Division of Geological & Geophysical Surveys

PUBLIC-DATA FILE 96-12

PRELIMINARY THERMOBAROMETRY AND MICROPROBE MINERAL COMPOSITIONS, FAIRBANKS AREA SCHISTS AND AMPHIBOLITES

by

Brian Joy, Mary Keskinen, and Rainer Newberry Department of Geology University of Alaska Fairbanks

January 1996

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

Released by

STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645

Preliminary thermobarometry and microprobe mineral compositions, Fairbanks Area Schists and Amphibolites

Brian Joy, Mary Keskinen, and Rainer Newberry Dept Geology Univ Alaska Fbx AK 99775

INTRODUCTION

Metamorphic rocks in the Fairbanks mining district have confused geologists and petrologists for decades. Within the area immediately around the city of Fairbanks (Fig. 1) there have been several attempts made to categorize, classify, and map the rocks with inconsistent results (Pewe, et al., 1976; Forbes, 1982; Robinson et al., 1990). In particular, all workers agree that the rocks of the immediate Fairbanks area represent greenschist and/or amphibolite metamorphic facies, but disagree in placement of boundaries between rocks of these facies and in how many different metamorphic rock units are present. One potential explanation for the lack of agreement between different workers is the virtual lack of quantitative petrologic data. Metamorphic grade assignments in the Fairbanks area have been built around mineral grain sizes, abundance of retrograde minerals, and hand-specimen identification of key indicator minerals, but with the exception of Keskinen (1989), there has been no quantitative P-T information presented for these rocks.

In principle, the compositions of coexisting minerals in metamorphic rocks can be used to unambiguously determine P-T conditions for the rocks. In practice, relevant experimental data and sophisticated thermodynamic models are required to perform such P-T analysis. Partitioning of Fe and Mg between biotite and garnet and between amphibole and garnet is one such means of estimating temperatures for greenschist and amphibolite facies rocks. The laboratory calibration for the former (Ferry and Spear, 1978) used pure Fe-Mg garnet and biotite, and is strictly applicable only to natural garnet-biotite pairs lacking appreciable Ca, Ti, and/or Mn. Similar problems are posed by garnet-amphibole studies (Graham and Powell, 1984). Because Fairbanks area metamorphic minerals deviate significantly from the Fe-Mg end-members, these geothermometers give poor results.

In the last decade several workers have pursued theoretical and experimental corrections to the Fe-Mg studies to give geothermometers applicable to complex natural minerals. Based on such studies two different refined biotite-garnet geothermometers have been recently published, those of Hodges and Spear (1982) and Bhattacharya et al. (1992). Even with these complex thermodynamic models, some garnet-biotite pairs yield unrealistic results, either due to compositions not easily modeled thermodynamically and/or to lack of equilibrium between garnet and adjacent biotite. One way to check for such problems is to employ both geothermometer formulations: similar results from each gives confidence in the temperature derived, whereas considerable disagreement indicates the temperatures are not valid.

In order to address the problem of metamorphic grade, and hence, map units, for the immediate Fairbanks area, we have performed microprobe analyses on minerals from samples with key metamorphic assemblages. We have investigated samples from 8 sites (Fig. 1; Table 1), three from rocks previously mapped as Fairbanks schist/Cleary Sequence ("upper greenschist") and 5 from rocks previously mapped as Chena River Sequence ("mid-amphibolite"). Rocks from one site (FM17, Fig. 1) were previously studied by Keskinen (1989) and we choose this site to ensure that our results were compatible with past quantitative work. Our objectives were to (1) quantitatively determine P-T metamorphic conditions for these 8 sites and (2) compare the results to existing map boundaries.

ANALYTICAL TECHNIQUES

Twelve polished thin sections were made, to represent lithologic and mineral variability at the 8 sites. These thin sections were carefully studied to locate areas containing critical mineral assemblages for microprobe analysis. Only areas showing textural evidence for mineral equilibrium were selected for further analysis.

All microprobe analyses were performed at the Center for Microbeam Studies, University of Alaska, Fairbanks, Alaska, using a Cameca SX-50 microprobe and well-characterized natural mineral standards. Dr. K. Severin assisted with the analyses. Standardization was checked using well-characterized secondary standards. Beam conditions were 20 kv, 10mA, and 10-second count times. At least 3 mineral pairs/clusters were selected from each thin section and at least 3 spots on each mineral of a pair/cluster were selected for automated analysis. Analyses with poor totals and/or low K₂O (biotite/muscovite) contents were rejected; otherwise all analyses from a single mineral of a pair/cluster were averaged. In most cases, temperature estimates from mineral pairs were calculated separately, and then averaged for a single thin section. In a small number of cases, different pairs from the same section yielded widely divergent results, and these were separately averaged. Barometric calculations were performed and averaged similarly.

RESULTS

Biotite-garnet temperatures so generated for samples from the Fairbanks area (Table 2) show excellent agreement between temperatures generated by the two techniques, except for samples FM17 and RN336. These latter samples contain several garnet-biotite pairs, some of which yield consistent temperatures in the 520-550°C range and some of which yield highly inconsistent temperatures of 660-830°C (Table 2). As the latter temperatures are both widely varying and exceed temperatures for amphibolite-facies metamorphism, we reject them. Sample FM17 also has significantly lower-Ca garnets and higher-Ca plagioclases than the other samples and this may influence its calculated temperatures. One of the authors (BJ) is currently studying these samples in attempt to better understand their peculiar behavior.

Samples FS104 and FS203C contained hornblende-garnet pairs and these were also analyzed to establish temperatures (Table 3). We employed in the geothermometry the experimental data of Graham and Powell (1984), modified using the garnet mixing model of Bhattacharya et al. (1982). There is excellent agreement

between temperatures determined from this garnet-amphibole geothermometer and those from the garnet-biotite geothermometers for sample site 104 (500, 495, and 500 °C; Tables 2,3). There is also excellent agreement between these results and those of Keskinen (1989).

Geobarometric determinations were made using the formulations of Ghent and Stout (1981) and Kohn and Spear (1990). The former involves the plagioclase-garnet-biotite-muscovite assemblage and the latter, garnethornblende-plagioclase-quartz. Both formulations require a temperature and compositional information to generate a pressure, and the averaged temperatures from the mineral geothermometry were employed. Not all samples could be so studied, as not all samples contained the required assemblages (Table 1).

Geobarometry was complicated by the presence, in most samples, of multiple plagioclase compositions. Most samples contained apparently prograde oligoclase surrounded, cut, or corroded by apparently retrograde albite (Table 4). These different plagioclase compositions yielded very different pressures: the higher-Ca plagioclase compositions yielded "reasonable" pressures of 3-6 kb, whereas, albite compositions yielded unreasonable (well outside of greenschist or amphibolite facies) pressures of >15 kb. Consequently, rather than averaging all plagioclase compositions from a single area of a thin section, we only averaged the non-albite compositions.

Estimated temperatures (Tables 2, 3) and pressures (Table 5) for the samples are all virtually identical, despite their classification from previous mapping efforts as either mid-amphibolite (a) or upper greenschist (g) metamorphic facies. Average data (Table 6) indicates that the temperatures generated for samples from the two mapped facies are within a standard deviation of each other--i.e., that there is no significant difference between the two. Because only two pressure estimates are available for the samples mapped as greenschist facies (Table 5), the comparison is less certain for pressure, but the average pressures for both suites are also quite close (Table 6).

In conclusion, our preliminary P-T work indicates that rocks mapped at Chena River sequence, Fairbanks schist, and Cleary Sequence all experienced identical peak metamorphic conditions of lower amphibolite facies. All these samples also variably experienced a retrograde greenschist event, characterized by secondary albite (Table 4) and chlorite (Table 1). Based on these considerations, there is no justification for breaking these three "units" out as separate entities.

Representative complete mineral chemical analyses are given as Tables 7-11.

REFERENCES

- Bhattacharya, A., Mohanty, L., Maji, A., Sen, S.K., and Raith, M., 1992, Non-ideal mixing in the phlogopiteannite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet thermometer: Contributions to Mineralogy and Petrology, v. 111, p. 87-93.
- Forbes, R.B., 1982, Bedrock geology and petrology of the Fairbanks Mining District, Alaska: AK Div Geological and Geophysical Surveys, Alaska Open-File Report 169, 68 p.
- Ghent, E.D., and Stout, M.V., 1981, Geobarometry and geothermometry of plagioclase-biotite-garnetmuscovite assemblages: Contributions to Mineralogy and Petrology, v. 76, p. 92-97.
- Graham, C.M., and Powell, R., 1984, A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California: Journal of Metamorphic Geology, v. 2, p. 13-31.
- Hodges, K.V., and Spear, F.S., 1982, Geothermometry, geobarometry and the Al₂SiO₅ triple point at Mt. Moosilauke, New Hampshire: American Mineralogist, v.67, p. 1118-1134.
- Keskinen, M.J., 1989, Lithological and fluid compositional control of amphibole compositions and their potential as P-T indicators of regional metamorphism: An illustration from the Fairbanks schist, Yukon Crystalline Terrane, Alaska: Geol. Soc. Amer., abstr w/ progr., vol. 21, p. A275.
- Kohn, M.J., and Spear, F.S., 1990, Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont: American Mineralogist, v. 75, p. 89-96.
- Pewe, T.L., Bell, J.W., Forbes, R.B., and Weber, F.R., 1976, Geologic Map of the Fairbanks D-2 quadrangle, Alaska: U.S. Geol. Surv. Misc. Invst. Map I-942, scale 1:24,000.
- Robinson, M.S., Smith, T.E., and Metz, P.A., 1990, Bedrock geology of the Fairbanks Mining District: Alaska Division of Geological and Geophysical Surveys, Prof. Report 106, 2 sheets.

Sample Cc Cl Cz Zr Qz Pl Mu Bt Gt Am Rt Tm Op Ap Sp FM17 Х X x X X X X х X x FS101C х х Х х х Х Х х х х FS104B х х Х Х х х Х Х х х FS104H Х Х Х Х Х Х Х Х х х х х FS105H Х х Х х х FS201B Х х Х х х х х х FS203C х Х Х Х Х Х Х Х Х **RN173** Х Х х х Х Х х х Х х RN336 X Х х Х х х Х

Qz: quartz, Pl: plagioclase, Mu: muscovite, Bt: biotite, Gt: garnet, Cc: calcite, Am: amphibole, Cl: chlorite, Rt: rutile, Tm: tourmaline, Op: opaques, Ap: apatite, Cz: clinozoisite, Zr: zircon, Sp: sphene

Sample		Temperat	ure (°C)
mapped	facies ⁱ	Bhattacharya et al. (1992)	Hodges and Spear (1982)
FM17, G3	a	660	760
FM17, G2	a	555	535
81BT252	g	515	540
95RN173	a	473	483
95RN336, type1	g	515	532
95RN336, type2	g	680	833
F\$101C	а	480	500
FS104H	а	· 495	500
FS105H	g	490	480
FS201B, G2R	а	470	470
FS201B, G2C	а	485	490
F\$203C	а	515	515

Table 2. Results of preliminary garnet-biotite thermometry.

Table 1. Mineralogy of the samples.

¹facies from Robinson et al. (1990); a=amphibolite, g=greenschist

Sample	Temperature (°C)	
	Modified Graham and Powell (1984) ¹	mapped metamorphic facies
FS104B	500	a
FS203C	505	a

 Table 3. Results of preliminary garnet-amphibole thermometry.

¹ Incorporates the garnet mixing model of Bhattacharya et al. (1992)

TABLE 4: MICROPROBE-DETERMINED PLAGIOCLASE COMPOSITIONS

Sample #	%An						
95RN173	0.4	95RN173	15.1	FS105	0.5	FS201	10.9
95RN173	1.9	95RN173	3.3	FS105	0.5	FS201	13.7
95RN173	5.5	95RN173	0.9	FS105	0.5	FS201	4.2
95RN173	17.9	95RN173	16.8	FS105	1.8	FS201	13.7
95RN173	18.1	95RN173	16.1	FS105	0.9		
95RN173	14.4	95RN173	16.0	FS105	0.6	FS203	30.3
95RN173	15.7	95RN173	18.3	FS105	1.1	FS203	29.3
95RN173	11.5	95RN173	18.1			FS203	30.2
95RN173	1.2	95RN173	13.2	FM17	35.1	FS203	29.9
95RN173	13.3	95RN173	15.5	FM17	34.0	FS203	30.3
95RN173	13.7			FM17	34.9	FS203	29.3
95RN173	13.7	FS104	22.2	FM17	33.8	FS203	30.2
95RN173	14.1	FS104	22.7	FM17	43.2	FS203	29.9
95RN173	14.0	FS104	20.5	FM17	46.2	FS203	38.5
95RN173	15.4	FS104	21.8	FM17	37.9	FS203	33.3
95RN173	15.0	FS104	22.2	FM17	41.9		
95RN173	15.1	FS104	22.7	FM17	40.1	FS101	24.6
95RN173	15.9	FS104	20.5	FM17	39.8	FS101	24.7
95RN173	15.5	FS104	21.8	FM17	23.4	FS101	26.1
95RN173	15.7	FS104	20.5	FM17	39.1	FS101	23.8
95RN173	15.5	FS104	20.6	FM17	35.4	FS101	21.1
95RN173	15.5	FS104	19.9	FM17	39.5	FS101	23.0
95RN173	15.7	FS104	20.3	FM17	22.9	FS101	24.8
95RN173	15.6	FS104	20.5	FM17	17.6	FS101	25.8
95RN173	13.6	FS104	20.6	FM17	40.0	FS101	25.9
95RN173	15.3	FS104	19.9	FM17	39.6	FS101	24.9
		FS104	20.3			FS101	24.5
						FS101	23.6
						FS101	25.8

Sample		Pressure (kbar)	
	Ghent and Stout	mapped metamorphic	Kohn and Spear
	(1981)	facies	(1990) (Fe reaction)
FM17, G3R	5.6	а	
FS101C	3.0	а	—
FS104B ¹		a	7.5
RN173 ²	4.1	а	-
RN336, type 1	4.3	g	
BT 252	4.8	g	
FS104H	4.4	а	
FS201B ³	5.1	а	
FS203C ²	_	a	5.6

Table 5. Results of preliminary barometry using T values from garnet-biotite thermometry (Table 2).

¹ Plagioclase of variable composition coexists with albite.
 ² Plagioclase of consistent composition coexists with albite.
 ³ Plagioclase is zoned and corroded.

Table 6: Summarized P-T	data.	Fairbanks	area
-------------------------	-------	-----------	------

mapped grade ¹	Avg Temp (oC)	Std Dv	Range	1	Avg P (kbar)	Std Dv	Range
amphibolite greenschist	497 512	23 21	470-555 480-540		5 4.5	1	3-7.5 4.3-4.8

¹from Robinson et al. (1990)

Sample	FM17	FM17	FM17	FS101C	FS101C	FS101C	FS104B
Grain	GIR	G2R	G3R	GIR	G2R	G6C	GIR
SiO ₂	37.608	36.066	38,032	38,423	37.903	37.435	38,261
Al ₂ O ₃	21,487	20.416	21.483	20.897	20.957	20,884	21.475
FeO	29.609	31.537	30.218	29,375	29,930	28,521	26.541
MgO	3.993	2.340	4.312	1.322	1.168	0.886	1.472
CaO	6.242	6.015	6,233	9,272	9.302	9.330	12,249
MnO	0.658	1.733	0,429	1,363	2.415	3.900	1,443
Total	99.597	98.107	100,707	100,652	101,675	100.956	101.441
		С	ations on the	basis of 12 O			
Si	2.984	2.946	2.982	3,031	2.993	2.982	2.992
Al	2.009	1.964	1,986	1,963	1.950	1.960	1.979
Fe	1.964	2.136	1.976	1.935	1.971	1.896	1.734
Mg	0,472	0.286	0.504	0.155	0.137	0.105	0.172
Ca	0,531	0.527	0.524	0.784	0,787	0.796	1.026
Mn	0.044	0.120	0.029	0,091	0.162	0.263	0.096
X_{Alm}	0.652	0.696	0.652	0.653	0.645	0.620	0,573
XPVT	0.157	0,093	0,166	0.052	0.045	0.034	0,057
XGm	0.176	0.172	0,173	0.264	0.257	0.260	0.339
X _{SDA}	0,015	0.039	0.010	0.031	0,053	0.086	0.032
a 1	2010 (D		20010477	DOLOGIE	FOLOCIT	TO LOCKY	
Sample	FS104B	FS104H	FS104H	FS105H	FS105H	FS105H	
Sample Grain	FS104B G2R	FS104H G1R	FS104H G2R	FS105H G3R	FS105H G4R	FS105H G5R	
Sample Grain SiO ₂	FS104B G2R 38.395	FS104H G1R 37.467	FS104H G2R 38.229	FS105H G3R 37.465	FS105H G4R 37.600	FS105H G5R 37.933	
Sample Grain SiO ₂ Al ₂ O ₃	FS104B G2R 38.395 21.193	FS104H G1R 37.467 21.038	FS104H G2R 38.229 21.578	FS105H G3R 37.465 20.849	FS105H G4R 37.600 20.697	FS105H G5R 37.933 20.812	
Sample Grain SiO ₂ Al ₂ O ₃ FeO	FS104B G2R 38.395 21.193 26.215	FS104H G1R 37.467 21.038 32.010	FS104H G2R 38.229 21.578 32.240	FS105H G3R 37.465 20.849 33.182	FS105H G4R 37.600 20.697 34.440	FS105H G5R 37.933 20.812 35.782	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO	FS104B G2R 38.395 21.193 26.215 1.440	FS104H G1R 37.467 21.038 32.010 1.469	FS104H G2R 38.229 21,578 32.240 2.063	FS105H G3R 37.465 20.849 33.182 1.743	FS105H G4R 37.600 20.697 34.440 1.688	FS105H G5R 37.933 20.812 35.782 1.839	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO	FS104B G2R 38.395 21.193 26.215 1.440 12.298	FS104H G1R 37.467 21.038 32.010 1.469 8.625	FS104H G2R 38.229 21.578 32.240 2.063 7.625	FS105H G3R 37.465 20.849 33.182 1.743 6.619	FS105H G4R 37.600 20.697 34.440 1.688 5.721	FS105H G5R 37.933 20.812 35.782 1.839 5.367	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113	FS105H G5R 37.933 20.812 35.782 1.839 5.367 0.074	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259	FS105H G5R 37.933 20.812 35.782 1.839 5.367 0.074 101.807	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259	FS105H G5R 37,933 20.812 35.782 1.839 5.367 0.074 101.807	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259	FS105H G5R 37,933 20.812 35.782 1.839 5.367 0.074 101.807	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total Si	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015	FS105H G5R 37.933 20.812 35.782 1.839 5.367 0.074 101.807 3.003	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total Si Al	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008 1.957	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059 C 2.979 - 1.971	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997 1.994	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007 1.972	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015 1.956	FS105H G5R 37.933 20.812 35.782 1.839 5.367 0.074 101.807 3.003 1.942	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total Si Al Fe	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008 1.957 1.747	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059 C 2.979 - 1.971 2.125	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997 1.994 2.113	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007 1.972 2.225	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015 1.956 2.305	FS105H G5R 37.933 20.812 35.782 1.839 5.367 0.074 101.807 3.003 1.942 2.364	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total Si Al Fe Mg	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008 1.957 1.747 0.207	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059 C 2.979 - 1.971 2.125 0.174	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997 1.994 2.113 0.241	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007 1.972 2.225 0.209	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015 1.956 2.305 0.202	FS105H G5R 37,933 20.812 35.782 1.839 5.367 0.074 101.807 3.003 1.942 2.364 0.217	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total Si Al Fe Mg Ca	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008 1.957 1.747 0.207 0.989	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059 C 2.979 1.971 2.125 0.174 0.735	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997 1.994 2.113 0.241 0.641	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007 1.972 2.225 0.209 0.569	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015 1.956 2.305 0.202 0.491	FS105H G5R 37,933 20,812 35,782 1,839 5,367 0,074 101.807 3,003 1,942 2,364 0,217 0,455	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total Si Al Fe Mg Ca Mn	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008 1.957 1.747 0.207 0.989 0.088	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059 C 2.979 1.971 2.125 0.174 0.735 0.031	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997 1.994 2.113 0.241 0.641 0.011	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007 1.972 2.225 0.209 0.569 0.006	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015 1.956 2.305 0.202 0.491 0.008	FS105H G5R 37,933 20,812 35,782 1,839 5,367 0,074 101.807 3,003 1,942 2,364 0,217 0,455 0,010	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total Si Al Fe Mg Ca Mn	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008 1.957 1.747 0.207 0.989 0.088	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059 C 2.979 - 1.971 2.125 0.174 0.735 0.031	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997 1.994 2.113 0.241 0.641 0.011	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007 1.972 2.225 0.209 0.569 0.006	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015 1.956 2.305 0.202 0.491 0.008	FS105H G5R 37,933 20,812 35,782 1,839 5,367 0,074 101,807 3,003 1,942 2,364 0,217 0,455 0,010	
Sample Grain Si O_2 Al ₂ O_3 FeO MgO CaO MnO Total Si Al Fe Mg Ca Mn X _{Alm}	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008 1.957 1.747 0.207 0.989 0.088 0.576	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059 C 2.979 1.971 2.125 0.174 0.735 0.031 0.693	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997 1.994 2.113 0.241 0.641 0.011 0.703	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007 1.972 2.225 0.209 0.569 0.006 0.739	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015 1.956 2.305 0.202 0.491 0.008 0.767	FS105H G5R 37.933 20.812 35.782 1.839 5.367 0.074 101.807 3.003 1.942 2.364 0.217 0.455 0.010 0.776	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total Si Al Fe Mg Ca Mn X _{Alm} X _{Pyr}	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008 1.957 1.747 0.207 0.989 0.088 0.576 0.068	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059 C 2.979 1.971 2.125 0.174 0.735 0.031 0.693 0.057	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997 1.994 2.113 0.241 0.641 0.011 0.703 0.080	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007 1.972 2.225 0.209 0.569 0.006 0.739 0.069	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015 1.956 2.305 0.202 0.491 0.008 0.767 0.067	FS105H G5R 37,933 20,812 35,782 1,839 5,367 0,074 101.807 3,003 1,942 2,364 0,217 0,455 0,010 0,776 0,071	
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO Total Si Al Fe Mg Ca Mn X _{Alm} X _{Pyr} X _{Orr}	FS104B G2R 38.395 21.193 26.215 1.440 12.298 1.501 101.042 3.008 1.957 1.747 0.207 0.989 0.088 0.576 0.068 0.326	FS104H G1R 37.467 21.038 32.010 1.469 8.625 0.450 101.059 C 2.979 - 1.971 2.125 0.174 0.735 0.031 0.693 0.057 0.240	FS104H G2R 38.229 21.578 32.240 2.063 7.625 0.166 101.901 ations on the 2.997 1.994 2.113 0.241 0.641 0.011 0.703 0.080 0.213	FS105H G3R 37.465 20.849 33.182 1.743 6.619 0.095 99.953 basis of 12 O 3.007 1.972 2.225 0.209 0.569 0.006 0.739 0.069 0.189	FS105H G4R 37.600 20.697 34.440 1.688 5.721 0.113 100.259 3.015 1.956 2.305 0.202 0.491 0.008 0.767 0.067 0.163	FS105H G5R 37,933 20,812 35,782 1,839 5,367 0,074 101.807 3,003 1,942 2,364 0,217 0,455 0,010 0,776 0,071 0,149	

Table 7. Selected garnet analyses. Note that "R" and "C" stand for "rim" and "core," respectively.

Sample	F\$201B	FS201B	FS203C	FS203C	FS303D	F\$303D	FS303D
Grain	G2R	G2C	GIR	G3R	GIR	G2R	G3R
SiO ₂	37,883	38.263	38,483	38.457	38,269	37.852	38,346
Al ₂ O ₃	20.834	21.445	21,413	20.921	21.510	21.168	21.454
FeO	29,434	29,567	27.633	28.681	27.422	27.701	27.101
MgO	1.299	1.203	1.999	2.120	2.393	2.483	2.364
CaO	10,620	11.159	10.130	9.813	11.009	10.457	10.610
MnO	0,615	0.718	1,596	0.501	0,864	0,980	1.218
Total	100.685	102.355	101,254	100.493	101,467	100.641	101.093
		C	Cations on the	basis of 12 O			
Si	3.002	2.986	3.010	3.029	2,984	2,981	2.998
A1	1.945	1,973	1.974	1.942	1.977	1.965	1,977
Fe	1.946	1.927	1.806	1.884	1.786	1.821	1.770
Mg	0.154	0.140	0.233	0.249	0.278	0.292	0.276
Ca	0.902	0.933	0.849	0.828	0.920	0.882	0.889
Mn	0.041	0.047	0,106	0.034	0.057	0.065	0.081
X _{Alm}	0.640	0.632	0,603	0.629	0.587	0.595	0.587
Xpyr	0.051	0.046	0.078	0.083	0.091	0.095	0.092
Xon	0,296	0,306	0.284	0.276	0.303	0,288	0.295
X_{Sps}	0.013	0.015	0.035	0.011	0.019	0.021	0.027

,

Table 7. Selected garnet analyses, continued.

Sampic	FM17	FM17	FM17	F\$101C	F\$101C	FS104H	FS104H	FS105H
Grain	81	B2	B3	81	B2	B 1	B2	B3
SiO ₂	35.021	36.751	36.614	35.038	35,961	36.653	37,537	36.145
Al ₂ O ₃	18.961	19.054	17.758	20.488	19.519	19.915	19.039	19.915
FeO	16.859	19.201	19.234	21.852	21.403	20.054	18.071	20.054
MgÖ	9.592	9.329	11.541	9.335	9.076	10.217	10.174	10.217
CaO	0.190	0.105	0.050	0.012	0,056	0.033	0,223	0.033
MnO	0.037	0.119	0.080	0.160	0.137	0.108	0.077	0.108
TiO ₂	1.392	1.336	L.308	1.229	1.739	0.953	0.966	0.953
K ₂ O	8,773	8,360	9.626	8.758	9.244	9.373	8.278	9.373
Na ₂ O	0.225	0.170	0.149	0.086	0.107	0.079	0.096	0.079
Total	91.050	94.425	96.180	96.958	96.242	97.385	94.461	97.385
			Cations on t	the basis of 12 a	nions			
Si	2,748	2.790	2.759	2.637	2.698	2.722	2.825	2.722
AI	1.751	1.705	1.561	1.818	1.726	1.743	1.689	1.743
Fe	1.110	1.220	1.212	1,377	1.343	1.245	1.138	1.245
Mg	1.261	1.057	1.296	1.048	1.015	1,131	1.141	1.131
Ca	0.016	0.017	0.004	0.001	0,005	0.003	0.018	0.003
Mn	0.002	0.008	0.005	0.010	0.009	0.007	0.005	0.007
Tì	0.082	0.076	0.074	0.070	0.098	0.053	0.055	0.053
K	0.882	0.810	0.925	0.840	0.884	0.888	0.795	0.888
Na	0.034	0.025	0.022	0.013	0.016	0.011	0.014	0.011
^(vn) Al	0.499	0.495	0.320	0.455	0,424	0.465	0.514	0.465
Fe/(Fe+Mg)	0,468	0.536	0.483	0.568	0.570	0.524	0.499	0.524
· · · · · · · · · · · · · · · · · · ·								
			••••••					
	Date and							
Sample	FS105H	FS105H	FS201B	FS201B	FS203C	FS303D	FS303D	F\$303D
Sample Grain	FS105H B4	FS105H B5	FS201B B2-G2R*	FS201B B2-G2C*	FS203C B3	FS303D B1	FS303D B2	F\$303D B3
Sample Grain SiO1	FS105H B4 36.378	FS105H B5 35.197	FS201B B2-G2R* 36.326	FS201B B2-O2C* 35.526	FS203C B3 35.123	FS303D B1 35.806	F\$303D B2 36.918	F\$303D B3 37.103
Sample Grain SiO ₂ Al ₂ O ₃	FS105H B4 36.378 21.202	FS105H B5 35.197 18.706	F\$201B B2-G2R* 36.326 19.069	FS201B B2-G2C* 35.526 20.316	FS203C B3 35.123 17.723	FS303D B1 35.806 16.948	FS303D B2 36.918 17.298	F\$303D B3 37.103 18.090
Sample Grain SiO ₁ Al ₃ O ₅ FeO	FS105H B4 36.378 21.202 18.323	FS105H B5 35.197 18.706 21.311	FS201B B2-G2R* 36.326 19.069 19.527	FS201B B2-G2C* 35.526 20.316 21.710	FS203C B3 35,123 17,723 16,825	FS303D B1 35.806 16.948 19.923	FS303D B2 36.918 17.298 20.555	FS303D B3 37.103 18.090 19.061
Sample Grain SiO ₂ Al ₃ O ₃ FeO MgO	FS105H B4 36.378 21.202 18.323 9.088	FS105H B5 35.197 18.706 21.311 9.793	F\$201B B2-G2R* 36.326 19.069 19.527 10.676	FS201B B2-G2C* 35.526 20.316 21.710 9.660	FS203C B3 35,123 17,723 16,825 12,536	FS303D B1 35.806 16.948 19.923 11.670	FS303D B2 36.918 17.298 20.555 10.725	F\$303D B3 37.103 \$8.090 19.061 12.289
Sample Grain SiO ₂ Al ₃ O ₃ FeO MgO CaO	FS105H B4 36.378 21.202 18.323 9.088 0.080	FS105H B5 35.197 18.706 21.311 9.793 0.161	F\$201B B2-G2R* 36.326 19.069 19.527 10.676 0.885	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259	FS203C B3 35,123 17,723 16,825 12,536 0,161	FS303D B1 35.806 16.948 19.923 11.670 0.358	FS303D B2 36.918 17.298 20.555 10.725 0.122	F\$303D B3 37.103 \$8.090 19.061 f2.289 0.049
Sample Grain SiO ₂ Al ₃ O ₅ FeO MgO CaO MnO Tro	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008	FS105H B5 35.197 18.706 21.311 9.793 0.161 0.000	F\$201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259 0.050	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056	FS303D B1 35.806 16.948 19.923 11.670 0.358 0.111	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071	F\$303D B3 37.103 18.090 19.061 12.289 0.049 0.010
Sample Grain SiO ₁ Al ₃ O ₃ FeO MgO CaO MnO TiO ₁	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7 542	F\$201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.510	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056 1,556	FS303D B1 35.806 16.948 19.923 11.670 0.358 0.111 1.595 6.212	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 0.235	FS303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₂ O	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.124	FS201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.045	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056 1,556 8,978	FS303D B1 35,806 16,948 19,923 11,670 0,358 0,111 1,595 6,317	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027	FS303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.043
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₁ O Na ₂ O Tubl	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174	FS201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046	FS201B B2-Q2C* 33.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101	FS203C B3 35.123 17.723 16.825 12.536 0.161 0.056 1.556 8.978 0.072	FS303D B1 35,806 16,948 19,923 11,670 0,358 0,111 1,595 6,317 0,062	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027	F\$303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₁ O Na ₂ O Totał	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163	FS201B B2-O2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865	FS201B B2-Q2C* 33.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96,763	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056 1,556 8,978 0,072 93,030	FS303D B1 35.806 16.948 19.923 11.670 0.358 0.111 1.595 6.317 0.062 91.790	F\$303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166	F\$303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452
Sample Grain SiO ₁ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₁ O Na ₂ O Totai	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163	FS201B B2-O2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865	FS201B B2-O2C* 33.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056 1,556 8,978 0,072 93,030	FS303D B1 35.806 16.948 19.923 11.670 0.358 0.111 1.595 6.317 0.062 91.790	F\$303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166	F\$303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452
Sample Grain SiO ₁ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₂ O Na ₂ O Totai	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163	FS201B B2-O2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865 Cations on 1	FS201B B2-O2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763	FS203C B3 35.123 17.723 16.825 12.536 0.161 0.056 1.556 8.978 0.072 93.030	FS303D Bi 35.806 16.948 19.923 11.670 0.358 0.111 1.595 6.317 0.062 91.790	F\$303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166	FS303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452
Sample Grain SiO ₁ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₁ O Na ₂ O Total	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521 2.737	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163 2.710	F\$201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865 Cations on 4 2.731	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763 the basis of 12 a 2.684 2.684	FS203C B3 35.123 17.723 16.825 12.536 0.161 0.056 1.556 8.978 0.072 93.030 mions 2.708	FS303D B1 35.806 16.948 19.923 11.670 0.358 0.111 1.595 6.317 0.062 91.790 2.762	F\$303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166 2.791	FS303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452 2.747
Sample Grain SiO ₂ Al ₃ O ₃ FeO MgO CaO MnO TiO ₁ K ₁ O Na ₃ O Totai Si Al	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521 2.737 1.878	FS105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163 2.710 1.698	F\$201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865 Cations on 1 2.731 1.690	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763 the basis of 12 a 2.684 1.809	FS203C B3 35.123 17.723 16.825 12.536 0.161 0.056 1.556 8.978 0.072 93.030 mions 2.708 1.610	FS303D B1 35.806 16.948 19.923 11.670 0.358 0.111 1.595 6.317 0.062 91.790 2.762 1.541	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166 2.791 1.541	FS303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452 2.747 1.579
Sample Grain SiO ₂ Al ₃ O ₃ FeO MgO CaO MnO TiO ₁ K ₁ O Na ₂ O Totai Si Al Fe	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521 2.737 1.878 1.157	FS105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163 2.710 1.698 1.372	F\$201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865 Cations on 1 2.731 1.690 1.227	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763 the basis of 12 a 2.684 1.809 1.372	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056 1,556 8,978 0,072 93,030 whions 2,708 1,610 1,085	FS303D B1 35.806 16.948 19.923 11.670 0.358 0.111 1.595 6.317 0.062 91.790 2.762 1.541 1.285	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166 2.791 1.541 1.300	FS303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452 2.747 1.579 1.180
Sample Grain SiO ₂ Al ₃ O ₃ FeO MgO CaO MnO TiO ₁ K ₁ O Na ₃ O Totai Si Al Fe Mg	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521 2.737 1.878 1.157 1.018	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163 2.710 1.698 1.372 1.124	F\$201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865 Cations on 4 2.731 1.690 1.227 1.196	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763 the basis of 12 a 2.684 1.809 1.372 1.088	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056 1,556 8,978 0,072 93,030 snions 2,708 1,610 1,085 1,441	FS303D B1 35,806 16,948 19,923 11,670 0,358 0,111 1,595 6,317 0,062 91,790 2,762 1,541 1,285 1,342 0,225	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166 2.791 1.541 1.300 1.208	FS303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452 2.747 1.579 1.180 1.356
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₂ O Na ₂ O Total Si Al Fe Mg Ca	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521 2.737 1.878 1.157 1.018 0.007 0.007	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163 2.710 1.698 1.372 1.124 0.013	FS201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865 Cations on 4 2.731 1.690 1.227 1.196 0.072	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763 the basis of 12 a 2.684 1.809 1.372 1.088 0.021	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056 1,556 8,978 0,072 93,030 mions 2,708 1,610 1,085 1,441 0,013	FS303D B1 35,806 16,948 19,923 11,670 0,358 0,111 1,595 6,317 0,062 91,790 2,762 1,541 1,285 1,342 0,030 0 007	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166 2.791 1.541 1.300 1.208 0.010	FS303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452 2.747 1.579 1.180 1.356 0.004
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₂ O Na ₂ O Total Si Al Fe Mg Ca Mn Ti	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521 2.737 1.878 1.157 1.018 0.007 0.004 2.057	F\$105H B3 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163 2.710 1.698 1.372 1.124 0.013 0.000	FS201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865 Cations on 1 2.731 1.690 1.227 1.196 0.072 0.006	FS201B B2-G2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763 the basis of 12 a 2.684 1.809 1.372 1.088 0.021 0.003	FS203C B3 35.123 17.723 16.825 12.536 0.161 0.056 1.556 8.978 0.072 93.030 unions 2.708 1.610 1.085 1.610 1.085 1.441 0.013 0.004	FS303D B1 35,806 16,948 19,923 11,670 0,358 0,111 1,595 6,317 0,062 91,790 2,762 1,541 1,285 1,342 0,030 0,007	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166 2.791 1.541 1.300 1.208 0.010 0.005	F\$303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452 2.747 1.579 1.180 1.356 0.004 0.001
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₁ O Na ₂ O Na ₂ O Totał Si Al Fe Mg Ca Mn Ti V	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521 2.737 1.878 1.157 1.018 0.007 0.004 0.057	F\$105H B3 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163 2.710 1.698 1.372 1.124 0.013 0.000 0.068 c.711	FS201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865 Cations on 4 2.731 1.690 1.227 1.196 0.072 0.006 0.090	FS201B B2-Q2C* 35.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763 the basis of 12 a 2.684 1.809 1.372 1.088 0.021 0.003 0.030	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056 1,556 8,978 0,072 93,030 unions 2,708 1,610 1,085 1,441 0,013 0,004 0,090	FS303D B1 35,806 16,948 19,923 11,670 0,358 0,111 1,595 6,317 0,062 91,790 2,762 1,541 1,285 1,342 0,030 0,007 0,092 6,511	FS303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166 2.791 1.541 1.300 1.208 0.010 0.005 0.069	F\$303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452 2.747 1.579 1.180 1.356 0.004 0.001 0.073 0.001
Sample Grain SiO ₂ Al ₂ O ₃ FeO MgO CaO MnO TiO ₁ K ₁ O Na ₂ O Totał Si Al Fe Mg Ca Mn Ti K	FS105H B4 36.378 21.202 18.323 9.088 0.080 0.008 1.009 8.162 0.271 94.521 2.737 1.878 1.157 1.018 0.007 0.004 0.057 0.782	F\$105H B5 35.197 18.706 21.311 9.793 0.161 0.000 1.178 7.643 0.174 94.163 2.710 1.698 1.372 1.124 0.013 0.000 0.068 0.751	FS201B B2-G2R* 36.326 19.069 19.527 10.676 0.885 0.085 1.586 6.665 0.046 94.865 Cations on 1 2.731 1.690 1.227 1.196 0.072 0.006 0.090 0.639	FS201B B2-O2C* 33.526 20.316 21.710 9.660 0.259 0.050 0.523 7.618 0.101 96.763 the basis of 12 a 2.684 1.809 1.372 1.088 0.021 0.003 0.030 0.734	FS203C B3 35,123 17,723 16,825 12,536 0,161 0,056 1,556 8,978 0,072 93,030 mions 2,708 1,610 1,085 1,441 0,013 0,004 0,090 0,883 0,883	FS303D B1 35.806 16.948 19.923 11.670 0.358 0.111 1.595 6.317 0.062 91.790 2.762 1.541 1.285 1.342 0.030 0.007 0.092 0.621	F\$303D B2 36.918 17.298 20.555 10.725 0.122 0.071 1.215 9.235 0.027 96.166 2.791 1.541 1.300 1.208 0.010 0.005 0.069 0.891	FS303D B3 37.103 18.090 19.061 12.289 0.049 0.010 1.303 9.494 0.053 97.452 2.747 1.579 1.180 1.356 0.004 0.001 0.073 0.897

0.421 0.506

0.303 0.489

0.318 0.430

0.493 0.558

0.332 0.518

0.326 0.465

Table 8. Selected biotite analyses.

0.532 *Adjacent to garnet G2R and included within G2C, respectively.

0.615

^(VI)Al Fc/(Fe+Mg)

0.408

Sample	F\$104B	FS104B	FS203C	FS203C	FS303D	F\$303D	FS303D
Grain	Al	A2	A1	A3	A1	A2	A3
SiO ₂	45.121	44.717	44.340	43,768	44.438	45.274	44.754
Al ₂ O ₃	15.613	14.896	16.273	16.028	16,584	16.033	16.623
FeO	18.275	16.276	15.540	15.920	16.744	15,760	16.051
MgO	8.947	10.141	9.242	9.312	9.122	10.182	9,537
CaO	10. 708	10.636	10.507	10,317	10,142	10.481	10.359
MnO	0.218	0.198	0.155	0.061	0.118	0.268	0.237
TiO ₂	0.266	0.383	0.434	0.381	0.532	0,439	0.432
K ₂ O	0,572	0.508	—	0.384	0.360	0.402	0.405
Na ₂ O	1,504	1,577	1,532	1.641	1.467	1.461	1.519
Total	101,224	99.342	_	97,812	99,507	100.300	99.917
		Cation	s on the basis	of 24 anions			
Si	6,191	6,207	6,245	6,150	6,141	б,185	6,146
Al	2,525	2,439	2.531	2.654	2,701	2,582	2.690
Fe	2,097	1,890	1.831	1.871	1.935	1.801	1.843
Mg	1,830	2.098	1,940	1.951	1.879	2.073	1.952
Ca	1,575	1.630	1,585	1.553	1.502	1,534	1.524
Mn	0.084	0.023	0.018	0,007	0.014	0.031	0.028
Ti	0.028	0.040	0.046	0.040	0.056	0.045	0.044
К	0.100	0.090		0.069	0.064	0.070	0.071
Na	0.400	0.424	0.419	0,447	0.394	0.387	0.405
(VI)	0.716	0.646	0.776	0.804	0.842	0.767	0,836
Fe/(Fe+Mg)	0,534	0.474	0.486	0.490	0.507	0.465	0,486
Leake	ferroan	ferroan		ferroan	ferro-	alumino-	alumino-
classification	pargasite	pargasite		pargasite	Tschermak -ite	Tschermak	Tschermak ite

Table 9. Selected amphibole analyses.

Comula	11/1/2	T1 () 7	P01010	ECIAIO	E01010
Sample	FM17	FMI7	FS101C	FSIOIC	FSIDIC
Grain	P1	P3	P1	P2	P3
SiO ₂	58,715	57,848	62.545	63.671	63.072
Al ₂ O ₃	27.642	27.485	25.336	24.935	25.200
CaO	8.128	8.440	5.409	4,871	5.351
Na ₂ O	6.799	5,700	8.812	9.163	8.733
K ₂ O	0.073	0,122	0.140	0.070	0.118
Total	101.357	99,595	102.242	102.710	102.474
X _{An}	0.396	0.446	0.251	0.226	0.251
X _{Ab}	0.600	0.547	0.741	0.770	0.742
Xor	0.004	0.008	0.008	0.004	0.007
Sample	FS104B	FS104H	FS201B	FS203C	FS303D
Grain	P2	<u>P1</u>	P2	P1	P1
SiO ₂	62.724	64.088	67.548	62.818	60.910
Al_2O_3	24,760	24,410	23.132	26.017	26.547

4.324

9.300

0.102

0.203

0.791

0.006

102.224

2.988

10.322

0.054

0.137

0.860

0.003

104.044

6.373

8.217

0,050

0.299

0.698

0.003

103.475

Table 10. Selected plagioclase analyses.

4.502

8.720

0.293

0.218

0.765

0.017

ι

100.999

CaO

 Na_2O

 K_2O

Total

X_{An} X_{Ab} X_{Or} 7.090

7.814

0.056

0.333

0.664

0.003

Sample	FM17	FM17	FS101C	FS101C	FS104H	FS201B
Grain	Ml	M3	M 1	M2	M1	M2
SiO2	48.630	49.886	47.116	48.601	48.089	52.211
AI ₂ O ₃	33,191	31.860	35,965	33.271	34.340	30.009
FeO	2,534	1,965	1.997	2.252	1.742	2,548
MgO	1,946	2,456	1,091	1.914	1.798	3,198
MnO	0.017	0.021	0.016	0.014	0.007	0.031
TiO ₂	0,485	0,448	0,478	0.203	0.501	0.262
K₂O	10.315	10.552	10.856	10.973	10.186	10.376
Na ₂ O	0.569	0.631	0.682	0.532	0.840	0.470
CaO	0.023	0.005	0.010	0.007	0.020	0.010
Total	97.710	97.824	98.211	97.767	97.483	99.115
		Cations o	n the basis of 12	anions		
Si	3,168	3.239	3.065	3,171	3,128	3.342
A1	2.549	2.438	2.743	2.558	2.633	2.264
Fe	0.139	0.107	0.109	0.123	0.095	0.136
Mg	0.189	0.238	0.106	0.186	0,174	0.305
Mn	0,001	0.001	0.001	0.001	0,000	0.002
Ti	0.024	0.022	0.023	0.010	0.025	0.013
K	0.857	0.874	0.901	0.913	0,846	0.847
Na	0.072	0.080	0.086	0.068	0.106	0.058
Ca	0.006	0.000	0.001	0.000	0.001	0.001
^(VI) A1	1,717	1.677	1,808	1,729	1,761	1.600
Xmuscovite	0.764	0.751	0,805	0.785	0.761	0.72
Xperseposite	0.064	0.069	0.077	0.058	0.095	0.050

Table 11. Selected muscovite analyses.

