Price: \$8.00

Division of Geological & Geophysical Surveys

PUBLIC-DATA FILE 94-32A

GEOCHEMICAL MAJOR-OXIDE AND TRACE ELEMENT DATA FOR ROCK SAMPLES COLLECTED IN THE CIRCLE MINING DISTRICT, JUNE 1993

Ъу

R.J. Newberry, M.A. Wiltse, L.K. Queen, and D.S. Pinney

March 1994

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

Released by

STATE OF ALASKA
DEPARTMENT OF NATURAL RESOURCES
Division of Geological & Geophysical Surveys
794 University Avenue, Suite 200
Fairbanks, Alaska 99709-3645

GEOCHEMICAL MAJOR-OXIDE AND TRACE ELEMENT DATA FOR ROCK SAMPLES COLLECTED IN THE CIRCLE MINING DISTRICT, JUNE, 1993

pA

Rainer J. Newberry¹, Milton A. Wiltse², L. Katherine Queen¹, and DeAnne S. Pinney²

INTRODUCTION

In June, 1993, the Alaska Division of Geological and Geophysical Surveys initiated a geological and geophysical survey of the central part of the Circle mining district. During that survey 28 igneous rock samples were collected for chemical analysis. The location of these samples is shown on Plate 1. An abbreviated description and location data for each sample are tabulated in Table 1. The major-oxide and petrogenetically important trace element data are tabulated for each sample in Table 2.

ANALYTICAL METHODS

Major oxides

Major-oxide analyses were performed by Bondar-Clegg & Company, Ltd. Samples were reduced to minus-10 mesh, split, and a representative fraction pulverized to minus-200 mesh using an agate swing mill. A 0.1-g aliquot of the pulverized sample was fused with lithium metaborate and subsequently dissolved in an HNO₃ solution. The major-element content of the solution was determined using a Jarrell Ash ICP-emission spectrometer. The FeO content of the rocks was determined by titration procedures, and the total iron content of the rock was then corrected to provide both FeO and Fe₂O₃ data. Loss on ignition (LOI) values were determined on 1-g aliquots using a heating time of 4 hours and temperature of 850 °C.

Trace elements

Trace element analyses were performed by Rainer J. Newberry in the University of Alaska X-ray fluorescence spectrometer laboratory. Approximately 7 g of minus-200-mesh sample material was pressed into flat disks for analysis by a Rigaku® wave-length-dispersive X-ray spectrometer using procedures developed by the Alaska Division of Geological and Geophysical Surveys for data acquisition and correction. Three analyses of each pressed-powder disk were conducted and the estimated errors due to counting statistics are noted in the column headings of Table 2.

Department of Geology and Geophysics, University of Alaska, Fairbanks, Alaska 99775

² Alaska Division of Geological and Geophysical Surveys, 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645

Table-2. Concentration of major oxides and trace elements in Circle mining district rock samples collected in June 1993.

Sample	SiO2	TiO2	AI2O3	Fe2O3	FeO	MnO	MgO	CaO	Na20	K20	P2O5	LOI	Total
	%	%	%	%	%	<u>%</u>	<u>%</u>	<u>%</u>	%	%	%	%	95
1077A	66,00	.64	14.95	1.29	3.44	.09	1.84	4.44	2,38	3.15	.16	.88	99.26
1077B	69.84	.41	14.82	.81	2.73	.08	.89	2.48	2,86	4.69	.08	.63	100.32
1082	74.89	.06	12.92	.76	.78	.03	.41	.80	3.18	5.45	03	.61	99.56
1097	75.45	.11	13.40	.88	.32	.02	.13	.59	2.75	5.17	.06	.37	99.25
1758A	68.83	.45	14.97	2.72	.32	.05	.53	2.61	2.58	3.62	.14	3.90	100.72
1758B	65.46	.44	15.13	2.16	.78	.07	.73	3.37	2.85	3.82	.14	4.68	99.63
1775A	76.66	.05	12.69	.32	.13	.01	.09	.94	2.91	5.59	.01	.34	99.74
1775B	74,96	.03	13.69	.15	.13	.01	.07	.86	3.38	5.65	03	.49	99.39
1776A	69.20	.34	14.70	.82	2.01	.09	.82	2.81	2.78	4.29	.14	1.09	99.09
1776B	71.07	.31	15.09	.75	1.95	.09	.80	2.73	2.90	4.38	.06	.74	100.67
1782	73.15	.28	13.42	.87	1 05	.04	.76	1.32	2.97	4.86	.10	.96	99.71
1783A	67 57	.53	14.78	.92	2 27	.05	1.26	2.19	3.18	4.07	.22	1.00	98 04
1713B	68.14	.54	15.12	.77	2.54	.04	1.30	2.22	3.64	3.03	.14	1.30	98.82
1795A	75.47	.04	13.04	.59	.39	.01	06	.62	3.16	5.15	.05	.52	99.10
1795B	75.11	.04	13.92	.61	.33	01	03	.56	3.58	1.01	.05	.49	99.74
1797A	70 87	.43	13.21	.74	2.14	07	.36	1.38	2.70	5.30	.11.	1.50	98.8
1797B	73 49	.38	12.64	.56	2 04	07	.31	.97	2 71	5.29	.07	1.22	99.79
1798A	74 79	.16	12 #3	.71	1.04	03	.11	1.09	3 15	5.46	.05	.67	100.09
1798B	74.94	.12	12.29	.46	1.04	03	04	.83	3 08	5.23	03	58	9⊪.65
1806	44 89	1.05	15.84	1.49	8.10	17	5 94	9.14	2.22	73	.30	7.27	97.98
1673	65,23	.00	16.34	1.42	2.53	.06	1.11	4.16	3 38	3.50	.22	.78	99.53
4342	69.67	.33	14.53	.94	1.30	.05	.76	2.25	3.32	3.60	.10	1.33	98.38
4343	71.56	.19	13.96	.79	1 56	.05	.34	2.85	2.80	3.7L	.02	.93	98.70
4345	71.05	.19	13.87	.70	1.75	.05	.33	2.81	2.79	3.73	.02	.88	98.17
4346	71.45	.19	13.95	.62	1.58	.05	.32	2.43	2.78	3.68	.04	80.1	98.87
4348	67 75	.34	15.21	56	2 27	.07	.74	3.15	2 80	4.53	.15	.65	98.22
4576	69.14	.30	14.64	61	1.49	.05	.71	2.31	3.43	4.17	.09	1.14	98.01
4577	48.33	2.31	15.35	1.63	\$ 79	.24	6.27	1.29	2.67	1.42	.44	2.76	98.50
4578	47.86	2.09	15.31	1.37	\$.10	.14	6.24	9.61	2 47	.24	.32	3.55	97.34
4579A	65.00	.86	16.05	1.29	2.79	.06	1.36	4.33	2.96	3.17	.24	1.70	99.8
4580	70.81	.28	14.44	.44	1,69	.06	.63	1.93	3.36	5.02	-11	1.63	100.42
4582	73.87	.21	12.87	1.47	.5%	.03	.16	1.00	2.73	5.42	.04	.99	99.3
45B3	73.05	.24	13.22	.92	.97	.04	.19	.47	2.47	6.17	.10	1.14	92.90
4585	66.50	.63	15.06	.25	3,50	.09	1.81	4.33	2.51	3.29	.17	.60	99.39
4596	43.86	3.40	14.91	2.26	11.19	.19	5.43	6.39	3.97	1.27	.59	5.45	98.9
4599	69.04	.48	14.83	1.22	1.62	.05	1.14	2.64	3.7t	3.17	.09	1.86	99.9
4603	71.28	.44	14.20	1.14	1.69	.06	.56	1.60	3.22	4.79	.13	.64	99.7
4607	71.44	.45	13.46	1.17	1.43	,06	.54	1.64	3.02	4.96	.14	.50	98.8
4608	72.52	.34	13.88	1.04	1.30	.06	.39	1.44	3.21	5.30	.10	.54	99.93
93RN09	66.20	.73	16.56	.25	2.73	.06	.90	3.93	3.36	3.67	.19	.87	100.05
93MR60	73.27	.13	12.64	.10	1.75	.03	.10	1.03	3,17	5.09	03	10.	98.23

Sample numbers with "A" and "B" suffix indicate duplicate sample aliquote; pper-parts per million, ± member in solumn heading is one standard deviation (n=3).

Table-2. Concentration of major oxides and trace elements in Circle mining district rock samples collected in June 1993.

	Sc	ν	CI	F	s
Sample	<u>+</u> \$	±3	±20	+200	+20
	bbur	bbw	ррт	ppa	ppm
1077A	l . .	67	44	490	
1077A	18	67	64	490	85
1082	6	5	108	2458	30
1097	7	3	13	644	44
1758A	'	•	1.5	044	**
1758B					
1775A	3	2	19	228	- 34
1775B	,	*	.,	114	24
1776A	1 0	36	56	770	18
1776B	"	30	30	170	.4
1782	9	17	36	824	85
1783A	هٔ ا	35	98	416	16
1783B	1 '			7.0	••
1795A					
1795B					
1797A	10	4	141	1625	108
1797B	.*	•			
1798A	3	7	246	2241	30
17948	'	-			
1806	29	116	10	581	533
1825	14	73	113	499	65
4342		23	52	585	34
4343	7	1	56	622	11
4345	10	11	48	563	31
4346					
4348		26	87	634	16
4576	7	22	66	253	21
4577	22	63	112	729	232
4578	24	121	35	823	302
4579A	16	78	119	732	n
4580	5	24	38	578	30
4582	5	4	203	2109	26
4583	6	2	170	2300	19
4585	15	63	19	534	44
4596	31	193	120	912	197
4599	10	44	64	610	26
4603	4	9	126	1700	16
4607	_	-	107	1800	20
4608	3	3	165	2029	21
93RN09			21	500	
931AR60	9	14	31	500	18

Sample numbers with "A" and "B" suffix indicate duplicate sample aliquote; ppm=parts per million; ± number in column heading is one standard deviation (n=3).