Division of Geological & Geophysical Surveys

PUBLIC-DATA FILE 96-18

MAJOR AND TRACE ELEMENT ANALYSES OF CRETACEOUS PLUTONIC ROCKS IN THE FAIRBANKS MINING DISTRICT, ALASKA

bу

R J. Newberry Department of Geology and Geophysics University of Alaska Fairbanks

November 1996

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

Released by

STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645

MAJOR AND TRACE ELEMENT ANALYSES OF CRETACEOUS PLUTONIC ROCKS IN THE FAIRBANKS MINING DISTRICT, ALASKA

RJ NEWBERRY, Dept Geology, Univ Alaska, Fairbanks, Ak 99775

Cretaceous granitic rocks comprise a small, but important part of the Fairbanks mining district, as they are spatially and temporally associated with much of the lode mineralization (Newberry et al., 1995). Rb/Sr, K-Ar, Ar-Ar and U-Pb dating of the quartz-rich plutonic rocks indicates that they were intruded at about 92 Ma; a small syenite plug on O'Connor Creek has a U-Pb age of 110 Ma (Newberry et al., 1996). As part of a continuing study of the geology of the Fairbanks mining district, granitic rocks have been collected and analyzed since 1975, but there has been no systematic compilation of major and trace element data. This report presents all available public sector analyses performed between 1980 and 1996, together with rock descriptions and locations.

Most of the analyses presented are from unweathered rocks showing no megascopic and little or no microscopic evidence for hydrothermal alteration (analyses 1 to 105). Up to 5% of the mafic minerals in these rocks show evidence for chloritization and plagioclase feldspars may exhibit a slight "dusting" by sericite. Consequently, the trace and major element contents of these rocks primarily reflect their primary igneous compositions. A few of the analyses presented (analyses 106 to 124) show hand specimen and/or thin section evidence for significant hydrothermal alteration: mafic minerals altered to chlorite +/- calcite +/- white mica +/- epidote +/- rutile and feldspars altered to white mica +/- quartz. Most of the analyzed samples do not contain obvious veining, however. The elemental contents of these rocks are only partly representative of the original magnatic compositions: "immobile" elements, such as Ti, Zr, Y, Nb, and Ga have changed the least, and "mobile" elements, such as Na, K, Ca, As, Cu, Sb, and Zn have probably changed the most.

About half of the major element analyses (Table 2) were performed by X-ray fluorescence (XRF) on fused glass disks by the ADGGS between 1980 and 1984. Some of these analyses were tabulated in

Burns et al. (1991), but accurate locations were not given. The remaining major element analyses were performed by several different commercial laboratories using XRF or Li-metaborate fusion/Inductively Coupled Plasma (ICP) techniques. A few samples were analyzed by XRF using pressed pellets at the University of Alaska. I consider only the TiO_2 values for these analyses to be truly quantitative and only list them. All major elements are listed in terms of weight percent oxides. Replicate analyses of split samples indicates that these values have uncertainties of approximately +/- 2% of the amount stated.

The samples were analyzed for trace elements (Tables 3-5) at a variety of laboratories, including the ADGGS atomic absorption (AA) lab, the University of Alaska XRF lab, and several commercial labs. The samples analyzed were split from the pulps remaining from the original major element analysis. Au, As, Cr, Cs, Eu, Hf, Lu, Nd, Sc, Sm, Ta, Tb, Th, and U were determined by Instrumental Neutron Activation Analysis (INAA). Ce, La, and Sb were mostly determined by INAA; a few samples were analyzed by XRF at the University of Alaska. Hg, Ag, Bi, Co, Cu, Li, Mo, Ni, Pb, and Zn were determined by AA and/or ICP. B was determined by delayed neutron counting. Cl and F were determined by specific ion electrode. W was determined by colorometric analysis and/or INAA. Ba. Ga, Nb, Rb, Sn, Sr, V, Y, and Zr were determined by XRF, mostly at the University of Alaska (as described in Newberry et al., 1994). A few samples were analyzed by XRF at a commercial lab. XRF analyses were also performed on several samples for the elements As, Cl, Co, Cr, Cu, F, Mo, Ni, Pb, Sb, Sc, Th, and Zn at the University of Alaska, as a check on analyses performed by other techniques at other labs. Five samples were also re-analyzed by ICP-MS at the Institute for Advanced Studies, Potsdam, Germany, and showed excellent agreement with the values given here. Replicate analyses of split samples and multiple analyses by several different techniques indicates that for most trace elements present at concentrations > 10 ppm, concentrations have uncertainties of approximately +/- 5% of the amount stated. Uncertainties for elements present at lower concentrations are approximately +/- 10% of the amount stated.

REFERENCES

- Burns, L.E., Newberry, R.J., and Solie, D.N., 1991, Quartz Normative plutonic rocks of interior Alaska and their favorability for association with gold: Alaska Division of Geological and Geophysical Surveys, Report of Investigation 91-3, 58 p.
- Newberry, R.J., Wiltse, M.A., Queen, L.K., and Pinney, D.S., 1994, Geochemical Major-Oxide and Trace element data for rock samples collected in the Circle mining district, June, 1993: Ak Division of Geological and Geophysical Surveys, PDF 94-32A, 5 p.
- Newberry, R.J., McCoy, D.T., and Brew, D.A., 1995, Phitonic-hosted gold ores in Alaska: Igneous vs. Metamorphic origins, Resource Geology Japan, Spec. Issue, no. 18., pp. 57-100.
- Newberry, R.J., Bundtzen, T.K., Clautice, K.H., Combellick, R.A., Douglas, T., Laird, G.M., Liss, S.A., Pinney, D.S., Reifenstuhl, R.R., and Solie, D.N., 1996, Preliminary geologic map of the Fairbanks mining district, Alaska, Alaska Division of Geological and Geophysical Surveys, PDF 96-16, 2 sheets, 32 pp...

		TABLE 1: LOCATIO	NG				
#	sample#	rock type		atitud	le	Long	gitude
1	207	granite	64	56.5	N	148	5.9 W
	89RN301	granite		53.8			22.2 W
	89RN302	granodiorite		53.8		147	
	89RN303	granodiorite		59.7		147	
5	89RN370	granodiorite		50.7		148	
	89RN371	granodiorite		50.6			0.4 W
7	95RN279B	granite	64				25.6 W
8	95RN306	tonalite	65	1.63			31.6 W
9	95RN340	tonalite	65	0.9	N	147	31.5 W
10	95RN409	tonalite	65	3.73	Ν	147	27.8 W
11	AH-2	tonalite	64	50.2	N	147	34 W
12	JKRyDk	aplitic granite	64	57.6	N	148	2.8 W
13	C134-186	tonalite	64	51.5	N	147	59.5 W
14	C134-233	tonalite	64	51.3	N	147	59.3 W
15	C23-245	granodiorite	64	51.3	N	147	59.5 W
16	C23-250	tonalite	64	51.3	N	147	59.4 W
	Ecc-4-26	tonalite	65				29.6 W
	Ecpd-205	tonalite	65				34.1 W
19	Ecpd-35	granodiorite	65	0.9		147	
	Ecc-2-124	2	65		N	147	
		aplitic granite				147	
	Ecpd-46	granite		0.65		147	
23	194-530	granite	64			147	
24	50-1093	granodiorite	64			147	
	50-495	granite		59.6		147	
	88-126	granite		59.5		147	
27 28	50-768 57-385	granite granite		59.6 59.5		147 147	
	57-397	granodiorite		59.5		147	
	57-405	granite		59.6			21.5 W
31	57-82	granite		59.5			21.5 W
	64-127	granite		59.6		147	
	64-470	granite		59.6		147	
	64-802	granite		59.6			22.2 W
	67-96	granite		59.5		147	
	88-288	granite		59.5		147	22 W
	88-30	granite		59.5		147	22 W
38	RN92-48	granite		59.6			47.2 W
39	agf-fgtn	ťonalite	65	0.5			34.3 W
40	agf-maf	tonalite	65	0.5	N	147	33.9 W
41	agf-mgtn	tonalite	65	0.6	N	147	34 W
	89rn78	tonalite	65	0.6	N	147	33.8 W
	87rn328	tonalite	65		N		30.6 W
44	3989	granodiorite		1.25		147	
45	3986	granodiorite		1.55		147	33 W
46	1589	granite		57.9		147	
47	1588	granite		58.1	N	147	
48	1590	aplitic granite				147	
49	2438	aplitic granite				147	
50 51	2294	aplitic granite				147	31 W
υL	3681	granite	04	58.2	N	147	23 W

. 4

		TABLE 1: LOCATIO	ONS			
#	sample#	rock type		atitud	le	Longitude
52	3682	granite	64	58	N	147 22 W
53	3683	granite	64	59		147 20.3 W
54	3684	granite	64		N	147 27.4 W
55	3685	granite	65	1.7	N	147 27.8 W
56	3987	granite		59.7	N	147 21.6 W
57	3988	granite	64		N	147 21.2 W
58	3990	granite	64		N	147 20.6 W
59	3993	granodiorite	64		N	147 22.1 W
60	1587	granodiorite	64		N	147 22 W
61	3942	granite	64	58.2	N	147 23.1 W
62	3941	aplitic granite			N	147 23 W
63	3943	granite	64		N	147 22.4 W
64	3944	granite	64			147 23.1 W
65	3945	granite	64		N	147 22.7 W
66	3946	granite	64		N	147 24.2 W
67	3947	granite	64		N	147 24.3 W
68	3948	granite	64		N	147 23.8 W
69	3949	granite	64	58	N	147 25.8 W
70	3950	granite	64		N	147 25.9 W
71	3951	granite	64		N	147 27 W
72	3952	granite	64		N	147 27.4 W
73	3953	granite	64	58		147 27.8 W
74	3954	granite	64	58.3	N	147 26 W
75	3955	granite	64	58.4	N	147 25.7 W
76	3956	granite	64	57.9	N	147 27.2 W
77	3957	granite	64	57.6	Ν	147 26.9 W
78	3958	aplitic granite	64	57.5	N	147 24.7 W
79	3959	granite	64	57.4	N	147 26.1 W
80	3960	granite	64		N	147 23.8 W
81	3961	granite	64		N	147 28.3 W
82	3964	granite	64			147 27.5 W
83	3965	granite	64			147 25.8 W
84	3966	granite	64			147 26.5 W
85	3968	granite		57.3		147 21.3 W
86	3969	granite		57.9		147 28.9 W
	3972	granite		56.8		147 29.8 W
	3976	granite		58.4		147 14.7 W
	3978	granite		58.4		147 18.8 W
	3980	aplitic granite		58		147 20.1 W
91	3981	granite		58.3		147 19.2 W
	3982	granite		58.4		147 19.8 W
93	3983	granite		59.1		147 18 W
	3997	tonalite		1.25		147 34.5 W
95	3999	tonalite				147 31.3 W
96	1574	tonalite	65			147 29.6 W
97	1576	tonalite		0.55		147 34.3 W
98	1579	granodiorite		0.85		147 30.7 W
99	1581	granodiorite	65		N N	147 27.8 W
	1582 1583	granite granodiorite	65 65			147 28.3 W
	1584	granodiorite		1.55 1.35		147 28.5 W 147 28.5 W
TUZ	7904	granoutorite	00	1.23	14	14/ 20.0 W

,

		TABLE	1: LOCATI	IONS					
#	sample#	rock	суре	La	atituo	de	Long	gitude	3
	1586	tonal						28.3	
104	95BT300A	syeni	te	64	57	N	147	51.8	W
105	95BT300B	syeni	te	64	57	N	147	51.8	W
				ALTI	ERED (GRA	NITIC	C ROCI	KS
106	95RN230	alt'd	granite	65	1.25	Ν	147	39.3	W
107	95RN422	alt'd	granite	65	3	Ν	147	33.3	W
108	C102-440	alt'd	graníte	64	51.2	N	147	59.3	W
109	C135-292	alt'd	granite	64	51.3	N	147	59.4	W
110	C23-296	alt'd	grd	64	51.1	Ν	147	59.4	W
111	ECC-1-22B	alt'd	grd	65	2.8	N	147	26.2	W
112	81PM114	alt'd	tonalite	64	51	N	148	4.75	W
113	81MH25	alt'd		64	54.2	N	147	35.7	W
114	agf-por	alt'd	granite	65	0.7	N	147	33.9	W
115	agf-br	alt'd	granite	65	0.65	N	147	34.7	W
116	AH-1	alt'd	granite	64	50.2	N	147	34.3	W
117	958T105	alt'd	granite	64	54.7	N	148	16	W
118	95BT105c	alt'd	granite	64	54.8	N	148	15.9	W
119	95BT106	alt'd	granite	64	54.9	N	148	16.1	W
120	95BT117	alt'd	granite	64	54.9	N	148	13.7	W
121	95BT142	alt'd	granite	64	56.5	N	148	5.49	W
122	95BT43	alt'd	tonalite	64	57.5	N	148	9.42	W
123	95KC156	alt'd	granite	65	4.35	N	147	13.6	W
124	95DNS58	alt'd	grd	65	4.86	N	147	23.5	W

#	TABLE SIO2 TIO2					DSITION Al203					К20	LOI	SUM
1	74.4 0.04	0.1		0.9		13.98							
2	70.4 0.31			1.3		14.8							
	62.9 0.48			3.8		15.0							
4	66.6 0.45					15.2							98.2
5 6	62.8 0.73 65.1 0.64				5.35 1 71	15.2	0.11	1 26	4.72	2.38	3.5/	1.31	98.0 99.2
7	73.3 0.15	0.03	0.85	3.5	1.48	13.33	0.03	0.28	1.52	2.00	4.91	0.85	98.5
8	73.3 0.15 59.2 0.86 64.0 0.74 63.5 0.74	0.21			7.08	15.19	0.13	3.5	5.76	2.26	2.92	1.87	99.0
9	64.0 0.74	0.19			5.89	15.53	0.1	1,96	4.67	2.32	3.17	1.1	99.7
10	63.5 0.74	0.16	3.5	2.5	6.28	15.74	0.09	2.47	5.25	2.21	2.49	1.15	100.0
11	63.9 0.75	0.17	0.55	5.2	6.32	14.7	0.1	2.37	5.93	2.17	2.01	0.9	99.3
12	70.1 0.23	0.02	0.95	1.35	2.45	14.57	0.05	0.27	2.46	2.79	3.46	2.16	98.6
13	62.1 0.94	0.23			7.00	15.33	0.11	2.41	5.5	1.89	2.29	1.3	99.1
14 15	60.5 0.96	0.19			7.04	14 92	0.12	2.71	3.91	1.8	2.0	2.35	99.2
16	62.1 0.94 60.5 0.96 69.5 0.41 60.4 1.02	0.19			2.89	15.07	0.03	2.29	6.04	2.32	1.88	1.41	98.5
17	59.7 1.03	0.27	1.17	5.76	7.56	17.17	0.13	2.56	6.33	2.13	3.16	1.25	101.3
18	61.6 0.85					15.53							
19	65.9 0.66			4.15	4.67	16.02	0.11	2.04	4.52	2.53	3.5	1.32	101.5
20	74.2 0.11			1.11		13.64							
21	71.0 0.03					16.27							
22	73.6 0.02	0.01	0.65	0.82	1.56	14.35	0.03	0.11	1.04	2.84	5.36	0.91	99.9
23 24	73.6 0.02 70.7 0.33 68.4 0.41 69.4 0.33 69.8 0.38 69.8 0.32 71.8 0.25 61.4 0.86 73.0 0.26 70.5 0.27 72.4 0.24 70.3 0.31 69.8 0.29 70.0 0.41	0.27			2.20	15.26	0.03	0.6	2.51	3.64	4.17	1.65	101.4
25	69.4 0.33	0.33			2.86	14.86	0.08	0.09	2.98	3.43	3.78	1.26	100.0
26	69.8 0.38	0.33			2.59	15.59	0.05	0.68	2.74	3.77	4.03	0.72	100.6
27	69.8 0.32	0.31			2.69	14.85	0.05	0.7	2.89	3.23	3.76	1.44	100.0
28	71.8 0.25	0.22			1.69	15.05	0.04	0.48	2.21	3.23	4.82	0,66	100.5
29	61.4 0.86	0.33			7.24	15.85	0.13	2.01	3.78	3.02	3.25	2.07	99.9
30	73.0 0.26	0.23			1.68	14.25	0.03	0.47	2.1	3.23	4.25	0.68	100.2
31	70.5 0.27	0.24			1.99	15.06	0.03	0.66	2.17	3.00	4.84	2.06	100.9
32 33	70 3 0 31	0.22			2.01	15 21	0.04	0.55	2.21	3.05	4.44	1.01	100.3
34	69.8 0.29	0.24			2.51	15.06	0.05	0.62	2.43	3.42	4.06	1.3	100.0
35	70.0 0.41	0.25			2.90	15.32	0.05	0.78	2.99	3.39	4.25	0.78	101.1
36	68.4 0.41					15.72							
37	71.7 0.27					15.13							101.0
38	67.6 0.42		2	1.3		15.01							99.6
39	62.7 0.79			4.69		15.4							99.3
40	60.6 0.92			4.69	7.36		0.12						98.8
41 42	60.7 0.88 59.8 1.03		1./5	5.24	7.57 7.13		0.13 0.11				2.58		99.1 100.1
43	60.1 0.98		0.8	5.6		15.9						0.8	99.7
44	62.8 0.68			3.65		14.84							99.6
45	62.8 0.64			4.07		14.61							98.4
46	0.45												
47	0.40												
48	74.3 0.03	0.04	0.43	0.95	1.48	13.49	0.02	0.03	0.61	4.33	4.47	0.57	99.4
49 50	0.03	0 07	0.07	0 14	0 00	12 2	0.00	0 07	0 (1	2 01	A A 6	0 27	00.0
50 51	75.6 0.03 72.5 0.36			0.14 1.44		13.2 13.71							98.3 99.4
71	12.5 0.30	0.11	0.57		2.11	17.17	0.05	0.57	2.20	5.41	2.02	0.03	22.4

		TARLE	2 · M	AJOR EI	LEMENT	COMP	າວສາຫາດ	IS TN	សោ <u>ក</u> %	וחדצס	R S			
	#	SiO2 TiO2										К2О	LOI	SUM
	52	76.8 0.08	0.06	0.28	0.86	1.23	12.15	0.04	0.09	1.32	3.51	3.85	0.4	99.6
	53	76.7 0.04	0.03	0.09	0.68	0.84	12.18	0.02	0.01	0.64	3.84	4.27	0.32	98.9
	54	71.7 0.31	0.17	0.63	2.03	2.88	14.21	0.07	0.72	2.21	2.93	4.46	0.58	100.2
	55	75.0 0.12	0.04	0.25	1.35	1.75	13.37	0.06	0.2	1.59	3.43	4.4	0.31	100.3
	56	68.7 0.40	0.14	0.8	2.68	3.77	14.75	0.07	0.88	3.25	3.59	3.41	0.91	99.8
	57	70.2 0.33	0.11	0.29	1.31	1.74	14.77	0.05	0.50	2.16	2.93	4.15	1.72	98.6
	58	72.5 0.29	0.08	0.47	1.49	2.12	13.98	0.04	0.52	2.34	3.24	4.05	0.23	99.4
	59	69.8 0.49	0.12	0.58	2.61	3.48	14.80	0.06	0.96	2.85	3.17	3.13	0.81	99.6
	60	70.3 0.47	0.15	0.68	2.12	3.03	14.83	0.05	0.80	2.72	3.04	3.66	0.75	99.8
	61	71.6 0.37	0.13	0.4	1.94	2.55	14.76	0.04	0.67	3.37	3.39	3.71	0.56	101.2
	62	75.1 0.02	0.05	0.76	1.22	2.11	13.83	0.02	0.00	0.20	3.94	3.94	0.9	100.1
	63	74.1 0.26	0.1	0.57	2.52	3.37	13.02	0.08	0.45	2.06	2.87	3.37	0.69	100.3
	64	75.0 0.28	0.1	0.47	2.84	3.62	11.85	0.09	0.47	2.98	2.76	3.4	0.6	101.1
	65	77.7 0.07	0.04	0.2	1.13	1.45	12.13	0.04	0.00	1.37	3.37	3.64	0.27	100.1
	66	0.02												
	67	76.3 0.04	0.06	0.1	1.04	1.25	12.59	0.03	0.00	0.97	3.7	4.27	0.25	99.4
	68	75.9 0.06	0.12	0.09	1.04	1.24	13.08	0.03	0.03	0.83	3.82	5.8	0.36	101.3
	69	75.3 0.06	0.04	0.18	0.95	1.23	12.94	0.03	0.02	1.01	3.51	4.48	0.41	99.0
	70	71.2 0.28	0.08	0.45	2.93	3.70	14.50	0.08	0.54	2.36	3.28	3.66	0.95	100.6
	71	70.0 0.29	0.09	0.27	2.57	3.12	14.23	0.06	0.51	3.33	3.24	3.59	0.94	99.4
	72	69.7 0.41	0.14	0.46	3.33	4.16	13.58	0.1	0.95	3.22	2.79	4.01	1.03	100.0
	73	74.7 0.14	0.09	0.29	1.53	1.99	14.38	0.05	0.24	1.66	3.14	4.46	0.71	101.6
	74	71.8 0.32	0.09	0.41	2.79	3.51	12.75	0.1	0.56	2.13	2.9	3.47	0.74	98.3
	75	68.6 0.39	0.1	0.83	3.47	4.68	14.51	0.13	0.16	2.32	3.22	3.78	0.41	98.3
	76	71.4 0.35	0.07	0.42	2.61	3.32	13.90	0.1	0.42	2.21	3.21	3.41	0.53	98.9
	77	74.9 0.07	0.07	0.11	1.32	1.58	13.05	0.04	0.00	1.48	3.39	3.9	0.14	98.6
	78	73.2 0.02	0.05	1.13	1.45	2.74	13.68	0.01	0.00	0.29	3.89	4.6	0.72	99.1
	79	74.3 0.12	0.06	0.18	1,55	1.90	12.52	0.06	0.03	1.58	3.25	3.59	1.16	98.6
	80	73.0 0.20			1.49	2.29	14.40	0.05	0.38	1.91	3.03	4.46	0.51	100.3
	81	76.7 0.05			0.54		12.89							
		72.9 0.22			1.53		13.79							
	83	74.7 0.04			0.63									99.5
	84	72.6 0.24			1.85		14.23							
	85	74.9 0.31												
	86	72.5 0.26					13.88							
	87	74.0 0.13					13.75							
	88	74.5 0.20			1.53		13.43							
	89	73.6 0.18			1.53		14.11							
		74.4 0.02			0.59		13.59							
	91	73.6 0.16			1.44		13.73							
	92	76.1 0.08			0.68		12.77							
		70.9 0.32			2.21		14.50							
		59.4 0.92			5.67		16.52							
		59.7 0.95					16.05							
		62.0 0.86					16.34							
		62.5 0.89					15.78							
		65.4 0.67			3.96		15.99							99.7
		70.6 0.40			2.16		14.80							
		72.8 0.19					13.80							
		67.0 0.57												
T	02	65.3 0.78	0.22	0.83	4.41	5.73	14.95	0.09	1.52	4.55	2.64	3.19	0.39	99.4

	TABLE	2: M2	AJOR E	LEMENT	COMPO	OSITION	NS IN	WT %	OXID	ES			
#	SiO2 TiO2	P205	Fe203	FeO	Fetot	A1203	MnO	MgO	CaO	Na2O	K20	LOI	SUM
103	63.5 0.71	0.2											
104	64.9 0.04					17.7							
105	64.4 0.04	0.02	1.8	1.2	3.13	17.19	0.15	0.04	0.17	9.15	4.02	1.75	100.0
			RANITI										
106	71.8 0.23				2.59	14.4	0.03	0.39	1.40	1.01	4.23	3.99	
107	71.9 0.23												99.4
108	73.0 0.37				1.82	14.09							
109	75.8 0.39	0.1			1.60	14.74	0.01	0.46	0.16	0.01	3.68	2.9	99.8
110	68.7 0.39	0.15		-	2.74	14.55	0.03	0.75	2.49	2.35	3.72	2.72	98.6
111	69.9 0.21	0.1	0.55	3.84	4.81	15.63	0.06	0.64	2.07	2.48	3.56	1.55	101.0
112	61.3 0.77	0.34	2.57	5.25	8.40	15.99	0.33	0.7	0.91	2.71	3.81	4.43	99.7
113	65.0 0.79	0.29	5.96	0.27	6.26	16.26	0.03	0.74	0.92	1.41	3.81	3.49	98.9
114	73.9 0.06	0.1	0.61	0.13	0.75	13.2	0.01	0.2	1.34	3.13	4.72	1.64	99.1
115	85.0 0.06	0.1	0.44	0.25	0.72	6.42	0.03	0.17	0.31	3.13	3.11	0.49	99.5
116	72.4 0.19	0.05	0.38	0.7	1.16	14.5	0.01	0.37	3.92	2.49	3.62	1.1	99.8
117	72.5 0.04	0.02			1.18	14.25	0.04	0.2	1.28	2.87	4.96	1.49	98.8
118	72.5 0.05	0.02			1.32	14.22	0.03	0.19	0.83	3.00	5.14	1.74	99.0
119	73.0 0.09	0.02			1.36	13.92	0.04	0.13	0.85	3.09	5.06	1.09	98.6
120	78.0 0.48	0.02			0.63	14.25	0.01	0.15	0.03	0.01	2.59	3.84	100.0
121	72.4 0.27	0.03			1.68	13.72	0.03	0.21	1.15	2.94	4.45	1.83	98.7
122	59.1 0.96	0.48				16.97							99.6
123	73.5 0.39	0.05			2.01	13.25	0.01	0.44	0.23	7.68	0.21	0.83	98.6
124	68.3 0.22	0.07			2.51	14.14	0.04	0.39	3.15	2.43	3.59	4.46	99.3

#	Au ppb	TABL Hg ppb	E 3: Th Ag parts	As	B	Ba	CONCE Bi >			NS, I Co		A Cs	Cu	Eu
1 2 3 4 5 6 7 8 9 10 11 12 13	1		0.05	3 5 4		1385 1440 1300 1770 1780	2 0 0	64	370 380 260 200	3 7 9 7	27 70 57 65 83	15 7 10		1 1.1 1.4
14 15 16 17 19 20 22 23 25 27 29 31 23 34 56 37	2 1 110 2 125 7 3 168 18 26 6 8 5			2 2 5 1 2 1 5 2 1 1 1 2 1 1 1 2 1 1	3		0.2 0.1 0.8 0.2 0.8 0.1 0.2 8 2.6 2 0.1 0.05 0.05 0.4		299 73 210 20 57	4544393443445	82 72 64 10 33 10		24 30 15 27 13 9 65 18 16 15 14 15 23 14	
38 39 40 41 42 43 44 45 46 47 48 49	1.5 2 1.5 3 2	3	0.05 0.05 0.05	5 7 4.9 5 10 8 7 3 5	8	1900 1700 1700 1880 1729 1800 1500	1 1 0.5 1		210 195 237	8 11 14 12 6 6		9.4 5.9 6.4	46 50 42 51 64 83 79 45 15	0.7 1 1.5 1.5
50	9		0.1	5	22	130	0.5	5		0.5	5	31	23	

. 10

#	Au ppb	TABL: Hg ppb	Ag	As	В	EMENT Ba 1lion-	CONCE Bi >		ATION Cl		PART Cr	A Cs	Cu	Eu
51 52 53 54 55	100		0.2		9.4 8 11 10 4.9	1400 500 200 900 540		45 16 11 47 29			31		37	0.5 0.47 0.25 0.56 0.57
56	2		0.05	29		1700	3		90	4	30		51	
57 58	3		0.05	10	7	1680	1 4		340	3 3	18		24	
59	20		0.05	16 5		350 1650	4	68	78	د	23 32	19	23 46	0.5
60	1	3		4		1900	0.5		126	4	39	17	53	1
61	9		0.1	5.7		900	3	51	20	4	28	19	47	
62	4			_	_	100		12	15	2	8	6.1	28	
63	4		0.1 0.3	8	5	550	2	40	0.0	3	24	14	46	
64 65	4 3		0.3	10		710 370	1 7	42 22	88	2 3	22 21	11 10	37 65	
66	2		0.2	10		570	,			5	21	10	05	
67	58			7.7		100		5	20	2	5	13	68	
68	4		0.2			15	1	10		0.5	15	13	56	
69 70	4 15		0.05	4 20		18	2 4		15	0.5	25		16	
70	15		0.5	20 26		800 650	4		15	3 3	23 22		71 73	
72	6		0.0	7.7	10	1700	1	73	130	4	25	23	57	0.97
73	8		0.4	8		740	1			2	15		58	
74	1		1.1			550	1	42	40	3	30	19	67	
75	3 4		0.3	12		1450	3	70	10	4	27	26	49	
76 77	23		0.2	16 5.9		650 220	2	20	15 83	3 2	43 15	8.1	77 74	
78	19		0.4			40	0.8	7	15	2	10	6.9	23	
79	25			4.6		370		23	55	3	18	9.4	63	
80	15		0.05		5	550	3	26		2	27	7.8	15	
81 82	6 4		0.05	11		15 780	1 3	38		0.5 2	13 22	4.8	14	
83	4		0.03			20	5	30		0.5		4.8	13 44	
84	4		0.05	15		850	1	33		2	24	10	14	
85	4			5		300	1	32		1	21	7.2	14	
86	6		0.05	7		900	1			2	31		24	
87 88	50		0.05	8.9		450	4	16				13	60	
89	18			12		890	l		15	2	34		18	
90	13					70	-		10	2			42	
91	3		0.1			700	1		15		31		14	
92	4		0.05			520	1	11		0.5		6.1	13	0.43
93 94	4 2		0.1	26 3	7	1175 1700	2 1			3 12	28		14 48	
95	2	33	0.05	4	/	1950	0.5	66	220	15	79	9	48 42	
96		20				1800	~		245	~~		2		
97	1			6		1600	0.5			14		7.3	38	2
98	2		0.05	7		2150		75		9	64	б.9	58	
99		3 3		33		1600			269		~ ~			
100		د		5.8		950			28		22			

#	Au ppb	TABLE 3: TRACE Hg Ag As ppb parts per	B Ba	Вi		ATION Cl				Cu	Eu
101 102 103 104 105	1 4 1	2 0.05 4 10 0.05 7 2 0.05 4.4	1450 1520	0.5 1 0.5	89 96	194	4 6 10	41 59 50	16 7	69 41 40	1.11 1.4
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	2 8 1 34	17 118 0.9 0.9	5 1000 1200 1700 1700 580	1 0 1 4	40 8.1		13 9 3 1	18 210 340	4 1.4	146	
121 122 123 124				1 1 0							

		TABLE	24:			LEMENT	CONC								
#	F	Ga	Hf			Lu	Mo	Nb	Nd	Ni	Pb	Rb	Sb	Sc	Sm
		parts	s per	שדד	1101	1	->								
1															
2	420				54		1	17			21	119		3.5	
3 4	1420	20.4	A A	42	БQ	0.14	1	15 14	29	22	23	152 124		11	4.6
5	1550	20.4	4 .4 5	42 59	50	0.14	Т	12	24	22	2 2		0.7	12	5.3
6	1430		4.5	53		0.18		11	25				1.3	9	5.2
7		19					0	15		9	30	238	3		
8		18					2	10		7	20	95	0		
9 10		18					2	11 10		4	14	116 80	0		
11								11				75			
12												, .			
13															
14															
15															
16 17															
18															
19															
20															
21															
22 23	400						1				10		0.4		
24	1390						1				14		0.4		
25	780						1				14		0.2		
26	440						1				6		0.2		
27	760						1				14		0.4		
28 29	330 1100						1 1				10 6		0.4		
30	320						1				8	126	0.4		
31	460						1				14		0.4		
32	290						1				14		0.4		
33	380			0.1			1				8		0.4		
34 35	360 470			31	36		1 1	12		14	12 12		0.2 0.4		
36	470						T				12		0.4		
37	470						1				12		0.2		
38		18					1	8		9	18		1		
39		18.4	5	47	45	0.5	1	13			16		1.1	17	7
40 41	1000	18 18	4 4	47 46	33	0.4 0.4	1	10			15	76 90	$1.1 \\ 1$	22	5.7 6.1
41 42	760	19	4	40 43		0.4	1 1	12	22	30	12	90	T	23 21	5.3
43	640			47		0.2	-	7	30	50	<u>т 2</u>	95		24	4.4
44		19					1	12		26	6	100	1		
45	1442	19.7					1	15		26	10	110	0.3		
46							3				10		1		
47 48							3 12				37		1 1		
48 49							12				26 18		1 3		
50	210	21	2	6			10	30			15	380		1.7	2.2

#	F	Ga	Hf	La	Li	LEMENT Lu n	Mo	ENTRA Nb		S, P Ni	ART Pb	B Rb	Sb	Sc	Sm
51	640			27		0.24		14	14			220			3
52	80			6.9		0.83		20	5			220			1.9
53	20			8.2		1.52	12	30	5			320			2.2
54	1400			34		0.61		15	18			240			4.9
55	150			16		1.01	5	20	14		12	260	1		3.4
56		18					1	16		10	10	190	1		
57	250	17.9			36		1	13		6	10	130	1	3.3	
58		18.9		25	48		3	14		5	10	180	1		
59	1450	20	5	43		0.18	2	15			11	185	1		4.2
60		20.9	б	47		0.19	2	16		12	15		5.4		7.1
61	670	18	4	46		0.19	4	14		18	28		1.9		3
62	450	27	3	5	14		4	39		7	17		1.4	0.1	1
63		17.2	4	23			2	16		14	18		1.2		3.6
64	1100	17	5	38		0.19		16		12	18		1.2		6
65	145		4	б			3	25		7	17		1.9	2.6	1.5
66	76	21 4		2	17	0.5	1.0	2.1		_	21	353	2 2	2	2 6
67 68	/5	21.4	4 3	2	17	0.5	12	31		5	21		2.2	3	2.6
68		25	د	4 5	24		2	36		8 3	23		1.1	2.0	2
69 70		20		5	24		4	30		3 15	23		0.3		
70		18.5 20					1 2	17 15		14	14 28	240 210	1 7		
72	1950	20	6	42		0.63	2	19	31	T 4	38		2.5	8 8	6.9
73	1950	17	0	72		0.05	2 4	15	71	9	12	228	2.5	0.0	0.9
74	1800	17	4	30		0.19	1	16		13	16		1.5	7.1	4.5
75	2000	21	5	47		0.19	ĩ	18		9	21		3.4		6.1
76	1114	19.6	-				1	17		15	13	220	6	•	
77	145	18	4	7		0.3	5	20			18		1.2	3	2.8
78	85	27	3	3			3	37			18		1.2	0.1	2.1
79	295	17.4	4	8		0.2	4	16			17	230	1.4	3.1	2.5
80	75	16.3	3	18			2	14		6	15	190	0.4	4.9	2.3
81		22					1	45		1	24	350	1		
82		17.4	3	23			l	14		3	15	230		5.1	3.3
83			3	4			1	27			16			2.2	
84		16.1	3	23			1	14		4	14		0.6		2.7
85		14.5	3	11			2	12		3	11		0.8	4.6	2.2
86	758	17		~			2	15		3	12	225	1		0 1
87		18	4	9			1	19			18	280	0.4	4.4	2.1
88 89		16.5			35		2	14		4	1 1	205	1		
90		28			20		2	33		4	11	205 350	Т		
90 91		16.9			37		2	15		5	19	200	1		
92		19 2	2 2	56	57	0.48	3		5.2		26		0.3	4.4	1.8
93		18.1		5.0		0.40	4	14	5.2	10	12	205	5	7 • 7	1.0
94		18.1					-	9		27	5		1.3		
95	1071	18	5	42			1	10		26	12		2.7	22	5.7
96	/,_	18	2				-	11		20	~ 0	98.5	,		2.,
97	1240	18	5	45		0.2	2	11		21	13	87	1.9	25	7.3
98		19.4	5	48			1	12		16	7		1.3	13	6
99		20						15				180			
100		17					1	14				165	1		

•

		TABL	E 4:	TRAC	CE EI	LEMENT	CONC	ENTRA	MOIT	S, P	ART	В			
#	F	Ga	Hf	La		Lu	Mo	Nb	Nd	Ni	Pb	Rb	Sb	Sc	Sm
		parts	s pei	c mil	llion	1 - -	->								
		10.0					•		~ ~		• •				
101	T000	19.3	5.4	43		0.31	2	18	30	18	26	185	1.5	8.8	6.3
102	1.000	1.0	• •	- -			•	10	~ ~	18	9	111		1.0	
103	1650	19	3.8	57	56	0.32	3	9	39	18	19	110	1.3	18	7.9
104								370				180			
105								340				160			
100		2.6	ALU	SRED	GRAI	VITIC		1.0							
106		16					1	10		6	41	149	21		
107								10				130			
108															
109															
110										_					
111			•							5	35		-		
112			9	65			1						3		
113			9	65			1						9	. .	
114			3	19			1	18		11			0.5	2.4	3.8
115			2	4		0.3	1	8		11		117	1.1	1.8	2.1
116										•					
117		17					0	12		8	59	201	1		
118		18					0	12		7	61	208	4		
119		17					0	12		5	58	201	0		
120		16					0	10		5	9	103	8		
121		16					0	9		4	51	130	1		
122		22					3	23		6	17	132	0		
123								10		_		5			
124		16					1	10		4	35	119	8		

#	Sn	TABLE Sr s per	Та	тb	Th		NCEN V			, PAR Yb	T C Zn	Zr
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	10 1 1	635 1040 1007 601 623 215 595 683 520 448		0.38 0.6 0.6	22 21 22 18 14 16	7 4.5 4	29 47	2 3 1 1	27 20 22 17 14 49 22 25 20 21	1.05 2.4 2.3	87 80 95 86 80 20 75 79	170 158 181 168 177 74 160 198 150 173
16 17 18 19 20 21 22 23		450					127 120 67 10 10 10				4 4 8 4	126 157 185 43.5 50 34
24 25 26 27 28 29	10 8										52 62 48 46 120	2.4.4
30 31 32 33 34 35	3 3	626 612					40		26		42 36 46 42 44 60	144
36 37 38 39 40 41 42 43 44	3 3 3	453 606 655 620 577 950	0.9 0.8 0.9	1 0.8 0.7 1 0.9	7 19 16 15 18 19	5.1 4 3.3 2.7 2.7 5.5	88 136	1 1 1 1	9 18 16 13 7 16	3 2 2.2 2.4	32 46 81 77 79 84 73	128 198 163 158 143 170
45 46 47 48 49	4 14 16 10	990			19	5 11		15 10 22 18	12		75 116 69 9	170
50	10		11.5	1.9	25	13		5	95	10	3	34

.

	r	TABLE	5: TI	RACE	ELEME	NT CC	NCEN	TRA	FION	S, PAR	ТС	
#	Sn	Sr	Ta	Tb	 Th	U	V	W	Ŷ	Yb	Zn	Zr
			mill									
		•										
51		600		0.6				2		2.01		100
52		120		0.9				3	50	4		50
53		30		1.6				3		8.16		35
54		470		0.9				3	40			90
55		160		1.2				3	50	4.88	18	40
56		690			20	4			20		80	165
57		740			12	3	23		22		48	145
58	10	531			15	5.5	25		22		40	121
59	10	765	1.6			7.7		1	18		74	170
60		820	1.7	0.6		6.5	38	7	26		110	160
61		635	1.8	0.6	15	3.5	30	8	20		43	150
62		21	8	~ ^	28	10	1	3	77		8	41
63		330	3.3	0.9	21	5		2	32		51	119
64		270	3.7	1.3	18	5		1	35	4	56	122
65		165	4.3	0.6	16	9.5		2	59	5	18	71
66		56.6	10	2	24	0 7	10	1	0.0	•	1 1	4.2
67 68	4	49	10	2 2		8.7	16	1 3	88	9	11	43
69	4	34 67	6.4 4	2	25	9	4	3	77 56	8	23 22	51
70		485	4		26	16 10	4		28		22 60	75
70		485 680			26	2			28 32		85	130 142
72		350	2.4	1.06	28	28		3	34	4.4	86	161
73	6	276	2.8	1.00	17	5		د	36	4.4	35	75
74	0	430	2.9	0.8	24	11		1	38	4	58	132
75		248	2.8	1.2	31	12		1	26	3	98	163
76	18	400	2.0	1.2	23	6		T	36	د	66	125
77	10	220	4.4	1.5	17	9.2		13	49	7	17	76
78		31	6.2	1	18	12		2	78	4	11	45
79		196	5.2	1.2	16	8		1	45	4	22	77
80		310	1.9	0.9	14	7		2	27	4	42	87
81		50	7.3	0.2	26	16		-	95		22	55
82		310	2.6	1.1	15	7.5		2	36	4	42	85
83		210	8	0.9	20	11		3	69	6	12	•••
84		340	1.7	0.6	17	6		1	25	4	54	100
85		300	2.6	0.8	15	3.1		2	28	4	35	75
86		330			14	б			33		51	115
87		210	4.4	1.3	18	10		4	60	5	22	90
88												
89		322			15	3	20		32		37	79
90		25	6			13			119		24	60
91		381			15	6	15		36		37	85
92	4	240	3.5	0.56		12		3	42	3.05	15	44
93	14	550			12	2			33		55	120
94	3	605			15	2		1	10		56	156
95	3	475	0.5	0.6	15	4.4		1	12	2	68	150
96		608			17	З			11		74	180
97		455	0.8	0.9	17	4		2	11	3	74	155
98	3	702	1.1	0.9	20	3.4		3	21	3	71	195
99		835			23	8		10	20		80	170
100		350			18	8		10	36		38	120

	T.	ABLE	5: TF	ACE	ELEME	NT CO	NCEN	TRAT	IONS	S, PAR	ТС	
#	Sn	Sr	Ta	Тb	Th	U	v	W	Y	Yb	Zn	Zr
	parts	per	milli	on	>							
	-	-										
101		646	1.5	0.69	25	7.3		2	25	2.43	96	185
102		570			22			5	14		78	187
103		573	0.9	0.8	23	4.5	97	1	10	2.3	86	170
104		20							30			850
105		10							30			1010
	ALTERED GRANITIC ROCKS											
106	6	26			21			2	9		32	126
107		260							10			140
108												
109												
110												
111		330					10					115
112			1		19	5.5		8				
113			2		20	6.6		1			200	
114		138	0.9		14	3.5		1	9			116
115		137	1.1	0.6	8.6	2.6		3	25			54
116												
117	15	242			13			0	10		49	68
118	12	277			13			1	16		85	77
119	12	270			12			1	11		58	77
120	18	70			16			1	10		16	87
121	7	376			12			0	11		50	99
122	1	416			14			1	37		107	244
123		160						•	20			300
124	8	409			16			0	9		51	133