PUBLIC-DATA FILE 93-48

GROUND-WATER-QUALITY DATA COLLECTED DURING 1991, WEST NIKISKI, ALASKA

by

Mary A. Maurer Alaska Department of Natural Resources Division of Water Alaska Hydrologic Survey

> in cooperation with Kenai Peninsula Borough

> > April 1993

THIS REPORTS HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

Released by

STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645

CONTENTS

	Page
Introduction	1
Acknowledgments	1
Previous investigations	3
Sampling and analytical procedures	. 3
Water-quality standards	4
Results and discussion	4
On-site measurements and analyses	
Laboratory analyses	
Comparisons of on-site and laboratory results	13
Interlaboratory comparisons	. 13
Water-type classification	. 13
Summary and conclusions	. 17
References cited	. 19

FIGURES

Figure 1.	Location of water-quality sample sites, west Nikiski area, Alaska	2
Figure 2.	Relation of total iron concentration measured on-site and in the laboratory 14	ŀ
Figure 3.	Histogram showing frequency distribution of on-site and laboratory iron data 14	ł
Figure 4.	Relation of total hardness obtained on-site and in the laboratory	ś
Figure 5.	Histogram showing frequency distribution of on-site and laboratory-calculated	
	hardness data	j.
Figure 6.	Trilinear diagram showing water analyses of ground water collected from 30 wells in	
	the west Nikiski area during July 1991 18	3

TABLES

Table 1	Sampled wells in Township 6 North, Range 12 West, Sections 1, 2, 11 and
	Township 7 North, Range 12 West, Sections 11, 13, 14, 15, 23, 24, 25, 26, 27,
	35, 36 Seward Meridian
Table 2.	Results from DOW on-site water-quality measurements and analyses, taken at sites
	for which laboratory results are available
Table 3.	Results from laboratory analyses for inorganic and radioactivity constituents7
Table 4.	Results from laboratory analyses for volatile organic compounds
Table 5.	Comparisons of analytical results between the Alaska Division of Water laboratory
	and the U.S. Geological Survey laboratory

APPENDICES

Appendix A.	State of Alaska Drinking Water Regulations, maximum contaminant concentration	
	levels, 18 AAC 80.070	21
Appendix B.	Diagram showing derivation of local well number, based on the official rectangula	r
	subdivision of public lands	25
Appendix C.	Laboratory water-quality analytical reports	26
Appendix D.	Laboratory quality assurance evaluation on water samples collected for the	
	Phase IIIA Project, west Nikiski, Alaska	62

GROUND-WATER-QUALITY DATA COLLECTED DURING JULY 1991, WEST NIKISKI, ALASKA

by

Mary A. Maurer¹

INTRODUCTION

A ground-water study of the west Nikiski area (fig. 1) on the Kenai Peninsula was initiated in 1990 by the Alaska Department of Natural Resources, Division of Water (DOW). This report summarizes results of on-site and laboratory analyses of ground water collected from 30 wells by DOW during July 1991.

The Kenai Peninsula Ground-Water Task Force (KPGWTF) developed a four-phased project plan to study the ground water of the Kenai Peninsula (KPGWTF, 1990a). Phase I, completed in 1991, consisted of mapping and listing existing U.S. Geological Survey (USGS) water-quality data (Bullington, 1991). Phase II is designed to achieve a better understanding of the regional-scale ground-water quality and ground-water flow systems (KPGWTF, 1990b). Phase III, which is intended to address ground-water issues at the subregional scale, consists of detailed subsurface geologic, water-table, and water-quality mapping (KPGWTF, undated). Phase IV addresses long-term monitoring, groundwater protection, and educational activities.

The KPGWTF selected the west Nikiski area as the first phase III project because (1) most residents and businesses rely on ground water as a water supply, and (2) numerous actual and suspected sites of ground-water contamination have been identified there (Harding Lawson Inc., 1989).

The water-quality objectives of this phase IIIA pilot project are:

- 1. Survey ground-water quality by conducting on-site measurements of key water-quality properties and constituents.
- 2. Collect ground-water samples and analyze them for selected inorganic, organic, and radioactive constituents.
- 3. Show selected water-quality constituent concentrations on maps using all available field and laboratory data, including data collected previous to this investigation.
- 4. Describe ground-water quality in the west Nikiski area.

This report presents and evaluates the laboratory and on-site water quality results collected for objective 2.

ACKNOWLEDGMENTS

The author thanks the members of the KPGWTF who helped to develop the project, and the Kenai Peninsula Borough, Alaska Oil and Gas Association, Unocal Oil and Gas, Unocal Chemical, ARCO Alaska Inc., Marathon Oil Company, Phillips Petroleum Company, and Tesoro Alaska Petroleum Corporation for providing partial project funding.

Division of Water, Alaska Hydrologic Survey, P.O. Box 772116, Eagle Rivar, AK 99577

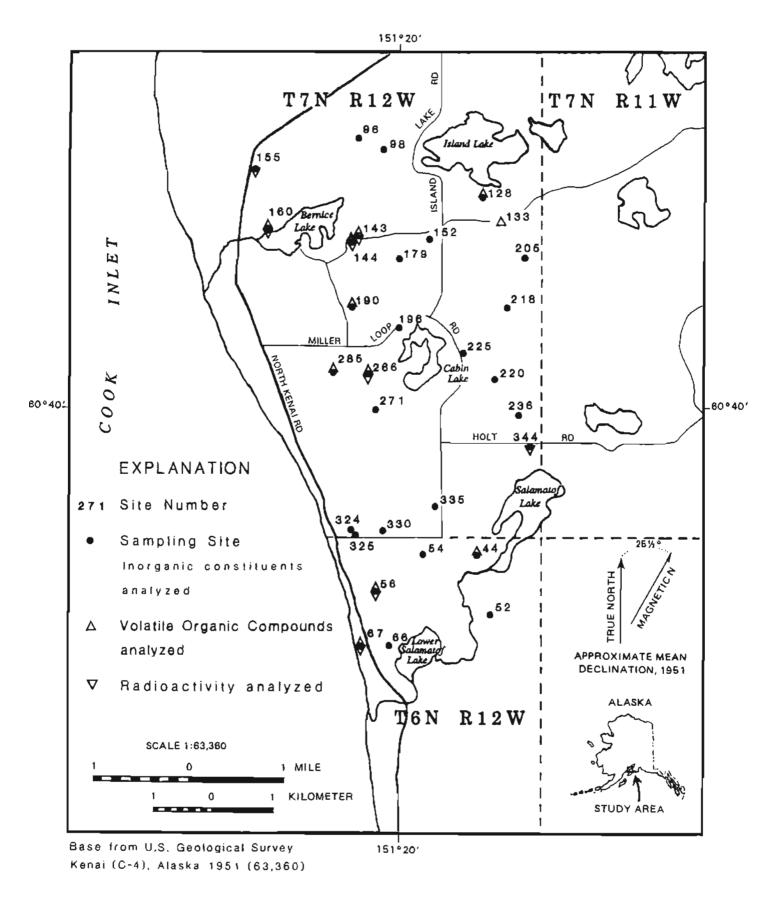


Figure 1. Location of water-quality sample sites, west Nikiski area, Alaska.

Roy Glass (USGS), Rick Noll, Stephen Weems and Kellie Litzen (DOW), Jim Jurgens (ADNR-Division of Management), and Hans Schweiger (student intern) assisted with data collection. Roy Glass (USGS), Jim Munter (DOW), and Jean Bodeau, Alaska Department of Environmental Conservation (ADEC), reviewed and edited the report. I also would like to thank the Nikiski area property owners who graciously allowed access to their property for water-quality data collection.

PREVIOUS INVESTIGATIONS

Previous ground-water investigations in the Nikiski area include Anderson and Jones (1972), Howland and Freethey (1978), and Nelson (1981). Three major aquifers were described by Nelson (1981): an unconfined aquifer, an upper confined aquifer, and a lower confined aquifer. The unconfined aquifer is composed of coarse sand and gravel with some silt. It ranges in depth from about 5 to 100 ft below land surface (Anderson and Jones, 1972). Most domestic wells in the Nikiski area tap this aquifer. The unconfined aquifer is underlain by a silt, clay and sand unit that is termed the upper confining layer (Nelson, 1981). The upper confined aquifer is composed of sand, gravel and silty interbeds and ranges in depth from about 100 to more than 300 ft below land surface. Several industrial wells tap this aquifer. The upper confined aquifer is underlain by a silt and clay confining unit which is generally more than 100 ft thick. The lower confined aquifer is poorly defined but may consist of interconnected sand and gravel layers. Even though the aquifers have been previously studied and identified, ground-water flow directions and the quality of water in the aquifers are poorly understood.

SAMPLING AND ANALYTICAL PROCEDURES

The majority of water samples were from private domestic wells which were in daily use at the time of sampling. Water samples were collected before they passed through water pressure tanks, when possible. If the tanks could not be bypassed, the tank volume was added to the total volume of water needed to be purged so that a water sample representative of the well's aquifer would be collected. In addition, all water-treatment systems were bypassed.

A detailed description of sampling and analytical equipment and procedures is given in the quality assurance plan (QAP) for this project (Maurer, 1991). Initially, a water-level measurement was taken in each well prior to turning on any faucet. An outside spigot was then turned on to purge water from the well casing. A Y-shaped, valved adapter was attached to the spigot and split the waterflow into a long hose for purging and a short hose for monitoring and sampling. A Model 4041 Hydrolab, fitted with a flow cell, continually monitored the water's temperature, pH, and specific conductance during purging. Water for on-site and laboratory tests commenced when at least four well casing volumes were purged and pH and specific conductance fluctuated no more than 5 percent. On-site total alkalinity was determined by potentiometric titration using Gran's graphical methods (Stumm and Morgan, 1981). On-site analyses of total iron, total hardness, and nitrate-nitrogen concentrations were made using test kits manufactured by HACH Company of Loveland, Colorado.

The actual sampling method differed only slightly from that outlined in the QAP. Radiological sample bottles and total trace element (iron and manganese) samples were filled from the outlet of the short hose. Water for dissolved major ion and trace element analyses was filtered using an inline filtration system. Silicone tubing attached to the outlet of the short hose carried water into a 142 mm GEOTECH filter assembly containing a 0.45 μ m membrane filter. After the filter and assembly were flushed with approximately 1 liter of filtrate, the sample bottles for dissolved constituents were filled. Two volatile organic compound (VOC) septum vials were filled directly from the spigot. All other preservation and handling procedures were done according to QAP specifications.

Inorganic constituent analyses of 36 water sample sets were conducted at the DOW Water Quality Laboratory in Fairbanks, Alaska. Eleven VOC samples were analyzed at Northern Testing Laboratories in Anchorage, Alaska. Nine gross alpha and gross beta radioactivity samples were analyzed at Core Laboratories in Casper, Wyoming. Laboratory quality control procedures, dataquality objectives, and analytical methods are given in Maurer (1991).

WATER-QUALITY STANDARDS

The State of Alaska Drinking-Water Regulations (ADEC, 1991) specify the maximum concentration or level of a contaminant for public water systems (app. A). A contaminant is defined as any physical, chemical, biological, or radiological substance or material in water which, in sufficient quantity, makes water unfit for human consumption (ADEC, 1991). A primary maximum contaminant concentration level (PMCL) is health related and is legally enforceable for suppliers of public drinking water. A secondary maximum contaminant concentration level (SMCL) applies to the aesthetic qualities of drinking water and is a recommended guideline for public water suppliers. Concentrations are reported in milligrams per liter (mg/L) or micrograms per liter (μ g/L). The conversion is 1,000 μ g/L = 1 mg/L; and 1 mg/L is approximately 1 part per million (ppm).

RESULTS AND DISCUSSION

A listing of sampled wells, site numbers, and well attributes are shown in Table 1. Site numbers were arbitrarily assigned for this study whereas the 'local well number' is based on the rectangular subdivision of public lands (app. B) and is a unique site identifier used by the USGS and DOW. Well depths ranged from 31 to 303 ft.

On-site Measurements and Analyses

Results from on-site measurements and analyses are shown in Table 2. Water level measurements ranged from 9.82 to 96.71 ft below land surface. Water temperature ranged from 3.1 to 7.8 °C. Specific conductance was typically less than 300 microsiemens per centimeter (μ S/cm), which is considered acceptable for domestic use. The pH values ranged widely and several sites were outside the SMCL range of pH 6.5-8.5 (ADEC, 1991). Six sites had pH values of less than 6.5 and three sites had pH values of greater than 8.5. Total alkalinity ranged from 33 to 270 mg/L as CaCO₃, with a mean value of 69 mg/L and a median value of 59.5 mg/L as CaCO₃. Total hardness ranged from 9 to 130 mg/L as CaCO₃, with a mean value of 49 mg/L and a median value of 44.5 mg/L as CaCO₃. Water having a hardness value less than 60 mg/L is considered soft, 61-120 mg/L is considered moderately hard, and 121-180 mg/L is considered hard (Hem, 1985).

Total iron concentrations were highly variable, ranging from 0.1 to 14.4 mg/L. Concentrations of iron less than 0.3 mg/L are desired for domestic uses. Nitrate-nitrogen (NO₃ as N) concentrations were either undetectable or measured in concentrations less than 2 mg/L. Concentrations of nitrogen less than 10 mg/L are desired for domestic uses.

Laboratory Analyses

The results of the laboratory analyses for water samples from the 30 wells are shown in Tables 3 and 4. Complete analytical reports for each laboratory are given in Appendix C. The quality-assurance evaluation report for each laboratory is presented in Appendix D.

The majority of laboratory-analyzed inorganic constituents and trace elements did not exceed the PMCLs promulgated in the Alaska Drinking Water Regulations (ADEC, 1991). For example, the nitrate-nitrogen concentration ranged from <0.1 mg/L to 4.45 mg/L, substantially less than

SITE NO.'	LOCAŁ WELL NUMBER ²	ALTITUDE OF LAND SVRFACE (FT ABOVE SEA LEVEL)	WELL DEPTH ³ (FT)	LEGAL PROPERTY DESCRIPTION
44	\$8006012018ACA2 004	102	31	NIKISHKA, L2 812
52	SB00601201CDAA1 008	104	34	BETTYANN'S ACR., GOGGIA ADD.#2, L1D B3
54	SB00601202AACA1 006	107	46	KISKA, L7
56	SB00601202CA8B1 009	103	65	INDUSTRIAL PARK, L5 82
66	SB006012118AAC1 012	93	87	MONFOR #1, L1
67	S800601211B88D1 011	94	303	REDOUBT VIEW, LIA BI
98	\$800701211CCBD1 008	152	97	ARBOR ESTATES, L4 B2
98	S800701211CDCD1 037	162	96	TIKCHIK ESTATES, L3
128	S800701213BDDC1 016	138	59	MILLER'S HIDE-AWAY, L14 83
133⁴	SB00701213DBCD1 023	151	70	CACHE, L17
143	SB00701214CC8D1 015	132	75	ROSS, ADDITION #1, L11 83
144	SB00701214CCCB1 002	122	60	ROSS, GIBSON ADDITION, L4A
152	SB00701214DDCA1 018	140	55	ERNST, L2
155	S8007012158BCB1 011	122	51.2	TACHATNA PARK, L5 B1
160	SB00701215CCAB1 010	78	130	GALEN GRAY #2, TR. A, 84
179	SB00701223ABBC1 017	141	67.5	WELAKA LAKE ACRES, TR. 4
190	SB00701223CB8C1 002	112	36	VAN SKY HOMESTEAD
196	SB00701223DCBC1 010	131	110	CAD ESTATES, TR. D
205	SB00701224AABD1 018	154	58.5	BASTIEN-HOOVER LIC B3
218	SB00701224DBAC1 005	128	45	WHITE, L3
220	SB00701225ACBA1 021	134	59	SUNSHINE ESTATES, L1 B3
225	SB007012258BAC1 028	123	58	REAL DEVELOPMENT, L1 B1
236	SB00701225DACC1 027	131	39	GARNET, TR. D2
266	SB00701226BCAA1 039	131	55	McCAUGHEY, TR. 1, B2
271	\$800701226CACB1 024	105	128	MoCAUGHEY #4, L2E-1
285	SB00701227ADBA1 027	123	63	FORELANDS ACRES, L12 B1
324	SB00701236CCCB1 015	108	84.5	FOREST LANE ESTATES, L6
325	SB00701235CCCC2 004	102	82	McCONNELL, L2
330	S800701235CDCA3 018	96	40	FIREWEED ESTATES, L17
335	SB00701235DA081 037	116	56	FOLEY ESTATES, L1 B2
344	S800701236AAAB1 006	122	155	NORTH STAR ELEMENTARY SCHOOL, HOLT RD.

Table 1. Sampled wells in Township 6 North, Range 12 West, Section 1, 2, 11 and Township 7 North, Range 12 West, Section 11, 13, 14, 15, 23, 24, 25, 26, 27, 35, 36 Seward Meridian.

Numbers arbitrarily assigned for this project, see fig. 1 for location.

² The local well number is based on the official rectangular subdivision of public lands, see app. B.

³ Distance below land surface, in feet.

⁴ Site 133 was measured and sampled by U.S. Geological Survey. AK Div. of Water submitted volatile organic compound sample for analysis, see app. C.

SITE	DATE	1991 WATER LEVEL (FT) ²	WATER TEMP. (°C)	SPECIFIC CONDUCT- ANCE (µS/cm)	рH	TOTAL IRON ³ (mg/L)	TOTAL NITRATE ⁴ (MG/L #8 N)	TOTAL HARDNESS ⁶ (mg/L &s CaCO ₃)	TOTAL ALKALINITY (mg/L as CaCO ₃)
44	7-09-91	17.47	6.4	116	5.4	7,8,	<0,20	35	55
52	7-18-91	16.09	4.3	77	6.7	32	< 0.02	32	33
Б4	7-19-91	27.07	Б.б	179	6.6	10.0	< 0.02	72	80
56	7-17-91	39.32	3.7	121	7.0	7.8	< 0.02	39	59
66	7-22-91	9.82	6.8	121	6.9	8,4	< 0.02	36	60
67	7-19-91	96.71	4.5	1473	8.6	0.8	< 0.02	35	270
96	7-24-91	68.37	4.9	201	6,5	2.1	0,42	БО	80
98	7-23-91	69.87	ნ.0	138	7.6	0,7	< 0.02	55	68
128	7-12-91	46.36	4.8	126	8.4	0.4	0.80	52	46
143	7-20-91	39.08	4.3	90	6.6	2.7	< 0.02	37	34
144	7-09-91	34.41	4.0	116	7.0	5.2	0.20	36	65
152	7-21-91	38,13	5.7	186	e 3	0.2	0.70	73	67
166	7-22-91	35,60	4.5	327	6.9	14.4	< 0.02	130	150
160	7-20-91	20.02	5.8	195	7.9	4.1	< 0.02	9	87
179	7-10-91	40.61	3.1	117	7.1	A .1	< 0.02	37	45
190	7-11-91	16,79	6,9	127	6.7	7.1	< 0.02	11	41
196	7-10-91	NM [€]	4.8	254	7.8	0.8	< 0.02	110	117
205	7-18-91	48.01	Б,9	160	6.3	0.3	0.21	70	77
218	7-18-91	24.31	7.8	85	6,Б	0.3	0.24	30	34
220	7-16-91	33.63	Б,1	105	6.5	1.6	0.04	38	36
225	7-15-91	39.67	3.8	146	8,9	12	0.25	44	48 ⁷
236	7-15-91	23.98	4.8	82	6.5	1.0	< 0.20	34	33
266	7-09-91	34.77	4.6	171	7.0	6,2	< 0.02	69	72
271	7-13-91	36.37	6.4	126	8.6	Q,4	< 0.02	52	63
285	7-10-91	NM ^e	4.5	144	7.1	6.0	< 0.02	49	59
324	7-12-91	64.79	3,6	123	8.4	0,4	< 0.02	56	62
325	7-17-91	69.39	5.4	201	7.4	411	< 0.02	50	99
330	7-18-91	25,24	6.7	167	6.0	0.1	1.1	66	44
335	7-17-91	26.86	4.2	94	7.0	5,0	0.02	32	40
344	7-23-91	22.92	4,9	143	8.7	1,2	< 0.02	45	70
MCL ^a					6,5-8,5	0.3	10		

Table 2. Results from DOW on-site water-quality measurements and analyses, taken at sites for which laboratory results are available.

¹ Numbers arbitrarily essigned for this project, see fig. 1 for location.

² Distance below land surface, in feet.

³ Total iron concentrations were determined on-site with HACH iron test kit, Model IR-18B.

⁴ Nitrate concentrations were determined on-site with HACH low range nitrate test kit, Model NI-14.

⁵ Total hardness concentrations were determined on-site with HACH total hardness test kit, Model HA-DT.
⁹ NM = not measured

e NM ∞ not measured.

⁷ Total alkalinity collected and measured on 7-16-91.

⁶ MCL = Maximum Contaminant Lavel (State of Alaska Drinking Water Regulations 18 AAC 80).

Site No.	Calalum, dissotvad (mg/L)	Magnaslum, dissolved (mg/L)	Sodlum, dissolved (mg/L)	Potassium, dissolvod (mg/L)	Sulfate, dissolved (mg/L)	Chloride, dissolved (mg/L)	Fluoride, dissolved (mg/L)	Nitrate + Nitrite, dissolved (mg/L)	Phosphate, dissolved (mg/L)
44	9.82	2.83	3.65	0.91	0.09	3.39	0.14	<0.1	<0.1
52	8.71	2.07	3.88	1.08	4,54	4.27	0,11	<0.1	<0.1
54	17.1	3,98	6.62	2.10	1.13	4,94	0.20	<0.1	<0.1
56	9.91	2.77	4.19	1.65	<0.01	4.84	0.15	<0.1	<0.1
86	8.66	3.15	3.92	1.52	<0.01	4.38	0.13	<0.1	<0.1
87	3.39	4.35	201	8,90	42.0	93.9	<0.01	<0.1	4.7
96	21.6	6.19	7.84	2.88	5.63	9.88	0.22	1.18	<0.1
98	14.2	3.76	6.24	4.02	1.58	4.34	0.19	<0.1	0.2
128	14.2	3.40	8.13	1.42	2.92	8.02	0.16	1.62	<0.1
143	8,17	2.56	5.76	1.82	6.42	7.91	0.13	<0.1	<0.1
144	8.74	3.43	5.17	1.28	2.95	6.38	0.14	<0.1	<0.1
152	21.0	5.04	7.34	2.17	2.45	6.70	0.21	4.45	<0.1
165	30.4	11.6	9.50	3.18	3.16	4.85	0.31	<0.1	<0.1
160	24.3	4.77	4.27	1,15	8.15	6.69	0.22	<0.1	<0.1
179	9.86	2.98	4.32	1.44	4.57	5.87	0.14	<0.1	<0.1
190	3.40	0.99	15.2	0.99	13.6	8.46	0.14	<0.1	<0.1
196	36.6	6.92	6.07	2.53	9.25	5,53	0.27	<0.1	<0.1
205	21.4	4.70	6.82	2.01	2.91	4.87	0.21	0.41	<0.1
218	9.88	1.87	3.68	1.52	4.75	3.05	0.13	0,46	<0.1
2 20	9.41	2.61	4.65	1.66	3.78	9.61	0,13	0.32	<0.1
225	12.4	2.77	5.94	1.49	2.95	4.47	0.17	0.55	<0.1
236	8.34	1.74	4.44	1.14	2.73	5.01	0.13	0.30	< 0.1
266	16.0	4.70	5.94	1,67	6.07	6.47	0.19	<0.1	<0.1
271	15.6	4.12	4.58	2.91	1.34	4.15	0.18	0.11	0.1
285	11.9	4.32	5.08	1.53	5.01	6.83	0,16	<0.1	<0.1
324	16.3	3.24	4.09	1.71	3.75	5.07	0.17	<0.1	<0.1
325	24.5	5.71	6.06	2.72	7.06	5.44	0.29	<0.1	<0.1
330	16.4	3.79	8.21	1.89	5.45	14.0	0.19	2.72	<0.1
335	7.06	2.55	3.98	1.40	3.02	6.37	0.12	< 0.1	<0.1
344	9.96	5.51	7.72	5.28	1.53	3,47	0.19	<0.1	0.2
MCL,			250		250	250	4.0	10	0.2

Table 3. Results from laboratory analyses for inorganic and radioactivity constituents.

¹ MCL = Maximum Contaminant Leval (State of Alaska Drinking Water Regulations 18 AAC 80)

Sitə No.	Gross Alpha, totel (piC/L)	Gross Beta, total {piC/L}	Aluminum, dissoived (µg/L)	Arsenic, dissolved (μg/L)	Berium, dissolved (µg/L)	Cadmium, dissolved (µg/L)	Chromium, dissolved (µg/L)	Capper, dissolved (µg/L)
44			13	<1,0	<2	2.0	< 1.0	3.5
52			<5	<1.0	11	<1,0	< 1.0	1.4
54			<5	<1.0	48	<1,0	< 1.0	<1.0
58	< 2.2	< 2.5	33	< 1.0	28	<1.0	<1.0	< 1.0
66			59	< 1.0	17	< 1.0	< 1.0	< 1,0
67	<15.8	11.3 ± 6.8	100	71	11	1.9	<1.0	4.1
96			34	<1.0	12	< 1,0	<1.0	10.0
98			46	9.9	8	<1.0	<1.0	< 1.0
128			8	<1.0	<5	< 1.0	<1.0	31.1
143	<1.9	<2.7	12	<1.0	12	< 1,0	<1.0	< 1.0
144	< 2.0	<2.7	8	<1.0	28	<1.0	<1.0	<1.0
152			<5	<1.0	<5	< 1.0	<1.0	31,4
155	< 4, 1	<3.0	<5	< 1.0	57	<1.0	< 1.0	<1.0
150	< 2.7	< 2.8	<5	<1.0	31	<1.0	< 1.0	< 1.0
179			39	<1.0	22	<1.0	<1.0	<1.0
190			9	9.0	17	<1.0	<1.0	<1.0
196			B	1.8	15	<1.0	<1.0	<1.0
205			44	<1.0	<5	<1.0	< 1.0	24.0
218			7	<1.0	< 5	<1.0	< 1.0	29.9
220			18	<1.0	22	<1.0	1.3	13.9
225			58	<1.0	<5	<1.0	<1.0	18.9
236			6	<1.0	<5	<1.0	<1.0	30.0
266	< 2.6	<2.5	9	< 1.0	37	<1.0	<1.0	< 1.0
271			10	1.2	<5	<1.0	<1.0	<1.0
285			<5	<1.0	25	< 1.0	<1.0	< 1,0
324			<5	< 1.0	6	<1.0	<1.0	<1.0
325			42	< 1.0	20	<1.0	<1.0	< 1.0
330			40	<1.0	7	<1.0	< 1.0	22.1
335			54	< 1.0	23	<1.0	< 1.0	< 1,0
344	< 2.0	< 2.3	43	10	<5	<1.0	<1.0	9.4
MCL'	15	50		50	1000	10	50	1000

Table 3. Results from laboratory analyses--Continued.

' MCL = Maximum Contaminant Level (State of Alaska Drinking Water Regulations 18 AAC 80)

Site No.	ŧ.	юп,	Lead, dissolved	Manga	anase,	Mercury, dissolved	Nickel, discolved	Zinc, dissolved
140.	tota! (mg/L)	dissolved (mg/L)	(µg/L)	total (mg/L)	discolved (mg/L)	(μg/L)	(µg/L)	(µg/L)
44	8.17	7.86	7,5	0.31	0,31	<1	< 10	< 20
52	8 -11	2.68	<1.0	0.09	0.08	<1	< 10	< 20
54	10.18	9.61	1.1	0.21	0,21	<1	<10	230
56	8.20	7.98	< 1.0	0.27	0.27	<1	< 10	< 20
66	8,93	9:07	<1.0	0.31	0.31	<1	<10	127
67	6.66	0.38	10,4	0,11	0.03	<1	<10	28
96	1,19	1,13	1.5	0.04	0.02	< 1	< 10	< 20
98	3,48	< 0.03	< 1.0	0.20	90.08	< 1	< 10	< 20
128	0.05	0.04	< 1.0	< 0.005	<0.005	<1	< 10	< 20
143	2.25	2,16	<1.0	-0:07	0.05	<1	< 10	< 20
144	5.27	8,11	<1.0	0.22	0.22	<1	< 10	35
162	0.36	<0.03	1,5	< 0.005	<0.005	<1	< 10	< 20
156	16,3	16.2	1.4	0.94	0:84	< 1	<10	77
160	4.49	4.4B	1.4	0.65	0,54	< 1	< 10	< 20
179	4.24	8.99	<1.0	0.22	0:22	< 1	<10	< 20
190	8-11	7/39	1.7	Ó.12	0.12	<1	< 10	< 20
196	0.54	0.44	1.3	0.66	0.55	<1	< 10	317
205	0.07	<0.03	< 1.0	<0.005	<0.005	<1	<10	< 20
218	0.07	< 0.03	< 1.0	<0.005	<0.005	<1	<10	< 20
220	£.51	0.97	1.8	0,10	0.10	<1	< 10	34
225	0.18	0.14	< 1.0	<0.005	<0,005	<1	< 10	81
236	0.19	< 0.03	<1.0	<0.005	<0.005	<1	<10	< 20
266	9.49	9.45	1.8	0:40	0.42	<1	<10	1 260
271	0.06	0.05	1.2	0.07	0.07	<1	< 10	< 20
285	4.74	4,74	1.3	0.26	0.26	<1	< 10	41
324	0.14	0.13	<1.0	0.37	0.37	<1	<10	< 20
325	3.99	3.87	1.4	0.61	0.80	<1	<10	< 20
330	0.91	0.18	1.1	0.03	0.03	<1	< 10	< 20
335	6.03	9.4A	< 1.0	0.19	0.18	<1	<10	< 20
344	0.09	<0.03	1.1	0.04	0.02	<1	< 10	< 20
MCL'	0.3	mg/L	50	0.05	mg/L	2		5000

Table 3. Results from laboratory analyses--Continued.

¹ MCL = Maximum Contaminant Level (State of Alaska Drinking Water Regulations 18 ACC 80)

						SITE						
PARAMETER	44	56	67	128	139	143	144	160	190	266	285	MCL1
Benzene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	5.0
Bromobenzene	<0.3	<0.3	<0.3	<0,3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
Bromochloromethane	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
Bromodichloromethene	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0,2	
Bromoform	< 1.0	< 1.0	<1.0	<1.0	< 1.0	< 1.0	<1,0	<1.0	< 1.0	<1.0	<1.0	
Bromomethane	< 2.0	< 2.0	<2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	<2.0	
n-Butylbenzene	<0.3	<0,3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
sec-Butylbanzene	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3	
tert-Butylbenzene	<0.5	<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	
Carbon Tetrachloride	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	5.0
Chlorobenzene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Dibromochloromethane	<0,4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Chloroethane	< 2.0	< 2.0	< 2.0	<2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	
Chloroform	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Chloromethane	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	
o-Chlorotoluana	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0,3	<0.3	<0.3	<0.3	<0.3	
p-Chlorotoluene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
1,2-Dibromo-3-chloropropana	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	
Dibromomethene	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
1,4-Dichorobenzane	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	75.0
m-Dichlorobenzene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
o-Dichorobenzene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Dichlorodifluoromathene	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	<2.0	< 2.0	< 2.0	< 2.0	< 2.0	
1,1-Dickloroethane	<0.2	<2.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
1,2-Dichloroethane	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	5.0
1,1-Dichlorosthylene	<1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7.0
cis-1,2-Dichlorosthylene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
trans-1,2-Dichloroethylene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Methylene Chloride	<1.0	<1.0	<1.0	< 1.0	< 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	

Table 4. Results from laboratory analyses for volatile organic compounds.

MCL = Maximum Contaminant Level (State of Alaska Drinking Water Regulations 18 AAC 80)

			•			SITE			<u>.</u>			
PARAMETER	44	56	87	128	133	143	144	160	190	266	285	MCL,
1,2-Dichloropropana	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
1,3-Dichioropropane	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
2,2-Dichloropropana	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 1.0	
1,1-Dichloropropens	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.ธ	<0.5	<0,5	<0.5	
1,3-Dichloropropene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Ethylbanzana	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
1,2-Dibromoethane	<1.0	<1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	< 1.0	<1.0	<1.0	< 1.0	
Trichlorofluoromethana	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0,5	<0.5	<0.5	
Haxachlorobutadiana	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
Isopropylbenzene	<0.3	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
p-lsopropyitoluene	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
Naphthalane	<0.3	<0.3	<0.3	<0.3	<0.3	<0,3	<0.3	<0.3	<0.3	<0.3	<0.3	
n-Propylbenzene	<0.3	<0.3	<0.3	<0,3	<0.3	<0,3	<0.3	<0.3	<0.3	<0.3	<0.3	
Styrene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
1,1,1,2-Tetrachloroethans	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0,2	<0.2	<0.2	
1,1,2,2-Tetrechloroethane	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
Tetrachioroethylene	<0.2	<0,2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Total Tribalomethane	<2	< 2	<2	<2	<2	<2	< 2	< 2	<2	<2	< 2	100.0
Toluene	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	
1,2,3-Dichlorobenzene	<0.3	<0.3	<0.3	<0.3	<0.3	<0,3	<0.3	<0.3	<0.3	<0.3	<0.3	
1,2,4-Trichlorobenzene	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0,3	<0.3	
1,1,1-Trichloroethane	<0.2	<0.2	<0.2	<0.2	<0.2	Q.7	<0.2	< 0.2	<0.2	<0.2	<0.2	200.0
1,1,2-Trichloroathane	<0.4	<0.4	<0.4	<0.4	<0,4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Trichloroethylene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	5.0
1,2,3-Trichloropropane	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
1,2,4-Trimethylbenzene	<0,2	<0.2	<0.2	<0,2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
1,3,5-Trimethylbenzene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Vinyl Chlorida	< 2.0	< 2.0	<2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	<2.0	< 2.0	< 2.0	2.0
m,p-Xylanas	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
o-Xylene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	

Table 4. Results of laboratory analyses for volatile organic compounds--Continued.

¹ MCL = Maximum Contaminant Level (State of Alaska Drinking water Regulations 18 AAC 80)

nitrate's PMCL of 10 mg/L as nitrogen. Arsenic has a PMCL of 50 μ g/L. An arsenic concentration of 71 μ g/L was measured from a sample collected at site 67 (fig. 1). The sampled well is located less than 100 ft from the Cook Inlet bluff, and at 303 ft deep is completed in the lower confined aquifer (W.A. Petrik, oral commun., 1992). Arsenic concentrations in water from a few wells greater than 200 ft deep in the west Nikiski area have exceeded 50 μ g/L, based on USGS historical data (USGS, 1978). Although elevated arsenic concentrations may not be common in water from shallow wells in the Nikiski area, they do occur sporadically in ground water elsewhere on the Kenai Peninsula (U.S. Geological Survey, 1992; Munter and Maurer, 1991).

Concentrations of total (unfiltered) and dissolved (filtered) iron and manganese were analyzed. Besides pH, iron and manganese were the only analyzed inorganic constituents that had concentrations exceeding SMCLs (ADEC, 1991). Total iron concentrations ranged from 0.05 to 16.3 mg/L, and exceeded the SMCL of 0.3 mg/L at 22 sites. Total manganese concentrations ranged from <0.005 to 0.94 mg/L, and exceeded the SMCL of 0.05 mg/L at 20 sites. Dissolved iron and manganese concentrations exceeded their respective SMCLs at 19 sites. Both iron and manganese affect the taste and aesthetic qualities of drinking water.

The absence of detectable volatile organic compounds (VOC)s in 10 of 11 ground-water samples suggests that VOC contamination is not an area-wide problem in the residential west Nikiski area. The only detected VOC was 1,1,1-trichloroethane (table 4). A concentration of 0.7 μ g/L was measured in a sample collected at site 143, 0.2 miles east of Bernice Lake (fig. 1). For comparison purposes, the PMCL for 1,1,1-trichloroethane is 200 μ g/L (ADEC, 1991). The occurrence of 1,1,1-trichloroethane has not been confirmed nor disproven with additional sampling.

The origin of 1,1,1-trichloroethane is unknown. No detectable concentrations of selected VOC's were measured at site 144. Site 144 is located approximately 300 ft southwest of and downgradient from site 143, according to water-table contour maps (R.D. Allely, oral commun., 1992). Nevertheless, it is impossible to determine the origin or areal extent of 1,1,1-trichloroethane in ground water based on the distribution of available analyses.

Water samples were collected from 9 wells for radioactivity analysis (table 3). Total gross alpha and total gross beta radioactivities of sampled ground waters in the west Nikiski area were low compared to the PMCLs promulgated in the Alaska Drinking Water Regulations (ADEC, 1991). Gross alpha radioactivity has a PMCL of 15 picocuries per liter (pCi/L), and gross beta radioactivity has a PMCL of 50 pCi/L. All total gross alpha radioactivity concentrations were less than the lower limit of detection (LLD), which ranged from 1.9 to 15.8 pCi/L. Total gross beta radioactivity ranged from <2.3 to 11.3 \pm 6.8 pCi/L.

Total gross alpha and gross beta particle count, error, and LLD concentrations in pCi/L are shown in Appendix C. The 'error, \pm ' is the analytical and counting error associated with the particle count. The LLD concentration is the result of background alpha and beta particle interferences. The majority of results in Table 3 are reported as less than (<) the LLD concentrations.

The total gross alpha LLD concentration of 15.8 pCi/L for the sample collected at site 67 is high compared to other gross alpha samples. The total dissolved solid (TDS) concentration of a sample is a limiting factor in the sensitivity of the analytical method (U.S. Environmental Protection Agency, 1980). Specific conductance is an indirect indicator of TDS, and the comparatively high specific conductance (1473 μ S/cm) of the ground water at site 67 probably contributes to the higher LLD concentration.

Comparisons of On-site and Laboratory Results

Total iron concentrations determined on-site (table 2) were compared to those determined in the laboratory (table 3). Figure 2 shows the relation between the two data sets, represented by the 'best-fit' line. A good linear relationship (r = 0.92) exists between on-site and laboratory results. The 'expected line' is how the data would plot if there was a perfect relationship (r = 1.00) between the two data sets.

A frequency distribution of iron concentrations show that 11 of 30 sites had concentrations <1.0 mg/L, regardless of the testing method used (fig. 3). The difference between on-site and laboratory data at iron concentrations <1.0 mg/L is attributed to the lower resolution of the on-site method. The on-site method has a detection limit of about 0.2 mg/L, while the laboratory method has a detection limit of 0.03 mg/L. Presumably, the laboratory method was better at quantifying iron concentrations <1.0 mg/L. On-site screening for iron was considered adequate only when iron concentrations were >1.0 mg/L.

Hardness values determined on-site (table 2) were compared to hardness values computed from laboratory data. A laboratory hardness value for each water sample was calculated by converting calcium and magnesium concentrations in mg/L (table 3) to milliequivalents per liter (meq/L) and then multiplying the sum of calcium and magnesium in meq/L by 50 (Hem, 1985). Figure 4 shows the actual relation (best-fit line) between the two data sets. A fairly good linear relationship (r = 0.80) exists between on-site and laboratory methods. Figure 5 shows the frequency distribution of hardness data for the two data sets. The on-site and laboratory results are in reasonably close agreement throughout the measured concentration range.

Nitrate (NO₃) data comparison are not graphically presented because most samples contained concentrations of nitrogen less than the detection levels of the test kit and laboratory method. Nitrite (NO₂) concentrations are usually a very small portion of the NO₂ + NO₃-N ratio when the water is oxygenated and are not expected to significantly affect the relationship between data sets.

Interlaboratory Comparisons

The USGS collected and analyzed 27 ground-water samples in the greater Nikiski area during 1991 for the KPGWTF's regional hydrogeologic study of the Kenai Peninsula, referred to as the Phase II project. Samples were analyzed at the USGS Laboratory in Denver, Colorado, according to the methods described in Fishman and Friedman (1985). The analytical results are presented in the USGS's annual water-resource data report (USGS, 1992).

The Alaska DOW and the USGS concurrently sampled water from two wells, sites 66 and 344, to make interlaboratory comparisons of analytical results (table 5). The general reliability of laboratory analyses was checked by calculating the cation/anion balance for each data set. All four analyses are acceptable because the error in the cation/anion balance is <10 percent.

Generally, the two laboratories are in good agreement with respect to major-ion analytical results (table 5). Interlaboratory comparisons for many trace elements is not possible because most concentrations were below detection limits. Comparisons for concentrations of fluoride, aluminum, arsenic, and manganese were poor between laboratories. This is most likely due to the difficulty in guantifying trace elements at concentrations near the analytical method's detection limit.

Water-type Classification

Trilinear diagrams can be used to show the chemical character of a water sample (Piper, 1944). Ratios of selected cations (calcium, magnesium, and sodium plus potassium) and anions

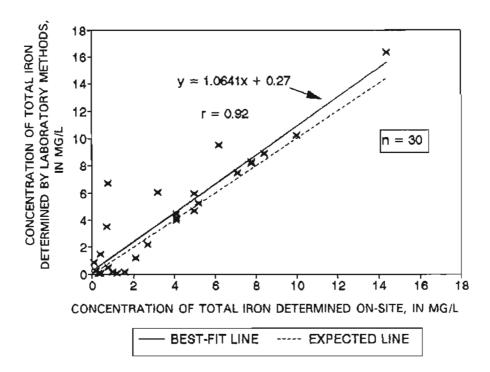


Figure 2. Relation of total iron concentration measured on-site and in the laboratory.

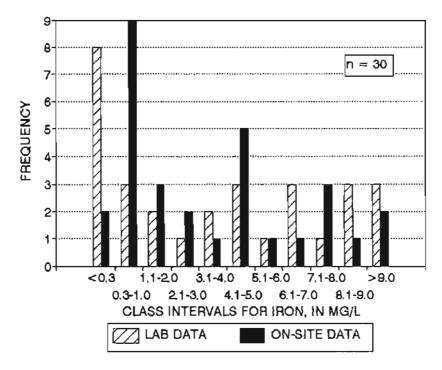


Figure 3. Histogram showing frequency distribution of on-site and laboratory iron data.

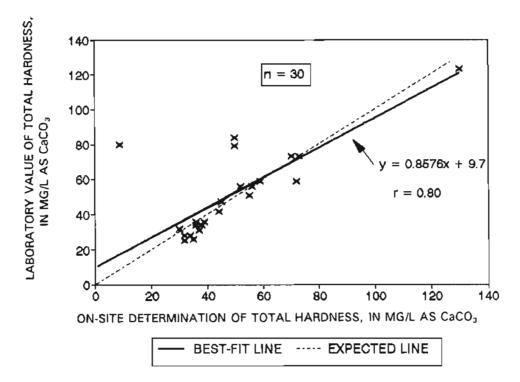


Figure 4. Relation of total hardness determined on-site and in the laboratory.

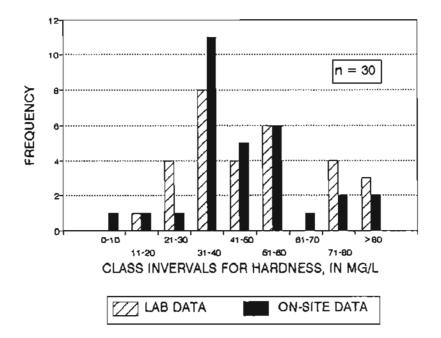
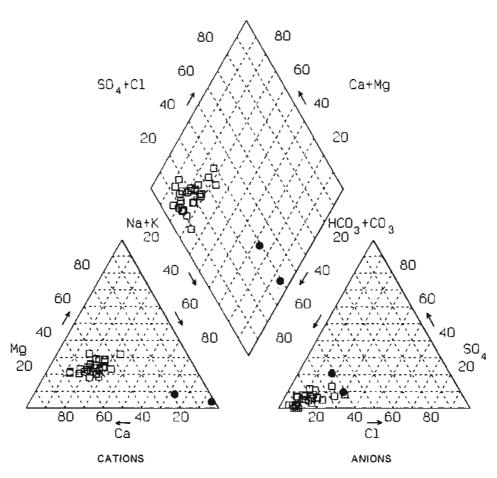


Figure 5. Histogram showing frequency distribution of on-site and laboratory-calculated hardness data.

		SITE NO	D. 66		SITE NO. 344				
PARAMETER	DOW	USGS	Mean	Deviation from Mean (%)	DOW	USGS	Mean	Deviation from Mean (%)	
Major lons, dissolved (mg/L)]								
Calcium	8.66	8.9	8.8	1	9.96	11	10.5	5	
Magnesium	3.15	3.3	3.2	2	5.51	5.9	5.7	3	
Sodium	3.92	4.6	4.3	8	7.72	8.0	7.9	2	
Potassium	1.52	1.4	1,46	4	5.28	4.7	5.0	6	
Iron	9.07	9	9	<1					
Alkalinity (as HCO ₃)	73.2	75.6	74.4	2	85.4	86.6	86.0	1	
Chloride	4.38	4.6	4.5	2	3.47	4.7	4.1	15	
Sulfate	< 0.01	0.20			1.53	1.5	1.51	1	
Fluoride	0.13	0.20	0.16	21	0.19	0.20	0.195	3	
Sum of lons									
Cations (meq/L)	1.225	1.273			1.421	1.502			
Anions (meg/L)	1.327	1.383			1.540	1.688			
Error	4.0%	4.1%			4%	5.8%			
Trace Elements, dissolved (μ g/L)									
Aluminum	59	10	34.5	71	43	<10			
Arsenic	<1.0	1			10	24	17	41	
Barium	17	20	18.5	8	<5	4			
Cadmium	<1.0	1.0		_	<1.0	< 1.0			
Chromium	< 1.0	<5			<1.0	<5			
Copper	<1.0	<10	•		9.4	10	9.7	3	
Iron					< 0.03	0.014		-	
Lead	<1.0	<10			1.1	<10			
Manganese	310	320	315	2	20	44	32	38	
Mercury	<1	< 0.1			<1	< 0.1			
Nickel	<10	<10			<10	<10			
Nitrate + Nitrite (as N)	<100	< 50			< 100	<50			
Phosphorus, ortho (as P)	<100	<10			200	180	190	5	
Zinc	127	100	113.5	12	<20	35		-	

Table 5. Comparisons of analytical results between the Alaska Division of Water laboratory and U.S. Geological Survey laboratory.


(bicarbonate plus carbonate, chloride, and sulfate) for each water analysis are shown in the diagram as percentages of the total cations and anions, in meq/L. A water type can be described based on the predominant cations and anions found in the water.

Twenty-one sites sampled in the Nikiski area have ground water that is of the calcium-bicarbonate type (fig. 6). Seven sites have ground water of the 'mixed-cation'-bicarbonate type because the percentage of no single cation exceeds 50 percent. These 28 sites tap the unconfined or upper-confined aquifer (W.A. Petrik, oral commun., 1992).

Two sites have ground water of the sodium-bicarbonate type. Site 67 has a well depth of 303 ft and is the only well sampled that taps the lower-confined aquifer. Site 190 has a well depth of only 36 ft and taps the unconfined aquifer. According to Anderson and Jones (1972), most of the ground waters of the sodium-bicarbonate water type occur in wells ranging from 100 to 450 ft deep.

SUMMARY AND CONCLUSIONS

- Generally, the ground waters sampled from 30 wells in the residential area of west Nikiski during 1991 by DOW had low concentrations of inorganic and organic constituents, and levels of radioactivity acceptable for domestic uses. No area-wide contamination by volatile organic compounds was detected.
- However, the majority of sampled ground waters had concentrations of naturally-occurring iron and manganese that were higher than levels desired for domestic uses.
- Nitrate concentrations were low in water from all wells sampled.
- The concentration of arsenic exceeded drinking-water standards in water from on deep well, but high concentrations of arsenic naturally occur in scattered locations throughout the Kenai Peninsula in both shallow and deep wells.
- Concentrations of gross alpha and gross beta radioactivity were low in water from 9 wells.
- Concentrations of 59 volatile organic compounds were analyzed from water samples from 11 wells. Only one volatile organic compound was detected: 1,1,1-trichloroethane. It was found in one well, and had a concentration of 0.7 μ g/L.

PERCENT OF TOTAL MILLIEQUIVALENTS PER LITER

EXPLANATION

<u>Symbol</u>	Water Type	Site Number
Ċ	Calcium bicarbonate	44, 54, 56, 96, 98, 128, 152, 155, 160, 179, 196, 205, 218, 220, 225, 236, 266, 271, 324, 325, 330
	Mixed cations: Ca>Mg>Na bicarbonate Ca>Na>Mg bicarbonate	66, 144, 285, 335 52, 143, 344
•	Sodium bicarbonate	67, 190

Figure 6. Trilinear diagram showing water analyses of ground water collected from 30 wells in the west Nikiski area during July 1991.

REFERENCES CITED

- Alaska Department of Environmental Conservation, 1991, State of Alaska Drinking Water Regulations 18 AAC 80: ADEC, Juneau, Alaska, 87 p.
- Anderson, G.S., and Jones, S.H., 1972, Water resources of the Kenai-Soldotna area, Alaska: U.S. Geological Survey Open-File Report, 81 p.
- Bullington, A.Z.R., 1991, Regional hydrogeologic study, Kenai Peninsula, Phase I project: Kenai Peninsula Groundwater Task Force, February 15, 1991, 10 p., 7 appendices.
- Fishman, M.J., and Friedman, L.C., 1985, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chapter A1, 709 p.
- Harding Lawson Associates, 1989, Comprehensive inventory report, potential waste disposal sites and other reports/complaints, Kenai Peninsula Borough, Alaska: Prepared for Alaska Department of Environmental Conservation, Juneau, AK, 9 p. plus appendices.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, Third Edition: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Howland, M.D., and Freethey, G.W., 1978, Selected hydrologic data related to the water-table aquifer of the north Kenai area, Alaska: Alaska Division of Geological and Geophysical Surveys Open-File Report 112, scale 1:63,360, 1 sheet.
- Kenai Peninsula Ground-Water Task Force, 1990a, Overview of plans for an areawide ground-water study, Kenal Peninsula, Alaska: Kenai Peninsula Ground-Water Task Force unpublished document, August 15, 1990, 6 p.

_____, 1990b, Regional hydrogeologic study Kenai Peninsula Phase II project plan: Prepared by Kenal Peninsula Ground-Water Task Force unpublished document, August 15, 1990, 10 p.

____, undated, Kenai Peninsula Ground-Water Study Phase III Pilot Project: Prepared by Kenai Peninsula Ground-Water Task Force unpublished document, unpaginated.

- Maurer, M.A., 1991, Quality assurance plan for the Kenai Peninsula ground-water study phase IIIA, pilot project, west Nikiski, Alaska: Alaska Division of Geological and Geophysical Surveys Public-Data File 91-27, 107 p.
- Munter, J.A., and Maurer, M.A., 1991, Preliminary description of ground-water conditions at Sterling, Alaska: Alaska Division of Geological and Geophysical Surveys Public-Data File 91-31, 25 p.
- Nelson, G.L., 1981, Hydrology and the effects of industrial pumping in the Nikiski area: U.S. Geological Survey Water-Resources Investigations 81-685, 22 p.
- Piper, A.M., 1944, A graphic procedure in the geochemical interpretation of water analyses: Transactions of the American Geophysical Union, vol. 25, p. 914-923.
- Stumm, W., and Morgan, J.J., 1981, Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters: John Wiley & Sons, NY, 780 p.

- U.S. Environmental Protection Agency, 1980, Prescribed procedures for measurement of radioactivity in drinking water: U.S. Environmental Protection Agency, EPA-600/4-75-008, August 1980, 132 p.
- U.S. Geological Survey, 1978, Water resources data for Alaska, water year 1977: U.S. Geological Survey Water-Data Report AK-77-1, 439 p.

____, 1992, Water resource data for Alaska, water year 1991: U.S. Geological Survey Water-Data Report AK-91-1, 440 p.

APPENDIX A.

State of Alaska Drinking Water Regulations, Maximum Contaminant Concentration Levels, 18 AAC 80.070

18 AAC 80.070. MAXIMUM CONTAMINANT CONCENTRA-TION LEVELS (MCLs). (a) The primary maximum contaminant concentration levels (MCLs) for a public water system are (1) Inorganic Chemical Contaminants

, morganie onenneur contra

Contaminant

Maximum Contaminant Level (µg/i)

Arsenic	
Barium	
Cadmium	10.0
Chromium	50.0
Fluoride	
Lead	
Mercury	
Nitrate (as Nitrogen)	
Selenium	
Silver	50.0
(2) Organic Chemical Contaminants	
(A) Pesticides	

(A) Pesticides

18 AAC 80.070

ALASKA ADMINISTRATIVE CODE 18

Contaminant

Maximum Contaminant Level (µg/l)

Endrin	
Lindane	4.0
Methoxychlor	
Toxaphene	5.0
2, 4-D	100.0
2, 4, 5-TP Silvex	10.0

(B) Volatile Organic Chemicals (VOCs)

Contaminant

Maximum Contaminant Level (µg/l)

1, 1-Dichloroethylene	
1, 1, 1-Trichloreothane	
1, 2-Dichloroethane	5.0
Benzene	5.0
Carbon tetrachloride	5.0
4-Dichlorobenzene	
Trichloroethylene	5.0
Vinyl chloride	

VOCs for which an MCL has not yet been set, but which are subject to monitoring under this chapter, are set out in Tables H, I, and J, in 18 AAC 80.400(a).

(C) Total Trihalomethanes (TTHMs)

Maximum Contaminant Level (µg/l)

Total Trihalomethanes 100.0

The sampling and analysis requirements for total trihalomethanes are set out at 40 C.F.R. 141.30, as amended August 15, 1989, the requirements of which are incorporated by reference in this chapter.

(3) Physical Contaminants

Contaminant

Maximum Contaminant Level (nephelometric turbidity unit, NTU)

- Turbidity 1.49 NTU as a monthly average of samples required, or 5.0 NTU as an average for two consecutive days. Exceeding either measure is a violation of this paragraph.
 - (4) Radioactive Contaminants (A) Natural radioactivity
- Contaminant

Maximum Contaminant Level (pCi/l)

Gross Alpha	15.0
Combined Radium-226 and 228	

(B) Manmade radioactivity

Contaminant

Maximum Contaminant Level (pCi/l)

Gross Beta 50.0)
Strontium-90	J
Tritium)

(5) Total Coliform Bacteria

Contaminant	Maximum Contaminant Level
(A) Membrane Filter Tech nique	No coliform may be present in any of the 100 milliliter routine samples.
(B) Fermentation Tube Method	No gas production may be present in any of the five 10 milliliter portions in any routine sample.
(C) Minimal Media ONPG MUG (MMO-MUG) Test	

(b) The secondary maximum contaminant concentration levels (MCLs) for a public water system are

Contaminant	Maximum Contaminant Level
Chloride	
Copper	

18 AAC 80.200

. •

ALASKA ADMINISTRATIVE CODE

18 AAC 80.200

46.03.720

Contaminant	Maximum Contaminant Level
Corrosivity	Noncorrosive
Fluoride	
Foaming Agents	0.5 mg/l
Manganese	
pH	
	250 mg/l
Sulfate	
Total Dissolved Solids	
	5 mg/l

(c) The secondary levels set by (b) of this section represent reasonable goals for drinking water quality and, in general, provide a guideline for public water suppliers. These secondary contaminants mainly affect the aesthetic qualities of drinking water, but, at considerably higher concentrations, health problems might exist. The department will, in its discretion, require a public water system to meet the secondary MCLs if public health is threatened or if there is a strong consumer objection to exceeding a listed MCL. (Eff. 6/14/91, Register 118)

,

Authority:	AS 46.03.020	AS 46.03.070	AS
	AS 46.03.050	AS 46.08.710	

- 24 -

RIW RIE R5E TIN BA Baseline **83E T1S** CD 3 6 5 4 2 1 **T2**\$ 7 8 10 9 12 11 T Seward Meridian 18 17 13 2 14 S 19 24 20 30 25 **T5S** 31 36 R3E B A 10 A B D 0 - SE quadrant of the region lindicates townships south & fanges east) С cr - Seward principal moridian --- Sequential no.: Ist sile in that KKKK section Alap number: 121 stre Plotted in section 10 XXXX subdivision XXX Inbdivision + Kik subdivision % subdivision _ Range 3 East -Secrian 10 -, D ' A 1 1 0 1 С 3 0 D 0 0 1 1

APPENDIX B. Diagram showing derivation of local well number, based on the official subdivision of public lands, used by the U.S. Geological Survey.

Back of page 25

leave blank

APPENDIX C Laboratory Water-Quality Analytical Reports

INORGANIC CONSTITUENTS

Analyzed by Alaska Division of Water, Water Quality Laboratory, Fairbanks, Alaska All inorganic constituents are dissolved, unless otherwise noted.

DL = detection limit

RPD = relative percent difference

SEE FOLLOWING PAGE FOR SAMPLE BOTTLE KEY

VOLATILE ORGANIC COMPOUNDS

Analyzed by Northern Testing Laboratory, Inc., Anchorage, Alaska Key to laboratory numbers for volatile organic compounds analyzed by Northern Testing Laboratories, Inc.:

Site No.	Lab No.
44	A112159
56	A112161
67	A112305
128	A112158
133	A112160
143	A112307
144	A111977
160	A112306
190	A111980
266	A111978
285	A111979
	A111981 (Travel Blank)

RADIOLOGICAL PARAMETERS

Алаłyzed by Core Laboratories, Casper, Wyoming LLD = lower limit of detection

Key to laboratory numbers for radioactivity samples analyzed by Core Laboratories:

Site No.	Sample No.
56	3; 4
67	5
143	7
144	1
155	8
160	6
. 266	2
344	9

Key to sample bottle numbers for inorganic constituent samples analyzed by Alaska Division of Water Laboratory.

	Constituent Group								
Site No.	Dissolved Anions [†]	Dissolved Nitrate + Nitrite	Dissolved Catlons & Trace Elements ²	Totel Iron & Manganese	Dissolved Mercury				
44	K577	K696	K491	K638	K762				
5 2	K604	К718	K514	K660	K796				
54	K605	K719	K515	K661	K750				
56	К598	К713	K508	K654	K790				
56	K599 ³	K714 ⁹	K509³	K655³	K791³				
56	K600⁴	K715⁴	K510⁴	K656⁴	K792⁴				
66	K613	K727	K524	K669	К752				
67	К606	К720	K516	K662	K751				
96	K616	К730	К527	K673	K760				
98	K615	K729	K526	K671	K759				
128	K590	K704	K499	K646	K770				
143	K608	K722	K519	K664	K755				
144	K576	K695	K490	K637	K761				
152	K609	K723	K520	K665	K753				
152	K610 ³	K724 ³	K521 ³	K666³	K754 ³				
152	K611⁴	K725⁴	K522⁴	K667⁴	K756⁴				
155	K612	K726	K523	K668	K757				
160	K607	K721	K518	K663	K693				
179	K586	K700	K495	K642	K766				
190	K587	K701	K496	K643	K767				
190	K588 ³	K702 ³	K497³	K644³	K7683				
190	K589⁴	K703⁴	K498⁴	K645⁴	K769⁴				
196	K579	К698	К493	K640	K764				
205	K597	K711	K507	K653	K789				
218	K596	K710	K506	K652	K788				
220	K593	K708	K502	K651	K786				
225	K595	K709	K503	K648	K787				
236	K592	K706	K501	K649	K785				
266	K578	K697	K492	K639	K763				
271	K594	K707	К504	K650	K772				
285	K580	K699	K494	K641	K765				
324	K591	K705	K500	K647	K771				
325	K601	K715	K511	K657	К793				
330	K603	K717	K513	K659	К795				
335	K602	K716	K512	K658	К794				
344	K614	K728	K525	K670	K758				

¹ Anions include fluoride, chloride, phosphate, and sulfate ² Cations include calcium, magnesium, sodium, and potassium; trace elements include aluminum, arsenic, barium, cadmium, chromium, copper, nickel, lead, zinc, iron, and manganese

³ Field duplicate sample

⁴ Field equipment-blank sample

Client: DNR/DOW - Eagle River

Submitted By:	Mary Maurer
---------------	-------------

K490				
	8.74	3.43	5.17	1.28
K491	9.82	2.83	3.65	0.91
K492	16.0	4.70	5.94	1.67
K493	36.6	6.92	6.07	2.53
K494	11.9	4_32	5.08	1.53
K495	9.86	2.98	4.32	1.44
K496	3.44	0.99	15.3	0.99
K497	3.37	0.98	15.1	0.99
K498	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K499	14.2	3.40	6.13	1.42
K500	16.3	3.24	4.09	1.71
K501	8.34	1.74	4.44	1.14
KS02	9.41	2.61	4.65	1.66
K\$03	12.4	2.77	5.94	1.49
K504	15.6	4.12	4.58	2.91
K506	9.88	1.87	3.68	1.52
K507	21.4	4.70	6.82	2.01
K508	10. 0	2.78	4.17	1.67
K509	9.83	2.76	4.22	1.64
K5 10	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K5 11	24.5	5.71	6.06	2.72
K512	7.06	2.55	3.98	1.40
K513	16.4	3.79	8.21	1.89
K514	6.71	2.07	3.88	1.06
K515	17.1	3.98	6.62	2.10
K516	3.39	4.35	201	8.90
K518	24.3	4.77	4.27	1.15
K519	8.17	2.55	<i>S</i> .76	1.82
K520	21.0	5.04	7.34	2.20
K52 1	21.0	5.05	7.34	2.14
K522	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K523	30.4	11.6	9.50	3.16
K524	8.66	3.15	3.92	1.52
K525	9.96	5.51	7.72	5.28
K526	14.2	3.76	6.24	4.02
K527	21.6	6.19	7.84	2.88
Units	mg/L	mg/L	mg/L	mg/L
BPA Method	AES 0029	ABS 0029	273.1	258.1
Detection Limit	0.01	0.01	0.1	0.01
Analysis Date	29 Oct 91	29 Oct 91	30 Oct 91	30 Oct 91
RPD	1.4	0.5	0.8	1.9
% Recovery	102	100	100	104
Approved By	Sinth	la	Date	9 DEC 91

Client: DNR/DOW - Eagle River

Submitted By: Mary Maurer

K576 K577 K578 K579 K580 K586 K586 K587 K588 K589	0.14 0.14 0.19 0.27 0.16 0.14 0.14 0.13 <dl< th=""><th>6.38 3.39 6.47 5.53 6.83 5.87 8.31</th><th><dl <dl <dl <dl <dl <dl <dl< th=""><th>2.95 0.09 6.07 9.25 5.01</th></dl<></dl </dl </dl </dl </dl </dl </th></dl<>	6.38 3.39 6.47 5.53 6.83 5.87 8.31	<dl <dl <dl <dl <dl <dl <dl< th=""><th>2.95 0.09 6.07 9.25 5.01</th></dl<></dl </dl </dl </dl </dl </dl 	2.95 0.09 6.07 9.25 5.01
K578 K579 K580 K586 K587 K588	0.19 0.27 0.16 0.14 0.14 0.13	6.47 5.53 6.83 5.87 8.31	<dl <dl <dl< td=""><td>6.07 9.25 5.01</td></dl<></dl </dl 	6.07 9.25 5.01
K579 K580 K586 K587 K588	0.27 0.16 0.14 0.14 0.13	5.53 6.83 5.87 8.31	<dl <dl< td=""><td>9.25 5.01</td></dl<></dl 	9.25 5.01
K580 K586 K587 K588	0.16 0.14 0.14 0.13	6.83 5.87 8.31	<dl< td=""><td>5.01</td></dl<>	5.01
K586 K587 K588	0.14 0.14 0.13	5.87 8.31		
KS87 KS88	0.14 0.13	8.31	<dl< td=""><td></td></dl<>	
K588	0.13			4.57
			<dl< td=""><td>13.6</td></dl<>	13.6
K589	<dl< td=""><td>8.62</td><td><dl< td=""><td>13.6</td></dl<></td></dl<>	8.62	<dl< td=""><td>13.6</td></dl<>	13.6
		<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K590	0.16	8.02	<dl< td=""><td>2.92</td></dl<>	2.92
K591	0.17	5.07	<dl< td=""><td>3.75</td></dl<>	3.75
K592	0.13	5.01	<dl< td=""><td>2.73</td></dl<>	2.73
K\$93	0.13	9.61	<dl< td=""><td>3.78</td></dl<>	3.78
K594	0.18	4.15	0.1	1.34
K595	0.17	4.47	<dl< td=""><td>2.95</td></dl<>	2.95
K\$%	0.13	3.05	<dl< td=""><td>4.75</td></dl<>	4.75
K597	0.21	4.87	<dl< td=""><td>2.91</td></dl<>	2.91
K598	0.15	4.85	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
KS99	0.15	4.83	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K.600	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K601	0.29	5.44	<dľ< td=""><td>7.06</td></dľ<>	7.06
K602	0.12	6.37	<dl< td=""><td>3.02</td></dl<>	3.02
K603	0.19	14.0	<dl< td=""><td>5.45</td></dl<>	5.45
K604	0.11	4.27	<dl< td=""><td>4.54</td></dl<>	4.54
K605	0.20	4.94	<dl< td=""><td>1.13</td></dl<>	1.13
K606	<dl< td=""><td>93.9</td><td>4.7</td><td>42.0</td></dl<>	93.9	4.7	42.0
K607	0.22	6.69	<dl< td=""><td>8.15</td></dl<>	8.15
K608	0.13	7.91	<dl< td=""><td>6.42</td></dl<>	6.42
K609	0.21	6.73	< DL	2.45
K610	0.21	6.68	<dl< td=""><td>2.46</td></dl<>	2.46
K611	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K612	0_31	4.85	<dl< td=""><td>3.16</td></dl<>	3.16
K613	0.13	4,38	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K614	0.19	3.47	0.2	1.53
K615	0.19	4.34	0.2	1.58
К616	0.22	9.88	<dl< td=""><td>5.63</td></dl<>	5.63
Units	mg/L	mg/L	mg PO4•P/L	mg/L
EPA Method	300.0	300.0	300.0	300.0
Detection Limit	0.01	0.61	0.1	0.01
Analysis Date	2 Aug 91	2 Aug 91	2 Aug 91	2 Aug 91
RPD	1.6	75	8.3	1.8
% Recovery	99	90	91	90
``	1.11	NO .		DEC91

٦

Client: DNR/DOW - Eagle River

Submitted By: Mary Maurer

Sample	Nitrate + Nitrite		
K695	<dl< th=""><th></th><th></th></dl<>		
K696	<dl< th=""><th></th><th></th></dl<>		
K697	< DL		
K698	< DL		
K699	< DL		
K700	<dl< th=""><th></th><th></th></dl<>		
K701	<dl< th=""><th></th><th></th></dl<>		
K702	<dl< th=""><th></th><th></th></dl<>		
K703	<dl< th=""><th></th><th></th></dl<>		
K704	1.62		
K705	< DL		
K706	0.30		
K707	0.11		
K708	0.32		
K709	٥.55		
K7 10	0.46		
K711	0.41		
K712	< DL		
K713	<dl< th=""><th></th><th></th></dl<>		
K714	<dl< th=""><th></th><th></th></dl<>		
K715	<dl< th=""><th></th><th></th></dl<>		
K716	<dl< th=""><th></th><th></th></dl<>		
K717	2.72		
K718	<dl< th=""><th></th><th></th></dl<>		
K719	<dl< th=""><th></th><th></th></dl<>		
K720	<dl< th=""><th></th><th></th></dl<>		
K721	<dl< th=""><th></th><th></th></dl<>		
K722	<dl< th=""><th></th><th></th></dl<>		
K723	4.41		
K724	4_50		
K725	<dl< th=""><th></th><th></th></dl<>		
K726	<dl< th=""><th></th><th></th></dl<>		
K727	<dl< th=""><th></th><th></th></dl<>		
K728	<dl< th=""><th></th><th></th></dl<>		
K729	<dl< th=""><th></th><th></th></dl<>		
K730	1.18		
Units	mg(NO3+NO2)*N/L		
EPA Method	353.2		
Detection Limit	0.1		
Analysis Date	2 Aug 91		
RPD	1.1		
% Recovery	92		
Approved By	Jin Vobdes,	 Date 19 DEC 91	

Client: DNR/DOW - Eagle River

Submitted By: Mary Maurer

Date Submitted: Summer 1991

Sample	Aluminum	Arsenic	Barium	Cadmium	Chromiur
K490	6	<dl< td=""><td>28</td><td><dl< td=""><td>< DL,</td></dl<></td></dl<>	28	<dl< td=""><td>< DL,</td></dl<>	< DL,
K491	13	<dl< td=""><td><dl< td=""><td>2.0</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>2.0</td><td><dl< td=""></dl<></td></dl<>	2.0	<dl< td=""></dl<>
K492	9	<dl< td=""><td>37</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	37	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K493	6	1.8	كا	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K494	<dl< td=""><td><dl< td=""><td>25</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>25</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	25	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K495	39	<dl< td=""><td>22</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	22	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K496	10	8.9	17	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K497	8	9.0	16	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K498	< DL	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K499	8	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K500	< DL	<dl< td=""><td>6</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	6	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
KS01	6	<dl< td=""><td>< DL</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	< DL	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K502	18	<dl< td=""><td>22</td><td><dl< td=""><td>1.3</td></dl<></td></dl<>	22	<dl< td=""><td>1.3</td></dl<>	1.3
K503	58	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K504	10	1.2	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K506	7	<dl< td=""><td><dl< td=""><td>< DL</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>< DL</td><td><dl< td=""></dl<></td></dl<>	< DL	<dl< td=""></dl<>
K\$07	44	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K508	35	<dl< td=""><td>28</td><td>< DL</td><td><dl< td=""></dl<></td></dl<>	28	< DL	<dl< td=""></dl<>
K509	30	<dl< td=""><td>28</td><td>< DL</td><td><dl< td=""></dl<></td></dl<>	28	< DL	<dl< td=""></dl<>
K510	<dl< td=""><td><dl< td=""><td><dl< td=""><td>< DL</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>< DL</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>< DL</td><td><dl< td=""></dl<></td></dl<>	< DL	<dl< td=""></dl<>
K511	42	< DL	20	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K512	54	<dl< td=""><td>23</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	23	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K513	40	<dl< td=""><td>7</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	7	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
KS14	<dl< td=""><td><dl< td=""><td>11</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>11</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	11	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K515	<dl< td=""><td><dl< td=""><td>48</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>48</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	48	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K516	100	71	11	1.9	<dl< td=""></dl<>
K518	< DL	<dl< td=""><td>31</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	31	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K519	12	<dl< td=""><td>12</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	12	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K520	<dl< td=""><td><dl< td=""><td><dl< td=""><td>< DL</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>< DL</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>< DL</td><td><dl< td=""></dl<></td></dl<>	< DL	<dl< td=""></dl<>
K521	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K522	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K523	<dl< td=""><td><dl< td=""><td>57</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>57</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	57	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K524	S9	<dl< td=""><td>17</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	17	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K525	43	10	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K526	46	9.9	8	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K527	34	<dl< td=""><td>12</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	12	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Unite	ug/L	սg/L	ug/L	ug/L	ug/L
EPA Method	AES 0029	206.2	AES 0029	213.2	218.2
etection Limit	5	1.0	5	1.0	1.0
Analysis Date	15 Nov 91	6 Dec 91	15 Nov 91	5 Dec 91	4 Dec 91
RPD	8.7	1.1	1.6	1.1	2.3
% Recovery	104	94	102	93	104

Approved By _

Date 19DEC91

Jim Vohden, Chemist - 31 -

Client: DNR/DOW - Eagle River

Submitted By: Mary Maurer

Sampio	Copper	Nickel	Lead	Zinc
K490	<dl< td=""><td><dl< td=""><td><dl< td=""><td>35</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>35</td></dl<></td></dl<>	<dl< td=""><td>35</td></dl<>	35
K49 1	3.5	<dl< td=""><td>75</td><td><dl< td=""></dl<></td></dl<>	75	<dl< td=""></dl<>
K492	<dl< td=""><td><dl< td=""><td>1.8</td><td>1260</td></dl<></td></dl<>	<dl< td=""><td>1.8</td><td>1260</td></dl<>	1.8	1260
K493	<dl< td=""><td><dl< td=""><td>1.3</td><td>317</td></dl<></td></dl<>	<dl< td=""><td>1.3</td><td>317</td></dl<>	1.3	317
K494	<dl< td=""><td><dl< td=""><td>1.3</td><td>41</td></dl<></td></dl<>	<dl< td=""><td>1.3</td><td>41</td></dl<>	1.3	41
K495	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K496	<dl< td=""><td><dl< td=""><td>1.7</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.7</td><td><dl< td=""></dl<></td></dl<>	1.7	<dl< td=""></dl<>
K497	<dl< td=""><td><dl< td=""><td>1.6</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.6</td><td><dl< td=""></dl<></td></dl<>	1.6	<dl< td=""></dl<>
K498	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K499	31.1	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K500	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K501	30.0	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K\$02	13.9	<dl< td=""><td>1.8</td><td>34</td></dl<>	1.8	34
K503	16.9	<dl< td=""><td><dl< td=""><td>81</td></dl<></td></dl<>	<dl< td=""><td>81</td></dl<>	81
K504	<dl< td=""><td><dl< td=""><td>1.2</td><td>< DL</td></dl<></td></dl<>	<dl< td=""><td>1.2</td><td>< DL</td></dl<>	1.2	< DL
K506	29.9	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
KS07	24.0	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K\$08	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K509	< DL	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K510	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K511	<dl< td=""><td><dl< td=""><td>1.4</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.4</td><td><dl< td=""></dl<></td></dl<>	1.4	<dl< td=""></dl<>
K512	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K513	22.1	<dl< td=""><td>1.1</td><td><dl< td=""></dl<></td></dl<>	1.1	<dl< td=""></dl<>
K\$14	1.4	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
KS15	<dl< td=""><td><dl< td=""><td>1.1</td><td>230</td></dl<></td></dl<>	<dl< td=""><td>1.1</td><td>230</td></dl<>	1.1	230
K\$16	4.1	<dl< td=""><td>10.4</td><td>28</td></dl<>	10.4	28
K518	<dl< td=""><td><dl< td=""><td>1.4</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.4</td><td><dl< td=""></dl<></td></dl<>	1.4	<dl< td=""></dl<>
K519	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K520	31.6	<dl< td=""><td>1.3</td><td><dl< td=""></dl<></td></dl<>	1.3	<dl< td=""></dl<>
K\$21	31.2	<dl< td=""><td>1.7</td><td><dl< td=""></dl<></td></dl<>	1.7	<dl< td=""></dl<>
K522	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K523	<dl< td=""><td><dl< td=""><td>1.4</td><td>π</td></dl<></td></dl<>	<dl< td=""><td>1.4</td><td>π</td></dl<>	1.4	π
K524	<dl< td=""><td><dl< td=""><td><dl< td=""><td>127</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>127</td></dl<></td></dl<>	<dl< td=""><td>127</td></dl<>	127
K325	9.4	<dl< td=""><td>1.1</td><td><dl< td=""></dl<></td></dl<>	1.1	<dl< td=""></dl<>
K526	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
KS27	10.0	<dl< td=""><td>15</td><td><dl< td=""></dl<></td></dl<>	15	<dl< td=""></dl<>
Units	ug/L	ug/L	ug/L	ug/L
EPA Method	220.2	AES 0029	239.2	AES 0029
Detection Limit	1.0	10	1.0	20
Analysis Date	2 Dec 91	21 Nov 91	3 Dec 91	15 Nov 91
RPD	2.2	25	1.4	3.5
% Recovery	. 94	109	107	99
Approved By	Juli	Re	Date	2DEC.91
TI~7	Tim Valid	en, Chemist		· • · ·

Client: DNR/DOW - Bagle River

Submitted By: Mary Maurer

Date Submitted: Summer 1991

Sample	lron	Manganese	Sample	Iron (total)	Manganese (te
K490	5.11	0.22	K637	5.27	0.22
K491	7.86	0.31	K638	8.17	0.31
K492	9.45	0.42	K639	9.49	0.40
K493	0.44	0.55	K640	0.54	0.56
K494	4.74	0.26	K641	4.74	0.26
K495	3.99	0.22	K642	4.24	0.22
K496	7.37	0.12	K643	7.54	0.12
K497	7.40	0.12	K644	8.69	0.12
K498	<dl< td=""><td><dl< td=""><td>K645</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>K645</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	K645	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K499	0.04	<dl< td=""><td>K646</td><td>0.05</td><td><dl< td=""></dl<></td></dl<>	K646	0.05	<dl< td=""></dl<>
K500	0.13	0.37	K647	0.14	0.37
K501	<dl< td=""><td><dl< td=""><td>K648</td><td>0.18</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>K648</td><td>0.18</td><td><dl< td=""></dl<></td></dl<>	K648	0.18	<dl< td=""></dl<>
K502	0.97	0.10	K6 49	0.19	<dl< td=""></dl<>
K503	0.14	<dl< td=""><td>K650</td><td>0.06</td><td>0.07</td></dl<>	K650	0.06	0.07
K504	0.05	0.07	K651	1.51	0.10
K506	<dl< td=""><td><dl< td=""><td>K652</td><td>0.07</td><td>< DL</td></dl<></td></dl<>	<dl< td=""><td>K652</td><td>0.07</td><td>< DL</td></dl<>	K652	0.07	< DL
K507	<dl< td=""><td><dl< td=""><td>K653</td><td>0.07</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>K653</td><td>0.07</td><td><dl< td=""></dl<></td></dl<>	K653	0.07	<dl< td=""></dl<>
K508	7.98	0.27	K654	8,33	0.27
K509	7.97	0.26	K655	8.08	0.26
KS10	<dl< td=""><td><dl< td=""><td>K656</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>K656</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	K656	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K512	4.44	0.18	K658	6.03	0.19
K513	0.18	0.03	K659	0.91	0.03
K514	2.68	0.08	K660	6.11	0.09
K515	9.61	0.21	K661	10.19	0.21
K516	0.38	0.03	K662	6.66	0.11
K\$18	4.48	0.64	K663	4.49	0.65
K519	2.16	0.05	K664	2.25	0.07
K520	<dl< td=""><td><dl< td=""><td>K665</td><td>0.34</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>K665</td><td>0.34</td><td><dl< td=""></dl<></td></dl<>	K665	0.34	<dl< td=""></dl<>
KS21	<dl< td=""><td><dl< td=""><td>K666</td><td>0.36</td><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td>K666</td><td>0.36</td><td><dl< td=""></dl<></td></dl<>	K666	0.36	<dl< td=""></dl<>
K522	<dl< td=""><td><dl< td=""><td>K667</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>K667</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	K667	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
K523	16.2	0.94	K668	16.3	0.94
K524	9.07	0.31	K669	8.93	0.31
K525	<dl< td=""><td>0.02</td><td>K670</td><td>0.09</td><td>0.04</td></dl<>	0.02	K670	0.09	0.04
K526	<dl< td=""><td>0.06</td><td>K671</td><td>3.48</td><td>0.20</td></dl<>	0.06	K671	3.48	0.20
KS27	1.13	0.02	K673	1.19	0.04
K5 11	3.87	0.60	K657	3,99	0.61
Units	mg/L	mg/L		mg/L	mg/L
EPA Method	AES 0029	ABS 0029		AES 0029	AES 0029
Detection Limit	0.03	0.005		0.03	0.005
Analysis Date	21 Nov 91	21 Nov 91		21 Nov 91	21 Nov 91
RPD	3.2	3.3		2.9	0.6
% Recovery	97	100		98	99

Approved By

Date 19 DEC 91

Jm Vohden, Chemist - 33 -

State of Alaska Department of Natural Resources -- Division of Water Water Quality Laboratory 209 O'Neill University of Alaska Fairbanks Fairbanks, Alaska 99775. (907)474-7713

Client: DNR/DOW - Eagle River

Submitted I	₹v;	Мати	Maurer

Date Submitted: Summer 1991

Sample	Mercury		
K76 1	<dl< td=""><td></td><td></td></dl<>		
K762	<dl< td=""><td></td><td></td></dl<>		
K763	<dl< td=""><td></td><td></td></dl<>		
K764	<dl< th=""><th></th><th></th></dl<>		
K765	<dl< td=""><td></td><td></td></dl<>		
K766	<dl< td=""><td></td><td></td></dl<>		
K767	<dl< td=""><td></td><td></td></dl<>		
K768	<dl< td=""><td></td><td></td></dl<>		
K769	<dl< td=""><td></td><td></td></dl<>		
K770	<dl< td=""><td></td><td></td></dl<>		
K771	<dl< td=""><td></td><td></td></dl<>		
к 772	<dl< td=""><td></td><td></td></dl<>		
K787	<dl< td=""><td></td><td></td></dl<>		
K788	<dl< td=""><td></td><td></td></dl<>		
K789	<dl< td=""><td></td><td></td></dl<>		
K785	<dl< td=""><td></td><td></td></dl<>		
K786	<dl< td=""><td></td><td></td></dl<>		
K790	<dl< td=""><td></td><td></td></dl<>		
K791	<dl< td=""><td></td><td></td></dl<>		
K792	<dl< td=""><td></td><td></td></dl<>		
K794	<dl< td=""><td></td><td></td></dl<>		
K795	<dl< th=""><th></th><th></th></dl<>		
K796	<dl< td=""><td></td><td></td></dl<>		
K750	<dl< td=""><td></td><td></td></dl<>		
K751	<dl< td=""><td></td><td></td></dl<>		
K693	<dl< td=""><td></td><td></td></dl<>		
K755	<dl< td=""><td></td><td></td></dl<>		
K753	<dl< td=""><td></td><td></td></dl<>		
K754	<dl< td=""><td></td><td></td></dl<>		
K756	<dl< td=""><td></td><td></td></dl<>		
K757	<dl< td=""><td></td><td></td></dl<>		
K752	<dl< td=""><td></td><td></td></dl<>		
K758	<dl< td=""><td></td><td></td></dl<>		
K759	<dl< td=""><td></td><td></td></dl<>		
K760	<dl< td=""><td></td><td></td></dl<>		
K793	<dl< td=""><td></td><td></td></dl<>		
Units	ug/L		
EPA Method	hydride		
Detection Limit	1		
Analysis Date	28 July 91		
RPD	-		
% Recovery	91	(
Approved By	, i	mble	Date 9 DEC9
	fit)	b Vohden, Chemist	
	<u> </u>	- 34 -	

Attn: Mary Maurer

Location/Project:

Your Sample ID:

Sample Matrix:

Our Lab #:

Comments: Laboratory

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

A111977

Water

Carroll Well

Nikiski Ground Water IIIA

FAIRBANKS. ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

08/05/91

Alaska Department of Natural Resources
DNR-DGGS
P.O. Box 772116
Eagle River AX 99577

RECEIVED

AUG 0 7 1991

Div. of Geological Survey Eagle River

Time Sampled: 1330 Collected By: MAM	Date Arrived: Date Sampled: Time Sampled: Collected By:	07/09/91 1330
---	--	------------------

Report Date:

		Flag	Definitions
U	=	Below	Detection Limit
		DL St	ated in Result
В	E	Below	Regulatory Min.
H	=	Above	Regulatory Max.
Е	H	Below	Detection Limit
		Estin	ated Value

Date

Number	Method	Parameter	Units	Date Result Flag Analyzed
A111977	EPA 502.2	Benzene	ug/1	0.2 U 07/19/91
		Bromobenzene	ug/l	0.3 U
		Bromochloromethane	ug/l	0.3 U
		Bromodichloromethane	ug/l	0.2 U
		Bromoform	ug/l	1.0 U
		Bromomethane	ug/l	2.0 U
		n-Butylbenzene	ug/l	0.3 U
		sec-Butylbenzene	ug/l	0.3 υ
		tert-Butylbenzene	ug/l	0.5 U
		Carbon Tetrachloride	ug/l	0.2 U
		Chlorobenzene	ug/l	0.2 U
		Dibromochloromethane	ug/l	0.4 U
		Chloroethane	ug/l	2.0 U
		Chloroform	ug/l	0.2 U
		Chloromethane	ug/l	2.0 U
		o-Chlorotoluene	ug/l	0.3 U
		p-Chlorotoluene	ug/l	0.2 U
		1,2-Dibromo-3-Chloropropane	ug/l	2.0 U
		Dibromomethane	ug/l	0.4 U
		1,4-Dichlorobenzene	ug/l	0.2 U
		m-Dichlorobenzene	ug/1	0.2 U
		o-Dichlorobenzene	ug/1	0.2 U
		Dichlorodifluoromethane	ug/l	2.0 U
		1,1-Dichloroethane	ug/l	0.2 U
		1,2-Dichloroethane	ug/l	0.2 U
		1,1-Dichlorosthylene	ug/l	1.0 U
		cis-1,2-Dichloroethylene	ug/l	0.2 U
		trans-1,2-Dichlorosthylene	ug/l	0.2 U
		Methylene Chloride	ug/l	1.0 U
		1,2-Dichloropropane	ug/l	0.2 U
addle	9. Buch	1,3-Dichloropropane	ug/l	0.2 U

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 07 1991

Div. of Geological Survey Eagle River

Laborator Number	y Method	Parameter	Unite	Result	Flag	Date Analyzed
A111977	EPA 502.2		ug/1	1.0	U	07/19/91
		1,1-Dichloropropene	ug/l	0.5	U	- ,
		1,3-Dichloropropene	ug/l	0.2	U	
		Ethylbenzene	ug/l	0.2	U	
		1,2-Dibromoethane	ug/l	1.0	U	
		Trichlorofluoromethane	ug/l	0.5	υ	
		Hexachlorobutadiene	ug/l	0.3	U	
		Isopropylbenzene	ug/l	0.3	U	
		p-Isopropyltoluene	ug/l	0.3	U	
		Naphthalene	u g/ 1	0.3	U	
		n-Propylbenzene	ug/1	0.3	U	
		Styrene	ug/l	0.2	U	
		1,1,1,2-Tetrachlorosthans	ug/l	0.2	U	
		1,1,2,2-Tetrachloroethane	ug/l	0.3	ប	
		Tetrachloroethylene	ug/l	0.2	U	
		Total Trihalomethane	ug/l	2	U	
		Toluene	ug/l	0.3	U	
		1,2,3-Trichlorobenzene	ug/l	0.3	U	
		1,2,4-Trichlorobenzene	ug/l	0.3	U	
		1,1,1-Trichloroethane	ug/l	0.2	ប	
		1,1,2-Trichloroethane	ug/l	0.4	U	
		Trichloroethylene	ug/l	0.2	U	
		1,2,3-Trichloropropane	ug/l	0.3	ប	
		1,2,4-Trimethylbenzene	ug/l	0.2	ប	
		1,3,5-Trimethylbenzene	ug/l	0.2	ប	
		Vinyl Chloride	ug/l	2.0	ប	
		m,p-Xylenes	ug/l	0.4	U	
		o-Xylene	ug/l	0.2	U	
		1-Chloro-2-fluorobenzene (Recovery)	8	82.0		

Wille E- End

P.O. Box 772116

Attn: Mary Maurer

Location/Project:

Your Sample ID: Sample Matrix:

Eagle River AK 99577

DNR-DGGS

Our Lab #:

Comments:

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

A111978

Water

Gordon Well

Nikiski Ground Water IIIA

Alaska Department of Natural Resou

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

08/05/91

rcea	Report Date:
RECEIVED	Date Arrived:

AUG 07 1991

Div. of Geological Survey

Eagle River

Date Arrived: 07/12/91 Date Sampled: 07/09/91 Time Sampled: 1845 Collected By: MAM

Flag Definitions
U = Below Detection Limit
DL Stated in Result
B = Below Regulatory Min.
H = Above Regulatory Max.
E = Below Detection Limit
Estimated Value

0.2 U

uq/1

Laboratory Date Number Method Units Parameter Result Flag Analyzed A111978 EPA 502.2 Senzene ug/l 0.2 U 07/19/91 Bromobenzene 0.3 U ug/1Bromochloromethane 0.3 U ug/lBromodichloromethane 0.2 U uq/1Bromoform uq/11.0 U Bromomethane ug/12.0 U n-Butylbenzene ug/l 0.3 0 sec-Butylbenzene ug/l 0.3 0 tert-Butylbenzene 0.5 U ug/1Carbon Tetrachloride uq/l0.2 U Chlorobenzene ug/10.2 U Dibromochloromethane uq/10.4 U 2.0 U Chloroethane ug/lChloroform 0.2 U uq/l2.0 U Chloromethane ug/l o-Chlorotoluene uq/l0.3 U 0.2 U p-Chlorotoluene uq/l1,2-Dibromo-3-Chloropropane 2.0 U uq/1Dibromomethane uq/10.4 U 1,4-Dichlorobenzene ug/l0.2 U m-Dichlorobenzene 0.2 U ug/l 0.2 U o-Dichlorobenzene ug/l2.0 U Dichlorodifluoromethane uq/11,1-Dichloroethane uq/l0.2 U 1,2-Dichloroethane ug/l 0.2 U 1.0 U 1,1-Dichloroethylene ug/lcis-1,2-Dichloroethylene ug/10.2 U trans-1,2-Dichloroethylene uq/10.2 U Methylene Chloride ug/1 1.0 U 1,2-Dichloropropane ug/l0.2 U

Reported By: William E. Buchan Anchorage Operations Manager

1,3-Dichloropropane

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

÷

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9845

RECEIVED

AUG 0.7 1991

Div. of Geological Survey Eagle River

Laborator Number	Y Method	Parameter	Units		_	Date Analyzed
A111978	EPA 502.2	2,2-Dichloropropane	ug/1	1.0		07/19/91
		1,1-Dichloropropene	ug/l	0.5	U	
		1,3-Dichloropropene	ug/l	0.2	U	
		Ethylbenzene	ug/l	0.2	U	
		1,2-Dibromoethane	ug/l	1.0	U	
		Trichlorofluoromethane	ug/l	0.5	U	
		Rexachlorobutadiene	ug/l	0.3	U	
		Isopropylbenzene	ug/l	0.3	U	
		p-Isopropyltoluene	ug/l	0.3	U	
		Naphthalene	ug/l	0.3	U	
		n-Propylbenzene	ug/l	0.3	U	
		Styrene	ug/l	0.2	ប	
		1,1,1,2-Tetrachloroethane	ug/l	0.2	U	
		1,1,2,2-Tetrachloroethane	ug/l	0.3	U	
		Tetrachloroethylene	ug/l	0.2	U	
		Total Trihalomethane	ug/l	2	υ	
		Toluene	ug/l	0.3	U	
		1,2,3-Trichlorobenzene	ug/l	0.3	U	
		1,2,4-Trichlorobenzene	ug/l	0.3	U	
		1,1,1-Trichloroethane	ug/l	0.2	σ	
		1,1,2-Trichloroethane	ug/l	0.4	U	
		Trichloroethylene	ug/l	0.2	σ	
		1,2,3-Trichloropropane	ug/l	0.3	ប	
		1,2,4-Trimethylbenzene	ug/l	0.2	U	
		1,3,5-Trimethylbenzene	ug/l	0.2	υ	
		Vinyl Chloride	ug/l	2.0	U	
		m,p-Xylenes	ug/l	0.4	U	
		o-Xylene	ug/l	0.2	บ	
		1-Chloro-2-fluorobenzene (Recovery)	8	82.0		

Willy a Dirk

Attn: Mary Maurer

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

FAIRBANKS, ALASKA 99701 ANCHORAGE. ALASKA 99503 (907) 458-3118 . FAX 456-3125 (907) 277-8378 . FAX 274-9645

08/05/91

Report Date:

ug/l

ug/l

uq/1

uq/l

uq/l

uq/l

uq/1

ug/l

ug/1

ug/l

ug/l

ug/1

ug/l

Date Arrived: 07/12/91 Date Sampled: 07/10/91

Flag Definitions

0.4 U 0.2 U

0.2 U 0.2 U

2.0 U

0.2 U 0.2 U

1.0 U

0.2 U

0.2 U

1.0 U

0.2 U

0.2 U

Time Sampled: 1525

Collected By: MAM

Alaska	Department	o£	Natural	Resources
DNR-DGC	3S			
P.O. 80	x 772116			
Eagle H	River AK 99	577		

RECEIVED

AUG 07 1991

Our Lab #: Location/Project: Your Sample ID: Sample Matrix: Comments:	Leuenhagen Well	<pre>U = Below Detection Limit DL Stated in Result B = Below Regulatory Min. H = Above Regulatory Max. E = Below Detection Limit Estimated Value</pre>			
Laboratory Number Method	• ••• •••	Date Unite Result Flag Analyz	zed		
A111979 EPA 50	2.2 Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene Carbon Tetrachloride Chlorobenzene Dibromochloromethane Chloroform Chloroform Chlorotoluene p-Chlorotoluene 1,2-Dibromo-3-Chloropropane	ug/l 0.2 U 07/19/ ug/l 0.3 U ug/l 0.3 U ug/l 0.2 U ug/l 0.3 U ug/l 0.3 U ug/l 0.3 U ug/l 0.5 U ug/l 0.2 U ug/l 0.2 U ug/l 0.4 U ug/l 0.2 U ug/l 0.2 U ug/l 0.3 U ug/l 0.3 U ug/l 0.3 U ug/l 0.2 U ug/l 0.2 U ug/l 0.2 U ug/l 0.2 U	/91		

Dibromomethane

1,4-Dichlorobenzene

Dichlorodifluoromethane

cis-1,2-Dichloroethylene

trans-1,2-Dichloroethylene

m-Dichlorobenzene

o-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethylene

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 0 7 1991

Div. of Geological Survey Eagle River

Laboratory Number	y Method	Parameter	Unite	Result	-	Date Analyzed
A111979	EPA 502.2	2,2-Dichloropropane	ug/l		U	07/19/91
		1,1-Dichloropropene	ug/l	0.5	U	
		1,3-Dichloropropene	ug/l	0.2	ប	
		Ethylbenzene	ug/l	0.2	U	
		1,2-Dibromoethane	ug/l	1.0	U	
		Trichlorofluoromethane	ug/l	0.5	ប	
		Hexachlorobutadiene	ug/l	0.3	U	
		Isopropylbenzene	ug/l	0.3	U	
		p-Isopropyltoluene	ug/l	0.3	U	
		Naphthalene	<i>n</i> ₫\1	0.3	ប	
		n-Propylbenzene	ug/l	0.3	U	
		Styrene	ug/l	0.2	U	
		1,1,1,2-Tetrachloroethane	ug/l	0.2	σ	
		1,1,2,2-Tetrachloroethane	ug/l	0.3	σ	
		Tetrachloroethylene	ug/l	0.2	U	
		Total Trihalomethane	ug/l	2	U	
		Toluene	ug/l	0.3	U	
		1,2,3-Trichlorobenzene	ug/1	0.3	υ	
		1,2,4-Trichlorobenzene	ug/l	0.3	U	
		1,1,1-Trichloroethane	ug/l	0.2	U	
		1,1,2-Trichloroethane	ug/l	0.4	U	
		Trichloroethylene	ug/l	0.2	U	
		1,2,3-Trichloropropane	ug/l	0.3	U	
		1,2,4-Trimethylbenzene	ug/l	0.2	U	
		1,3,5-Trimethylbenzene	ug/l	0.2	σ	
		Vinyl Chloride	ug/l	2.0	υ	
		m,p-Xylenes	ug/l	0.4	U	
		o-Xylene	ug/l	0.2	U	
		1-Chloro-2-fluorobenzene (Recovery)		69.0		

andle E. Buch

Attn: Mary Maurer

Location/Project:

Your Sample ID: Sample Matrix:

Our Lab #:

Comments:

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

A111980

Water

Van Sky Well

Nikiski Ground Water IIIA

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503

Alaska	Department	of	Natural	Resources		
DNR-DG	<u>3</u> S					
P.O. Box 772116						
Eagle River AK 99577						

RECEIVED

AUG 07 1981

Div. of Geological Survey Eagle River

(907) 456-3118		FAX	456-3125
(907) 277-8378	4	FAX	274~9645

Date Arrived: 07/12/91
Date Sampled: 07/11/91
Time Sampled: 1335
Collected By: MAM
Flag Definitions
U = Below Detection Limit
DL Stated in Result

Report Date: 08/05/91

Η	=	Above	Regulatory	Max.
E	=	Below	Detection	Limit
		Estin	nated Value	•

B = Below Regulatory Min.

Laboratory Number	Method	Parameter	Unite	Date Result Flag Analyzed
A111980	EPA 502.2	Benzene	ug/1	0.2 U 07/19/91
		Bromobenzene	ug/l	0.3 U
		Bromochloromethane	ug/l	0.3 U
		Bromodichloromethane	ug/l	0.2 U
		Bromoform	ug/l	1.0 U
		Bromomethane	ug/l	2.0 U
		n-Butylbenzenø	ug/l	0.3 U
		sec-Butylbenzene	ug/l	0.3 U
		tert-Butylbenzene	ug/1	0.5 U
		Carbon Tetrachloride	ug/l	0.2 U
		Chlorobenzene	ug/l	0.2 U
		Dibromochloromethane	ug/l	0.4 U
		Chloroethane	ug/l	2.0 U
		Chloroform	ug/l	0.2 U
		Chloromethane	ug/l	2.0 U
		o-Chlorotoluene	ug/l	0.3 U
		p-Chlorotoluene	ug/l	0.2 U
		1,2-Dibromo-3-Chloropropane	ug/l	2.0 U
		Dibromomethane	ug/l	0.4 U
		1,4-Dichlorobenzene	ug/l	0.2 U
		m-Dichlorobenzene	ug/l	0.2 U
		o-Dichlorobenzene	ug/l	0.2 U
		Dichlorodifluoromethane	ug/l	2.0 U
		1,1-Dichloroethane	ug/l	0.2 U
		1,2-Dichloroethane	ug/l	0.2 U
		1,1-Dichloroethylene	ug/l	1.0 U
		cis-1,2-Dichloroethylene	ug/l	0.2 U
		trans-1,2-Dichloroethylene	ug/l	0.2 0
		Methylene Chloride	ug/l	1.0 U
		1,2-Dichloropropane	ug/l	0.2 U
avili	E. Quu	1,3-Dichloropropane	ug/1	0.2 U

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 07 1991

Div. of Geological Survey Eagle River

Laboratory Number	Method	Parameter	Units	Result	-	Date Analyzed
A111980	EPA 502.2	2,2-Dichloropropane	ug/l	1.0	U	07/19/91
		1,1-Dichloropropene	ug/l	0.5	U	
		1,3-Dichloropropene	ug/l	0.2	U	
		Ethylbenzene	ug/l	0.2	U	
		1,2-Dibromoethane	ug/l	1.0	U	
		Trichlorofluoromethane	ug/l	0.5	U	
		Hexachlorobutadiene	ug/l	0.3	U	
		Isopropylbenzene	ug/l	0.3	υ	
		p-Isopropyltoluene	ug/l	0.3	U	
		Naphthalene	ug/l	0.3	U	
		n-Propylbenzene	ug/l	0.3	U	
		Styrene	ug/l	0.2	U	
		1,1,1,2-Tetrachloroethane	ug/l	0.2	U	
		1,1,2,2-Tetrachloroethane	ug/1	0.3	U	
		Tetrachloroethylene	ug/l	0.2	U	
		Total Trihalomethane	ug/l	2	U	
		Toluene	ug/l	0.3	U	
		1,2,3-Trichlorobenzene	ug/l	0.3	Ŭ	
		1,2,4-Trichlorobenzene	ug/l	0.3	U	
		1,1,1-Trichloroethane	ug/l	0.2	U	
		1,1,2-Trichloroethane	ug/l	0.4	U	
		Trichloroethylene	ug/l	0.2	U	
		1,2,3-Trichloropropane	ug/l	0.3	U	
		1,2,4-Trimethylbenzene	ug/l	0.2	U	
		1,3,5-Trimethylbenzene	ug/1	0.2	ប	
		Vinyl Chloride	ug/l	2.0	υ	
		m,p-Xylenes	ug/l	0.4	U	
		o-Xylene	ug/l	0.2	U	
		1-Chloro-2-fluorobenzena (Recovery)		74.0		

Will; E. Bu

P.O. Box 772116

Eagle River AK 99577

Attn: Mary Maurer

Location/Project:

Your Sample ID:

Sample Matrix:

DNR-DGGS

Our Lab #:

Comments:

NORTHERN TESTING LABORATORIES, INC.

RECEIVED

AUG 07 1991

Div. of Geological Survey

Eagle River

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

A111981

Water

Travel Blank

Nikiski Ground Water IIIA

FAIRBANKS. ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 · FAX 458-3125 (907) 277-8378 · FAX 274-9645

Report Date:	08/05/91
--------------	----------

Date Arrived: 07/12/91 Date Sampled: 07/09/91 Time Sampled: -Collected By: MAM

		Flag D	efinition	16
บ	=	Below D	etection	Limit
		DL Sta	ted in Re	sult
в	=	Below R	egulatory	Min.
H	=	Above R	egulatory	Max.

E = Below Detection Limit Estimated Value

aboratory Number	Method	Parameter	Units	Date Result Flag Analyz
111981	EPA 502.2	Benzene	ug/1	0.2 U 07/19/
		Bromobenzene	ug/l	0.3 U
		Bromochloromethane	ug/l	0.3 U
		Bromodichloromethane	ug/l	0.2 U
		Bromoform	ug/1	1.0 U
		Bromomethane	ug/l	2.0 0
		n-Butylbenzene	ug/l	0.3 U
		sec-Butylbenzene	ug/l	0.3 U
		tert-Butylbenzene	ug/l	0.5 U
		Carbon Tetrachloride	ug/l	0.2 U
		Chlorobenzene	ug/l	0.2 U
		Dibromochloromethane	ug/l	0.4 U
		Chloroethane	ug/l	2.0 U
		Chloroform	ug/l	0.2 U
		Chloromethane	ug/l	2.0 0
		o-Chlorotoluene	ug/l	0.3 U
		p-Chlorotoluene	ug/l	0.2 U
		1,2-Dibromo-3-Chloropropane	ug/l	2.0 U
		Dibromomethane	ug/l	0.4 U
		1,4-Dichlorobenzene	ug/l	0.2 U
		m-Dichlorobenzene	ug/1	0.2 U
		o-Dichlorobenzene	ug/l	0.2 U
		Dichlorodifluoromethane	ug/l	2.0 U
		1,1-Dichloroethane	ug/l	0.2 U
		1,2~Dichloroethane	ug/l	0.2 U
		1,1-Dichloroethylene	ug/l	1.0 U
		cis-1,2-Dichloroethylene	ug/1	0.2 U
		trans-1,2-Dichloroethylene	ug/l	0.2 U
		Methylene Chloride	ug/l	1.0 U
		1,2-Dichloropropane	ug/l	0.2 U
alale	. F. B.	1,3-Dichloropropane	ug/1	0.2 U

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 458-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 07 1991

Div. of Geological Survey Eagle River

Laborator Number	Y Method	Parameter	Units		-	Date Analyzed
A111981	EPA 502.2	2,2-Dichloropropane	ug/1	1.0		07/19/91
		1,1-Dichloropropene	ug/l	0.5	U	
		1,3-Dichloropropene	ug/l	0.2	U	
		Ethylbenzene	ug/1	0.2	U	
		1,2-Dibromoethane	ug/l	1.0	U	
		Trichlorofluoromethane	ug/l	0.5	U	
		Hexachlorobutadiene	ug/l	0.3	υ	
		Isopropylbenzene	ug/l	0.3	U	
		p-Isopropyltoluene	ug/l	0.3	U	
		Naphthalene	ug/l	0.3	U	
		n-Propylbenzene	ug/l	0.3	υ	
		Styrene	ug/l	0.2	U	
		1,1,1,2-Tetrachloroethane	ug/l	0.2	U	
		1,1,2,2-Tetrachloroethane	ug/l	0.3	U	
		Tetrachloroethylene	ug/l	0.2	U	
		Total Trihalomethane	ug/l	2	U	
		Toluene	ug/l	0.3	U	
		1,2,3-Trichlorobenzene	ug/l	0.3	U	
		1,2,4-Trichlorobenzene	ug/l	0.3	U	
		1,1,1-Trichloroethane	ug/l	0.2	U	
		1,1,2-Trichloroethane	ug/l	0.4	U	
		Trichloroethylene	ug/l	0.2	U	
		1,2,3-Trichloropropane	ug/l	0.3	U	
		1,2,4-Trimethylbenzene	ug/1	0.2	U	
		1,3,5-Trimethylbenzene	ug/l	0.2	U	
		Vinyl Chloride	ug/l	2.0	U	
		m,p-Xylenes	ug/l	0.4	U	
		o-Xylene	ug/l	0.2	U	
		1-Chloro-2-fluorobenzene (Recovery)	8	92.0		

Bru E, as Ili

Our Lab #:

Comments:

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

A112158

Bowlin Well

239055

Water

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 458-3125 (907) 277-8378 • FAX 274-9645

Alaska Division of Water P.O. Box 772116 Eagle River AX 99577

RECEIVED

Attn: Mary A. Maurer

Location/Project:

Your Sample ID:

Sample Matrix:

AUG 1 / 1991

Div. of Geological Survey Eagle River Report Date: 08/13/91

Date Arrived: 07/19/91 Date Sampled: 07/12/91 Time Sampled: 1330 Collected By: MAM

		-	Definitions
U	=	Below	Detection Limit
		DL St	ated in Result
В		Below	Regulatory Min.
H	æ	Above	Regulatory Max.
Ε	=	Below	Detection Limit
		Estin	nated Value

Date

Number	Method	Parameter	Units	Result Flag Analyzed
A112158	EPA 502.2	Benzene	ug/1	0.2 U 08/04/91
		Bromobenzene	ug/l	0.3 U
		Bromochloromethane	ug/l	0.3 U
		Bromodichloromethane	ug/l	0.2 U
		Bromoform	ug/l	1.0 U
		Bromomethane	ug/l	2.0 U
		n-Butylbenzene	ug/l	0.3 U
		sec-Butylbenzene	ug/l	0.3 U
		tert-Butylbenzene	ug/l	0.5 U
		Carbon Tetrachloride	ug/l	0.2 U
		Chlorobenzene	ug/l	0.2 0
		Dibromochloromethane	ug/l	0.4 U
		Chloroethane	ug/l	2.0 U
		Chloroform	ug/l	0.2 U
		Chloromethane	ug/l	2.0 U
		o-Chlorotoluene	ug/l	0.3 U
		p-Chlorotoluene	ug/l	0.2 U
		1,2-Dibromo-3-Chloropropane	ug/l	2.0 U
		Dibromomethane	ug/l	0.4 U
		1,4-Dichlorobenzene	ug/l	0.2 U
		m-Dichlorobenzene	ug/l	0.2 U
		o-Dichlorobenzene	ug/1	0.2 U
		Dichlorodifluoromethane	ug/l	2.0 U
		1,1-Dichloroethane	ug/l	0.2 U
		1,2-Dichloroethane	ug/l	0.2 U
		1,1-Dichloroethylene	ug/l	1.0 U
		cis-1,2-Dichloroethylene	ug/l	0.2 U
		trans-1,2-Dichloroethylene	ug/l	0.2 U
		Methylene Chloride	ug/l	1.0 U
. •	1	1,2-Dichloropropane	ug/l	0.2 U
will	F. Buil	1,3-Dichloropropane	ug/1	0.2 U

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS. ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 486-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AHC 1 / 1991

Div. of Geological Survey Eagle River

Laboratory Number	Method	Parameter	Units		-	Date Analyzed
A112158	EPA 502.2	2,2-Dichloropropane	ug/1	1.0		08/04/91
		1,1-Dichloropropene	ug/l	0.5	U	
		1,3-Dichloropropene	ug/l	0.2	υ	
		Ethylbenzene	ug/l	0.2	U	
		1,2-Dibromoethane	ug/l	1.0	υ	
		Trichlorofluoromethane	ug/l	0.5	U	
		Hexachlorobutadiene	ug/l	0.3	U	
		Isopropylbenzene	ug/l	0.3	U	
		p-Isopropyltoluene	ug/l	0.3	U	
		Naphthalene	ug/l	0.3	U	
		n-Propylbenzene	ug/l	0.3	U	
		Styrene	ug/l	0.2	U	
		1,1,1,2-Tetrachloroethane	ug/l	0.2	U	
		1,1,2,2-Tetrachloroethane	ug/l	0.3	U	
		Tetrachloroethylene	ug/l	0.2	U	
		Total Trihalomethane	ug/l	2	U	
		Toluene	ug/l	0.3	υ	
		1,2,3-Trichlorobenzene	ug/l	0.3	υ	
		1,2,4-Trichlorobenzene	ug/l	0.3	U	
		1,1,1-Trichloroethane	ug/l	0.2	U	
		1,1,2-Trichloroethane	ug/l	0.4	ប	
		Trichloroethylene	ug/l	0.2	ប	
		1,2,3-Trichloropropane	ug/l	0.3	U	
		1,2,4~Trimethylbenzene	ug/l	0.2	บ	
		1,3,5-Trimethylbenzene	ug/l	0.2	υ	
		Vinyl Chloride	ug/l	2.0	ប	
		m,p-Xylenes	ug/l	0.4	U	
		o-Xylene	ug/l	0.2		
		1-Chloro-2-fluorobenzene (Recovery)		82.0		

E 21 al. 101.

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 458-3125 (907) 277-8378 • FAX 274-9645

Alaska Division of Water P.O. Box 772116 Eagle River AK 99577

Attn: Mary A. Maurer

RECEIVED

AUG 1 4 1991

Our Lab #: Location/H Your Sampl Sample Mat Comments: Laboratory	Project: Le ID: crix:	A112159 239055 Hunt Well Water	Div. of Geological Sur vey Eagle River
Number	Method	Parame	leter

Date Arrived: 07/19/91 Date Sampled: 07/12/91 Time Sampled: 1545 Collected By: MAM

Report Date: 08/13/91

		Flag 1	Definitions
U	=	Selow 1	Detection Limit
		DL Sta	ated in Result
В	Ħ	Below N	Regulatory Min.
H	=	Above I	Regulatory Max.
Е	=	Below 1	Detection Limit
		Estim	ated Value

Date

A112159	EPA 502.2				-
	EPA SUZ.Z	Benzene	ug/1	0.2 U	08/04/91
		Bromobenzene	ug/l	0.3 U	
		Bromochloromethane	ug/l	0.3 U	
		Bromodichloromethane	ug/l	0.2 U	
		Bromoform	ug/l	1.0 σ	
		Bromomethane	ug/l	2.0 U	
		n-Butylbenzene	ug/l	0.3 U	
		sec-Butylbenzene	ug/l	0.3 U	
		tert-Butylbenzene	ug/l	0.5 U	
		Carbon Tetrachloride	ug/l	0.2 U	
		Chlorobenzene	ug/l	0.2 U	
		Dibromochloromethane	ug/l	0.4 U	
		Chloroethane	ug/l	2.0 U	
		Chloroform	ug/l	0.2 U	
		Chloromethane	ug/l	2.0 U	
		o-Chlorotoluene	ug/l	0.3 υ	
		p-Chlorotoluene	ug/l	0.2 U	
		1,2-Dibromo-3-Chloropropane	ug/l	2.0 U	
		Dibromomethane	ug/l	0.4 U	
		1,4-Dichlorobenzene	ug/l	0.2 U	
		m-Dichlorobenzene	ug/l	0.2 U	
		o-Dichlorobenzene	ug/l	0.2 U	
		Dichlorodifluoromethane	ug/l	2.0 U	
		1,1-Dichloroethane	ug/l	0.2 U	
		1,2-Dichloroethane	ug/l	0.2 V	
		1,1-Dichloroethylene	ug/l	1.0 U	
		cis-1,2-Dichloroethylene	ug/l	0.2 U	
		trans-1,2-Dichloroethylene	ug/1	0.2 U	
		Methylene Chloride	ug/1	1.0 U	
		1,2-Dichloropropane	ug/l	0.2 U	
Welle	5 Bul	1,3-Dichloropropane	ug/l	0.2 U	

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

.

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 1 4 1001

Div. of Geological Survey Eagle River

Laboratory Number	Method	Parameter	Unite	Date Result Flag Analyzed
A112159	EPA 502.2	2,2~Dichloropropane	ug/1	1.0 U 08/04/91
		1,1-Dichloropropene	ug/l	0.5 U
		1,3-Dichloropropene	ug/l	0.2 U
		Ethylbenzene	ug/1	0.2 U
		1,2-Dibromoethane	ug/l	1.0 U
		Trichlorofluoromethane	ug/l	0.5 V
		Hexachlorobutadiene	ug/l	0.3 U
		Isopropylbenzene	ug/l	0.3 U
		p-Isopropyltoluene	ug/l	0.3 U
		Naphthalene	ug/l	0.3 U
		n-Propylbenzene	ug/l	0.3 U
		Styrene	ug/l	0.2 U
		1,1,1,2-Tetrachloroethane	ug/l	0.2 U
		1,1,2,2-Tetrachloroethane	ug/l	0.3 U
		Tetrachloroethylene	ug/l	0.2 U
		Total Trihalomethane	ug/l	2 U
		Toluene	ug/1	0.3 U
		1,2,3-Trichlorobenzene	ug/l	0.3 U
		1,2,4-Trichlorobenzene	ug/l	0.3 U
		1,1,1-Trichloroethane	ug/l	0.2 U
		1,1,2-Trichloroethane	ug/l	0.4 U
		Trichlorosthylene	ug/l	0.2 U
		1,2,3-Trichloropropane	ug/l	0.3 U
		1,2,4-Trimethylbenzene	ug/l	0.2 U
		1,3,5-Trimethylbenzene	ug/1	0.2 U
		Vinyl Chloride	ug/l	2.0 U
		m,p-Xylenes	ug/l	0.4 U
		o-Xylene	ug/l	0.2 U
		1-Chloro-2-fluorobenzene (Recovery)		93.0

Willin E. Due

3330 INDUSTRIAL AVENUE 2505 FAIABANKS STREET

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 458-3116 • FAX 458-3125 (907) 277-8378 • FAX 274-9645

Report Date: 08/13/91

Date Arrived: 07/19/91 Date Sampled: 07/12/91 Time Sampled: 1200

Flag Definitions U = Below Detection Limit

Collected By: MAM

Alaska Division of Water P.O. Box 772116 Eagle River AK 99577

Attn: Mary A. Maurer

RECEIVED

AUG 1 & 1001

Our Lab # Location/ Your Samp Sample Ma Comments:	Project: le ID: trix:		All(5 1 2 Div. of Geological Well Eagle River	B = Sur ⊻ey H =	DL Stated in Result B = Below Regulatory Min. H = Above Regulatory Max. E = Below Detection Limit Estimated Value		
Laborator Number		Parame	eter	Unite	a Result	Flag	Date Analyze
A112160	EPA 502	.2 Benzer	ne	ug/1	0.2	U	08/04/9

Number	Method	Parameter	Units	Result Flag And	alyzed
A112160	EPA 502.2	Benzene	ug/1	0.2 U 08	/04/91
		Bromobenzene	ug/l	0.3 U	
		Bromochloromethane	ug/l	0.3 U	
		Bromodichloromethane	ug/1	0.2 U	
		Bromoform	ug/l	1.0 U	
		Bromomethane	ug/l	2.0 U	
		n-Butylbenzene	ug/l	0.3 U	
		sec-Butylbenzene	ug/l	0.3 U	
		tert-Butylbenzene	ug/l	0.5 U	
		Carbon Tetrachloride	ug/l	0.2 U	
		Chlorobenzene	ug/l	0.2 U	
		Dibromochloromethane	ug/l	0.4 U	
		Chloroethane	ug/l	2.0 U	
		Chloroform	ug/l	0.2 U	
		Chloromethane	ug/l	2.0 U	
		o-Chlorotoluene	ug/l	0.3 U	
		p-Chlorotoluene	ug/l	0.2 U	
		1,2-Dibromo-3-Chloropropane	ug/l	2.0 U	
		Dibromomethane	ug/l	0.4 U	
		1,4-Dichlorobenzene	ug/l	0.2 U	
		m-Dichlorobenzene	ug/l	0.2 U	
		o-Dichlorobenzene	ug/l	0.2 U	
		Dichlorodifluoromethane	ug/l	2.0 U	
		1,1-Dichloroethane	ug/l	0.2 U	
		1,2-Dichloroethane	ug/l	0.2 U	
		1,1-Dichloroethylene	ug/l	1.0 U	
		cis-1,2-Dichloroethylene	ug/1	0.2 U	
		trans-1,2-Dichloroethylene	ug/l	0.2 U	
		Methylene Chloride	ug/l	1.0 U	
		1,2-Dichloropropane	ug/l	0.2 U	
Will	E. End	1,3-Dichloropropane	ug/l	0.2 U	
Reported B	y: William E	Buchan			

Anchorage Operations Manager

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS. ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 1 & 1981

Div. of Geological Survey Eagle River

Laboratory Number	Method	Parameter	Units	Date Result Flag Analy	zed
A112160	EPA 502.2	2,2-Dichloropropane	ug/1	1.0 U 08/04	1/91
		1,1-Dichloropropene	ug/l	0.5 U	
		1,3-Dichloropropene	ug/l	0.2 U	
		Ethylbenzene	ug/l	0.2 ប	
		1,2-Dibromoethane	ug/l	1.0 U	
		Trichlorofluoromethane	ug/l	0.5 U	
		Hexachlorobutadiene	ug/l	0.3 U	
		Isopropylbenzene	ug/l	0.3 U	
		p-Isopropyltoluene	ug/l	0.3 U	
		Naphthalene	ug/l	0.3 U	
		n-Propylbenzene	ug/l	0.3 U	
		Styrene	ug/l	0.2 U	
		1,1,1,2-Tetrachloroethane	ug/l	0.2 U	
		1,1,2,2-Tetrachloroethane	ug/l	0.3 U	
		Tetrachloroethylene	ug/l	0.2 U	
		Total Trihalomethane	ug/1	2 U	
		Toluene	ug/l	0.3 U	
		1,2,3-Trichlorobenzene	ug/1	0.3 U	
		1,2,4-Trichlorobenzene	ug/l	0.3 U	
		1,1,1-Trichloroethane	ug/l	0.2 U	
		1,1,2-Trichloroethane	ug/l	0.4 U	
		Trichloroethylene	ug/l	0.2 U	
		1,2,3-Trichloropropane	ug/l	0.3 U	
		1,2,4-Trimethylbenzene	ug/l	0.2 U	
		1,3,5-Trimethylbenzene	ug/l	0.2 U	
		Vinyl Chloride	ug/1	2.0 U	
		m,p-Xylenes	ug/1	0.4 U	
		o-Xylene	ug/1	0.2 U	
		1-Chloro-2-fluorobenzene (Recovery)		95.0	

aller F. B.

Laboratory

NORTHERN TESTING LABORATORIES, INC.

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3118 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

Alaska Division of Water P.O. Box 772116 Eagle River AK 99577

Attn: Mary A. Maurer

RECEIVED

ALIG 1 & 1991

Our Lab #:	A112161	
Location/Project:	239055	Div. of Geological Surgey
Your Sample ID:		well Eagle River
Sample Matrix:	Water	
Comments:		

Flag Definitions U = Below Detection Limit DL Stated in Result

Report Date: 08/13/91

Date Arrived: 07/19/91 Date Sampled: 07/12/91 Time Sampled: 1235

Collected By: MAM

- B = Below Regulatory Min.
- H = Above Regulatory Max.
- E = Below Detection Limit Estimated Value

Date

Number	Method	Parameter	Units	Result Flag Anal	yzeć
A112161	EPA 502.2	Benzene	ug/1	0.2 U 08/0	4/93
		Bromobenzene	ug/l	υ.3 υ	
		Bromochloromethane	ug/l	0.3 U	
		Bromodichloromethane	ug/l	0.2 U	
		Bromoform	ug/l	1.0 U	
		Bromomethane	ug/l	2.0 0	
		n-Butylbenzene	ug/l	0.3 U	
		sec-Butylbenzene	ug/l	0.3 U	
		tert-Butylbenzene	ug/l	0.5 U	
		Carbon Tetrachloride	ug/l	0.2 U	
		Chlorobenzene	ug/l	0.2 U	
		Dibromochloromethane	ug/l	0.4 U	
		Chloroethane	ug/l	2.0 U	
		Chloroform	ug/l	0.2 U	
		Chloromethane	ug/l	2.0 U	
		o-Chlorotoluene	ug/l	0.3 U	
		p-Chlorotoluene	ug/l	0.2 U	
		1,2-Dibromo-3-Chloropropane	ug/l	2.0 U	
		Dibromomethane	ug/l	0.4 U	
		1,4-Dichlorobenzene	ug/l	0.2 U	
		m-Dichlorobenzene	ug/l	0.2 U	
		o-Dichlorobenzene	ug/l	0.2 U	
		Dichlorodifluoromethane	ug/l	2.0 U	
		1,1-Dichloroethane	ug/l	0.2 U	
		1,2-Dichloroethane	ug/l	0.2 U	
		1,1-Dichloroethylene	ug/l	1.0 0	
		cis-1,2-Dichloroethylene	ug/l	0.2 V	
		trans-1,2-Dichloroethylene	ug/l	0.2 0	
		Methylene Chloride	ug/1	1.0 U	
		1,2-Dichloropropane	ug/1	0.2 U	
Wiltin 8	E ALL	1,3-Dichloropropane	ug/l	0.2 U	

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 1 / 1001

Div. of Geological Survey Eagle River

Laborator Number	Y Method	Parameter	Unite	Date Result Flag Analyze
A112161	EPA 502.2	2,2-Dichloropropane	ug/1	1.0 U 08/04/9
		1,1-Dichloropropene	ug/l	0.5 U
		1,3-Dichloropropene	ug/l	0.2 U
		Ethylbenzene	ug/l	0.2 U
		1,2-Dibromoethane	ug/l	1.0 U
		Trichlorofluoromethane	ug/l	0.5 U
		Hexachlorobutadiene	ug/l	υ Σ.Ο
		Isopropylbenzene	ug /1	0.3 U
		p-Isopropyltoluene	ug/l	0.3 U
		Naphthalene	ug/l	0.3 U
		n-Propylbenzene	ug/l	0.3 U
		Styrene	ug/l	0.2 U
		1,1,1,2-Tetrachloroethane	ug/l	0.2 U
		1,1,2,2-Tetrachloroethane	ug/l	0.3 U
		Tetrachloroethylene	ug/l	0.2 U
		Total Trihalomethane	ug/l	2 U
		Toluene	ug/l	0.3 0
		1,2,3-Trichlorobenzene	ug/l	0.3 U
		1,2,4-Trichlorobenzene	ug/l	0.3 U
		1,1,1-Trichloroethane	ug/l	0.2 U
		1,1,2-Trichloroethane	ug/l	0.4 U
		Trichloroethylene	ug/l	0.2 U
		1,2,3-Trichloropropane	ug/l	0.3 U
		1,2,4-Trimethylbenzene	ug/1	0.2 U
		1,3,5-Trimethylbenzene	ug/l	0.2 U
		Vinyl Chloride	ug/1	2.0 U
		m,p-Xylenes	ug/l	0.4 U
		o-Xylene	ug/l	0.2 U

.E. tu Q1.15

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

A112305

Water

Nikiski Groundwater

Newberry Well

FAIRBANKS, ALASKA 99701 ANCHORAGE. ALASKA 99503 (907) 456-3116 · FAX 456-3125 (907) 277-8378 · FAX 274-9645

08/13/91

Date

Alaska Division of Water P.O. Box 772116 Eagle River AK 99577

RECEIVED

Attn: Mary Maurer

Location/Project:

Your Sample ID:

Sample Matrix:

Our Lab #:

Comments:

Dig of Geological Survey Eagle River

AUG 1 4 100"

		Flag	Definitions
U	-	Below	Detection Limit
		DL St	ated in Result
в	Ŧ	Below	Regulatory Min.
H	~	Above	Regulatory Max.
Е	=	Below	Detection Limit

Date Arrived: 07/23/91

Date Sampled: 07/19/91 Time Sampled: 1512

Collected By: MM

Report Date:

Estimated Value

Laboratory Number Units Method Parameter Result Flag Analyzed A112305 EPA 502.2 Benzene 0.2 U 08/07/91 ug/1 Bromobenzene ug/l 0.3 U Bromochloromethane 0.3 U ug/l Bromodichloromethane ug/l0.2 U Bromoform ug/l1.0 U 2.0 U Bromomethane ug/l 0.3 V n-Butylbenzene ug/10.3 U sec-Butylbenzene uq/l0.5 U tert-Butylbenzene ug/l Carbon Tetrachloride uq/l0.2 U Chlorobenzene 0.2 U ug/l Dibromochloromethane ug/l0.4 U 2.0 0 Chloroethane ug/lChloroform 0.2 U ug/lChloromethane 2.0 U ug/10.3 U o-Chlorotoluene ug/l0.2 U p-Chlorotoluene ug/11,2-Dibromo-3-Chloropropane uq/l2.0 U Dibromomethane 0.4 U ug/l 0.2 U 1,4-Dichlorobenzene uq/1m-Dichlorobenzene 0.2 U ug/10.2 U o-Dichlorobenzene ug/l Dichlorodifluoromethane 2.0 U ug/l 1,1-Dichloroethane 0.2 U uq/10.2 U 1,2-Dichloroethane ug/l1,1-Dichloroethylene 1.0 U ug/l0.2 U cis-1,2-Dichloroethylene ug/1trans-1,2-Dichloroethylene 0.2 U ug/lMethylene Chloride 1.0 U uq/l0.2 U 1,2-Dichloropropane ug/11,3-Dichloropropane ug/l 0.2 0

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

.

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 458-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 1 4 1991

Div. of Geological Survey Eagle River

Laborator Number	y Method	Parameter	Units	Regult	-	Date Analyzed
A112305	EPA 502.2	2,2-Dichloropropane	ug/1	1.0		08/07/91
		l,1-Dichloropropene	ug/l	0.5	U	•
		1,3-Dichloropropene	ug/l	0.2	U	
		Ethylbenzene	ug/l	0.2	U	
		1,2-Dibromoethane	ug/l	1.0	U	
		Trichlorofluoromethane	ug/1	0.5	U	
		Hexachlorobutadiene	ug/l	0.3	U	
		Isopropylbenzene	ug/l	0.3	U	
		p-Isopropyltoluene	ug/l	0.3	U	
		Naphthalene	ug/l	0.3	U	
		n-Propylbenzene	ug/l	0.3	ប	
		Styrene	ug/l	0.2	U	
		1,1,1,2-Tetrachloroethane	ug/l	0.2	U	
		1,1,2,2-Tetrachloroethane	ug/l	0.3	υ	
		Tetrachloroethylene	ug/l	0.2	U	
		Total Trihalomethane	ug/1	2	U	
		Toluene	ug/l	0.3	υ	
		1,2,3-Trichlorobenzene	ug/l	0.3	U	
		1,2,4-Trichlorobenzene	ug/l	0.3	U	
		1,1,1-Trichloroethane	ug/l	0.2	U	
		1,1,2-Trichloroethane	ug/l	0.4	U	
		Trichloroethylene	ug/l	0.2	U	
		1,2,3-Trichloropropane	ug/l	0.3	U	
		1,2,4-Trimethylbenzene	ug/l	0.2	U	
		1,3,5-Trimethylbenzene	ug/l	0.2	U	
		Vinyl Chloride	ug/1	2.0	U	
		m,p-Xylenes	ug/1	0.4		
		o-Xylene	ug/l	0.2		
		1-Chloro-2-fluorobenzene (Recovery)				

willin F. bul

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

A112306

Water

Harris Well

Nikiski Groundwater

FAIRBANKS. ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

Alaska Division of Water P.O. Box 772116 Eagle River AK 99577

RECEIVED

AUG 1 4 1951

Attn: Mary Maurer

Location/Project:

Your Sample ID:

Sample Matrix:

Our Lab #1

Comments:

Dig. of Geological Survey Eagle River

(30)7	2	00.0	~	1100	 	

Report Date: 08/13/91

Date Arrived: 07/23/91 Date Sampled: 07/20/91 Time Sampled: 1233 Collected By: MM

		Flag Definitions
U	-	Below Detection Limit
		DL Stated in Result
B	×	Below Regulatory Min.
H	=	Above Regulatory Max.
E	=	Below Detection Limit
		Estimated Value

Laboratory Number	Method	Parameter	Unita		Flag	Date Analyzed
A112306	EPA 502.2	Benzene	ug/1	0.2		08/07/91
		Bromobenzene	ug/l	0.3	σ	
		Bromochloromethane	ug/l	0.3	U	
		Bromodichloromethane	ug/l	0.2	U	
		Bromoform	ug/l	1.0	U	
		Bromomethane	ug/l	2.0	U	
		n-Butylbenzene	ug/l	0.3	U	
		sec-Butylbenzene	ug/l	0.3	σ	
		tert-Butylbenzene	ug/l	0.5	U	
		Carbon Tetrachloride	ug/l	0.2	U	
		Chlorobenzene	ug/l	0.2	U	
		Dibromochloromethane	ug/l	0.4	U	
		Chloroethane	ug/l	2.0	U	
		Chloroform	ug/l	0.2	U	
		Chloromethane	ug/l	2.0	U	
		o-Chlorotoluene	ug/l	0.3	υ	
		p-Chlorotoluene	ug/l	0.2	U	
		1,2-Dibromo-3-Chloropropane	ug/l	2.0	U	
AL12306 EPA 502.2		Dibromomethane	ug/l	0.4	U	
		1,4-Dichlorobenzene	ug/l	0.2	U	
		m-Dichlorobenzene	ug/l	0.2	υ	
		o-Dichlorobenzene	ug/l	0.2	U	
		Dichlorodifluoromethane	ug/l	2.0	υ	
		1,1-Dichloroethane	ug/l	0.2	U	
		1,2-Dichlorosthane	ug/l	0.2	U	
		1,1-Dichloroethylene	ug/l	1.0	U	
		cis-1,2-Dichloroethylene	ug/l	0.2	U	
		trans-1,2-Dichloroethylene	ug/l	0.2	U	
		Methylene Chloride	ug/l	1.0	υ	
		1,2-Dichloropropane	ug/l	0.2	U	
Willin	E. Euch	1,3-Dichloropropane	ug/1	0.2	U	

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS. ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 1 4 1901

Div. of Geological Survey Eagle River

Laboratory Number	Method	Parameter	Unite	Date Result Flag Analyzed
A112306	EPA 502.2	2,2-Dichloropropane	ug/l	1.0 U 08/07/91
		1,1-Dichloropropene	u g/1	0.5 U
		1,3-Dichloropropene	ug/l	0.2 U
		Ethylbenzene	ug/l	0.2 U
		1,2-Dibromoethane	ug/l	1.0 U
		Trichlorofluoromethane	ug/l	0.5 U
		Hexachlorobutadiene	ug/1	0.3 U
		Isopropylbenzene	ug/l	0.3 U
		p-Isopropyltoluene	ug/l	0.3 U
		Naphthalene	ug/l	0.3 U
		n-Propylbenzene	ug/l	0.3 U
		Styrene	ug/l	0.2 U
		1,1,1,2-Tetrachloroethane	ug/l	0.2 U
		1,1,2,2-Tetrachloroethane	ug/l	0.3 U
		Tetrachloroethylene	ug/l	0.2 U
		Total Trihalomethane	ug/l	2 U
		Toluene	ug/l	0.3 U
		1,2,3-Trichlorobenzene	ug/l	0.3 U
		1,2,4-Trichlorobenzene	ug/l	0.3 U
		1,1,1-Trichloroethane	ug/l	0.2 U
		1,1,2-Trichloroethane	ug/l	0.4 U
		Trichloroethylene	ug/l	0.2 U
		1,2,3-Trichloropropane	ug/l	0.3 U
		1,2,4-Trimethylbenzene	ug/l	0.2 U
		1,3,5-Trimethylbenzene	ug/l	0.2 U
		Vinyl Chloride	ug/1	2.0 U
		m,p-Xylenes	ug/1	0.4 U
		o-Xylene	ug/l	0.2 U
		1-Chloro-2-fluorobenzene (Recovery)	8	88.0

٤. En 911.0

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET

A112307

Water

Grimm Well

Nikiski Groundwater

FAIRBANKS, ALASKA 99701 ANCHORAGE, ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

Alaska Division of Water P.O. Box 772116 Eagle River AK 99577

RECEIVED

AUG 1 4 100'

Attn: Mary Maurer

Location/Project:

Your Sample ID:

Sample Matrix:

Our Lab #:

Comments: Laboratory Div. of Geological Survey Eagle River Report Date: 08/13/91 Date Arrived: 07/23/91

Date Sampled: 07/20/91 Time Sampled: 1803 Collected By: MM

Flag Definitions
U = Below Detection Limit
 DL Stated in Result
B = Below Regulatory Min.
H = Above Regulatory Max.
E = Below Detection Limit

Estimated Value

Date

Number Method Parameter Units Result Flag Analyzed A112307 EPA 502.2 Benzene ug/l0.2 0 08/07/91 0.3 U Bromobenzene ug/lBromochloromethane 0.3 U ug/1 Bromodichloromethane 0.2 U ug/lBromoform 1.0 0 uq/1Bromomethane ug/12.0 U n-Butylbenzene uq/l0.3 U 0.3 U sec-Butylbenzene ug/10.5 U tert-Butylbenzene ug/1 Carbon Tetrachloride 0.2 U ug/lChlorobenzene ug/10.2 U Dibromochloromethane ug/l0.4 U Chloroethane 2.0 0 uq/lChloroform 0.2 U uq/lChloromethane 2.0 1 ug/l o-Chlorotoluene ug/10.3 U 0.2 U p-Chlorotoluene ug/11,2-Dibromo-3-Chloropropane 2.0 U uq/1Dibromomethane uq/l0.4 U 1,4-Dichlorobenzene ug/10.2 U m-Dichlorobenzene 0.2 U uq/lo-Dichlorobenzene 0.2 U ug/l Dichlorodifluoromethane 2.0 U ug/10.2 U 1,1-Dichloroethane uq/11.2-Dichloroethane uq/l0.2 0 1.0 U 1,1-Dichloroethylene uq/1cis-1,2-Dichloroethylene ug/l 0.2 U trans-1,2-Dichloroethylene 0.2 U ug/l1.0 U Methylene Chloride ug/l0.2 U 1,2-Dichloropropane ug/10.2 U 1,3-Dichloropropane ug/l

3330 INDUSTRIAL AVENUE 2505 FAIRBANKS STREET FAIRBANKS, ALASKA 99701 ANCHORAGE. ALASKA 99503 (907) 456-3116 • FAX 456-3125 (907) 277-8378 • FAX 274-9645

RECEIVED

AUG 1 4 1000

Div. of Geological Survey Eagle River

Laboratory Number	Y Method	Parameter	Units	Result	_	Date Analyzed
A112307	EPA 502.2	2,2-Dichloropropane	ug/l	1.0		08/07/91
		1,1-Dichloropropene	ug/l	0.5	U	
		1,3-Dichloropropene	ug/l	0.2	υ	
		Ethylbenzene	ug/l	0.2	σ	
		1,2-Dibromoethane	ug/l	1.0	υ	
		Trichlorofluoromethane	ug/l	0.5	U	
		Hexachlorobutadiene	ug/l	0.3	U	
		Isopropylbenzene	ug/l	0.3	U	
		p-Isopropyltoluene	ug/l	0.3	U	
		Naphthalene	ug/l	0.3	U	
		n-Propylbenzene	ug/l	0.3	U	
		Styrene	ug/l	0.2	U	
		1,1,1,2-Tetrachloroethane	ug/l	0.2	U	
		1,1,2,2-Tetrachloroethane	ug/l	0.3	U	
		Tetrachloroethylene	ug/l	0.2	U	
		Total Trihalomethane	ug/l	2	ប	
		Toluene	ug/l	0.3	U	
		1,2,3-Trichlorobenzene	ug/l	0.3	ប	
		1,2,4~Trichlorobenzene	ug/1	0.3	U	
		1,1,1-Trichloroethane	ug/l	0.7		
		1,1,2-Trichloroethane	ug/l	0.4	U	
		Trichloroethylene	ug/l	0.2	U	
		1,2,3-Trichloropropane	ug/1	0.3	U	
		1,2,4-Trimethylbenzene	ug/l	0.2	U	
		1,3,5-Trimethylbenzene	ug/l	0.2	U	
		Vinyl Chloride	ug/l	2.0	U	
		m,p-Xylenes	ug/l	0.4	U	
		o-Xylene	ug/l	0.2	U	
		1-Chloro-2-fluorobenzene (Recovery)	%	94.0		

S R QUI Vin

Western Atlas International 1 Jinon/Dresser Company

RECEIVED

812 : icen

CORE LABORATORIES

Div. of Geological Survey Eagle River

			ESTS /29/91	RESUL	ſS			
JOB NUMBER: 911850 CUSTOMER:	STATE OF AL	ASKA		A.	TN: MARY	HAURER		
SAMPLE NUMBER: 1 DATE RECEIVED:	08/02/91	TIME RECEIV	VED: 10:30	SAMPLI	DATE: 07	/09/91	SAMPLE TIME	: 13:12
PROJECT: CARROL/AB DUE 09/02/91	SAMPLE;	CARROL WELL			REI	H: WATER		
SAMPLE NUMBER: 2 DATE RECEIVED:	08/02/91	TIME RECEIV	VED: 10:30	SAMPLI	DATE: 07	/09/91	SAMPLE TIME	: 20:35
PROJECT: GORDOW/AB DUE 09/02/91	SAMPLE:	GORDON WELL			RE	4: WATER		
SAMPLE NUMBER; 3 DATE RECEIVED:	08/02/91	TIME RECEIV	VED: 10:30	SAMPLE	DATE: 07	/17/91	SAMPLE TIME	: 12:35
PROJECT: BIG 3 LINCOLN/AB DUE 09/02/91	SAMPLE:	BIG 3 LINCOL	N WELL		RE	4: WATER		
SAMPLE NUMBER: 4 DATE RECEIVED:	08/02/91	TIME RECEIV	VED: 10:30	SAMPLI	DATE: 07	/17/91	SAMPLE TIME	: 15:10
PROJECT: WELDING SHOP/AB DUE 09/02/91	SAMPLE:	WELDING SHOP	WELL		REJ	4: WATER		
SAMPLE NUMBER: 5 DATE RECEIVED:	08/02/91	TIME RECEIV	VED: 10:30	SAMPLI	DATE: 07	/18/91	SAMPLE TIME	: 15:00
PROJECT: NEWBERRY/AB DUE 09/02/91	SAMPLE:	NEUBERRY WEL	L		RE)	1: WATER		
SAMPLE NUMBER: 6 DATE RECEIVED:	08/02/91	TIME RECEIV	VED: 10:30	SAMPLE	DATE: 07	/20/91	SAMPLE TIME	: 12:20
PROJECT: HARRIS/AB DUE 09/02/91	SAMPLE:	HARRIS WELL			8EI	11 WATER		
TEST DESCRIPTION	SAMPLE	1 SAMPLE	SAMPLE 3	SAMPLE 4	SAMPLE	SAMPLE	6 UNITS OF M	EASURE
Gross Alpha, total	0.0	0.6	0.0	0.2	0.0	0.0	pCi/l	
Sross Alpha, total, error, +/-	1.2	1.7	1.2	1.2	9.2	1.6	pCf/(
Groas Alpha, total, LLD	2.0	2.6	2.2	2.0	15.8	2.7	pCi/L	
Gross Beta, total	1.6	1.3	1.5	1.9	11.3	1.6	pC1/l	
Gross Beta, total, error, +/-	1.7	1.6	1.6	1.7	6.8	1.8	pC1/1	
Gross Beta, total, LLD	2.7	2.5	2.5	2.7	10.4	2.8	pCi/l	
	1		I 	1		First St WY 8260		

The analyses icp mension interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and contridential use this report are based upon observations and material supplied by the client for whose exclusive and contridential use this report are based upon observations and material supplied by the client for whose exclusive and contridential use this report are based upon observations and material supplied by the client for whose exclusive and contridential use this report are based upon observations and material supplied by the client for whose exclusive and contridential use the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representatives income unput of the productivity proper operations or prolitableness nowaver of any pill, as coal or other mineral, property, well or sand in connection with which such report is used to upon for any reason whatsoever

RECEIVED

SE5 - 1961

CORE LABORATORIES

Div. of Geological Survey

Eagle River

OB NUMBER: 911850 CUSTOMER:	STATE OF AL	ASKA	ATTN: NA	RY MAURER		
SAMPLE NUMBER: 7 DATE RECEIVED:	08/02/91	TIME RECEIVED: 10:30	SAMPLE DATE:	07/20/91	SAMPLE TIME:	18:03
PROJECT: GRIMM/AB DUE 09/02/91	SAMPLE:	GRÍMM WELL		REM: WATER		
SAMPLE NUMBER: 8 DATE RECEIVED:	08/02/91	TIME RECEIVED: 10:30	SAMPLE DATE:	07/22/91	SAMPLE TIME:	10:55
ROJECT: ADAMS/AB DUE 09/02/91	SAMPLE:	ADAMS WELL		REM: WATER		
AMPLE NUMBER: 9 DATE RECEIVED:	08/02/91	TIME RECEIVED: 10:30	SAMPLE DATE:	07/22/91	SAMPLE TIME:	10:55
ROJECT: NORTH STAR/AB DUE 09/02/91	SAMPLE:	NORTH STAR ELEMENTARY SCHOOL		REM: WATER		

TEST DESCRIPTION	SAMPLE	7 SAMPLE .	8 SAMPLE 9	2.1	ine in	UNITS OF MEASURE
Gross Alpha, total	0.9	1.6	0.0	· · · · ·		pCi/l
Gross Alpha, total, error, +/-	1.3	2.7	1.2			pCi/l
Gross Alpha, total, LLD	1.9	4-1	2.0			pCi/l
Gross Beta, total	2.1	4.2	3.2			pCi/l
Gross Beta, total, error, +/-	1.7	2.0	1.5			pCi/l
Gross Beta, total, LLD	2.7	3.0	2.3			pC{/(
					ļ	
				 	1	
APPROVED BY:					First Stre WY 82601 5-5741	et

PAGE:2

The analyses opinions or interpretations contained in this report are based upon observations and material subbiled by the client for whose exclusive and confidential use this report the mage. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warrantly or representations, expressed representations, or profitableness however of any pill, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever in the such report is used or the other to any reason whatsoever.

RECEIVED

070 1001

CORE LABORATORIES

Div. of Geological Survey

Eagle River

JOB NUMBER	911850	CUSTOM	RE STATE O	F ALASKA			ATTR: NAR	MAURER		
	ANA	LYSIS		DUPL	ICATES	REFEREN	CE STANDARDS		MATRIX SPIKE	
ANALYSIS TYPE	ANALYSIS SUB-TYPE	ANALYSIS I.D.	ANALYZED VALUE (A)	DUPLICATE VALUE (B)	RPD or (A-B)	TRUE VALUE	PERCENT RECOVERY	ORIGINAL VALUE	SP1KE ADDED	PERCENT RECOVERY
PÁRAMETER: Q DETECTION L	ross Alpha, IMIT:	total UNITS:pCi	n i	DATE/TIME AN NETHOD REFEN	NALYZED:08/2 RENCE 1EPA	9/91 10:13 900.0		•		UMBER:115522 CHNICIAN:DF
DUPLICATE DUPLICATE DUPLICATE	ргер ргер ргер	911850-4 911899-1 911753-3	0.2 0.0 0.0	0.5 0.0 2.7	86 0 3					
PARAMETER: Q Detection L	ross Alpha, IMIT:	total, error UNITS:pCi,	/+/- /l	DATE/TIME AN METHOD REFEN	NALYZED:08/2 RENCE :	9/91 10:24				IUMBER: 115523 CHNICIAN: DF
PARAMETER: G	ross Alpha, INIT:	total, LLD UNITS:pC1,	1	DATE/TIME AN		9/91 10:44				NUMBER:115524 CHNICIAN:DF
	ross Bets, t IMIT:	otal UNITS:pCI/		DATE/TIME AN METHOD REFER					QC BATCH)	NMBER: 115526 CHNICIAN: DF
DUPLICATE DUPLICATE DUPLICATE	ргер ргер ргер	911850-4 911899-1 911753-3	1.8 5.6 31.5	1.5 12.8 36.1	18 78 14					
PARAMETER:G	ross Beta, t IMIT:	otal, error, UNITS:pCi,	+/- /l	DATE/TIME AN METHOD REFER	KALYZED:08/2 RENCE: 1	9/91 10 <u>:</u> 58			QC BATCH I	IUMBER:115527 Chntclan:df
PÁRAMETER:G	ross Bets, t IMIT:		1 1 19	DATE/TIME AN METHOD REFER		9791 11:01				UMBER: 115528 CHN1CIAN:DF
										,
APPROVED BY		<u> </u>		<u> </u>	<u> </u>		Casper	•st First St -, WY 8260 235-5741		I

PAGE:1

NC = Not Calculable due to values lower than the detection limit

ND = Not detected at level in limits column

Quality Control Acceptance Criteria:

Blanks...... Analyzed Value less than or equal to the Detection Limit

Reference Standards: 100 +/- 10 Percent Recovery

(1) EPA 600/4-79-020, Nethods for Chemical Analysis of Water and Wastes, March 1983

(2) EPA SW-846, Test Methods for Evaluating Solid Waste, Third Edition, November 1986

(3) Standards Methods for the Examination of Water and Wastewater, 16th, 1985

(4) EPA/6004-80-032, Prescribed Procedures for Measurement of Radioactivity in Drinking Water, August 1980

(5) Federal Register, Friday, October 26, 1984 (40 CFR Part 136)
(6) EPA 600/8-78-017, Microbiological Methods for Monitoring the Environment, December 1978

NOTE - Data reported in QA report may differ from values on data page due to dilution of sample into analytical ranges.

The analyses upinions or interpretentions contained in this report are based upon observations and material supplied by the client for whose exclus, reland contidential use this report The analyses upinions or interpretentiations contained in this report are based upon observations and material supplied by the client for whose exclus, reland contained in this report are based upon observations and material supplied by the client for whose exclus, reland contained in this report are based upon observations and material supplied by the client for whose exclus, reland contained use this report the client for whose exclus, reland contained use the client for whose exclus, reland contained use the client for the client for whose exclusions are client for the client mada The interpretations or optimons expressed represent the pest judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representation express or implied as to the productivity proper operations, or profitableness however of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is _560.0 relied upon tot any reason whatsoever relied upon tor any reason whatsoover

APPENDIX D Laboratory Quality Assurance Evaluation on water samples collected for the ground-water phase IIA project, west Nikiski, Ataska

This quality assurance (QA) evaluation covers water samples and associated field and laboratory check samples collected from west Nikiski area ground waters during July 1991.

One-hundred eighty common dissolved ion and trace metal sample bottles were analyzed by the Alaska Division of Water Laboratory, Fairbanks, Alaska. Thirteen samples were analyzed for volatile organic compounds listed in U.S. Environmental Protection Agency (EPA) Mathod 502.2, by Northern Testing Laboratories, Inc., Anchorage, Alaska. Nine gross alpha and gross beta radioactivity samples were analyzed by Core Laboratories, Casper, Wyoming. Each analytical laboratory is discussed separately. Sample handling, holding times, analytical methods, and data quality objectives are listed in the QA plan (Maurer, 1991).

Alaska Division of Water Laboratory

Sample Handling: All samples were received intact by the laboratory according to chain-of-custody records.

Field Quality Control Checks: Three blind duplicate sample sets, (a sample set consists of five numbered bottles per site) were collected: sample set 599, 714, 509, 655, 791 is a blind duplicate at site 56; sample set 610, 724, 521, 666, 754 is a blind duplicate at site 152; and sample set 588, 702, 497, 644, 768 is a blind duplicate at site 190.

Three blind equipment-blank sample sets were collected: sample set 600, 712, 510, 656, 792 at site 56; sample set 611, 725, 522, 667, 766 at site 152; and sample set 589, 703, 498, 645, 769 at site 190.

Laboratory Quality Control Checks: All method-required quality control (QC) checks including reagent blanks, laboratory duplicate samples, matrix spike samples, matrix spike duplicate samples, and standard reference samples were performed by the laboratory.

<u>Timeliness</u>: All samples were analyzed within holding time limits. The analysis of orthophosphate (PO_4) , which was not scheduled for analysis but inadvertently included on the analytical report, exceeded the holding time limit of 48 hours.

Initial and Continuing Calibration: Instrument calibrations were within acceptable limits.

Blanks: The blind equipment-blank samples and laboratory blank samples are free of contamination.

<u>Detection Limits</u>: The detection limit stated on the analytical report is the same as that stated in the QA plan (Maurer, 1991) for all constituents except nickel, 0.001 mg/L in the QA plan and 0.01 mg/L on the analytical report.

<u>Matrix Spikes (Accuracy</u>): The accuracy data quality (DQ) objective for common anions (F, Cl, $NO_3 + NO_2$, SO_4) is 90 to 110 percent recovery. The accuracy actually obtained for the common ions is 90 to 99 percent recovery.

The accuracy DQ objective for common cations (Ca, Mg, Na, K, Fe, Mn) and trace metals (AI, As, Ba, Cd, Cu, Cr, Pb, Hg, Ni, Zn) is 80 to 120 percent recovery. The accuracy actually obtained for common and trace metals is 91 to 109 percent recovery.

Laboratory Duplicates (Lab Precision): Precision is expressed as relative percent difference (RPD). The DQ objective for common anions is 10% RPD. The actual tab precision obtained ranges from 1.1 to 7.5% RPD.

The DQ objective for common cations and trace metals is 20% RPD. The actual lab precision obtained ranges from 0.5 to 8.7% RPD.

Lab precision can not be calculated for mercury because all reported values are less than the detection limit. Lab precision is calculated for nickel because samples from other sources, which had detectable

concentrations, were analyzed during the same determination. The resultant RPD values for nickel are a measure of the analytical precision of the instrument at that time.

<u>Field Duplicates (Overall Precision)</u>: Overall precision, which is a measure of both field and lab precision, is calculable for the sample sets associated with blind duplicate samples (see 'Field Quality Control Checks' above).

The RPD is less than 10% for all common anions in all three sample/blind-duplicate sample comparisons. The RPD is less than 20% for all common cations and trace metals except aluminum (22%) in the 496/497 comparison and lead (27%) in the 520/521 comparison. Overall precision can not be calculated for trace metals with reported values below the detection limit of the analytical method used.

<u>Conclusion</u>: All constituents meet DQ objectives for laboratory accuracy and precision. Overall precision meets or closely approaches 20 percent. The overall precision for aluminum and lead is acceptable because sample concentrations are close to the detection limit of the analytical method used. Therefore, all data are deemed acceptable for use.

Northern Testing Laboratories

Sample Handling: All samples were received intact by the laboratory according to the analytical reports.

<u>Field Quality Control Checks</u>: One travel blank sample was provided by the laboratory and was analyzed with the initial sample set. The travel blank sample, Lab No. A111981, is free of contamination.

Laboratory Quality Control Checks: All method-required QC checks, as specified in the QA plan, were performed by the laboratory.

<u>Timeliness</u>: Three separate samples sets were delivered to the laboratory. Five samples, Lab Nos. A111977-A111981, in the initial sample set were analyzed 10 days after sampling, within the 14-day holding time limit. Four samples, Lab Nos. A112158 - A112162, in the second sample set were analyzed 18 or 23 days after sampling. Three samples, Lab Nos. A112305 - A112309, in the third sample set were analyzed 18 or 19 days after sampling.

Detection Limits: Acceptable.

Matrix Spikes (Accuracy): No accuracy data is shown on the analytical reports.

Surrogate Spikes: Percent recovery ranges from 69 to 95 percent which is acceptable.

Laboratory Duplicates (Lab Precision): No precision data is shown on the analytical reports.

<u>Conclusion</u>: Although holding times were exceeded for the second and third sample sets, data are deemed useable because volatile organic compounds are undetected in all samples, except one. The compound 1,1,1-trichloroethane was detected in Lab No. A112307 at 0.7 μ g/L which is slightly above the LLD of 0.2 μ g/L. Although this value is considered valid, it is not confirmed by a duplicate or replicate sample. In conclusion, all data are deemed acceptable for use.

Core Laboratories

Sampling Handling: All samples were received intact by the laboratory according to chain-of-custody records.

Field Quality Control Checks: Sample No. 4 is a blind duplicate of Sample No. 3.

Laboratory Quality Control Checks: All method-required QC checks, as specified in EPA Method 900.0, were performed by the laboratory.

<u>Timeliness</u>: All samples were analyzed approximately 5 to 7 weeks after collection, well within the six month holding time limit.

Detection Limits: The actual lower limit of detection (LLD), as stated in the analytical report, ranges from 1.9 to 15.8 pCi/L for gross alpha activity and 2.3 to 10.4 pCi/L for gross beta activity. The LLDs are acceptable except for sample No. 5, which has a LLD of 15.8 pCi/L for gross alpha.

<u>Matrix Spikes (Accuracy)</u>: The accuracy DQ objective is 100 ± 10 percent recovery. The QC acceptance criteria listed on the lab's QA report is 100 ± 25 percent recovery. No accuracy calculations are shown on the QA report.

Laboratory Duplicates (Lab Precision): Four of the six samples that were analyzed as duplicates have a RPD of less than 20%. Analysis I.D. 911850-4, the only duplicate run on the nine Nikiski samples submitted, has a RPD of 86% for gross alpha and 18% for gross beta.

<u>Field Duplicates (Overall Precision)</u>: Overall precision is not calculable for sample No. 3 and its field duplicate, sample No. 4, because the actual values obtained for gross alpha and gross beta radioactivity are below the LLD of the analytical method used.

<u>Conclusion</u>: The majority of gross alpha and gross beta values are below the LLD for the analytical method used. Values which are reported as 0.0 pCi/L should be reported as less than '<' LLD values. For example, gross alpha for sample No. 1 is <2.0 pCi/L, not 0.0 pCi/L.

The gross alpha value for sample No. 5 is not acceptable because the detection limit is too high. The LLD of 15.8 pCi/L exceeds the drinking water maximum contaminant level of 15 pCi/L (Alaska Department of Environmental Conservation (ADEC), 1991).

The extremely low values warrant higher laboratory accuracy and precision acceptance limits. Therefore, with the exception of the gross alpha value for sample No. 5, these data are deemed acceptable for use.

Overall Comments

<u>Completeness</u>: The stated DQ objective for completeness, that is the percentage of useable data, is 95 percent. The total possible data collected as part of this investigation are 202 samples. The useable data total 201 samples. The completeness is 99 percent.

References Cited

- Alaska Department of Environmental Conservation, 1991, State of Alaska Drinking Water Regulations 18 AAC 80: ADEC, Juneau, 87 p.
- Maurer, M.A., 1991, Quality assurance plan for the Kenai Peninsula ground-water study phase IIIA, pilot project, west Nikiski, Alaska: Alaska Division of Geological and Geophysical Surveys Public-Data File 91-27, 107 p.