	300	325	26	42	10	2.2	0.3	< 0.5	1.7	0.26	4	1	6	<10	<20	40	<3	36.0	5,1
91KC16	28	900	993	9	11	<10	0.6	< 0.2	<0.5	0.7	0.12	3	2	40	44	<20	24	97	23.0	9.0
91KC17	14	500	371	32	48	20	2.1	< 0,3	< 0.5	1.2	0.15	3	1	16	29	<20	6	<3	27.0	7.9
91KC18	4	200	144	17	34	10	2.4	0.5	< 0.5	1,1	0.18	4	<1	6	<10	<20	<2	<3	6.0	4.3
91KC19	<3	<100	33	23	37	10	2.0	0.3	< 0.5	8.0	0.14	3	1	<4	<10	<20	5470	159	7.0	13.7
91KC21	<3	1700	1840	55	99	40	7.5	1.4	1.2	2.9	0.38	5	2	<4	<10	<20	119	<3	18,0	2.7
91KC23	8	980	1000	33	57	20	4.4	0.9	0.5	2.2	0.33	3	1	6	<10	<20	22	<3	11.0	3.5
91KC24	<3	<100	14	1	<3	<10	< 0.5	< 0.2	< 0.5	< 0.2	< 0.05	<1	<1	12	19	<20	7	30	< 0.5	0.5
91KC26	8	1300	1460	75	117	40	6.3	1.4	< 0.5	1.1	0.20	5	<1	5	<10	<20	23	<3	28.0	8.0
91RN02	<3	<100	45	1	<3	<10	< 0.5	0.2	< 0.5	0.3	< 0.05	<1	<1	<4	<10	<20	6	<3	0.8	< 0.5
91RN03	<3	100	140	2	5	<10	<0.5	< 0.2	< 0.5	<0.2	<0.05	<1	<1	<4	<10	<20	6	<3	1,0	<0.5
91RN04	<3	200	213	12	33	20	4.2	1,5	1.2	4.9	0.77	3	1	5	<10	<20	17	12	1.8	1,4
91RN05	5	1000	953	31	58	20	3.7	1.5	0.5	1.6	0.27	5	1	<4	<10	<20	<2	<3	11.0	5.2
91RN07	<3	1800	1720	20	41	20	3.6	0.9	0.5	1,9	0.29	4	< 1	4	<10	<20	7	3	14.0	4.9
91RN09	<3	200	190	20	35	20	4.3	0.7	0.7	2.5	0.38	2	1	<4	<10	<20	<2	7	6.1	1.2
91RN11	3	1100	1310	28	52	20	4.4	1,5	0.5	2.3	0.34	4	<1	<4	<10	<20	6	6	8.3	2.7
91RN12	5	700	573	58	103	40	7.5	2.1	0.6	2.1	0.30	3	1	<4	<10	<20	<2	10	11.0	3.3
91RN13	9	800	752	42	77	30	6.4	2.0	1.0	2.9	0.42	5	1	<4	<10	<20	11	11	9.3	2,4
91RN15	10	1300	1340	43	74	30	4.8	1.5	0,5	2.0	0.29	5	<1	<4	<10	<20	7	10	19.0	6,0
91RN18	9	500	551	26	43	10	2.0	0.5	< 0.5	1.5	0.26	3	2	10	<10	<20	71	67	30.0	7.1
91RN19	12	600	594	17	48	10	1.4	0.3	< 0.5	1.7	0.28	3	1	5	<10	<20	45	37	34.0	4.6
91RN20	9	700	629	26	48	20	3.6	0.8	0.5	2.0	0.30	4	<1	7	<10	<20	12	9	12.0	2.5
91RN21	<3	500	516	21	38	10	2.4	0.5	< 0.5	1.1	0.18	3	<1	<4	<10	<20	17900	215	5.5	12.3
91RN22	<3	<100	24	25	48	20	2.8	0.7	< 0.5	1,3	0.18	2	1	58	*INF	<20	21900	33	6.3	1,9
91RN24	10	100	35	63	150	70	14.3	0.2	3.2	12.8	1.91	10	8	7	<10	<20	173	6	48.0	17.2
91RN25	6	900	930	28	48	20	3.7	0.6	< 0.5	1.8	0.28	3	<1	6	<10	<20	1520	<3	10.0	2.5

*INF - Composition makes detection impossible by this method

SAMPLE LOCATIONS

GEOCHE	MICAL SAN	MPLES		MAJOR	OXIDE SAM	PLES
	Long(W)	Lat(N)			Long(W)	Lat(N)
91KC01	145,563	64.698	1	91RN01	145.569	64.697
91KC05	145.533	64.890	2	91RN06	145.435	64.727
91KC06	145,543	64.891	3	91RN08	145.438	64.725
91KC09	144.911	64.834	4	91RN10	145.586	64.881
91KC15	144.580	64.730	5	91RN14	144.920	64.817
91KC16	144.582	64.732	6	91RN17	144.559	64.725
91KC17	144.582	64.732	7	91RN23		64.653
91KC18	144.582	64.732	8	91RN26		64.744
91KC19	144.433	64,669	9	91RN27		64,725
91KC21	144.206	64,656	10	91RN28		64.725
91KC23	144.110	64.744	11			64.741
91KC24	144.110	64.744		91KC03		64.741
91KC26	144.148	64.775		91KC08		64.881
91RN02	145.567	64.700		91KC09		64.834
91RN03	145.445	64.734	15	91KC10	144.904	64.833
91RN04	145.442	64,730	16	91KC11	144.920	64.817
91RN05	145.438	64.729	17	91KC12	144.831	64.808
91RN07	145.435	64.727	18	91KC14	144.580	64.730
91RN09	145,592	64.881	19	91KC15	145.454	64.741
91RN11	145.586	64.881	20	91KC20	144.206	64.653
91RN12	145.591	64.879	21	91KC22	144,152	64.744
91RN13	144.908	64.831		91KC25		64.725
91RN15	144.831	64.808		91kc25b		64.741
91RN18	144.566	64,725			, , , , , , ,	
91RN19	144.566	64.728				
04.000	144 500	64.700				
91RN20	144.566	64.728				
91RN21	144.428	64.671				
91RN22	144.433					
91RN24	144.208	64.649				
91RN25	144.157	64.745				

ANALYTICAL METHODS AND DETECTION LIMITS

	Method	Detection Limit		Method	Detection Limit
AU	NA	5	SR	NA	500
LI	ICP	1	SR	ICP	0.5
BE	ICP	0.5	Y	ICP	0.1
NA	NA	500	ZR	ICP	0.5
NA	ICP	0.01	MO	NA	5
MG	ICP	0.01	MO	ICP	1
AL	ICP	0.01	AG	NA	5
Р	ICP	0.01	AG	1CP	0.1
К	ICP	0.01	CD	ICP	1
CA	NA	1	SN	ICP	10
CA	ICP	0.01	SB	NA	0.2
sc	NA	0.1	SB	ICP	5
sc	ICP	0.5	CS	NA	3
TI	ICP	0.01	88	NA	100
V	ICP	2	88	ICP	1
CR	NA	10	ŁΑ	NA	1
CR	ICP	1	CE	NA	3
MN	ICP	0.01	ND	NA	10
FE	NA	0.1	SM	NA	0.5
FE	ICP	0.01	EU	NA	0.2
CO	NA	5	TB	NA	0.5
CO	ICP	1	YB	NA	0.2
NI	NA	100	LU	NA	0.05
NI	ICP	1	HF	NA	1
CU	ICP	0.5	TA	NA	1
ZN	NA	50	W	NΑ	4
ZN	ICP	0.5	W	ICP	10
AS	NA	2	IR	NA	20
AS	ICP	3	PB	ICP	2
SE	NA	5	ВІ	ICP	3
BR	NA	1	TH	NA	0.5
RB	NA	30	บ	NA	0.5

Analyses by X-Ray Assay Laboratories, 1885 Leslie Street, Don Mills, Ontario M3B 3J4 CANADA

LAND SELECTION AREA 5: SELECT BIBLIOGRAPHY

- Alaska Division of Geological and Geophysical Surveys, 1973, Aeromagnetic map, Big Delta quadrangle, Alaska: Alaska Division of Geological and Geophysical Surveys Open-file report 73, scale 1:250,000, 1 sheet.
- Albanese, M.D., 1974, Geochemical reconnaissance of the upper Chena River area, central Alaska: analytical data on stream-sediment, pan-concentrate, and rock samples: Alaska Division of Geological and Geophysical Surveys Report of Investigations 84-4, 30 p., scale 1:63,360, 1 sheet.
- Aleinikoff, J.N., Dusel-Bacon, Cynthia, Foster, H.L., and Nokleberg, W.J., 1987, Lead isotopic fingerprinting of tectono-stratigraphic terranes, east-central Alaska: Canadian Journal of Earth Sciences, v. 24, no. 10, October 1987, p. 2089-2098.
- Barnes, D.F., 1977, Bouger gravity map of Alaska: U.S. Geological Survey Map GP 913, scale 1:2,500,000.
- Church, S.B., Gaccetta, J.D., and Delevaux, M.H., 1990, Pb-Isotope results from syngenetic and epigenetic vein occurrences and implications for their genesis, Yukon-Tanana Terrane, Alaska (Abstr) Program with Abstracts Geological Association of Cananada: Mineralogical Association of Canada, Canadian Geophysical Union, Joint Annual Meeting, May 15, 1990, p. 24.
- Cobb, E.H., 1972, Metallic mineral resources of the Mount Hayes Quadrangle, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF-414, scale 1:250,000, 1 sheet.
- Cobb, E.H., 1973, Placer deposits of Alaska: U.S. Geological Survey Bullletin 1374, 213 p.
- Cobb, E.H., and Eberlein, G.D., 1980, Summaries of data on and lists of references to metallic and selected nonmetalic mineral deposits in the Big Delta and Tanacross quadrangles, Alaska: U.S. Geological and Geophysical Surveys Open-file Report 80-1086, 76 p.
- Curtain, Gary C., Tripp, Richard B., and Nokleberg, Warren J., 1989, Summary and interpretation of geochemical maps for stream sediment and heavy mineral concentrate samples, Mount Hayes Quadrangle, Eastern Alaska Range: U.S. Geological Survey Miscellaneous Field Studies Map MF-1966-B, 11 p., scale 1:250,000, 3 sheets.
- Dover, J.H., 1990, Geology of east-central Alaska: U.S. Geolgical Survey Open-file Report 90-0289, 91 p., 5 sheets.
- Eberlein, G.D., Chapman, R.M., Foster, H.L., and Gassaway, J.S., 1977, Map and table describing known metalliferous and selected nonmetalliferous mineral deposits in central Alaska: U.S. Geological Survey Open-file Report 77-168D, 132 p., scale 1:1,000,000.
- Foster, H.L., 1992, Geologic map of the eastern Yukon-Tanana region, Alaska: U.S. Geological Survey Open-file Report 92-313, 27 p., scale 1:500,000.
- Foster, H.L., Albert, N.R.D., Griscom, Andrew, Hessin, T.D., Menzie, W.D., Turner, D.L., and Wilson, F.H., 1979, The Alaskan Mineral Resource Assessment Program: Background information to accompany folio of geologic and mineral resource maps of the Big Delta quadrangle, Alaska: U.S. Geological and Geophysical Survey Circular 783, 19 p.

- Griscom, Andrew, 1979, Aeromagnetic interpretation of the Big Delta quadrangle, Alaska: U.S. Geological Survey open-file report 78-529B, 10 p., scale 1:250,000, 2 sheets.
- Hessin, T.D., Cooley, E.F., Siems, D.F., and McDanal, S.K., 1978, Geochemical map showing the distribution and abundance of tin, tungsten, and molybdenum in the nonmagnetic heavy-mineral concentrate samples in the Big Delta quadrangle, Alaska: U.S. Geological Survey Open-file Report 78-529 G, scale 1:250,000, 1 sheet.
- Holmes, G.W., and Péwé, T.L., 1965, Geologic map of the Mount Hayes D-3 Quadrangle, Alaska: U.S. Geological Survey Geological Quadrangle Map GQ-366., scale 1:63,360, 1 sheet.
- Luthy, S.T., Foster, H.L., and Cushing, G.W., 1981, Petrographic and chemical data on Cretaceous granitic rocks of the Big Delta quadrangle, Alaska: U.S. Geological Survey Open-file Report 81-398, 12 p., 2 sheets.
- Menzie, D.W., and Foster, H.L., 1979, Metalliferous and selected nonmetalliferous mineral resource potential in the Big Delta quadrangle, Alaska: U.S. Geological Survey Open-file Report 78-529-D, 61 p., 1 sheet, scale 1:250,000.
- Menzie, W.D., Foster, H.L., and Mosier, D.L., 1981, Metalliferous mineral resource potential of the Big Delta quadrangle, in Albert, N.R.D., and Hudson, Travis, eds., The United States Geological Survey in Alaska: Accomplishments during 1979: U.S. Geological Survey Circular 823-B, p. B38-B39.
- Moll-Stalcup, E.J., 1990, Latest Cretaceous and Cenozoic magmatism in mainland Alaska: U.S. Geological Survey Open-file Report 90-84, 82 p.
- Newberry, R.J., Burns, L.E., and Solie, D.N., 1990, Gold favorability in the Eagle Quadrangle, Alaska, as predicted by discriminant analysis for non-porphyry granitic rocks: Alaska Division of Geological and Geophysical Surveys Public-data File 90-16, 18 p., scale 1:63,360, 2 sheets.
- Nokelberg, W.J., Albert, N.R.D., Bond, G.C., Herzon, P.L., Miyaoka, R.T., Nelson, W.H., Richter, D.H., Smith, T.E., Stout, J.H., Yeend, Warren, and Zehner, R.E., 1982, Geologic map of the southern part of the Mount Hayes Quadrangle, Alaska: U.S. Geological Survey Open-file Report 82-0052, 26 p., 1 sheet, 1:250,000 scale.
- Nokleberg, W.J., Aleinikoff, J.N., Dutro, T.J.T., JR, Lanphere, M.A., Silberling, N.J., Silve, S.R., Smith, T.E., and Turner, D.L., 1992, Map, tables, and summary of fossil and isotopic age data Mt. Hayes quadrangle, eastern Alaska Range, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF 1996-D, 43 p., scale 1:250,000.
- Nokleberg, Warren J., Lange, Ian M., Singer, Donald A., Curtin, Gary C., Tripp, Richard B., Campbell, David L., and Yeend, Warren, 1990, Metalliferous mineral resource assessment maps of the Mount Hayes quadrangle, eastern Alaska Range, Alaska: U.S. Geological Survey Map MF-1996-A, 27 p., scale 1:250,000, 4 sheets.
- Nokleberg, Warren J., Lange, Ian M., Roback, Robert C., Yeend, Warren, and Silva, Steven R., 1991, Map showing locations of metalliferous lode and placer mineral occurrences, mineral deposits, prospects, and mines, Mount Hayes quadrangle, eastern Alaska Range, Alaska: U.S. Geological Survey Map MF-1996-C, 42 p., scale 1:250,000, 1 sheet.
- O'Leary, R.M., Cooley, E.F., Day, G.W., Hessin, T.D., McDougal, C.M., McDanal, Steven, and Clark, A.L., 1978, Spectrographic and chemical analyses of geochemical samples from the Big Delta quadrangle, Alaska: U.S. Geological Survey Open-file Report 78-571, 127 p.

- Péwé, T.L., and Holmes, G.W., 1964, Geology of the Mt. Hayes D-4 Quadrangle, Alaska: U.S. Geological Survey Miscellaneous Geological Investigation Map I-394, scale 1:63,360, 1 sheet.
- Solie, D.N., Burns, L.E., and Newberry, R.N., 1990, Gold favorability in the Big Delta quadrangle, Alaska, as predicted by discriminant analysis for non-porphyry granitic rocks: Alaska Division of Geological and Geophysical Surveys Public Data File 90-13, 16 p., scale 1:250,000, 2 sheets.
- Southworth, D.D., 1984, Geologic and geochemical investigation of the "Nail" allocthon, east-central Alaska: U.S. Bureau of Mines, OFR 176-84, 21 p., I sheet.
- Streckeisen, A.L., and LeMaitre, R.W., 1979, A chemical approximation to the modal QAPF classification of the igneous rocks: Neues Jahrb. Mineral. Abh., v. 136, p. 169-206.
- Weber, F.R., Foster, H.L., Keith, T.E.C., and Dusel-Bacon, Cynthia, 1978, Preliminary geologic map of the Big Delta quadrangle, Alaska: U.S. Geological Survey Open-file Report 78-529A, scale 1:63,360, 1 sheet.
- Wilson, F.H., 1981, Maps and tables showing preliminary results of potassium-argon age studies in the Circle Quadrangle, Alaska, with a compilation of previous dating work: U.S. Geological Survey Open-file Report 81-889,
- Wilson, F.H., Smith, J.G., and Shew, Nora, 1985, Review of radiometric data from the Yukon Crystalline Terrane, Alaska and Yukon Territory: Canadian Journal of Earth Sciences, v. 22, no. 4, p. 525-537.
- Wiltse, M.A., 1991, National Uranium Resource Evaluation (NURE) geochemical data for stream- and lake-sediment samples, Alaska: Alaska Division of Geological and Geophysical Surveys Public Data File 91-22,