July 13 1994 Price: \$68. (text, full color map w/topo) \$20. (text, full color map w/ section grid [no topo]) \$56. (text, mylar map in color w/section grid [no topo])

Division of Geological & Geophysical Surveys

PUBLIC-DATA FILE 94-39

PROGRESS REPORT ON THE GEOLOGY AND MINERAL RESOURCES OF THE NOME MINING DISTRICT

Ьγ

T.K. Bundtzen, R.D. Reger, G.M. Laird, D.S. Pinney, K.H. Clautice, S.A. Liss, and G.R. Cruse

July 1994

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS. THIS DOCUMENT SHOULD NOT BE CITED EXCEPT AS "WRITTEN COMMUNICATION, 1994."

Released by

STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645

~.

CONTENTS

Page

Introduction	1
Summary of bedrock geology	1
Nome Group	1
Summary of surficial geology	2
Structure	2
Economic geology.	3
Polymetallic gold-quartz veins	3
Stratiform massive sulfide deposits	3
Carbonate hosted stratabound polymetallic deposits	4
Placer gold	4
Acknowledgments	4
References cited	4

TABLES

Table	1.	Major oxide analyses and CIPW normative mineralogy from metamorphic	
		rocks in the Nome Mining District, Seward Peninsula, Alaska	7
	2.	Sulfur isotopic ratios from sulfide and sulfate specimens from mineral deposits	
		in the Nome Mining District, Seward Peninsula, Alaska	8
	3.	Geochemical determinations from selected mineral deposits, occurrences, and bedrock	
		types, Nome mining district, Alaska	9
	4.	Placer gold and silver production, Nome district, 1897-1993	18

SHEETS

Sheet	1	Preliminary geologic map of Nome mining district
	2	Sample location map showing trace element, major oxide, and sulfur isotope sample
		sites, Nome mining district, Alaska

PROGRESS REPORT ON THE GEOLOGY AND MINERAL RESOURCES OF THE NOME MINING DISTRICT

b y

T.K. Bundtzen, R.D. Reger, G.M. Laird, D.S. Pinney, K.H. Clautice, S.L. Liss, and G.R. Cruse

INTRODUCTION

During July 1993, the Alaska Division of Geological and Geophysical Surveys conducted bedrock and surficial geologic mapping of about 1,900 km² (590 mi²) in the Nome mining district of western Alaska. This project was undertaken as a result of a Capital Improvements Project appropriation passed by the 1993 Alaska Legislature to begin detailed geological and mineral resource investigations of Alaskan mining districts using airborne, multispectral geophysical surveys and 1:63,360-scale geological mapping. We emphasize that the results presented here are preliminary data acquired during 1993-1994. More field work will be completed during the summer of 1994, and a complete summary of the Nome district studies will be released pending completion of field, office, and laboratory investigations.

This preliminary report consists of: (1) the geologic map accompanied by complete map unit descriptions (sheet 1); (2) data tables that depict major oxide, sulfur isotope, and trace element analyses, and annual gold production statistics (tables 1-4); and (3) a brief summary text.

SUMMARY OF BEDROCK GEOLOGY

Twenty-two metasedimentary, metavolcanic, and metaplutonic bedrock units were delineated during our investigations. All rock units have been regionally metamorphosed. Throughout the following discussion, the reader is referred to data presented on the geologic map (sheet 1).

NOME GROUP

The regionally metamorphosed rocks of the Nome mining district were first described by Brooks and others (1901), whose work was supplanted by more detailed mapping and petrographic studies by Collier (1902), Knopf (1908), Smith (1910), and Moffit (1913). The high-grade regionally metamorphosed rocks of the central Kigluaik Mountains were referred to by Moffit (1913) as the Kigluaik Group; he defined the lower rank, regionally metamorphosed units in the Nome mining district as the Nome Group. Moffit (1913) and Smith (1910) first identified glaucophane in the Nome Group, which is now regarded as one of the largest, high P-low T, blueschist-facies metamorphic terranes in the world. Many modern workers including Sainsbury and others (1970), Forbes and others (1984), Thurston (1985), Evans and Patrick (1989), Till (1980), Sturnick (1984), Patrick and Evans (1989), Miller and Hudson (1991), and Miller and others (1992) have published detailed petrographic and radiometric age dating studies of metamorphic rocks in and near the study area. Nokleberg and others (1993) include the Nome Group into the Seward Terrane, an offset continental margin ranging in age from PreCambrian(?) to Late Paleozoic.

All regionally metamorphosed rocks in the study area have been assigned to the Nome Group, although some small metamorphosed intrusions may be unrelated to the other units. We have benefited from geologic map studies completed by the previously mentioned early workers and by Herreid (1970) and Hummel (1962a,b). Till and others (1986) and Till and Dumoulin (in press) believe that the Nome Group constitutes a coherent lithostratigraphic succession, which consists of four units: (1) a basal, complexly deformed quartz-rich pelitic schist, which may be correlative with the Solomon Schist of Smith (1910) and Moffit (1913); (2) a "mixed unit" of mafic and pelitic schists and marble; (3) a mafic-dominated schist package, which may be correlative with the Casadepaga Schist of Smith (1910); and (4) an "impure marble unit". We have tentatively subdivided the Nome Group rocks of the study area into the first three units of Till and others (1986), which, in the study area, are locally repeated by thrust faults.

Smith (1910) and Moffit (1913) believed the Nome Group is Paleozoic in age. However, Sainsbury and others (1970) regarded all Nome Group lithologies as Precambrian in age, on the basis of inferred stratigraphic position and

limited Rb-Sr isotopic-age determinations. Till and others (1986) have reported Ordovician to Devonian conodonts from marble units in the Nome Group. We assign a Precambrian-Paleozoic age to all Nome Group rocks mapped in the study area pending results of U-Pb isotopic-age dating of felsic metavolcanic rocks in the mixed unit and further geological mapping to the east of the study area in 1994.

SUMMARY OF SURFICIAL GEOLOGY

Most of the area is covered by drift laid down during past glaciations. Drift of the oldest advance, the Sinuk glaciation of early Pleistocene(?) age, is exposed in the vicinity of Cape Nome in the southeastern corner of the map area. The most extensive surface drift sheet was deposited during the Nome River glaciation of middle Pleistocene age. Ice of this advance flowed southward out of cirques in the Kigluaik Mountains and coalesced with local ice from cirques and small ice caps in the uplands north of Nome. Ice of the Nome River glaciation filled the major trunk streams near Nome and extended southward several kilometers into present day Norton Sound (Hopkins and others, 1960; Nelson and Hopkins, 1972, Kaufman and Hopkins, 1989; Kaufman and others, 1991).

The subsequent Stewart River Glaciation spread out of the Kigluaik Mountains as far as 10 km beyond the mountain front. Ice from Kigluaik Mountain sources joined with local ice from small, north-facing cirques in the uplands immediately south of Kigluaik Mountains. The Stewart River glaciation is thought to be older than the last major interglaciation (Kaufman and Hopkins, 1986; Kaufman and others, 1988).

Slightly modified drift of the Salmon Lake glaciation forms lobate moraines that nearly reach as far south as the Stewart River terminal moraines (Kaufman and Hopkins, 1989). Radiocarbon dating indicates that this ice expansion occurred more than 33,000 years ago (Kaufman and others, 1989).

During and after these ice expansions, fluvial, colluvial, and marine processes modified the landscape, formed gravel-rich alluvial valley fills, and beach and terrace sediments. Fine-grained estuarine deposits were laid down in lower streams close to the present coast of Norton Sound.

STRUCTURE

All bedrock geologic units have been subjected to blueschist-facies metamorphism, which in turn was retrograded to T-P conditions of the greenschist facies. In the study area, earlier high P-low T mineral assemblages are frequently altered due to the strong, retrogressive greenschist metamorphism. Earlier metamorphic minerals such as garnet, chloritoid, glaucophane, hornblende, and calcic plagioclase are frequently rolled in a granoblastic fabric. Axial-plane schistosity parallel to compositional banding is the dominant "S 1" surface measured in outcrop; later "S 2" cleavage or foliation is transposed at low angles in a westward vergence across lithologic or compositional banding, indicating that low-angle thrusting or recumbent folds have deformed the Nome Group in the study area. Stretched mineral lineations, isoclinal fold plunges, and mica crenulations (sheet 1) record deformation that postdates original schistosity developed during the prograde, blueschist-facies event.

Lithostratigraphic units of the mixed unit are repeated by probable late synmetamorphic thrust faults south of Aurora Creek and east of Mount Distin. In the former area, metaturbidite schist (pCPzt), felsic metavolcanic schist (pCPzsf), black quartzite (pCPzsg), and "lumpy", porphyroclastic schist (pCPzpm) exposed in the Aurora Creek area are repeated in the Hungary Creek drainage implying a low-angle throw of approximately 7 km. In the Basin Creek drainage, albite mafic schist and metabasite of the Casadepaga Schist(?) are thrust over the upper portion of the mixed unit. Other thrust faults are mapped on the basis of sheared contacts, low-angle mylonite zones, and outcrop-scale discontinuities, but the significance of offset along these faults is unknown.

Large-scale, younger structures include the north-trending Twin Mountain anticline, and northeast-trending high-angle faults. Pelitic, felsic, mafic, and carbonate-dominated lithologies of the mixed unit at Aurora Creek on the west are repeated at Dexter Mountain and Goldbottom Creek on the east by the Twin Mountain anticline, which largely defines the distribution of Nome Group lithologies in the study area.

The well known Anvil Creek fault trends north 40 to 55 degrees east up Anvil Creek (sheet 1), and juxtaposes metaturbidite schists on the west with pelitic, graphitic, metavolcanic, and calcareous lithologies on the east. A significant metafelsite center and interbedded pelitic schist and marble on Dexter Creek are equivalent to felsic metavolcanic schists and exhalite at Aurora Creek. The lithostratigraphic correlation indicates that the amount of postulated vertical movement along the Anvil fault is about 1.5 km.

The Penny River fault (after Herreid, 1970) right laterally offsets the metavolcanic schist section at Aurora Creek about 4 km from an equivalent section on the east side of Penny River (sheet 1). Other significant northeast-trending high-angle faults include the Rodine fault (after Hawley and Buxton, oral comm., 1993), and the Oregon Creek-Charley Creek fault, both of which show right-lateral throws ranging from 1 to 3 km.

Smaller less well defined, northwest-trending high-angle faults such as the Boulder Creek fault also cut the metamorphic rocks throughout the map area, and are probably more extensive than shown on the geologic map (sheet 1).

ECONOMIC GEOLOGY

Four types of metallic mineral resources have thus far been identified in the study area: (1) gold-polymetallicquartz-carbonate veins cutting pelitic and mafic schists and carbonates, believed to have formed as a result of regional metamorphism; (2) stratiform, massive sulfide-barite deposits associated with felsic metavolcanic schist and metafelsite centers; (3) massive sulfide-iron deposits hosted in carbonate-dominated terranes and of uncertain origin; and (4) heavy mineral placer deposits, that have accounted for almost all of the metallic mineral production in the study area.

All of our investigations of mineral resources are still in progress, and the results presented here are preliminary.

Polymetallic Gold Quartz Veins

Polymetallic-gold-quartz-carbonate mineral deposits contain most of the significant lode gold resources currently known in the Nome district. One deposit at Rock Creek (sheet 1) has been recently evaluated by the mineral industry and contains a drill-inferred reserve amounting to 6.1 million tonnes grading 2.4 g/tonne gold or 14.6 tonnes (475,200 ounces) of contained gold (Bundtzen and others, 1992). The polymetallic gold quartz deposits contain arsenic, antimony, silver, zinc, lead, copper and tungsten in addition to the gold (table 3). Other important deposits include gold-tungsten deposits at Sophie Gulch, the gold-antimony deposits in the Mt. Distin area, the gold-bismuth-arsenic vein deposits of the Charley Creek area, and the Rodine and other recently discovered deposits in the "Gold Hill trend" west of Snake River. At least three vein types are recognized: (1) early chalcopyrite-sphalerite-quartz-carbonate veins that appear as boudins rolled around F1 fold axes; (2) saddle reef quartz-gold-polysulfide veins (example; Rodine and McDuffy Prospects) that crosscut host schists at low angles to schistosity; and (3) brittle vein systems that clearly crosscut metamorphic stratigraphy at high angles (example; Rock Creek; Sliscovich). All could be interpreted to have formed during various stages of dewatering of a metamorphic pile during Barrovian style greenschist-facies metamorphism and associated plutonism, as suggested for the origins of metallic vein mineralization at Rock Creek, (Apodaca, 1992) and Mt. Distin and Bluff (Ford, 1990).

Many of the gold-bearing vein deposits in the Nome district are bosted in metamorphosed clastic rocks interpreted to be turbidites and related deepwater sediments. The Rock Creek, Mt. Distin, and Gold Hill mineralized areas are similar to other turbidite hosted gold regions worldwide such as the saddle reef systems of the Meguma Terrane of Nova Scotia, Canada (Haynes, 1986; Sangster, 1990), the gold-scheelite vein deposits in the Otago and Reefton districts in New Zealand (Paterson, 1982; Lee and others, 1989; Henley and others, 1976; Lew and Corner, 1988), or the gold vein deposits hosted in the Valdez Group of southern Alaska (Goldfarb and others, 1986).

Limited sulfur isotopic analyses conducted during our investigations show light del-34 values ranging from -1.6 to +3.6 and averaging about +0.2 from sulfides in six gold-polymetallic vein deposits of the study area (table 2).

Stratiform Massive Sulfide Deposits

Stratiform massive sulfide-barite deposits in the Aurora Creek area and at the Christopherson Prospect were first described by Herreid (1966, 1970), and evaluated by the mineral industry in the mid-1970s and more recently in the 1990s. During our brief investigations we mapped a complex package of muscovite-feldspar metavolcanic schist, carbonate, pelitic schist, and graphitic schist informally referred to as the "Aurora Creek section" (pCPzf, pCPzsg; sheet 1). Lenses and disseminations of sphalerite, galena, chalcopyrite, and massive barite appear to be parallel to original compositional banding of host metavolcanic and carbonaceous schist for over 4 km of strike length. Mineralization is complexly folded along with host rocks indicatinging a premetamorphic origin for the mineralized zones. Zones of intense tourmalinization are present in wallrock adjacent to the massive sulfide-barite

deposits. Limited sulfur isotopic analyses yield heavy del-34 values ranging from +5.5 to +26.3, typical of seawater contaminated sulfur in submarine volcanogenic massive sulfide settings (table 2). Selected samples from the Aurora Creek deposits contain up to 15.86% zinc, 1.38% lead, 659 ppm copper, and anomalous cadmium, barium, silver and gold (table 3).

Tourmaline enrichment in felsic schist horizons could indicate hydrothermal activity related to premetamorphic submarine volcanism in other portions of the study area.

Carbonate-hosted Stratabound Polymetallic Deposits

Carbonate-hosted sulfide-barite-fluorite-iron deposits have been described from the Sinuk River drainage in fair detail by Mulligan and Hess (1965) and Herreid (1970). The origin of these sulfide-bearing gossans is uncertain. Mineral deposit types proposed for these polymetallic occurrences include sedex, volcanogenic massive sulfide, intrusive related replacement, and hydrothermal vein. One sulfur isotopic analysis collected from the Quarry Prospect yielded a del-34 value of +10.8 from galena (sheet 1; table 2), which contrasts with light del-34 sulfur values found in polymetallic veins in the study area.

Placer Gold

Placer gold has been the principal metallic mineral resource mined in the study area. From 1898 to 1993, an estimated 4,822,569 ounces (150 metric tonnes) gold have been produced from stream, hillslope or colluvial, glacial, and marine strandline placer deposits throughout the study area (table 4), making the Nome district Alaska's second largest producer of placer gold. The most significant placer deposits are concentrated along modern and ancestral strandline deposits on the Coastal Plain, in streams draining Anvil Mountain, and in tributaries of the Nome, Osborn, and Snake Rivers (Collier and others, 1908 and Cobb, 1974). An estimated 70 percent of the gold has been produced from the strandline deposits, but rich paystreaks have been mined from glacial, colluvial, and stream deposits.

Glacial scouring milled gold lodes and dispersed much of the gold that eventually formed placer deposits in the Nome mining district. During and after several ice expansions, fluvial, colluvial, and marine processes concentrated gold to form economic placer deposits. One byproduct of the long and extensive placer gold mining activities has been the production of large volumes of high-quality, washed tailings suitable for foundation materials for highways and settlement areas.

Placer geology research is in progress.

ACKNOWLEDGMENTS

We thank Chuck Hawley and Ms. Cindy Buxton of Kennecott Exploration Inc. for sharing their extensive knowledge of the geology of the Gold Hill and Aurora Creek areas. Allison Till (U.S. Geological Survey) spent two days with us during the 1993 field season, and demonstrated a defendable, metamorphic lithostratigraphy for the Nome Group in the western Solomon Quadrangle. Much appreciation is extended to Tom Sparks of Bering Straits Native Corporation and Irene Anderson of Sitnausuk Corporation, who helped secure and provide for logistical services during our studies. Joe Fisher kindly allowed access to Alaska Gold Company lands in the Nome district.

REFERENCES CITED

- Apodaca, L.E., 1992, Fluid inclusion study of the Rock Creek area, Nome Mining District, Alaska: in, Bradley, D.C., and Dusel-Bacon, Cynthia, eds., Geologic studies in Alaska by the U.S. Geological Survey, 1991: U.S. Geological Survey Bulletin 2041, p.3-12.
- Brooks, A.H., Richardson, G.B., Collier, A.J., and Mendenhall, W.C., 1901, Reconnaissances in the Cape Nome and Norton Bay Regions, Alaska, in 1900: U.S. Geological Survey Special Publication, 185 p.
- Bundtzen, T.K., Swainbank, R.C., Wood, J.E., and Clough, A.H., 1992, Alaska's Mineral Industry-1991: Alaska Division of Geological & Geophysical Surveys Special Report 46, 89 p.

Cobb, E.H., 1974, Placer deposits of Alaska, U.S. Geological Survey Bulletin 1374, 217 p.

Collier, A.J., 1902, A reconnaissance of the northwestern portion of the Seward Peninsula, Alaska: U.S. Geological Survey Professional Paper 2, 70 p.

- Collier, A.J., Hess, F.L., Smith, P.S., and Brooks, A.H., 1908, The gold placers of parts of Seward Peninsula, Alaska, including Nome, Council, Kougarok, Port Clarence, and Goodhope Districts: U.S. Geological Survey Bulletin 328, 343 p.
- Evans, B.W., and Patrick, B.E., 1989, Phengite 3-T in high pressure orthogneisses, Seward Peninsula, Alaska: Canadian Mineralogist, vol. 25, p. 141-158.
- Forbes, R.B., Hamilton, Tom, Tailleur, I.L., Miller, T.P., and Patton, W.W., Jr., 1984, Regional progressive high pressure metamorphism, Seward Peninsula, Alaska: Journal of Metamorphic Geology, vol. 2, no 1, p.43-54.
- Ford, R.C., 1990, Geology, geochemistry, and age of gold lodes at Bluff, and Mt. Distin, Seward Peninsula, Alaska: unpublished Ph.D. dissertation, Colorado School of Mines, Colorado, 302 p.
- Goldfarb, R.J., Leach, D.L., Miller, M.L., and Pickthorn, W.J., 1986, Geology, metamorphic setting, and genetic constraints of epigenetic lode-gold mineralization with the Cretaceous Valdez Group, south-central Alaska: in, Turbidite hosted gold deposits, Geological Association of Canada Special Paper 32, p.87-105.
- Haynes, S.J., 1986, Geology and chemistry of turbidite-hosted gold deposits, greenschist facies, eastern Nova Scotia, Canada: in Turbidite Hosted Gold Deposits, Geological Association of Canada Special Paper 32, p.161-177.
- Henley, R.W., Norris, R.J., and Patterson, C.J., 1976, Multistage ore genesis in the New Zealand geosyncline, a history of post-metamorphic lode emplacement; Mineral Deposita, vol. 11, p. 180-196.
- Herreid, Gordon, 1966, Preliminary geology and geochemistry of the Sinuk River area, Seward Peninsula, Alaska: Alaska Division of Geological & Geophysical Surveys Geologic Report 24, 19 pages.
- _____1970, Geology and geochemistry of the Sinuk River area, Seward Peninsula, Alaska: Alaska Division Geological & Geophysical Surveys Geologic Report 36, 63 p.
- Hopkins, D.M., MacNeil, F.S., and Leopold, E.B., 1960, The coastal plain at Nome, Alaska: A late Cenozoic type section for the Bering Strait region, in Sorgenfrei, Theodor, ed., Report of the Twenty-first Session, International Geological Congress, Part 4, 343 p.
- Hummel, C.L., 1962a, Preliminary geology of the Nome C-1 Quadrangle, Seward Peninsula, Alaska: U.S. Geological Survey Map MF-247., 1 sheet, scale 1:63,360.
- _____1962b, Preliminary geology of the Nome D-1 Quadrangle, Seward Peninsula, Alaska: U.S. Geological Survey Map MF 248, 1 sheet, scale 1:63,360.
- Kaufman, D.S., Calkin, P.E., Whitford, W.B., Przybyl, B.J., Hopkins, D.M., Peck, B.J., and Nelson, R.E., 1989, Surficial geologic map of the Kigluaik Mountains, Seward Peninsula, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF-2074, 1 sheet, scale 1:63,360.
- Kaufman, D.S., and Hopkins, D.M., 1986, Glacial history of the Seward Peninsula, in Hamilton, T.D., Reed, K.M., and Thorson, R.M., eds., Glaciation in Alaska--the geologic record: Anchorage, Alaska Geological Society, p. 51-78.

1989, Late Cenozoic geologic controls on placer-gold distribution in the Nome nearsbore area, in Dover, H.H., and Galloway, J.P., eds., Geologic studies in Alaska by the U.S. Geological Survey, 1988: U.S. Geological Survey Bulletin 1903, p. 26-45.

- Kaufman, D.S., Hopkins, D.M., and Calkin, P.E., 1988, Glacial geologic history of the Salmon Lake area, Seward Peninsula, in Galloway, J.P., and Hamilton, T.D., eds., Geologic studies in Alaska by the U.S. Geological Survey during 1987: U.S. Geological Survey Circular 1016, p. 91-94.
- Kaufman, D.S., Walter, R.C., Brigham-Grette, Julie, and Hopkins, D.M., 1991, Middle Pleistocene age of the Nome River Glaciation, northwestern Alaska: Quaternary Research, vol. 36, no. 3, p. 277-293.
- Knopf, Adolph, 1908, Geology of the Seward Península tin deposits, Alaska: U.S. Geological Survey Bulletin 358, 71 p.
- Moffit, F.H., 1913, Geology of the Nome and Grand Central Quadrangles, Alaska: U.S. Geological Survey Bulletin 533, 140 p.
- Mulligan, J.J., and Hess, H.D., 1965, Examination of the Sinuk iron deposits, Seward Peninsula, Alaska: U.S. Bureau of Mines Open File Report, 34 p.
- Lee, M.C., Batt, W.D., and Robinson, P.C., 1989, The Round Hill gold-scheelite deposit, Macraes Flat, Otago, New Zealand: in, Kear, David, ed., Mineral Deposits of New Zealand-the Gordon J. Williams Memorial Volume, Monograph 13, p. 173-179.
- Lew, J.H., and Corner, N.G., 1988, The Globe-Progress prospect, Reefton, New Zealand: Bicentennial Gold-1988, Melbourne, Australia, p. 271-273.
- Miller, E.L., Calvert, A.T., and Little, T.A., 1992, Strain-collapsed metamorphic isograds in a sillimanite gneiss dome, Seward Peninsula, Alaska: Geology, vol. 20, p.487-490.

- Miller, E.L., and Hudson, T.L., 1991, Mid-Cretaceous extensional fragmentation of a Jurassic-Early Cretaceous compressional orogen: Tectonics, vol. 10, p. 781-796.
- Nelson, C.H., and Hopkins, D.M., 1972, Sedimentary processes and distribution of particulate gold in the northern Bering Sea: U.S. Geological Survey Professional Paper 689, 27 p.
- Nokleberg, W.J., Bundtzen, T.K., Grybeck, Donald, Koch, R.D., Eremin, R.A., Rozenblum, I.S., Sidorov, A.A., Byalobzhesky, G.S., Shpikerman, V.I., and Gorodinsky, M.E., 1993, Metallogenesis of mainland Alaska and the Russian Northeast: U.S. Geological Survey Open File Report 93-339, 5 sheets, scale 1:4,000,000, 291 p.
- Paterson, C.J., 1982, Oxygen isotopic evidence for the origin and evolution of a scheelite ore-forming fluid, Glenorchy, New Zealand: Economic Geology, vol. 77, p. 1672-1687.
- Patrick, B.E., and Evans, B.W., 1989, Metamorphic evolution of the Seward Peninsula blueschist terrane, Alaska: Journal of Petrology, vol. 30, p. 531-556.
- Sainsbury, C.L., Coleman, R.G., and Kachadoorian, Reuben, 1970, Blueschist facies rocks of the Seward Peninsula. Alaska: U.S. Geological Survey Professional Paper 700-B, p. 33-42.
- Sangster, A.L., 1990, Metallogeny of the Meguma Terrane, Nova Scotia: in Mineral Deposit Studies in Nova Scotia, Geological Survey of Canada Paper 90-8, p. 115-162.
- Smith, P.S., 1910, Geology and mineral resources of the Solomon and Casadepaga Quadrangles, Seward Peninsula, Alaska: U.S. Geological Survey Bulletin 433, 234 p.
- Sturnick, M.A., 1984, Regional metamorphism in the eastern Kigluaik Mountains, Seward Peninsula, Alaska: Geological Society of America Abstracts with Programs, vol. 16, p. 335.
- Thurston, S.P., 1985, Structure, petrology, and metamorphic history of the Nome Group blueschists, Salmon Lake area, Seward Peninsula, Alaska: Geological Society of America Bulletin, vol. 96, p. 600-617.
- Till, A.B., 1980, Crystalline rocks of the Kigluaik Mountains, Seward Peninsula, Alaska: unpublished M.S. Thesis, University of Washington, 97 p.
- Till, A.B., Dumoulin, J.A., Gamble, B.M., Kaufman, D.S., and Carroll, P.I., 1986, Preliminary geologic map and fossil data, Solomon, Bendeleben, and southern Kotzebue Quadrangles, Seward Peninsula, Alaska: U.S. Geological Survey Open File Report 86-276, 3 sheets, scale 1:250,000, 71 p.
- Till, A.B., and Dumoulin, J.A., in press, Seward Peninsula: the Seward and York Terranes: in Plafker, George, and Berg H.C., eds., Geology of Alaska: Geological Society of America Decade of North American Geology, 23 p.

Table 1. Major oxide analyses and CIPW normative mineralogy from selected metamorphic rocks, Nome mining district, Alaska^a

Map no.	Sample no.	SiO ₂ (wt%)	TiO ₂ (wt%)	Al ₂ O ₃ (wt %)	Fe ₂ O ₃ (wt %)	FeO (wt %)	MnO (wt %)	MgO (wt %)	CaO (wt %)	Na ₂ O (wt %)	K ₂ O (wt %)	P ₂ O ₅ (wt %)	Cr ₂ O ₃ (wt %)	LOI (wt %)	Total (wt %)
1	93BT161A	68.83	1.06	14.82	2.13	3.64	0.04	1.30	0.33	0.07	3.20	0.18	0.03	2.46	98.07
2	93BT171	75.39	0.30	13.31	0.59	1.03	0.01	0.72	0.25	7.02	0.05	0.09	0.01	0.66	99.43
3	93BT203	46.93	2.07	14.53	4.28	10.55	0.22	6.36	7.55	2.55	0.05	0.14	0.02	3.23	98.48
4	93BT266	54.86	1.08	17.14	2.39	5.85	0.03	3.67	1.23	7.20	0.05	0.09	0.02	4.94	98.55
5	93BT321	56.20	1.04	18.28	5.45	3.23	0.07	3.86	1.06	3.19	3.11	0.19	0.02	3.91	99.61
6	93GL204	66.13	0.99	12.36	3.93	2.06	0.10	2.87	3.36	2.91	1.01	0.16	0.01	3.36	9 9.25
7	93GL216	69.95	1.04	11.11	0.80	4.31	0.07	3.18	5.55	1.75	0.97	0.19	0.02	1.73	100.67
8	93GL236	67.79	0.83	13.66	1.40	4.12	0.05	2.37	1.43	3.16	1.66	0.09	0.02	2.45	99.03
9	93KC104	75.46	0.71	11.10	1.41	2.64	0.06	1.84	1.06	1.89	1.52	0.15	0.02	2.76	100.62

Major oxide analyses

CIPW normative minerals

Мар	Sample												
DO.	DO .	Qtz	Cor	Or	Ab	An	Di	Hy	Mt	Hm	Ilm	Ар	Description
													_
1	93BT161A	54.508	11.706	19.993	0.626	0.489	0.000	6.875	3.235	0.000	2.129	0.441	Feldspar muscovite schist (pCPzsf)
2	93BT171	33.002	1.487	0.299	60.143	0.661	0.000	2.754	0.866	0.000	0.577	0.211	Metagranite (pCPzg)
3	93BT203	2.770	0.000	0.310	22.657	29.457	7.323	26.500	6.517	0.000	4.128	0.340	Metabasite (pCPzb)
4	93BT266	1.854	3.441	0.316	65.092	5.892	0.000	17.288	3.703	0.000	2.192	0.223	Metadiorite ((Mzdg)
5	93BT321	19.081	8.563	19.207	28.210	4.200	0.000	10.047	7.968	0.201	2.064	0.460	Albite schist (pCPzsm)
6	93GL204	35.789	0.786	6.225	25.680	16.295	0.000	7.455	4.272	1.153	1.961	0.386	Albite chlorite schist (pCPzsm)
7	93GL216	39.254	0.000	5.794	14.969	19.808	5.541	11.020	1.173	0.000	1.997	0.445	Metaturbidite schist (pCPztc) ^b
8	93GL236	35.604	4.433	10.159	27.690	6.738	0.000	11.426	2.102	0.000	1.633	0.216	Feldspar muscovite schist (pCPzsf)
9	93KC104	54.033	4.883	9.180	16.345	4.374	0.000	7.363	2.090	0.000	1.378	0.355	Graphitic quartzose schist (pCPzsg) ^b

^aAnalyses by Bondar-Clegg, Ltd., 130 Pemberion Ave., North Vancouver, B.C., Canada V7P2R5. CIPW normative data calculated with UAF/PETCAL program, University of Alaska, Fairbanks, Alaska 99709.

^bNorms probably not applicable due to presumed metasedimentary parentage.

Table 2. Sulfur isotopic ratios of sulfide and sulfate specimens from mineral deposits in the Nome mining district, Seward Peninsula, Alaska

S	lample		<i></i>		
Mineral deposit	<u>_no</u>	Mineral deposit type	Mineral analyzed S ³⁴ 0/00 ^b	R	emarks
Charley Creek	93BT297a	Polymetallic-gold vein	Arsenopyrite	+0.6	Hanging wall vein
Charley Creek	93BT297b	Polymetallic-gold vein	Arsenopyrite	+0.8	Hanging wall vein
Rock Creek	90BT302a	Polymetallic-gold vein	Arsenopyrite	+0.9	From bulk sample pit
Rock Creek	90BT302b	Polymetallic-gold vein	Galena	-1,6	North of bulk sample pit
Rock Creek	90BT302c	Polymetallic-gold vein	Galena	~0,9	North of bulk sample pit
Unnamed	93BT177	Polymetallic-gold vein	Chalcopyrite	+0.3	Early(?) F1 sulfide-quartz vein
Unnamed	93KC116	Polymetallic-gold vein	Sphalerite	+3.6	Early(?) F1 sulfide quartz vein
Twin ML prospect	93BT229a	Polymetallic-gold vein	Galena	-1.1	Saddle reef system
Twin ML prospect	93BT229b	Polymetallic-gold vein	Arsenopyrite	-0,6	Saddle reef system
Twin Mt. prospect	93BT229c	Polymetallic-gold vein	Arsenopyrite	-0,5	Saddle reef system
Hed and Strand prospect	93BT335	Stibnite-sulfosalt vein	Lead-antimony sulfosalt	-0.2	Vein in calc-schist near shaft
Christopherson	93BT197a	Stratiform sulfide	Barite	+26.3	From ridge pit
Christopherson	93BT197t	Stratiform sulfide	Pyrite	+5.5	From ridge pit
Christopherson	93BT197c	Stratiform sulfide	Galena	+17.3	From ridge pit
Aurora Creek	93BT211	Stratiform sulfide	Sphalerite	+12.9	From stream cut outcrops
Quarry Prospect	90BT337	Carbonate-hosted, stratifor sulfide-barite	rm Galena	+10.8	Near portal

^a Analyses by Krueger Enterprizes Inc., Geochron Laboratories Division, Cambridge, Massachusetts. Unless otherwise noted analyses are reported in 0/00 notation and are computed as follows: S³⁴ sample 0/00 24 22

$$0/00 = {}^{34}\text{S}/{}^{32}\text{S}$$
 sample x 1,000

S sample U/UU = S/S sample x 1,000 ${}^{34}S/{}^{25}S$ standard ${}^{34}S/{}^{25}S$ standard = Canon Diablo troilite ^bAlso could be stated as "del-34 value."

a
ash
A
ula
insi
nə
L P
ЮŅ
Sei
Ċť,
Str
ä
u'n,
mir
ne
No.
s,
ype
's
tro
bec
pu
s, a
ice:
тег
сп
30
its,
sod
de
ral
une
d m
cte
ele
m S
fro
Suc
<i>iti</i> o
tin
шı
det
al
mic
che
eor
.0
E e
Tab
~

																																																owing	vino he	~
Sc	udd	13.0	1.5	2.1	7.9	19.0	<0.5	3.4	0.9	<0.5		16.0			0.77		1	14	21.0	4.8	42	<18	4	0.7	12.0	5.4	13	1.2	5.2	12.0	<u>8</u> .5	16.0	1.8	6.3	0.0	0.4	0.5	<8.8>	1.6	<0.5	2.2	23.0	17.0	18.0	5.5	0.9	2.8	The foll	re analyze	- (mm)
5	undd	<0.5	<u> 40.5</u>	<0.5	<u>60.5</u>	0.6	<0.5	<0.5	0.5	20.5	20	ŝ	5				9,	9	6.0	0.7	<15	<1.9	\$	<u> 40.5</u>	0.7	12	<0.5	40.5 0.5	Å.	€.0 20:1	505	3	80°.	0.6	3		Ìé	0.0	6 .0⊳	<0.5	<0.5	<u>ک</u> 05	0.6	80°.	50	e S	<0.5	ia. Canada	ments we	
ጜ	uidd	v	ሪ	v	9	ሪ	ΰ	ΰ	v	0) () (7 4	0 4	0 1	0 '	0 '	0 '	δ.	0	v	<19	õ	ዏ	7	ð	v	v	Ø	Υ'	0	8	6	5	0 1	0 4	7 (¢l5	v	v	ካ	V	v	6	0 '	0	Ø	th Columb	lowing ele	
£	uidd	7	7	4	1	₽	¥	A	7	' \	7	; `	17	77	₽,	√ ,	₫.	₽.		-	7	4	4	7	7	A	7	4	4	7	4	4	4	- ,	₹ 7	⊽ ⊽	77	; ⊅	V	7	4	4	4	4	₽.	₫.	4	ver. Britis	• The fol	
Ш	undd	7	4	q	4	ŝ	а	4	4	0	? {	1	, ,	6 2	99	9	4	9	4	Q	4	ΰ	v	а	а	<12	a	а	V	A	а	v	m	9,	9,	91	28	14	4	а	4	Ø	4	9	a.	9	m	Vancou	the tabl	
Sm	undd	3.3	1.4	0.7	6.6	3.1	<0.2	1.1	63	402	10	0 0		4.0	-	0.7	0.1	4.0	8.0	5.2	1.7	<7.4	6 02	0.3	10.0	<1.7	0.7	0.9	2.6	9.4	80.2	6.1	4.8	5.7	6.1	0.2	500	5	0.4	0.4	1:1	5.1	4.8	6.0	5.0	0.6	1.8	ries. North	second in	
ථ	udd	36	¢10	<10	4	<10	<10	<10	<10	<10	3	17	5			Q ₽	₹	Ø	28	8	5	49	8	<10	85	<140	<10	<10	<67	8	<10	€	26	\$	52	47	55	8	Q	<10	\$	49	65	4	4	0 <u>1</u> 0	14	r Laborato	wave lister	wen efan
La	mqq	ព	80	ሪ	27	15	0	ŝ	-	. K) =	2 2	;	3	0 '	0	0	Ø	35	2	7	36	v	v	43	&	v	v	15	\$	v	37	8	31	13	хoq) s	<12	Ø	v	9	8	56	57	v	0	6	ndar-Clevi	te al indu	
വ്	mqq	6	7	Þ	7	9	7	7	7	; 7	77	7 =	: 1	₽.	4	₫.	₽.	7	'n	61	11	21	A	V	5	Ø	4	4	A	Ā	₹	6	₽	61	₽.	- ,	7 "	• •	. ∆	V	7	\$	4	ø	4	4	Ā	a from Boi	E 0.1 +	
8	mqq	9	а	а	q	6	а	4	0	10	15	7 (3 4	99	9	9.	ŝ	Q	а	4	q	٣	8	а	e	v	4	а	\$	<15	Q	4	a	a.	a.	91	25	98	ð	4	ŝ	۴	21	8	a	4	а	nical da	and Ta-	
Ĕ	mq	007	¢200	200	<200	<200	≤200	00	<002					0782		807		200	8	88	490	8 8	80	80	200	<1500	80	80	550	8	8	<470	8	8	8			200 200	440	00 ₹7	€200	800	88	88	8	80	8	on Analy	Na Zn	C 114 1
ං, ප	d mdd	260	74	380	420	260	560	310	150					320	011	8	99	110	250	380	370	\$30	<130	390	230	<u>3</u> 60	390	380	280	8	570	4	76	310	530	290	250	360	95	ŝ	440	<320	430	370	170	470	ŝ	hv insnecti	T A C	1.1.1
Ba	шdd	650	140 140	001∨	300	970	<100	<100	<100		3 8	810	00000	20002	1/00	1000	20000	8 ⊽	550	520	280	<490	6 40	<100	300	<490	140	00 ₹	00ī∨	<130	⁷ 00	490	⁷ 00	150	V100	130		360	012	<100	170	1300	880	1300	61	50	4900	anomalies	7-1 a B	1 1 1
Te	udd	3	8	8	\$0	<20	80	8	8	3	38	38	3	₹ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8	8	Å	ģ	8	3	83	8	<130	8	62	<280	8	8	\$	ð	8	ê	₿	8	8	88	5	9 (<110	Ø	8	8	4 4	8	8	8	8	ues indicate	Ch En Cn	יוור יבו יחר י
ぷ	mqq	<10	<10	<10	<10	<10 210	<10	<10						€ } ;	₽	¢]0	v10	₽	10	<10	<10	<10	Ą	<10	<10	6 3	<10	<10	ą	<10	<10	40	410	<10	9	90			33	<10	<10	<10	<10	<10	<u>1</u> 0	¹⁰	<10	rtined valu	NE Cd A	e in is
ጜ	Ţ	6.1	0.8	0.6	49	63	0.5	6.0	81	2.0		01	2	2.1	6.0	0.9	3.6	10.0	6.5	3.0	22	10.0	-9.9	0.6	9.2	4.5	0.9	1.1	2.5	7.3	1.2	5.7	2.8	2.2	1.4	1.9		202	10.0	10.0	1.7	7.3	4.5 Č	4.1	0.5	1.1	2.6	1 Inde		Ϋ́ς,
Sb	mq	7.5	0.6	2.5	150	2.5	0.7	1	38.8	<u></u>	0.0	4.0	0.0	<u>68.7</u>	4.2	50.6	158.0	4.7	11.0	57.0	7.8	-24.0	-164.0	0.8	54.3	-11.0	23.7	4.0	6.8	<u>86</u> 5	12.0	110.0	5.1	0.7	1.7	1.4	2	-74.8	95.3	20.9	12.0	29.3	8.4	24.9	1.0	6.8		an Lice (Cl	and the second second	ques: Mu,
As	d uudd	75	ŝ	217	367	20	0	. 0	ý	20	ଶ ଟ	17	1	~	482	31	43	14	허	<u>156</u>	3440	>10000	>10000	265	361	>10000	373	81	3810	8970	175	2220	202	ព	75	35			>10000	719	1700	9010	<u>930</u>	6200	71	5270	53) and Shirl	indon (0	ICF) techni
5	mqq	<10	<10	<10	<10	1 0	01>	012						81	10	<10	52	750	10	01⊳	<10	<10	ŝ	<10	<10	110	<10	<10	4	<10	10	10	10	<10	10	9:		35	9	010	97	<10	01>	<10	<10	10	<10	(UC)		N FIAZTINA
പ	шdd	23	14	<10	12	12	<10	<10				P	5	0]⊽	8	<10	0 <u>1</u> 0	4	¥	012	<10 <	<13	<10	<10	8	<10	<10	<10	<10	ŝ	¹⁰	18	¢10	<10	<10	¹⁰			12	<10	<10	<10	<10	₹ <u>1</u> 0	ę	10	11	I) Gina (sed Coupie
ïN	bpm	8	8	8	45	5	20	2	3 2	5 6	33	\$ 8	8	÷۵	8	9	42	<45	8	8	8	5	<100	20	170	£ ₽	31	Ş	86	2	37	78	8	ğ	27	₹ 1	\$ %	3 8	36	8	ð	9	53	ą	8	9	ğ	o I aird (C	and Tada	and Incure
Mo	шdd	4	0	0	0	0	0	0	, (25	9,	n (3	₽'	4	a	ŝ	a	4	6	v	4	<14	0	Ś	<15	4	3	4	4	9	4	4	7	4	4	~ (38	9 %	9	0	4	4	v	а	m	а	~0 (),/)		INAA)
Ż	шdd	<200	<200	000	200	200	000	200						21200	8	88	<u>8</u>	158600	휤	210	580	<310	<1200	2300	410	101	8	200	672>	8 8	200	220	8	8 8	80 70 80	8				200	230	200	800	80	8 8	8	200	eniene D		IN ACDVau
Ag	mdd	v	5) Y) () r	· '() (7 3	24	0 '	0.	0	42	v	v	12	÷	ΰ	v	v	ÿ	0	3	5	8	5	V	<12	v	۶	6	v	ሪ	ΰ	ሪ	0,	0 4	7 (5	9.0	ΰ	v	V	٢	ሪ	Ø	20 T U	(D1), Nat	ced Neutr
ц	þþ	100	101		85	88	85	3	38		8	8	<100	5 30	100	4100	v100	4100 V	۲ 00	<100	4100	100	100	001	100	360	001	001	<100 <100	<u>100</u>	v100	100	¹⁰⁰	√100	v100	v100	8		38	30	001	0	100	00 ¹	00 100	¢100	۲ 00			oth Indu
Au	bþp	38	3	, . , .	, ,	4 K	7) (74	0 1	0	0	Ø	쳤	v	14	, II	2	10	12	270	Ş	2240		0 10	001	13	10	170	120	6	<15	ÿ	v	v	v	10	۵ļ		12		586	8	220	v	110	v V		a by L.A.	d vd bozylar
Sample	no.	93KC175	93RT153	03HT155	02BT161P	02BT164	03RT173	03RT176	0/11906	1111066	95B1184	93BT191+	93BT195	93BT197A	93BT204B	93BT205	93BT210	93BT211	93BT220	93BT221	93BT227	93RT228	93BT7230	03RT761	AFACT850	93BT263B	93BT263C	93BT265	93BT266A	93BT266B	93BT268	93BT269	93BT270	93BT274	93BT277	93BT279	93BT291	95B1295	0387797C	Q1ETT17A	93BT329A	93BT329B	93BT329C	93BT329D	93BT331	93BT354	93GL107		Sanipics concere	elements were an

by the INAA method: Au, Lr, Se, Cs, Ce, Sm, Eu, To, Yd, Lu, Se, Hf, Th, U, and Br. The following elements were analyzed exclusively with ICP technology: Cu, Pb, Bi, Mn, V, Al, Mg, Ca, Ga, K, Li, Nb, Sr, Y, and Tr.

Sc	6.7 40.5	<0.5 5 7 5 7	15.0	0.6	18.0	17.0	9.6	1.80	10	94	4.1	15.0	8.2	8.6	+ c	16	ŝ	47.0	1:0	12.0	8 - 0 -	0.8	0.6	0.5	6.0 6	1.9	7.0	11.0	4 4		ŝ	10.0	6.	0°.	ŝ	* v	5 -	6.5	24.0	5.8	สา	26.0
ppm ppm	205 205	2.05 2. 4	<1.3 €.1>	₹05	0.9	0.5	9 2 2	20.4	Ì	202	205	<0.5	20.5	56		50	₹05 2.05	<0.5	<0.5	<u>605</u>	0 0 0	200	<0.5	Å.	9 4 7 4	30	205	<u>40.5</u>	84	205	<0.5	0.8	<0.5	29 2			Ś	205	S S	<0.5	<0.5 2.05	1
47 bpm	γ°	'ን ')	v	Ś	γ,	v ،	- 4	7 (0 0	0	v	V	5	0 4) V	9	ΰ	v	'n۷	0 1	00	ΰ	5	5	00	ð	\$	5	0	0	9	γ	0	0 4	0 4	2 (9 10	0	v	۶.	9
4L Ind	⊿ ⊿	77	7 7	v	-	₽.	₽.	- 7	77	77	7 ⊅	v	7	77	7	77	; ⊽	v	7	₽'	4	7 7	7	₽.	₫ 7	7 7	7	v	4	7 7	7	7	7	₽.	₽ ;	7 ⊽	77	7	7	v	∀'	7
Eu Ppm	99	9.	4 Q	а	Q	9,	а.	91	4.	٥ ہ	99	4	4	93	35	90	94	۷	4	4	99	90	а	4	<i>a i</i>	30	0	4	99	20	9	e	а	9	9,	9 4	78	90	19	а	4	4
Sm ppm	3.3 40.2	2: Q	3.5 3.5	0.6	8.6	4.4	0.8	4 c 8 c	K-7	4.1	1.9	5.4	4.2	9 9 9	4 -	4.4	0.6	23	602	4.6	8.1	4.0	0.4	0.3	0.8	1.4	5.1	3.9	4.1	2.5	07	6.1	6 02	4.1	0.7	3;	0 e	5	3.0	3.3	1.2	10.0
bbur Ce	31 <10	01 V	₹ 8	10	001	38	1	5	57	74	15	38	32	¹ 0	, 2 2	3 %	3 2	10	<10	51	ន		<10	10	10		8	Ø	8		10	55	<10	2	14	9 2 2	5 <u>(</u>	10	410 12	19	<10	80
La ppm	<u>7</u> 8	5	91	ð	43	19	v	EI :	= 4	5	12	21	ព	5	47	۰ ۶	10	0	v	26	2	0 %	v	v	γ.	ሳ ፕ	<u>ب</u>	16	4	०९	0 0	30	ΰ	6	6	0 9	2 4) ~	n 61	01	Ø	49
CS bbur	4 7	۵.	n r	'⊽	ŝ	ŝ	1		√ 7	7 -	- 7	1	m	₽.	₹ 7	₫ ,	۰ ۲	; n	7	4	Cl :	7 ₹	7	¥	∀ 7	√ 7	7 ⊅	ŝ	₽.	⊽ 7	7	4	7	Ā	√.	۰ ∆	7 7	7 ") r	7	~	Ś
M M	99	9,	ę "	9	q	4	4	99	91	31	4 4	а	6	9	99	97	10	4	4	а	4	91	9	а	Ś	91	14	4	9	3 5	90	а	4	Д	4	4 .	91	78	44	а	а	а
Sn ppm	8 8 8 8	00 ₹		8	<200	€200	80 70 00	88			38	8 8	€200	8	88			800	800	80	8		8	00	80		3 9 9 9 9	200	8			80	200	80 70 70	8	88			38	807	€200	4200
ц.	88	52	88	5	110	110	ŝ	\$ \$	0	8 8	3 8	460	78	8	X (9 F	2	0001	ŝ	62	ŝ	8	3	ŝ	8	88) 120	100	8	8	38	8	Ś	Ś	Ś	8 8	8	88) <u>2</u>	2	140	86
Ba ppm	<100 <100	<100	120	20 V	360	280	130	110	<u>4500</u>	005	001	<100	410	<100	210		ŝ	4300	18	1700	3100	81	00 1⊽	<100	160	000	807	4400	<100	8	38	530	120	<100	<100	00 ₹	380		430	2900	5700	590
Тe ppm	99	₹ 1	87	9	ą	8	9	88	8	38	38	ą	8	8	8	38	38	98	8	8	8	9 F	3	8	8	8	₹	98	8	8	5	3	8	8	8	8	88	38	38	8	ą	₹30
ъ Брш	<10 10 10	<10	01 1	01V	<10	<10	<10	0 <u>1</u> 0	10			<10	<10	<10	v10	07 F		012	10	<10	√10		017 V	<10	0 <u>1</u> 0	8	98	19	<10	00		<10 <10	<10	<10	<10	10	v10			10	<10	<10
ዳ አ	3.4 0.5	0.8	10.0	080	3.9	4.8	1.7	10.0	11	32	1.2	3.1	3.6	-0.5	1.7	6. r	0 v		-0.5	4.8	1.8	0.7	20-	-0.5	10.0	3.0	2.0 8.1	52	1.4	-0.5		2.9	-0.5	0.6	-0.5	13	1.4	7.1	97	2	25	7.3
Sb	<u>133.0</u> 0.9	8.5	153.0	2.8	9.2	1.2	63.7	<u>ז</u> ו	2:		1.6	8.7	18.0	1.0	3.5	4.7	ີ ເ	47.2		1.4	1.0	20.1	03	11.0	14.0	0.0	710 007	69.8	30.0	6 0 6	4-71-	14.0	14.0	81.5	32.9	5.0	11.0	5.0	8.8 9.9	6.4	6.3	5.9
As ppm	<u>275</u> 5	121	2030	128	39	6	200	œ	∞ ;	<u></u>	- 0	, <u>6</u>	12	<u>131</u>	8	5	= •	+ 5	3 2	124	s	10	3-	2	8860	<u>8</u>	807 13	1080	=		252	35	14	ដ	16	20	33	e ę	67 [58	4	e
ppm ppm	<10	<10	10	9 1	10	<10	<10	<10	¢10	<10		<10	<10	<10	10	9 <u>9</u>			012	<10	<10	0] v		10	<10	10 10		9₽	<10	9 10 10	3	320	15	<10	<10	<10	Q1 ₹	10	9 F	010	01×	<10
ර සු	21 210	<10	410 10	ç (15	14	<10	88	<10	<10 <10	99	9	10	<10	¹⁰	0 <u>1</u> 0	4 5	017 21	01V	14	<10	0 <u>1</u> 0		10	<10	0]v		9₹	<10	01 V		14	<10	<10	<10	<10	01v	010	01 2 1 0	102	01V	33
iN	80 80	ð	ଶ୍ୱ ଜ	6 6	51	50	4	85	8	8	38	97	8	8	ð	₹ 8	38	3	8	6 5	29	98	38	8	8	6 8	2 5	99	8	ଷ୍ପ	₹ ₹	3	8	ş	8	8	8	88	5, F	011	8	82
Мо ррш	99	9	91	90	14	4	А	а	4	9,	91	90	4	4	а	9,	9 4	25	10	6	17	Ś	30	14	а	6 9	97	\$ 1	4	а,	6.	۰ ۷	4	4	а	а	4	4 :	ې ≌	14	12	4
uZ pm	350	200 7	88	38	8	¢90	800	290	80	8			8	8 ₹	88	8	88			240	800	8		800	200	800		88	000	8	929×		000	80	600	600	80	88	240	270	230	500
Ag Ppm	У V	9	ካ	0 () 'Q	v	Ŷ	v	v	v'	ر کر) 'C	0 V	v	Ÿ	v	<u>،</u> ۵	0 4) Y	0	ΰ	v'	0 3	0'0	٥,	·۵	0 4	0 0	v	13	0 1	2 1	5	v,	6	v	ΰ	' የ	۷ ۷	0 V	v (o (
Ърр	001	2100 V	00		89	8	001	<100	<100	<100 <100	81	38	80	200	≤100	v100	8 <u>1</u> 9	8	38	81	<100	<100		80	<100	<100	8	88	200 V	<100	001		001>	001>	<100	<100	≤100	8 1 V	878	88	818	×100
Au ppb	70) o	2900	2 4	0 10	0'0	9	6	v	Ø	<u>ې</u>	≩∣≘	의 =	10	7	21	ମ୍ଚ '	0 4	0 Y	0 0	v	v	<u> </u>	0 0	<u>8</u>	Ø	Ϋ́	÷, 0	0	27	<u>7170</u>	0 4	0 0	12	δ	v	Q	v	γ,	- 4	סי ס	0'0

Sample	Au	ĺr	Ag	Zo	Mo	Ni	Co	C4	As	Sb	6	Se	Te	Ba	Cr	Sei	w	Cs	La	Ce	Sm	Ęn	ть	Yb	La	Sc
BO.	ррь	ррь	ρρια	ppm	ppm	ppm	ppm	ppm	ppm	opm	pot	ррш	ppin	ppm	ррш	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppa	ррол
93KC1518	7	<100	ර	210	2	<20	<10	<10	ti	25	5.6	<10	<20	510	170	<200	~	11	15	23	1.7	~	<1	ব	<0.5	27.0
93KC163	Ś	<100	0	280	2	64	68	<10	72	14.0	10.0	<10	<20	200	110	<200	ā	2		<10	3.2	2	<ī.	6	0.7	26.0
93KC170	23	<100	ð	<200	2	<20	<10	<10	1210	20.0	1.3	<10	<46	260	<50	<200	6	ĝ	70	110	8.3	6	<1	à	<0.9	11.0
93KC171	ਨੋ	<100	10	<200	~	-20	<10	<10	72	5.5	0.9	<10	<20	210	91	<200	10	28	69	120	7.6	2	2	6	0.7	8.7
93KC177	ੱ	<100	6	<200	2	<20	<10	<30	6	2.2	-0.5	<10	<20	<100	<50	<200	~2	<1	ä	<10	0.3	0	<1	å	دە>	0.7
93KC195A	0	<100	6	<200	2	<20	<10	<10	6	1.9	1.2	<10	<20	<200	-50	<200	2	<1	18	29	3.0	2	<1	୍	<0.5	3.5
93KC195B	19	<100	ত	<200	2	<20	<10	<10	ıś	20.0	3.8	< 10	<20	<100	0	<200	ā	<1	40	79	6.3	3	<1>	ব	د0⊳	6.0
93KC202	୍	<100	3	<200	4	<20	<10	<10	3	1.9	-0.5	<70	<20	110	<50	<200	ā	<1	6	10	0.9	à	<1	ਰ	<0.5	1.0
93KC214	ਤੱ	<100	3	220	0	85	33	<10	3	4.0	6.2	<[0	-20	620	140	<200	2	5	40	81	6.9	~2	<1	ਠੱ	0.7	24.0
93KC215	6	<100	4	<200	2	<20	23	<10	2	3.9	4.8	<10	<20	510	100	<200	2	4	45	75	7.8	5	<1	ত	0.6	18.0
93KC218	đ	<100	3	<200	2	-20	<10	<10	17	2.1	0.6	<10	<20	110	රට	<200	2	<1	ି	<10	0.7	4	<1	3	<0.5	2.3
93KC219	6	<100	4	<200	2	<20	<10	<10	17	4.6	0.9	<10	<20	<100	ර0	<200	<2	<1	ব	<10	<0.2	<2	<1	0	<0.5	⊲0.5
93KC222	19	<100	d	<200	2	32	<10	<10	261	78.6	2.6	<10	<20	170	රා	<200	2	<1	0	<10	0.4	2	<1	d	دە	3.4
93SL04	đ	<100	6	<200	2	20	<10	<10	38	1.4	-0.5	<10	<20	<100	ර	<200	2	<1	ර	<10	0.2	2	<1	Ś	<0.5	د0>
93SL27B	Ġ	<100	4	8400	2	<20	<10	53	110	47.4	1.4	<10	<20	<100	S 0	<200	4	<1	11	<10	11.0	7	3	7	0.8	1.4
93SL27B	27	<100	4	200	3	59	14	<10	1490	14.0	5.0	<10	<43	410	<50	<200	2	1	8	21	1.8	4	<	Q	0.5	1.9
9331.32	4	<100	ð	<200	4	<20	<10	<10	19	0.9	5.8	<10	<20	<100	ර	<200	2	<t< td=""><td>5</td><td>12</td><td>3.5</td><td>3</td><td><1</td><td>ব</td><td>⊲0.5</td><td>0.7</td></t<>	5	12	3.5	3	<1	ব	⊲0.5	0.7
9351,40	්	<100	4	<200	2	<20	<10	<10	2	2.8	-0.5	<10	<20	<100	ර0	<200	4	<1	4	<10	0.2	4	</td <td>4</td> <td>⊲0.5</td> <td>40.5</td>	4	⊲0.5	40.5
93SLA7A	26	<i00< td=""><td>4</td><td><200</td><td>2</td><td><20</td><td><10</td><td><10</td><td>\$2</td><td>29.8</td><td>1.2</td><td><10</td><td><20</td><td><100</td><td></td><td><200</td><td>2</td><td><1</td><td>4</td><td><10</td><td>2.0</td><td>4</td><td><1</td><td>Q</td><td><0.5</td><td>1.1</td></i00<>	4	<200	2	<20	<10	<10	\$2	29.8	1.2	<10	<20	<100		<200	2	<1	4	<10	2.0	4	<1	Q	<0.5	1.1
93SL47B	0	<100	ð	<200	2	40	24	<10	25	3.2	4.6	<10	<20	160	110	<200	2	l	49	85	9.0	4	1	ð	-0.S	15.0
93SL47C	4	<100	ර	<200	~	<20	<10	<10	38	5.1	1.3	<10	<20	<100	53	<200	2	<1	7	<10	1.5	4	<1	ସ	<0.5	8.3
9351498	6	<100	6	<u>350</u>	2	40	70	<10	5	1.5	10.0	<10	<20	<100	180	<200	2	1	13	<10	4.8	4	1	7	0.9	54.8
93SL50	14	<100	ଟ	<u>2500</u>	4	94	28	<10	553	48.3	10.0	<10	<20	140	ර	<200	2	7	11	23	2.2	2	4	Q	තය	11.0
935L51A	4	<100	4	<200	2	⊘0	<10	<10	6	1.7	0.9	<10	<20	<100	<u>ර</u> 0	<200	2	<3	0	<10	1.2	2	<1	4	<0.5	د ا
9351318	0	<100	4	<200	2	⊲0	<10	<10	2	0.6	-0.5	<10	<20	130	<0	<200	2	L	7	13	1.4	4	<1	4	<0.5	1.2
93\$L\$1C	0	<100	0	<200	2	<20	<10	<10	2	0.8	0.9	<10	<20	630	<50	<200	2	4	12	23	2.5	4	<}	4	<0.5	3.0
93SL51E	3	<100	4	320	~2	<20	36	<10	7	3.7	10.0	<10	<20	<100	<i>ବ</i> ଃ	<200	4	<1	39	82	16.0	10	3	15	21	39.0
9351.57A	4	<100	ර	<200	2	<20	<10	<10	2	0.6	0.9	<10	<28	001	<50	<200	<2	<1	0	<10	0.9	4	<1	0	<0.5	3.1
93SL62A	0	<100	4	<200	4	33	<}0	<10	-1	0.5	3.4	<10	<28	520	<50	<200	2	3	44	83	7.8	5	1	0	0.7	12.0
93SL68A	0	<100	0	<200	2	<20	<10	<10	27	26.3	2.2	<10	<20	310	<00	<200	2		8	<10	1.5	<2	<1	0	<0.5	2.2
93SL75	0	<100	0	280	2	120	74	<10	3		10.0	<10	<20	110	420	<200	3	1	10	25	3.8	4	<1	9	0.8	60.4
935£76A	0	<100	0	<u>840</u>	4	<20	<50	<10	138	19.0	30.0	<10	<20	360	00	<200	4	<1	9	<10	E.1	2	<1	~	<0.5	33
9351.768	0	<100	0	<200	~	<20	<10	<10	<u>n</u>	2).4	5.0	<10	<20	120	00	<200	4	<1	9	<10	0.0	~	<1	9	<u.5< td=""><td><u.5< td=""></u.5<></td></u.5<>	<u.5< td=""></u.5<>
9351.788	8	<100	9	220	~	<20	<10	<10	- ਮੁ	27	10.0	<10	<20	<100	00	<200	2	2		<10	0.0	~	<1	9	305	2.1
933£/8C	9	<100	<u> </u>	240	~	/8	15	<10	د	1.0	10.0	<10	<20	<100	220	<200	2	د	10	-12	3,1	~	<1	2	0.7	20.9
935L8ZA	<u> </u>	<100	3	<200	2	~~~	<10	<10	8	3.9	22	<10	<20	200	<00 	<200	~	<1	<u> </u>	<10	1.4	~	0	2	<0.5	3.2
9381.99	0	<100	9	<200	~	<20	<10	<10	2	0.0	1.1	<10	<20	<100		<200	~	4		<10	1.1	4	<3	0	<0.5	2.0
93512068	0	<100	3	<200	4	<0	<10	<10		0.5	0.0	<10	<	<100	-00	<200	~	<	11	10	3.1	~2	<l 4</l 	9	<0.5	9.2
933L117B	<u>41</u>	<100	9	<200	4	<20	<10	410	22	2/2	1.0	<10	~	~100		<000	~	41	2	<10	4.1	4	<1 - 1	2	<0.5	1.0
93361170	-	<100	2	<200	4	<20	<10	<10	222	20.0	1.0	<10	<20	<100	-50	<200	~	<1	4	<10	6.0	~	<i 1</i 	2	<0.5 0.4	17.0
333L1200	0	<00	0	<200	~	20	<10	<10	116	U./ 2 11	10.4	<10	~~~	1900	100	<200	~	<i 4</i 	2	<1U ~P	3.9	2	4	~	0.0	17.0
203L123B	4	<100	0	<200	2	30 24	10	<10	110	2.j 7 %	10.0	<10	-20	~100	250	<200	~	د 1~	2	<10	0.5	~	<1 21	2	-0.5 -0.5	22
935L142C	0	<100	0	<200	2	26	11	<10	41 71	1.5	2.4	<10	<20	460	<00	<200	~	<1	2	<10	0.5	3	4	2	<0.5	4.J 6.3
22201200	0	<100	0	<	S	20	11	SIV	1.5	1.9	3.4	<10		+00	00	200	~ 4	1	72	33	-4,74	~~	< <u>1</u>	\$	<0.5	đ° 1

1

.

.

Sa	} ????????????????????????????????????	888
v Dpm	۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵۵	777
ក្រុ	233 3301 1275 1273 1273 1273 3301 1186 1196 1196 1196 1187 1288 1288 1288 1288 1288 1288 1288	3 IO
Ba ppm	2008 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 8 Z
Te	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9999
u u	425 425 164 164 165 166 166 167 166 166 167 166 167 166 167 166 167 166 167 166 167 166 167 167	35 11 11
~ ~	4 a 2 4 4 5 4 4 5 8 8 4 4 4 5 8 5 9 5 8 6 8 6 8 6 8 7 5 7 8 8 8 8 7 4 6 8 8 9 7 8 8 7 8 7 7 8 8 8 9 8 6 7 8 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 8 7 8	0.2 0.74 0.65 2
с к Е	り ガ ガ ガ	~~~ ~~~
dS D	* 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 <u>리 년</u> ^
As		1 4
Bi Dom	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	000
P	ᇫᇫᇫᇫᇫᇫᇫᇲᇫᇫᇫᅋᆆᇃᇫᅝᆐᅇᅻᇊᇧᇋᅜᆁᅇᇏᇙᆁᇫᇫᇈᅒᇫᇰᇫᅀᅀᅀᆁᅀᇔᅘᆑᇹᇾᅘᆁᅶᇔᅀᆂᅀᆽ	∆ ∆ ‡
ടീ	<u>- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	₩ 9 %
Ni	៰៰៰ៜ៰៵៲៸៸៲៰៹៹៹៹៰៹៹៵៰៵៰៹៰ៜ៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹៹	9 Q %
Mo	, ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	⊿ ⊿ ⊿
z III	12 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 41
	ディック ぎょう ご 80 8 12 4 8 8 8 9 0 8 4 4 1 5 1 0 4 4 4 7 1 0 4 4 6 1 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6	994
£ 8	での1128~8月12日本1128月26日本1128日本1128日本1128日本1128日本1128日本1128日本1128日本1128日本1128日本1128日本1128日本1128日本1128日本	v 1 0
បីឱ		222
Ag		888 888
72 Mud	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	222
Rb	° ÷ ≈ c ₹ ÷ c \$ ÷ ÷ ÷ ÷ ; \$ ÷ ÷ ÷ ÷ * * * * * * * * * * * * * * *	30 ×10 30 ×10
Br	₂ △ ₀ ∞ △ △ △ △ △ △ ∞ ∞ 0 0 0 0 0 0 0 0 0 0 0	8, _ ∆
Na Mon	$\begin{array}{c} 0.03\\$	0.09 <0.05 <0.85
D End	20 0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	2.05 2.05 2.05
Æ	22 20 20 20 20 20 20 20 20 20 20 20 20 2	<0.5 <0.5 1.7
Ta	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	777
Hf	q~q * ~ qqqq, ~ \$ qqqqu ~ \$ qqqq, ~ ² qqqQCqqqu - qqqwqqqqqqu	<i>a</i> a a
Sample	33KC175 338T155 338T155 338T155 338T155 338T1618 338T197 338T197 338T205 338T205 338T205 338T205 338T205 338T205 338T205 338T205 338T255 338T2	33GL115 33GL128 33GL147

ng Dpn	55555555555555555555555555555555555555	388888888888888	333333333333333333333333333333333333333	
n mợq	£1 ∆ ∆ ¥ ∆ % ∆ ∆ ∆ ♥ ₀	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	° ° ° 8 8 ≈ ≈ ≈ ≈ ⊽ ⊽ ⊽ ⊽ ⊽ ⊽ ⊽ ⊽ ∞ ≈ ≈ ≈ ≈ ≈ ≈ ≈	
ъ щ	35 9 9 2 3 35 10 30 9 5 5 3 10 11 12 2 1	8 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	××××××××××××××××××××××××××××××××××××	
Ba ppm	33 30 31 33 33 33 33 33 33 33 33 33 33 33 33	- 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	221 16 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	
Те Ppm	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<u>.</u>	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
um nM	294 294 295 294 295 294 295 257 295 295 295 295 295 295 295 295 295 295	808 63 1245 1246 1246 126 63 1246 126 63 1246 1246 1246 1246 1246 1246 1246 1246	50 50 50 50 50 50 50 50 51 11 11 11 11 11 11 11 11 11 11 11 11	
E F	3.34 0.6 1.54 1.54 1.54 1.59 1.39 1.39	2.71 2.71 1.47 1.72 0.03 1.28 0.01 1.29 0.01 1.39	1.6 0.13 0.13 0.13 0.13 0.14 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	
Sb ppm	4000%0000v	0 ° V V V V V V V V V V V V V V V V V V	<i>ᲐᲐᲐ。ᲐᲐᲥᲮ≘Ხຌ೪ᲧᲥᲑᲪ、</i> = <i>ᲐᲐᲐᲐᲐᲑᲑᲐຉ</i>	
As ppm	ଅଷା <i>ଅ ର ସ</i> ାର ର ର ର ର ଥ	2 2 2 2 2 8 2 ² 2 8 9 5 7 5 6 1 5 8 7 5 8 5 7 5 6 1 5 8 7 5 8 5 7 5 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	최 V 8 8 월 8 월 8 대 # 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Bi	ימממממ	0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y		
	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A A 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
05			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ರ ಕ್ಷ	8 - 5 1 2 6 4 4 5 7 5	∑ ∾ े 4 ∾ 5 ∆ ∞ ∆ ∞ 5 ∞ .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
iN	8 8 9 2 9 6 8 33 16 33 6 8 14 12 5 4 2 32 6 8 8 4 12 5 4 5 32 6 8	86 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	v ↓	
оW	77777777777777777777777777777777777777	∧ ∧ ∧ ⇒ ∧ ∧ ⇒ ∧ ∧ ⇒ ∧	∇ ∇ ∇ ∞ ∞ ∞ ∞ ∇ ∇ ∇ ∇ 0 ∇ − ∞ 7 7 7 ∞ ∞ ∞ ∞ 0 0 0 0 0 0 0 0 0 0 0 0	
n Za	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	33 86 11 12 10 7 38 33 38 8 6 11 13 11 12 10 7 38 33 38 18 6 11 13 11 12 10 7 38 18 6 11 13	5 4 4 7 8 6 8 8 5 5 5 5 5 5 7 8 8 9 9 9 9 9 8 7 5 8 5 8 5 8 5 5 5 5 5 5 5 5 5 5 5 5	
£	841000000000 87	𝛛𝔅𝗘₄∞₄𝑌𝔅∞∷⊙∽	4 0 1 0 0 5 1 0 0 8 8 0 7 7 0 1 0 0 0 0 2 1 0 0 8 0 7 7 0 1 0 0 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
bbu D	126 21 22 25 23 23 25 23 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	<u>48</u> 8 ≈ ο Γ 2	° ℜ F ೞ F 9 88 ⊠ 7 ° 7 ∨ 7 × 7 × 8 × 8 × 8 ≈ 7 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 ×	
Ag ppm	8888888888888	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 6 0 6 6 6 1 1 9 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Z. Zr	\$\$\$\$\$\$\$\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$	
Rb ppm	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	83 2 2 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Br ppm	<u>4</u> -2222222	- 0 - 7 - 7 7 ~ 7 0 7 - 7 -	° ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ Q ⊂ C Q ⊂ C Q ⊂ C Q ⊂ C Q ⊂ C Q ⊂ C Q ⊂ C C Q ⊂ C C C Q ⊂ C C C Q ⊂ C C C Q ⊂ C C C C	
Na ppm	0.54 0.72 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.51 0.22 0.26 0.26 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	1.30 0.16 0.16 0.23 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	
n D	1 8 1 9 2 3 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	26 - 6 - 16 - 26 - 26 - 28 - 28 - 28 - 28 - 28 - 2	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
undq	3.4 7.6 7.6 7.6 7.1 8.1 2.8 2.1 2.8 2.1 2.8 2.1 2.8 2.1 2.8 2.8 2.1 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	0.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Ta ppm	~~~~~~~~~~~	~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Н	9950949909	9 = 9 ° 9 4 9 ° 9 ° ° ° 9	<i><i>3<i>4444444444444</i></i></i>	
Sample no.	93GL150 93GL150 93GL150 93GL187 93GL193 93GL193 93GL193 93GL193 93GL193	9301.200 9301.201 9301.2028 9301.2028 9301.201 9301.201 9301.2114 9301.2113 9301.213	95GRC010 95GRC011 95GRC011 95GRC027 95GRC024 95GRC024 95GRC024 95GRC024 95KC115 95KC115 95KC115 95KC115 95KC115 95KC115 95KC135 95KC15	

.

Sample	Hf	Ta	ъ	U	Na	Br	Rb	Zr	Ag	Cu	Ръ	Zo	Мо	Ni	co	Cđ	ві	As	SÞ	Fe	Mn	Te	Ba	Cr	v	Sa
R0.	ppm	bb m	р рш	ppm	ង២ល	ppm	ጀትመ	ррш	ppm	ppm.	орщ	ррт	bbœ	рртъ	ppm	ррш	ррш	ppm	ppm	pet	ррт	рраз	ppm	ppm	ррш	ppm
93KC177	<2	<1	0.6	د0>	1,40	<1	<10	<500	<0.2	3	4	10	<1	4	3	<)	d	ব	đ	0.41	278	<10	13	10	<1	<20
93KC195A	4	<1	4,7	1.0	0.05	<1	17	-500	<0.2	4	4	13	<1	10	3	<1	4	9	4	0.99	32	<10	11	14	<]	<20
93KC195B	3	<1	5.0	1.4	0.08	L	15	<500	0.4	297	4	21	2	10	3	<1	ব	13	11	2.67	68	<10	7	29	12	<20
93KC202	3	<1	1.4	<0.5	<0.05	</td <td>10</td> <td>ර00</td> <td><0.2</td> <td>4</td> <td>4</td> <td>2</td> <td>3</td> <td>2</td> <td>1</td> <td><1</td> <td>S</td> <td>9</td> <td>4</td> <td>0.28</td> <td>17</td> <td><10</td> <td>12</td> <td>7</td> <td><1</td> <td><20</td>	10	ර00	<0.2	4	4	2	3	2	1	<1	S	9	4	0.28	17	<10	12	7	<1	<20
93KC214	10	7	12.0	1.9	2.70	<1	110	<500	<0.2	21	5	87	ı	46	20	<1	4	د ه	5	3.65	436	<)0	31	38	36	<20
93KC215	9	i i	12.0	2.0	2.40	<1	93	<500	<0.2	44	4	69	<1	30	14	<)	ර	24	4	2.92	669	<10	36	38	28	<20
93KC218	4	<1	د0>	0.5	<0.05	</td <td><10</td> <td><500</td> <td>0.3</td> <td>64</td> <td>13</td> <td>15</td> <td><1</td> <td>5</td> <td>1</td> <td><1</td> <td>4</td> <td>22</td> <td>4</td> <td>0.34</td> <td>305</td> <td><)0</td> <td>15</td> <td>3</td> <td><1</td> <td><20</td>	<10	<500	0.3	64	13	15	<1	5	1	<1	4	22	4	0.34	305	<)0	15	3	<1	<20
93KC219	4	<1	<0.5	ده	<0.05	<1	<10	<500	0.7	15	24	12	<1	6	1	<1	4	15	0	0.82	29	<10	7	11	<t< td=""><td><20</td></t<>	<20
93KC222	2	<1	<0.5	<0.5	6.42	7	<10	<500	<0.2	17	4	51	<1	24	10	<1	4	206	39	2.03	534	<10	17	17	12	<20
9351.04	à	<1	<0>	<0.5	7.57	<1	<10	<500	<0.2	10	4	3	<1	6	<1	<	4	34	4	0.7	19	<10	8	5	<1	<20
93ST.22B	2	<1	<0.5	0.5	0.12	3	<10	<500	1	6840	9	5228	<1	12	4	42.4	4	116	29	1.03	382	<10	2	2	<1	<20
93SL27B	2	<1	0.9	3.3	<0.05	13	12	<500	<0.2	239	3	64	<1	33	n	5.4	6	1421	6	4.02	40	<10	19	8	<1	<20
93SL32	2	<1	<0.5	<0.5	0.14	1	<10	<500	0.4	55	3	14	5	2	1	<1	a	13	6	. 2.84	1367	<10	2	1	<1	<20
93SL40	2	<)	<0.5	<0.5	<0.05	<	<10	<500	0.4	81	3	3	1	<1	<1	<1	4	5	d d	0.05	30	<10	4	<1	<1	<20
93SL47A	4	<1	0.7	<0.5	0.17	3	<10	<500	0.7	499	23	10	<1	3	1	<1	4	30	21	0.98	22	<10	8	17	<1	<20
93SL47B	9	<	12.0	3.2	2.30	i	23	<500	<0.2	990	3	58	3	56	19	<]	5	5	0	3.62	198	<10	15	63	44	<20
935L47C	á	<1	1.7	0.5	0.23	i	<10	<500	<0.2	24	4	7	Ś	4	<1	<1	\$	23	0	0.98	15	<10	7	19	<1	<20
9351498	5	<1	1.5	<0.5	3.50	<1	<10	< 3 00	<0.2	152	4	76	2	23	28	<1	ব	4	\$	3.98	532	<10	2)	56	64	<20
9351.50	a	<1	1.5	4.2	-0.05	8	19	<500	⊲0.2	38	6	1095	4	20	11	5.2	4	253	8	10	1743	<10	29	26	14	<20
9351.51A	a	<1	0.6	<0.5	<0.05	<1	<10	<500	<0.2	44	4	20	i i	2	2	<)	å	ব	4	0.69	256	<10	8	3	<1	<20
935L 51B	2	<1	1.4	1.0	<0.05	<Î.	25	<00	0.3	59	6	ŝ	<	2	2	<)	3	ਤ	3	0.34	165	<10	10	2	<1	<20
9381 510	õ	~1	3.4	1.7	0.19	<	61	<500	<0.2	60	7	18	<1	3	2	<1	3	6	3	0.58	156	<10	38	Z	<]	<20
93SL51E	20	6	52	2.2	4.30	<1	<10	870	d0.2	108	à	187	3	2	20	<1	6	ර	6	8.12	790	<10	8	3	136	<20
9351.57A	2	حĭ	0.8	<0.5	<0.05	<1	<10	<500	<0.Z	51	3	15	<1	3	2	<1	ð	ð	ð	0.59	£60	<10	11	4	<1	<20
935L62A	õ	1	12.0	2.4	1.80	<1	110	<500	<0.2	53	10	55	<1	11	7	<1	3	4	3	2.26	590	<10	32	15	3	<20
0357 68A	ó	~	14	-05	-0.05	2	13	d00	0.4	85	5	19	<1	51	2	<	ব	ū	17	1.38	1289	<10	226	2	<1	<20
9351.75	6	<î.	0.8	<0.5	2.50	ī	<10	d00	<0.2	179	õ	81	<1	46	33	<1	ত	3	6	4.51	831	<10	52	158	101	<20
93SL76A	2	<1	<0.5	0.5	<0.05	5	<10	<300	<0.2	10	18	317	<1	<1	3	<1	9	64	11	10	3929	<10	174	<1	3	<20
93SL76B	2	<1	<0.5	<0.5	40.05	3	<10	<500	0.2	77	3	60	<1	4	2	<1	4	52	14	2.14	852	<10	45	1	<1	<20
93SL 78B	2	~1	-0.5	40.5	<0.05	<1	<10	<500	<0.2	47	21	127	<1	<1	2	1.2	10	8	6	10	6039	<10	8	<1	<1	20
9351 786	3	21	0.9	<0.5	2.20	<1	<10	<500	<0.2	209	6	71	<1	49	36	<1	4	ර	ব	4,99	895	<10	17	186	109	<20
9351.87A	õ	21	20	2.0	0.28	<1	16	400	<0.2	16	4	48	6	7	2	<1	6	7	3	1.17	111	<10	35	13	<]	<20
00 12 50	~	21	12	07	018	2	53	-500	-02	4	2	13	<1	2	2	<1	5	å	6	1.38	60	<10	23	14	<	<20
9351 1069	,		22	0.6	0.08	<1	25	-500	-0.2	42	ā	11	2	10	3	~	ă	6	ð	3.22	1307	<10	8	2	<1	20
0351 1178	ñ	~	-0.5	0.8	-0.05	4	<10	<500	<0.2	740	15	Å	3	ĩ	<1	<1	4	35	36	0.82	14	<10	ž	9	<1	<20
0351 (170	~	2	13	0.0	012	4	c10	<500	-0.2	18	.5	27	<1	4	<1	<1	4	309	8	0.92	27	<10	14	12	<1	<20
03511208	~	2	0.8	-0.5	0.36	c	~10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-0.2	54	6	14	~	5	1	-1	ã	6	å	34	1803	<10	3	3	<1	<20
0351 1338	~4	1	2.0	30	0.30		100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-112	136	14	46	2	25	1ŝ.	<1	3	83	ă	94	102	<10	66	17	31	20
0251 1/7/	à	~1	0.8	0.6	2.80	, i	<10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-112	14	12	22	1	18	5	~	6	7	6	0.78	123	<10	14	8	<1	<20
0261 1500	~	~	\$ A	10	2.00	~	77	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~0.2	17	10	43	-1	10	2	2	3	-	Å	2 53	300	<10	28	16	25	-20
93SL142C 93SL150C	2 4	<1 <1	0.8	0.6	2.80	ત	<10 72	් රැ	<0.2 ⊲0.2	14 17	18	22 43	3	18 12	5 7	<1 <)	ণ হ	7	6	0.78	123 399	<10 <10	14 28	16 8	<] 25	<u>ත</u>

,

. . •

Samele	w	T a	ا م	Ma	<i>C</i> •	G	Na	ĸ	11	Nb	Sr	Ta	v	ті	7r	Sn	
no.	pptu	ррш	pct	pct	pca	ppm	pet	pet	ppro	ppiz	ppm	ppm	ppm	pet	ppm	ppm	Description
			•	•				· · · ·								-	
93KC175	<20	10	0.71	0.22	10.00	2	0.02	0.38	3	18	609	<100	8	<0.01	<1	9	3 m wide zone, nisty brown soil.
93BT153	<20	7	Q.67	0.23	0.53	<2	0.36	0.02	4	<	43	<000	4	40.01	<[0	Quartz vein rubble, Rodine extension
93BT155	<20	4	0.17	6.05	0.11	2	<0.01	0.05	4	<	6	<100	1	<0.01	<2	13	70 cm wide, quartz vein, north 5 east trend; contains aspy.
93BT161.B	<20	23	1.15	0.14	0.33	4	0.02	0.28	6	<1	25	<100	12	<0.01	<[5	Gossan in metavolcanic schist (pCPzsf).
93BT164	<20	12	3.00	1.46	Q.11	12	0.07	0.59	36	<1	15	<100	6	<0.01	3	9	Background sample, pelitic Solomon schist (pCPzspb).
938T173	-20	<1	0.06	0.02	0.01	2	<0.01	0.02	-2	<i< td=""><td>1</td><td><100</td><td><1</td><td>⊲0.01</td><td><1</td><td>0</td><td>Background sample, metaturbidite schist (pCPzet).</td></i<>	1	<100	<1	⊲0.01	<1	0	Background sample, metaturbidite schist (pCPzet).
938T176	<20	4	0.20	0.27	10.00	2	0.02	0.09	Z	9	149	<100	5	<0.01	<1	්	Background sample, metaturbidite schist (pCPzet.)
93BT177	<20	4	0,10	0.03	10.00	2	<0.01	0.04	~	9	123	<100	16	<0.01	<1	6	Chalcopyrite bearing "F1" vein; 70 cm chip channel.
93BT184	<20	<ł	0.08	<0.01	0.07	2	<0.01	<0.0≀	2	<1	2	<100	<1	<0.01	<1	7	Background sample albite rich schist (pCPzt).
93BT191+	<20	8	0.59	0.45	0.18	2	0.02	0.04	10	<1	7	<100	7	<0.01	<i< td=""><td>6</td><td></td></i<>	6	
93BT195	<20	29	1.91	1.2)	2.89	3	0.03	0.49	35	3	83	<100	14	0.01	1	7	Mineralized layer 20 cm thick in pCPzsf unit.
938T197A	166	3	0.12	0.03	3.78	2	0.08	0.02	2	4	238	<100	10	<0.01	3	6	Grab sataple, sulfide barite mineralized 200c.
93BT2048	<20	<1	0.37	0.20	10.00	2	<0.01	0.11	6	23	42	<100	8	<0.03	<1	ব	Mineralized horizon with ruff in pCP2m unit.
9387205	<20	<u>د ا</u>	0.14	0.06	10.00	à	<0.01	0.06	2	29	260	<100	4	<0.03	<)	6	Ferricrete stain schist in oCP2m unit.
93RT7/0	70	-1	1 76	0.11	2.20	3	(0.0)	0.04	2	3	67	<100	6	<0.01	ï	র	Mineralized felsic schist (oCP2sf).
0387711	1137	21	0.04	2.28	10.00	õ	-0.01	0.02	-	12	42	<100	3	c1.01	~1	å	Grab sample spinalerize rich hurocia: in pCPzsf unit.
0301210	~~~~		1 03	1 14	0.51	2	0.05	110	44		96	~100	iñ	-101	2	ž	Grab comple sphalenite bearing of Prof unit
73B1220	20	12	1.77	1.14	2.40	1	0.05	0.15	5	4	26	<100		-0.01	<u>``</u>	ž	Crab sample of Derf cohiet
7301441	-20	12	0.15	0.10	2,47	~	0.03	0.12	3	-1	17	~100	,	-0.01	1	ž	The Manager and coming
9381227	<20		0.44	0.03	0_0	4	0.01	0.74	~		1.5	-100		-0.01		2	Twin M. prospect grab sample.
9381228	<20	19	0.96	0.04	9,41	2	0.02	0.34	2	<1	145	<100	24	<0.01		2	Two M. prospect grab sample.
9381230	<20	<[0.15	0.01	0.02	10	0.03	0.02	2	<1	6	<100	<1	<0.01	<1	< <u>-</u>	I win MI, prospect grab sample.
93BT261	<20	2	0.09	0.10	0.26	4	0.01	0.01	~2	<	4	<100	<i< td=""><td><0.01</td><td><[</td><td>0</td><td>A) on buck "P1" quartz von in pUP2 unit.</td></i<>	<0.01	<[0	A) on buck "P1" quartz von in pUP2 unit.
93BT263A	<20	38	2.36	0.21	0.06	8	0.02	0.28	23	<1	27	<100	14	<0.61	4	0	Large sheeted "1" quartz vein system; I in chip channel.
938T263B	<20	5	0.43	1.03	2.20	2	0.01	0.02	7	3	16	<100	3	<0.01	<1	<u>_</u>	Large sheeted "P)" quartz zone; 1 m chip channel.
93BT263C	<20	3	0.14	0.01	<0.01	2	<0.03	0.05	2	ব	2	<100	<1	<0.01	<1	4	Large sheeted "F1" quartz zone 2 m chip channel.
9387265	<20	4	0.15	0.04	1,72	2	0.01	0.04	2	2	n	<100	2	<0.01	<1	4	N. 40 E. trending quartz albite vein.
93BT266A	<20	14	0.91	0,51	0.05	4	0.2	0.03	12	<1]4	<100	3	<0.01	<1	4	Mineralized gossan near metadiorite (Mzdg).
93BT266B	<20	19	2.40	1.88	0.10	15	0.08	0.01	53	<	22	<100	4	<0.01	3	4	Minetalized gossan near metadiorite (Mzdg).
93BT268	<20	<1	0.17	0.03	0.30	4	0.02	<0.0}	2	<1	5	<100	<1	<0.01	<1	5	Quartz float zone near dredge tailings.
9387269	<20	30	2.78	1.68	0.25	5	0.04	0.26	54	<1	19	<100	n	<0.0t	3	9	Grab sample from caved portal, Rodine prospect.
93BT270	<20	8	0.13	2.72	10.00	2	<0.0(0.02	4	2[38Z	<100	10	<0.01	<1	ප	Deformed marble (pCPzm) background sample.
93BT274	<20	25	1.07	0.85	5.52	2	0.03	0.19	11	6	105	<100	9	<0.01	L	4	Quartz-albitz-gossan vein grab sample.
93BT277	<20	7	0.51	0.40	10.00	4	0.03	0.12	5	11	194	<100	9	<0.01	2	3	Low angle, N. 75 E. 8 NW., quartz-albite vein.
93BT279	<20	5	0.38	0.67	2.51	2	0.02	0.08	4	3	51	<\$00	6	<0.01	I	5	Background sample, isoclinally folded (pCPzt).
93BT291	<20	Î.	0.04	0.02	0.09	0	<0.01	0.01	2	<1	3	<100	<	<0.01	<1	ර	Ouarrz vein rubble grab sample with Aspy.
93BT293	<20	8	0.75	0.39	0.18	3	0.02	0.15	8	<1	7	<100	4	<0.01	1	6	Quartz vein: N. 35 W. for 150 m.
93872978	~20	ž	0.72	0.42	0.09	5	0.03	0.17	21	<1	12	<100	2	<0.01	<1	6	Aspy-mantz vein: 40 cm chip channel: EW. trend.
03BT207C	~20		0 10	0.02	10.0-	Ň	-0.01	0.04	2	21		~100		0.01	<i c<="" td=""><td>å</td><td>Aspy-quartz vein: 2 m chip channel: 5W. tread.</td></i>	å	Aspy-quartz vein: 2 m chip channel: 5W. tread.
03011111	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	0.04	0.41	10.00	~	~0.01	-0.01	2	74	64	~100	21	-0.01	21	ā	"White e-hiet" (m"Pref) ates in rome
3321312A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	0.04	0.03	0.00	7	0.01	0.06	~	~1	~	<100	- N	~0.01	4	ž	Ought win next old starmo mill: 2 m chin should
9301347A	~~~	15	0.20	0.00	0.21	~2	0.04	0.00	â		14	<100		-0.01	7	~	Outers were read oild stamp hith, 2 in this channel, N 30 E 65 SE
93B1329B	<20	14	0.75	0.03	0.05	2	0.00	0.5	~~	<u></u>	10	-100		<0.01		~	Quarte veni near old stamp, 5 in this channel, N. 30 E. 40 ME
93B1329C	<20	8	1.23	0.08	1.74	4	0.03	0.44	4	3	10	<100	د	<0.01	4	~	Quartz vem near old stamp; 2 m chip channel; N. 22 E., 70 NW.
Y3B1329D	<20	10	0.78	0.26	0.09	2	0.02	0.28	8	<1		<)00	4	<0.01	4	0	Quarta vela mear old stamp; 1 ni chip chainer ryS. Vertacal.
93BT331	<20	2	0.26	<0.01	0.08	<2	U,2	0.01	<2	<1	18	<100	Z	<0.03	<1	9	Unab sample quantz venn.
938T354	<20	2	0.10	<0.01	0.05	2	<0.01	0.04	<1	<1	257	<100	2	<0.03	1	°,	Quartz alone ven N. 15 E., 25 SE, to pCP2sg doit; 3 m thick.
93GL107	-20	4	0.41	1.49	10.00	<2	<0.01	0.01	2	28	340	<100	4	<0.01	<1	5	Suindes in stringers in calc-schist.
93GL110	<20	8	0.20	0.04	0.19	<2	<0.01	0.07	2	<1	16	<100	3	<0.01	2	4	Sollides with timonite near black quartzite.
93GL115	<20	<1	0.04	0.02	0.14	<2	<0,01	<0.0t	4	<1	3	<100	<i< td=""><td><0.01</td><td><i< td=""><td>4</td><td>Quartz vein near pCPzt-pCPzet contact.</td></i<></td></i<>	<0.01	<i< td=""><td>4</td><td>Quartz vein near pCPzt-pCPzet contact.</td></i<>	4	Quartz vein near pCPzt-pCPzet contact.
93GL128	<20	1	0.01	<0.01	0.02	2	<0.01	<0.01	2	<1	t	<100	<1	<0.01	<1	<u>ර</u>	1.5 m thick, guarte vein,

,

• • • •

	Description	Grab sample of gossan in felsic schist; possible exhalite.	Dreccia zone in caroonate with incapasite zone. Onartz vein in saddle intrudes albite chlorite schist.	Background sample: porphyroclastic schist.	Grab sample ferricrete-quartz zone in black quartzite.	Fasit breccia in float near Rodine fault.	Background, metabasite (pCPzb).	Background, chlorite muscovite schist.	Mineralized metafelsic schist (pCPzst).	Orange-yellow stain vein rubble.	fron stained quartz vein.	Suinde zone in calcareous sciusi layers.	Quartz in reisic scrinsi with sumuces.	Ouarrzose, schist grab sample.	Orange stained hydrothermal quartz zone.	Quartz vein in coarse grained albite mafic schist.	Mineralized metavolcanic tuff(?) grab sample.	Contact zone; felsic schist and albite chlorite schist.	Quartz vein in black quartzite.	Large quartz vein in black quartzite; N. 40 E. trend; rolded	Lunonite zone in black quartzite.	Quartz vem rubore III black quartzue.	Orao sampte re quartz vem. Marhie-dolostone grab sample.	Red stained carbonaceous schist grab sample.	Limonite stained, sheared schist.	Grab sample, "lumpy" schist.	Grab sample, quartz veins in black quartzite.	Pyrite rich schist; early folded quartz sampled.	Kusty quartz vein in graphilic quartzite.	Vuggy quartz nocure in rota axes, r 1 veni. Oriorra visin unith colona and enhalerite	Chalky scorodite stained quartz vein.	Rusty quartz vein in rubble.	Quartz-sphalente 4 cm thick layer, conformable(?) to folia	Grab sample, maroon streaked marble.	Dark brown soll, geochem sample.	Prospect pit with quarter or excita zone.	BOXWOIK DRECCIA ZODE, JU III ADOVE UIAUASE(:) UKC. Vuonu raheanous hueeria orah samule.	Orange dolomitic breccia N. 30 E., 25 NW trend.	Contact between black quartzite; gamet quartz schist.	Grab sample, graphitic muscovite schist.	Conformable quartz vein 30 cm wide.	Background sample pCPzct schist.	Background sample pCP2b metabasite.	Quartz vein grab sample.	Orange dolomitic breccia grab sample.	Orange felsic metaplutonic rock (pCPzf).
Sn	шdd	50	0 0	0	V	ΰ	ΰ	ð	0	'0 '	0 1	0 '	0 3	0 0	00	v	ΰ	ሪ	- '	ŝ	ρų	0 4	0 0	, v	° '0	ΰ	ΰ,	9	0 \$	2 Y) ` `	v	v	v	0,	0 4	0 4	0 0	0	S	9	0	64	0 5	0	1
Z	шdd	₽.	- 7	5	4	v	7	-	7	⊽.	₽,	₹ '	7	7 7	7	¥	V	7	₽'	90 I	- •	- ,	⊽ ⊽	; 7	7 ⊅	9	61	mt	- 0	7 7	7 7	ī	4	۲	₽.	√ ,	¢ د	• •	18	11	6	57	r1 4	° 7	9	15
Ħ	bc	40.0J		<0.01	<0.01	<0.01	0.17	<0.01	<0.01	<0.01	0.01				10.0>	0.03	<0.01	0.09	<u>40.01</u>	40.0J	10.02		10.05	1002	<0.0>	<0.01	<0.01	<0.01	0.0		10.02 20.01	<0.01	<0.01	<0.01	40.0J		10.0	20.01	0.07	0.04	<0.01	0.03	0.03		<0.01	0.03
Y	udd	15	3 7	51	12	2	9	=	2	4 (m e	× •	4 7	74	4	9	7	7	₽'	ŝ	m,	⊽ 7	₹-		0 01	e	61	00 (n i	27	7 ⊅	7	20	v	m.	4 (N 17	- د	4	11	9	4	, <u>8</u>	. č	ir	12
Ta	mqq	001×		2001×	<100	<100	<100	<100	001∨	00 ₹	00 V	0012			00 10	<100	<100	<100	00 1∨	¹⁰⁰	80			810	00 100	<100	100	v100		87	001×	<100	<100	<100	0012	87	81	807	×100	<100	<100	<100 <100	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80	×100	<100
Sr	шdd	88	8	0	18	e	37	<u>16</u>	87	80	m ;	112	Ð -	4	286	29	2	31	6	2			7 ₽	113	74	6	15	6 1	35	10/	- 6	' ⊽	401	405	450	273	67	891	6	16	2	e	~ ~	9,00	12	103
Ê	шdd	នេះ	A 7	7 7	7 7	7	2	18	13	₽	⊽ :	80	⊽ 7	77	7 83	6	11	4	4	4	₽.	4.	4 £	1 X	3 8	4	4	₽,	⊅,	æ -	⊽ ⊽	• ⊅	11	38	31	15	8	0 K	1 -		Þ	4	4,	7 ⊻	<u>i</u> –	10
Ľ	udd	Q :	21) ∝	96°	4	61	7	а	а	13	12	m (14	• 0	6	а	ន	а	25	ŝ	9	91	7 (14	а	4	ŝ	ŝ	<u>م</u>	90	9	11	а	4	9	9 '	ر د ر	, 4	48	а	80	28	<u>8</u> 7	32	111
К	pct	0.05	0.0	0.13	0.13	0.02	0.1	0.03	0.01	<0.01	<0.01	0.05	0.16		1.0	0.06	<0.01	0.09	0.01	0.1	0.07	0.02	10.05		0.01	0.04	0.02	0.04	0.09	0.01	0.05	<0.01	0.11	<0.01	<0.01	\$0.0I	<0.01	300	60.0	0.19	0.09	0.17	0.14	CI.0	0.28	1.06
Na	pct	<0.01	<0.01 0.02	000	0.02	<0.01	0.03	<0.01	<0.01	0.07	0.03	10'0	0.01	10.02	10.02	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.0	0.01		0.02	≤0.01	<0.01	0.03	0.02	20.01 10.02	0.02	20.02	<0.01	<0.01	<0.01	<0.01	0.01		1002	0.03	<0.01	0.01	0.02	0.02	0.05	0.04
8	udd	а.	4 (<i>?</i> (y va	9	6	а	а	7	q	9	m (31	90	9	а	S	а	ŝ	a.	9	91	7 8	19	а	а	9	a	99	94	4	а	а	а	a	99	78	90	1-	4	ŝ	ŝ	0 "	2 12	14
ű	pct	10.00	10.00	170	0.22	0.04	0.47	10.00	10.00	0.28	0.08	10.00	0.26	60-00 00-00	1000	0.86	10.00	2.61	0.11	0.03	0.12	0.0	10.0		10.00	0.29	0.52	0.25	0.08	5.17	60.0 0	0.02	10.00	10.00	10.00	10.00	10.00	0.01	0.28	0.28	0.06	0.08	0.17	50.01	0.68	9.02
Mg	bt.	0.14	0.67	50.0	56.0	0.01	1.96	2.91	2.76	0.31	0.44	1.29	0.10	60.0	2.21	0.64	2.45	2.28	0.07	0.68	0.13	0.07	<0.01	<u>.</u>	0.58	0.03	0.13	0.33	0.11	0.33	0.01	20.01	0.84	0.17	0.22	0.06	0.14	71.0	150	1.12	0.05	0.86	1.82	0.94	0.78	2.32
A	pct	0.21	0.88	050	1 84	0.10	2.80	0.06	0.03	0.36	0.52	0.70	0.34	0.15	80.0	0.70	0.01	1.89	0.08	1.36	0.35	0.13	0.05	10.0	0.08	0.13	0.09	0.53	0.40	0.40	0.04	20.02	0.73	<0.01	0.02	0.03	0.03	0.41	0.41	2.22	0.50	0.81	2.41	1.58	79.1	1.19
4	шdd	6	ю,	72	14	: -	· 7	2	-	13	8	9	12	⊽ ¥	n 7	; ~	· 7	4	₽	15	7	1	4	7	⊽ ⊽	4	1	21	12	6	~	۰ ^۱	15	V	4	₽	₽.	4 7	7 4	14	. 00	2	ន	0 -	₽ %	26 26
M	mdd	Ş	ଶ୍ଚି ଶ୍	38	38	3	9	8	ş	Ş	Ø	ģ	8	₿ 8	38	5	Ø	ğ	8	ģ	8	ð	8 8	3	38	3	Ø	8	8	Ø	88	38	541	Ø	8	ą	8	8 8	38	38	9	8	8	8	38	9
Sample	no.	93GL147	93GL150	0211066	93GL100	9361.187	93GL 193	93GL196	93GL197	93GL198	93GL199	93GL200	93GI 201	93GL202A	95GL/202B	DAGI 204	93GL205	93GL206	93GL211A	93GL211B	93GL213	93GL228	93GRC010	95GRC011	93GRC026	93GRC083	93GRC084	93KC102	93KC103	93KC107	93KC111A	93KC115	93KC116	93KC131	93KC132	93KC133	93KC135A	93KC135B	95AC130	93KC147	93KC149A	93KC149B	93KC151A	93KC151B	93KC103	93KC171

ion.

	Description	Quartr rubble quartz vem in altain chlorite schial	Grab sample, ribbon quarte.	Folded "PI" quartz with benedite week	Sample type not identified.	10 cm thick lineasic stated quarts verin in Ucat.	Background sample schut.	30 m wide area, sheeted quartz verm Coal	30 m wide area shorted quarte vein Done	Background sample, mixed schia muche	Quartz float treads for 100 m downshope possibly Rodine system	Copper bearing carly F1 " quarts verior system.	Large courtop of quartz vein about zone sampled.	עובות מאצוע שייניני מכשי אושון או.	Reducti rean material in somethe.							Pymic bearing cultureous sums.	Sulface beaning muscowice sense.	Lindrate albute scritter, beeckground (pur rea).	Quarter stock for party sumptions of the rook of the Construction of the second se	Creation supply structured controls acres acres (produce)	Membraine and sample (pCPth).	Martone, red fatrictate gussen.	Gossan near prospect pil.	Marcon gossan rear dolomie mae	Gab sample, metabastic (pUTth).	Grab sample, queeze vern floot.	Crab sample quart voin float.	Fariate brazes in marble.	Grab sample "F1" quart wait, N 80 W. state.	Grab sample quartz veria rubble with free gold(7).	Grad sample quartz albits vrin with N. 73" W. Statt.	Gab sample ferricrice stalned scirist.	Near leasen 5 comp. grad sample, quarte ven.	டுகம் காரம்ட முமாக சம்ப
ŝ	ELCO	v	12	0	v	=	1	v	v	v	v	σ	Ø	Ø	' ک	- •	0`	• •	0 '	0 1	0 '	0'	0 '	0 1	۲ 0	0 1	0	-	ΰ	ΰ	Ø	v	2	v	Ø	00	Ø	v	6	Q
7	cu du	ī	2	7	5	v	¢!	v	ŗ	Ş	v	₽	_	v	Ţ,		<u>^</u> 1	, 14	⊽ '		₽.	- •	6 ·	, C	, ۵	^ ,	7 7	√ √	۲	v	Ÿ	7	Þ	7	7	11	ž	7	7	7
۲	ğ	(0.0Þ	6 01	(0.0>	<u>8</u>	0.02	00	0.05	6 00	60.05	10.02	<0.01	10.0	000	0 01		5			2010				0.16			0.26	10.02	1010>	IQ'₽>	629	<u>6</u> 00	10 '0₽	50	<u>8</u>	Ø.0	10.0	0.08	10.02	10.05
٢	bbci	v	7	7	~	9	12	æ	⊽	_	⊽	2	-	2	~	₽.	90 ·	, د	-	۽ م	10	1	1	۲ ۱ (» :	2 0	•	• •	2	-	~	7	2	٩	1	-	\$	2	~	×,
۲,	6	001>	8 V	¢100	8 7	<u>8</u>	<u>8</u>	¢[00	00 v	60 ⊽	<001>	<u>8</u>	8	8	8	8	8 V	B S S	8		8	8	8	8 <u>9</u> 2	<u>8</u> 2	3			<001>	00 V	00I>	8	¢100	00 ₹	8 7	¢100	00	8	¢100	00
ж	ij de	Ą	ŝ	Ş	V	9	8	H	7	~	81	9721	7	బ	1030	1 00 -	o.	4	8	5	121	d	쪍	3	55		3 3	1	es	ድ	2	1	4	012	7	•	Š	12	ŝ	<u>1</u>
ź	ædá	ľ	\$	4	ŕ	v	7	ห	ŗ	Ş	P	8	7	21	36	ĉ	Ŷ	÷.	ŝ	Ξ	1	77	<u>م</u>	~ :	<u>s</u>	- 5	8 ¥	· –	8	Ś	Ē	Þ	7	6	Þ	P	2	7	Þ	_
E	andd	a	9	62	а	8	15	a	a	11	а	а	а	а	a	4	8	~	15	9	Ø	a	4	3	4	5	98	: A	4	а	ព	-	4	a	4	10	4	а	E	=
×	ğ	0.02	0.00	2010	0.05	02	0.17	10.0P	IQ.D	10.05	10.05	10.05	0.02	0.0J	0.0	000	0.0	0.03	0.0	2	0.02	0.0	0.1	0.01	0.03	0.26			100	10.05	0.04	0.04	0.1	0.03	10.0	0.02	1000	0.18	0.03	0.12
Ra Na	8	0.02		1012	<pre>dolp</pre>	2010	00	10.05	IOD	0.0	0,18	loub	l0:0Þ	0.0	10.0>	0.0	0.0	0.01	0.03	Ø 01	40.01	<0.0I	<0.0I	80	<0.01	0.0			Igos	1012	0.02	10.05	<0.01	10.02	0.0	1000	10.4	0.02	0.04	2010
ې	8	a	7	\$	a	2	4	4	4	0	4	a	M	а	a	9	٥ ۵	а	ę	=	4	а	а	24	4	a.	3,	• II	a	а	7	4	7	а	a	а	4	15	a	4
J	g.	0.05	0.05	0.03	10.05	021	ก	0.00	10,0	0.02	100	000	0.05	00.0	000	0.20	0.21	0.03	8	0000	000	0.00	0.00	1.42	0.00	8		88	00.00	5.41	1	0.07	1000	00701	0.03	10.0	00.01	0.10	0.12	901
٨e	'R	0.03	01.0	1.58	0.01	<u>1</u> .63	136	0.19	DOG	080	100	200	1010	32	0,12	0.24	ที	0.52	1.67	621	80.0	0.27	- %	1.95	53	63. j	S	0.10	019	0.40	213	0.18	0.42	247	070	550	ສິ	9.08	0.09	90'
~ ۲	2	0.11	0.19	291	0.07	5	8	0.01	000	60	en en	0.01	0.24	10.0	000	អ្ន	3.17	0.42	ភ្ន	0.85	00	50	0.18	3.80	1Z 0	1.47	5 G	ž	3	0.01	279	20	3	0.05	0.17	0.41	50.0	0.38	023	171
a	5							· -					~	` _	•	~	-	2	_	~	~	-	\$	•	_	5				_	_	~	2		~	5	_		2	-1
-	- E	~	. ~	- Fi		6	121				~			v 0	~	0	5	- -	6	0	v 0		ŏ	- 0	•	ы 0	•		, v		v 0					0	v 0		0	0
B		0	00	10	0	00	0	0	94	2	90	14	9	9	0	9	0	ą	a	9	9	4	a	9	9	4	a (20	26	19	a	9	9	9	0	0	9	9	4	9
Sumole	NO.	CULARO	01KC105A	SAKCIOSE	CULL XEB	93KC214	94KC115	Sak Child	91K[210	CLUM NO	PU ISLA	01CI 77R	ELZ ISE6	2271266	081266	93SLA7A	ELVISE	93SLATC	B61/28 6	93SL50		8127556	335L51C	935LSIE	AR2ISE2	93SL62A	9351684	C/1856	ANT TAR	ERL'ISE6	9451 780	VOTISES	0011510	9351,1069	BUCK IN ISED	935L117C	BOZ I ISE6	BCZITISE6	935L142C	93SL150C

	Volume gold	Volume silver	Number		Total bullion value
Year	(oz)	(oz)	of mines	Employment	(\$ at time of sale)
1897	725	80	NA	NA	\$ 15,000
1898	3,628	409	NA	NA	78,000
1899	135,462	15,578	NA	NA	2,800,000
1900	166,110	20,597	NA	NA	3,433,500
1901	160,619	21,041	NA	NA	3,320,000
1902	152,394	17,677	NA	3,000	3,150,000
1903	140,299	17,537	NA	2,800	2,900,000
1904	138,558	16,072	NA	3,000	2,864,000
1905	164,489	20,561	NA	3,200	3,400,000
1906	295,114	38,659	NA	3,500	6,100,000
1907	268,505	32,220	NA	3,100	5,550,000
1908-11	664,408	81,722	135	NA	13,730,000
1912	55,636	6,676	45	NA	1,150,000
1913	45,800	5,038	55	NA	946,686
1914	120,335	14,271	65	NA	2,487,324
1915	118,335	9,446	57	NA	2,445,984
1916	74,600	7,460	53	1,030	1,542,000
1917	42,152	5,901	40	NA	871,281
1918	21,625	2,811	37	NĂ	447,000
1919	33,768	3,179	26	NA	698,000
1920	26,124	2,775	25	NA	540,000
1921	28,301	1,490	44	NA	585,000
1922	23,463	1,121	33	NA	485,000
1923	28,930	3,263	21	NA	598,000
1924	41,025	4,483	17	NA	848,000
1925	35,800	4,244	12	435	740,000
1926	67,247	7,389	26	415	1,390,000
1927	46,105	7,137	13	425	953,000
1928	36,284	4,094	24	400	750,000
1929	69,762	7,299	21	4500	1,442,000
1930	47,460	5,091	15	NA	981,000
1931	39,157	4,850	9	275	809,375
1932	58,129	5,742	15	265	1,201,526
1933	40,912	4,541	14	272	845,651
1934	23,696	2,531	14	250	829,360
1935	44,361	4,924	16	340	1,551,635
1936	60,132	6,493	16	325	2,104,620
1937	44,924	4,903	5	345	1,572,340
1938	47,212	5,450	5	343	1,652,420
1939	49,500	5,742	7	365	1,739,500
1940	52,683	5,935	6	377	1,843,905
1941	65,526	7,290	11	345	2,293,410
1942	37,499	3,863	12	340	1,312,465
1943	3,799	320	4	8	132,965
1 944					
1945	1,193	152	12	16	41,755
1 9 46	5,102	700	24	10	178,570
1 9 47	5,819	610	18	154	203,665
1948	13,576	1,590	16	176	475,160
1949	32,302	3,202	21	152	1,130,570
1950	49,418	5,498	21	146	1,729,630
1951	46,465	5,189	11	143	1,626,275
1952	38,318	4,345	8	151	1,341,130

Table 4. Placer gold and silver production, Nome district, 1897-1993^a

Compiled by T.K. Bundtzen, Alaska Division of Geological & Geophysical Surveys using (1) U.S. Geological Survey and Territorial Documents from 1897-1959; (2) U.S. Mint records from 1931-1969; and (3) State of Alaska records from 1970-1993.

1953	29,478	3,298	15	170	1,031,730
1954	21,177	2,358	15	161	741,195
1955	23,410	2,602	14	182	819,350
1956	24,058	2,629	8	182	842,030
1957	43,654	4,870	7	175	1,527,890
1958	33,338	3,720	7	165	1,166,830
1959	873	72	2	NA	30,555
1960	39,050	4,443	5	150	1,366,750
1961	26,442	3,076	5	155	925,470
1962	24,001	2,727	6	160	840,035
1963	1,272	134	4	3	44,520
1964	659	74	4	4	23,065
1965	194	21	4	ž	6,790
1966	41	4	2	1	1,435
1967	113	14	2	3	3,955
1968	250	26	1	4	8,750
1969-74	NA	NA	NA	NA	NA
1975	7,796	1,013	1	65	1,520,220
1976	14,320	1,603	3	75	1,503,600
1977	15,600	2,184	3	80	2,340,000
1978	12,450	1,369	3	80	3,112,500
1979	14,182	1,843	4	85	3,339,600
1980	12,100	1,694	3	90	5,154,600
1981	16,600	1,992	4	102	6,806,000
1982	18,485	2,772	4	90	7,394,000
1983	20,500	2,542	5	120	8,200,200
1984	21,500	2,601	4	105	7,740,000
1985	22,416	2,689	4	122	7,285,200
1986	28,650	3,151	5	284	10,887,000
1987	75,824	8,340	8	319	34,500,600
1988	66,500	7,700	9	280	28,262,500
1989	59,500	6,950	8	245	22,729,000
1990	56,300	6,193	6	240	21,675,500
1991	25,700	3,048	6	140	9,380,500
1992	25,600	3,584	6	130	8,627,200
1993	27,750	3,607	7	(30	9,990,000
TOTALS	4,822,569	564,134		• •	301,682,072
	(149.98 metric	(17.54 metric			
	tonnes)	tonnes)			