ARCTIC STRATEGIC TRANSPORTATION AND RESOURCES (ASTAR) PROJECT GEOPHYSICAL REPORT: CAPACITIVELY - COUPLED RESISTIVITY SURVEY FOR UTQIAGVIK, ATQASUK, AND WAINWRIGHT ROAD NETWORK, NORTH SLOPE, ALASKA

Tim G. Tannenbaum, Garrett G. Speeter, and Trent D. Hubbard

Preliminary Interpretive Report 2023-1

This publication has not been reviewed for technical content or for conformity to the editorial standards for DGGS.

2024 STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS

STATE OF ALASKA

Mike Dunleavy, Governor

DEPARTMENT OF NATURAL RESOURCES

John Boyle, Commissioner

DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS

Melanie Werdon, State Geologist & Director

Publications produced by the Division of Geological & Geophysical Surveys are available to download from the DGGS website (dggs.alaska.gov). Publications on hard-copy or digital media can be examined or purchased in the Fairbanks office:

Alaska Division of Geological & Geophysical Surveys (DGGS) 3354 College Road | Fairbanks, Alaska 99709-3707 Phone: 907.451.5010 | Fax 907.451.5050 dggspubs@alaska.gov | dggs.alaska.gov

DGGS publications are also available at:

Alaska State Library, Historical Collections & Talking Book Center 395 Whittier Street Juneau, Alaska 99801

Alaska Resource Library and Information Services (ARLIS) 3150 C Street, Suite 100 Anchorage, Alaska 99503

Suggested citation:

Tannenbaum, T.G., Speeter, G.G., and Hubbard, T.D., 2024, Arctic Strategic Transportation and Resources (ASTAR) Project geophysical report: capacitivelycoupled resistivity survey for Utqiagvik, Atqasuk, and Wainright road network, North Slope, Alaska: Alaska Division of Geological & Geophysical Surveys Preliminary Interpretive Report 2023-1, 72 p. https://doi.org/10.14509/30960

Contents		
Introduction1		
Field Investigation1		
Geophysical Investigation Methods		
Capacitively-Coupled Resistivity		
Drilling and Sampling		
Laboratory Data		
Subsurface Conditions and Observations5		
CCR Comparison with Test Hole Data Segments A, B, and C		
Segment F		
Segment M10		
Subsurface Conditions Interpreted from CCR12		
Conclusions and Recommendations14		
Acknowledgments14		
References15		
Appendix A: Resistivity Inversion Model Pseudosection16		
Appendix B: USACE 2004 BIA Test Hole Logs		
Appendix C: 2022 DOT&PF Test Hole Logs42		
Appendix D: Symbols and Definitions		

ARCTIC STRATEGIC TRANSPORTATION AND RESOURCES (ASTAR) PROJECT GEOPHYSICAL REPORT: CAPACITIVELY-COUPLED RESISTIVITY SURVEY FOR UTQIAGVIK, ATQASUK, AND WAINWRIGHT ROAD NETWORK, NORTH SLOPE, ALASKA

Tim G. Tannenbaum¹, Garrett G. Speeter¹, and Trent D. Hubbard²

INTRODUCTION

The State of Alaska Department of Transportation and Public Facilities (DOT&PF), Northern Region Materials Section (NRMS) supports the feasibility planning for the Arctic Strategic Transportation and Resources (ASTAR) project, North Slope, Alaska. The goal of ASTAR is to identify, evaluate, and advance opportunities to enhance the quality of life and economic opportunities in North Slope Borough (NSB) communities through infrastructure development. One component of this project involves evaluating construction material resources that might be used for infrastructure and development projects, potentially including roads on the Arctic Coastal Plain to connect existing infrastructure with communities and resource development projects.

At the request of the Alaska Division of Geological & Geophysical Surveys (DGGS), and as suggested by NRMS Chief Engineering Geologist G. Speeter, NRMS completed a Capacitively-Coupled Resistivity (CCR) survey along the first 10 miles of the proposed corridor of the all-season road network connecting the northern Alaskan communities of Utqiagvik, Atqasuk, and Wainwright (fig. 1). The first 10 miles of the proposed corridor follow the route used for the North Slope Borough Community Winter Access Trail (CWAT). The goal of the CCR survey was to collect resistivity measurements of the subsurface soils to aid in selecting construction material site drill targets for the proposed road network. The resulting data can be downloaded from the DGGS website doi.org/10.14509/30960.

Follow-up geotechnical drilling of the materials site targets identified during the desktop study and from the CCR survey was completed in August of 2022 to potentially provide proof-of-concept that CCR data could be used for site selection and define materials sites. Geotechnical drilling results and preliminary design recommendations are presented in Tannenbaum (2022). A comparison of subsurface stratigraphy observed in test hole data, with the subsurface stratigraphy interpreted from CCR data, suggests that use of CCR to identify potential material sites is ineffective due to the local cyrostructure. The use of CCR to evaluate foundation soils for ground-ice content during alignment selection, however, is a cost-effective tool.

FIELD INVESTIGATION

Field work for the geophysical survey was conducted April 18–23, 2022, by NRMS Engineering Geologists T. Tannenbaum and M. Blake, based out of Utqiaqvik, Alaska. Snowmachines and local trail information, provided by the North Slope Borough Wildlife Management Department, were used to access field sites and collect data.

Field work for the material site investigation was conducted August 1–26, 2022, by NRMS Engineering Geologist T. Tannenbaum and NRMS Drillers P. Lanigan, D. Coke, and T. Hartford. A Bell 407 helicopter operated by Maritime Helicopters out of the Utqiagvik Airport provided daily access to field areas.

¹ Alaska Department of Transportation & Facilities, NRD-Right of Way and Utilities, 2301 Peger Road, Fairbanks, Alaska 99709

² Alaska Division of Geological & Geophysical Surveys, 3354 College Road, Fairbanks, Alaska 99709

Figure 1. Capacity-coupled resistivity (CCR) survey location along proposed road corridor, Utqiagvik, Alaska. Starting points of each CCR survey line are labeled A through U.

Geophysical Investigation Methods

The CCR geophysical survey was conducted from approximately mile 0 to 10 of the CWAT, during which 50,000 survey-line feet of data were collected (fig. 1). The CCR survey was designed to be used in tandem with surficial geology terrain maps (DGGS and ASRC Energy Services, in preparation) and limited subsurface test hole data from a 2004 U.S. Army Corps of Engineers (USACE) Coastal Storm Damage Reduction Gravel Exploration study (USACE, 2005) to assist in identifying potential drill targets for construction material exploration. CCR data was collected in 0.25- to 0.5-mile segments for efficient processing with smaller batches of raw data. Data were collected along 21 survey line segments, labeled A through U (fig. 1).

Capacitively-Coupled Resistivity

CCR surveys measure the electrical properties of rock and soil by pulling a coaxial cable array with a transmitter and receivers along the ground. The transmitter sends a continuous current sine wave polarizing the surrounding earth material, and the receiver array measures the induced polarization from which resistivity can be derived.

A Geometrics OhmMapper CCR system, consisting of one transmitter and five receivers connected in series, was used for this project. Multiple passes along each survey line segment were completed using different receiver geometries to collect data at different depths (fig. 2). Changing both the dipole size (cable length) and rope length between the transmitter and receiver(s) allows multiple depths of acquisition for each survey.

Figure 2. CCR Geophysical survey receiver geometry (left) and apparent survey depth (right).

The measured output of resistivity data from the CCR survey is reported in ohm-meters (ohm-m). The measured resistivity of subsurface materials should be considered a non-unique dataset with multiple types of soil and rock capable of producing similar measured resistivity values. As illustrated in figure 3, unweathered igneous and metamorphic bedrock, sand and gravels, limestone, and ice-rich permafrost can all produce measured resistivity in the same ranges. The electrical properties of soil and rock vary drastically due to phase changes of water in-situ. Frozen soil is resistive to current flow, especially when ice contents are high, whereas groundwater is conductive (low resistivity). The following are typical generalized resistivity ranges for soil types (Hoekstra and others, 1975):

- 0-100 ohm-m = thawed, or possibly wet material
- 100–1000 ohm-m = ice-poor frozen material and most coarse-grained materials (river gravels/sand)
- 1000–100,000 ohm-m = Ice-moderate to ice-rich material

Figure 3. Generalized resistivity ranges for rocks and soils, after Palacky, 1988).

Geometrics OhmImager software version 4.0.2.2 was used to process the raw CCR data, which was reviewed and checked for data quality. Next, the data were compiled into a format compatible with creating a 2D data inversion. Aarhus GeoSoftware Res2dInv version 4.10.20 was used to create 2D resistivity data models and display color contoured pseudosection plots. The resistivity pseudosections were interpreted using a combination of resistivity data, surface conditions observed from satellite imagery, surficial geology terrain maps, and test hole data.

Drilling and Sampling

Material site drilling was conducted using a helicopter-portable CME-45 drill rig equipped with 6.5-inch hollow-stem augers. Test holes were selected in areas favorable for potentially hosting construction materials. A grid pattern of holes was drilled at each site with the goal of identifying 1 million cubic yards of construction materials per site. Each test hole was located using a Garmin GPSmap 62s recreational grade GPS (datum WGS 84) with an accuracy of +/- 50-feet. The elevation at each test hole was obtained by plotting the test holes on a lidar derived digital elevation model surface in an ArcGIS Pro workspace and then using an ArcGIS Pro geoprocessing tool to extract the elevation for each location. Test holes were backfilled with cuttings after drilling was completed.

Split-spoon sampling was conducted during hollow-stem auger drilling, with a standard sampling interval of 5 feet from the ground surface to the bottom of hole (BOH). A 2-inch inner diameter, 2.5-inch outer diameter split-spoon sampler was driven into the ground using a 340-pound CME automatic hammer with a 30-inch free-fall drop during sampling. Blow count measurements were recorded as the number of hammer blows required to advance the sampler down a six-inch interval. The sum of the second and third 6-inch intervals are shown as the N-value on the test hole logs, and refusal occurred when 50 or more blows were required to advance the sampler six inches.

Samples were collected from auger cuttings or split-spoons, placed in double-layered Ziploc[®] brand bags or poly bags labeled with permanent marker for storage, and transported to the Mappa Test lab in North Pole, Alaska. Test hole logs are presented in appendix C.

Laboratory Data

Soil samples and test hole conditions were logged in the field following the criteria in the Alaska Geotechnical Procedures Manual (DOT&PF, 2007a) and using the Unified Soil Classification System (USCS). In addition, the Alaska Guide to Description and Classification of Peat and Organic Soil (DOT&PF, 2007b) and the Description and Classification of Frozen Soils (USACE, 1966) were used to describe organic rich or frozen subsurface conditions. Selected samples were tested in accordance with ASTM/AASHTO methods for a determination of any one or a combination of the following properties (table 1):

- Classification (particle size distribution)
- Moisture content
- Atterberg limits
- Organic content

SUBSURFACE CONDITIONS AND OBSERVATIONS

The CCR survey was conducted within the first 10 miles of the proposed corridor of the ASTAR Project road network for Utqiagvik, Atqasuk, and Wainwright, beginning at Utqiagvik. NRMS Chief Engineering Geologist G. Speeter identified three high resistivity anomalies during the survey that could represent potential sites for construction material exploration (fig. 4) or ice-rich soil. The sites were selected during a desktop study of surficial geology terrain units (DGGS, in preparation) with the goal of finding materials suitable for road construction. The terrain units mapped as coastal beach and barrier island deposits, inland paleo-beach and barrier reef deposits, and gravel-bearing marine sands were interpreted to be the most probable sources of construction materials. Inland paleo-beach and barrier island, and marine sand were the only deposits present in this investigation area. Ground-truthing for CCR interpretations was aided by subsurface data from test holes drilled during the 2004 USACE Coastal Storm Damage Reduction Gravel Exploration Program and 2022 DOT&PF Materials Site Investigations, proximal to the CCR survey. Test hole logs are presented in appendix B. The proposed material site exploration targets identified during the desktop study fall within CCR survey line segments A–C, F, and M. Annotated pseudosection figures are presented in appendix A and figure numbers in this text are hyperlinked.

CCR Comparison with Test Hole Data Segments A, B, and C

Segments A through C partially underlie proposed material site exploration target 6 (fig. 5). Test holes BIA-01 and BIA-28 are located at the southwest margin of the proposed material site exploration target and approximately 3,400 feet from segment A. The generalized subsurface stratigraphy of these test holes is:

- 4.5- to 8-foot-thick layer of ice, with frozen sand and silt inclusions underlain by a;
- 2- to 10-foot-thick layer of frozen silty sand, with up to 12 percent gravel underlain by a;
- 4.5- to 10-foot-thick layer of frozen poorly graded sand with silt and gravel and silty sand with gravel with up to 46 percent gravel underlain by a;
- 4.5- to 8-foot-thick layer of frozen silty sand underlain by;
- Frozen silt.

Table 1. List of Index Tests. AASHTO = American Association of StateHighway and Transportation Officials. ASTM = American Society forTesting and Materials

Test Method	AASHTO	ASTM
Gradation	T27	C136
Liquid Limit	T89	D4318
Plastic Limit	T90	D4318
Moisture Content – Aggregate Soil	T255 T265	C566 D2216
Organic Content (Burn)	T267	
USCS Classification	D2487	

Figure 4. CCR survey line along proposed road network corridor with proposed material site exploration targets.

Figure 5. CCR survey line segments A through E with USACE test hole locations.

Segment A from 0 to 964 survey line-feet (fig. A1) is interpreted to represent a generalized subsurface stratigraphy of:

- 5- to 9-foot-thick layer of highly to very highly resistive material, interpreted to be frozen surface water in polygonal thermokarst troughs and organic silty ice wedge-rich permafrost underlain by a;
- 22- to 30-foot-thick layer of moderately to highly resistive material, interpreted to be frozen sand with gravel and gravel with sand with occasional ice underlain by;
- Low resistivity frozen silt and silty sand.

Segment B from 0 to 1,074 survey line-feet (fig. A2) is interpreted to represent a generalized subsurface stratigraphy of:

- 7- to 12-foot-thick layer of highly to very highly resistive material, interpreted to be frozen surface water in polygonal thermokarst troughs and organic silty ice wedge-rich permafrost underlain by a;
- 25- to 32-foot-thick layer of moderately highly resistive material, interpreted to be frozen sand with gravel and gravel with sand with occasional ice that thins to a;
- 10- to 20-foot-thick layer of moderately highly resistive material, interpreted to be frozen sand with gravel and gravel with sand with occasional ice and is underlain by;
- Frozen silt and silty sand from survey line-footage 500 to 1,074.

Segment C from 0 to 2,688 survey line-feet (fig. A3) is interpreted to represent a generalized subsurface stratigraphy of:

- 7- to 20-foot-thick layer of highly to very highly resistive material, interpreted to be frozen surface water in polygonal thermokarst troughs and organic silty ice wedge-rich permafrost underlain by a;
- 15- to 20-foot-thick layer of moderately highly resistive material, interpreted to be frozen sand with gravel and gravel with sand with occasional ice that thickens to a;
- 20- to 25-foot-thick layer of moderately highly resistive material, interpreted to be frozen sand with gravel and gravel with sand with occasional ice underlain by;
- Frozen silt and silty sand from survey line-footage 0 to 1,350.

Segment F

Segment F partially underlies proposed material site exploration target 7 (fig. 6). Test holes BIA-08 and BIA-19 are located south of the proposed material site exploration target and approximately 3,500 feet from segment F. The generalized subsurface stratigraphy of these test holes is:

- 8-foot-thick layer of ice with silt inclusions and frozen organic silt underlain by a;
- 4.5-foot-thick layer of frozen silty sand, with gravel (up to 18 percent) underlain by a;
- 10- to 20-foot-thick layer of frozen silty sand and sandy silt underlain by a;
- 3.5- to 7.5-foot-thick layer of frozen poorly graded sand underlain by frozen peat in BIA- 19.

Segment F from 0 to 2,675 survey line-feet (fig. A4) is interpreted to represent a generalized subsurface stratigraphy of:

- 7- to 10-foot-thick layer of highly to very highly resistive material, interpreted to be frozen surface water in polygonal thermokarst troughs and organic silty ice wedge-rich permafrost underlain by a;
- 5- to 12-foot-thick layer of moderately highly resistive material, interpreted to be frozen sand with gravel and gravel with sand with occasional ice that thickens to a;

Figure 6. CCR survey line segments F through H and test hole locations.

- 10- to 20-foot-thick layer of moderately highly to highly resistive material, interpreted to be frozen gravel with sand with occasional ice from survey line footage 1,650 to 2,000, but elsewhere thins to a;
- 10- to 20-foot-thick layer of moderately highly resistive material, interpreted to be frozen sand with gravel and gravel with sand with occasional ice that is underlain by;
- Frozen silt and silty sand.

The combination of this area being mapped as beach and barrier island deposits, along with the presence of potential gravel deposits interpreted from CCR data, led to MS 7 being selected as a material site drill target. Eight test holes (TH22-2012 to TH22-2019), spaced 250 to 600 feet apart, were drilled from depths ranging from 36 to 47 feet below ground surface (bgs; fig. 6).

Test holes drilled at this site encountered a generalized subsurface stratigraphy of a:

- 0.3- to 1.0-foot-thick layer of thick thawed organic mat overlying a;
- 0.6- to 1.2-foot-thick layer of thawed, moist, organic silt overlying a;
- 1.1- to 10.0-foot-thick layer of frozen Vx/Vs silt with ice content from 10 to 70 percent and massive ice layers from 1 to 5-feet thick overlying a;
- 6.0- to 14.0-foot-thick layer of frozen Vx/Vs silty sand and sandy silt with ice content from 10 to 70 percent overlying a;
- 5.0- to 11.0-foot-thick layer of frozen Nbn/Nf poorly graded sand with gravel and well-graded sand with gravel overlying a;
- 10.0- to 15.5-foot-thick layer of frozen Nbn/Nf poorly graded sand, well-graded-sand, silty sand, and silt overlying;
- Frozen, lean clay, silty sand, and silt with sand.

A comparison of test hole data from MS 7, with stratigraphy interpreted from the CCR data, suggests a more complex subsurface stratigraphy is present than can be interpreted from resistivity pseudosections. In this case, the resistivity signature of the ice content and cryostructure of the surveyed soils is dominant over the resistivity signature of interbedded silt, silty sand, sandy silt, poorly-graded sand with silt poorly-graded sand with gravel and well-graded sand with gravel horizons observed in test holes.

Segment M

Segment M partially underlies proposed material site exploration target 8 (fig. 7). USACE test hole BIA-13 is located southwest of the proposed material site exploration target and approximately 4,500 feet from Segment M. A generalized subsurface stratigraphy of this test hole is:

- 4-foot-thick layer of frozen peat underlain by a;
- 6-foot-thick layer of ice underlain by a;
- 8-foot-thick layer of frozen silty sand underlain by a;
- 7.5-foot-thick layer of frozen poorly graded sand underlain by;
- Frozen sandy silt.

Segment M, from 0 to 2,725 survey line-feet (fig. A5), is interpreted to represent a generalized subsurface stratigraphy of:

• 5- to 12-foot-thick layer of highly to very highly resistive material, interpreted to be frozen surface water in polygonal thermokarst troughs and organic silty ice wedge-rich permafrost underlain by a;

Figure 7. CCR survey line segments M through N and test hole locations.

- 2- to 27-foot-thick layer of moderately highly resistive material, interpreted to be frozen sand with gravel and gravel with sand with occasional ice with a;
- 20-foot-thick layer of highly resistive material, from 300 to 500 survey line-feet, that may be sand with gravel underlain by;
- Frozen silt.

The combination of this area being mapped as beach and barrier island deposits, along with the presence of potential gravel deposits interpreted from CCR data, led to MS 8 being chosen as a material site drill target. Five test holes (TH22-2021 to TH22-2025), spaced 450 to 875 feet apart, were drilled from depths ranging from 30 to 42 feet bgs. See figure 7 for test hole locations and appendix B for test hole logs.

Test holes drilled at this site encountered a generalized subsurface stratigraphy of a:

- 0.3- to 0.4-foot-thick layer of thawed organic mat, overlying a;
- 0.5- to 1.0-foot-thick layer of thawed, moist, organic silt, overlying a;
- 18.0- to 30.0-foot-thick layer of frozen, Vx/Vs silt, silty sand, sandy silt, and sandy silty clay with ice content from 10 to 50 percent and massive ice layers from 2- to 9-foot-thick, overlying a;
- 14.0- to 20.0-foot-thick layer of frozen, Nbn/Nf poorly graded sand with silt, poorly graded sand, and silty sand (absent in TH22-2023 and TH22-2024), overlying a;
- 4.0- to 15.0-foot-thick layer of frozen, Nf/Nbn poorly graded sand with gravel and well-graded sand with gravel (absent in TH22-2021 and TH22-2024), overlying;
- Frozen, Nbn/Nf sandy silt, silt sand, and silt.

A comparison of the test hole data from MS 8, with stratigraphy interpreted from the CCR data, suggests a more complex subsurface stratigraphy is present than can be interpreted from resistivity pseudosections. In this case, the resistivity signature of the ice content and cryostructure of the surveyed soils is dominant over the resistivity signature of interbedded silt, silty sand, sandy silt, poorly-graded sand with silt poorly-graded sand with gravel and well-graded sand with gravel horizons observed in test holes.

Subsurface Conditions Interpreted from CCR

CCR pseudosections with nearby test hole data were interpreted using a combination of resistivity values from inversion models and test hole subsurface conditions. These interpretations were than used as guidelines for interpreting CCR pseudosections with no nearby test hole data. Annotated pseudosections not discussed are presented in appendix A. These pseudosections are interpreted to have a similar subsurface stratigraphy as the pseudosections discussed in the previous section.

Segments presented in figures A6–A20 are interpreted to represent a generalized subsurface stratigraphy of:

- 5- to 14-foot-thick layer of highly to very highly resistive material, interpreted to be frozen surface water in polygonal thermokarst troughs and organic silty ice wedge-rich permafrost underlain by a;
- 5- to 25-foot-thick layer of moderately highly resistive material, interpreted to be frozen sand with gravel and gravel with sand with occasional ice or interlayered silty sand, sandy silt, poorly graded sand with silt and gravel with variable ice content underlain by;
- Frozen silt and silty sand.

Segments with resistivity values that may indicate the presence of sand with gravel and/or gravel with sand are listed by survey line segment and line footage (fig. 8):

- Segment F, survey line footage 1,600 to 2,000.
- Segment K, survey line footage 1,400 to 1,800.
- Segment L, survey line footage 500 to 800.
- Segment M, survey line footage 300 to 500.
- Segment N, survey line footage 50 to 250.

Larger, less distinct resistivity signatures are seen for the entire length of segment A and for segment B survey line footage 0 to 425.

CONCLUSIONS AND RECOMMENDATIONS

The combination of subsurface data from the USACE test holes with CCR data in areas of prospective surficial geology terrain map units suggests that areas on pseudosections with resistivity values ranging from 790 to 2,970 ohm-m (drab olive-green to yellow- to tan-colored contour on pseudosections) could be interpreted as having an increased probability of containing suitable construction material. Resistivity values in this range are thought to represent either coarse-grained granular material, such as gravel, or frozen material with higher ice content than the surrounding ground. A high resistivity signature could be produced by either gravel, ice-rich soil, or bedrock because resistivity signatures are a non-unique dataset. An understanding of the geologic depositional environment, along with subsurface ground truth from test holes, is required for interpretation of resistivity signatures.

Drill testing of material site targets with these resistivity signatures likely shows that the resistivity signature of ice content masks the resistivity of the soil profile, which suggests that using CCR as a tool for identifying coarse granular soils in areas with high ground ice content is ineffective. The Material Site Investigation and Alignment Reconnaissance Geotechnical Report (Tannenbaum, 2022) provides complete results from geotechnical drilling of potential materials sites and preliminary design recommendations.

Surficial geology terrain maps remain the most tangible starting point for identifying areas of potential construction material, however, drill testing of sites with favorable surficial geology terrain units is still required to fully define subsurface conditions. The likelihood of CCR being successfully used as a stand-alone targeting tool in areas with high ground ice content is low. Mapping the ground ice content of foundation soils with CCR alone, or in tandem with ice-wedge polygon maps, along proposed alignments, however, would be a cost-efficient method to classify foundation soils and ground truth remotely sensed terrain units.

ACKNOWLEDGMENTS

The State of Alaska funded this work through the Arctic Strategic Transportation and Resources (AS-TAR) Capital Improvements Project (CIP). ASTAR work supports a collaborative effort between the North Slope Borough, the Department of Natural Resources, and the Department of Transportation and Public Facilities to strengthen community infrastructure and facilitate access to arctic resources while enhancing the quality of life and economic opportunities for North Slope communities. The project also provides valuable information for land-use management and planning decisions. The authors thanks Trent Hubbard for his thoughtful review and B. Sarren (North Slope Borough Wildlife Management) for helpful trail information.

Figure 8. CCR survey line segments F through O with potential gravel locations identified by CCR survey.

REFERENCES

- Alaska Department of Transportation and Public Facilities (DOT&PF), 2007a, Alaska Geotechnical Procedures Manual: Alaska Department of Transportation and Public Facilities manual, 187 p. dot.alaska. gov/stwddes/desmaterials/mat_resource.shtml#geotech
- ——2007b, Alaska Guide to Description and Classification of Peat and Organic Soil, in Alaska Department of Transportation and Public Facilities, Alaska Geotechnical Procedures Manual. dot.alaska. gov/stwddes/desmaterials/assets/pdf/geo_man/peat_organicsoil.pdf
- Alaska Division of Geological & Geological Survey (DGGS) Staff, and ASRC Energy Services, Alaska Inc., in preparation, Desktop-based terrain unit mapping, North Slope Alaska, prepared for Alaska Division of Geological & Geophysical Surveys and the Office of Project Management and Permitting, Alaska Department of Natural Resources by ASRC Energy Services, Alaska, 2020, Road Network for Utqiagvik, Atqasuk, and Wainwright, Arctic Strategic Transportation and Resources Project, North Slope Alaska 1:50,000-scale.
- Hoekstra, P., Sellman, P.V., and Delaney, A., 1975, Ground and Airborne Resistivity Surveys of Permafrost near Fairbanks, Alaska: Geophysics, v. 40, no. 4, p. 641–656. doi.org/10.1190/1.1440555
- Palacky, G.J., 1988, Resistivity Characteristics of Geologic Targets, in Nobighian, M.N., Electromagnetic Methods in Applied Geophysics: Volume 1, theory: Tulsa, Oklahoma, Society of Exploration Geophysicists, p. 53-129. doi.org/10.1190/1.9781560802631.ch3
- Tannenbaum, Tim, 2022, Material Site Investigation and Alignment Reconnaissance Geotechnical Report, Road Network for Utqiagvik, Atqasuk, and Wainwright, Arctic Strategic Transportation And Resources Project, Alaska Department of Transportation and Public Facilities Geotechnical Report.
- U.S. Army Corps of Engineers (USACE), 2005, Coastal Storm Damage Reduction Gravel Exploration (CWIS 013656), Barrow, Alaska: U.S. Army Corps of Engineers Alaska District Soils and Geology Section, 235 p.
- ——1966, Description and Classification of Frozen Soils: U.S. Army Corps of Engineers Technical Report 75, 21 p.

APPENDIX A: RESISTIVITY INVERSION MODEL PSEUDOSECTION

Figure A1. CCR survey line segment A with resistivity inversion model pseudosection.

Figure A2. CCR survey line segment B with resistivity inversion model pseudosection.

Figure A3. CCR survey line segment C with resistivity inversion model pseudosection.

Figure A4. CCR survey line segment F with resistivity inversion model pseudosection.

Figure A5. CCR survey line segment M with resistivity inversion model pseudosection.

Figure A6. CCR survey line segment D with resistivity inversion model pseudosection.

Figure A8. CCR survey line segment G with resistivity inversion model pseudosection.

Figure A9. CCR survey line segment H with resistivity inversion model pseudosection.

Figure A10. CCR survey line segment I with resistivity inversion model pseudosection.

Figure A11. CCR survey line segment J with resistivity inversion model pseudosection.

Figure A12. CCR survey line segment K with resistivity inversion model pseudosection.

Figure A13. CCR survey line segment L with resistivity inversion model pseudosection.

Figure A14. CCR survey line segment N with resistivity inversion model pseudosection.

Figure A15. CCR survey line segment P with resistivity inversion model pseudosection.

Figure A16. CCR survey line segment Q with resistivity inversion model pseudosection.

Figure A17. CCR survey line segment R with resistivity inversion model pseudosection.

Figure A18. CCR survey line segment S with resistivity inversion model pseudosection.

Figure A19. CCR survey line segment T with resistivity inversion model pseudosection.

Figure A20. CCR survey line segment U with resistivity inversion model pseudosection.

APPENDIX B: USACE 2004 BIA TEST HOLE LOGS

ĺ					7 (Project:	Coas Barro	tal St w, Al	orm Da aska	amage	Redu	ction			Pa	ge 1 of 1
	4	呾		i i o o	<u>u</u>	ENGINE	ERIN	G SERVICES	Drilling A	ancv:				Distri	-4			Da	te: 1 Apr 2004
		S	oils	ar	nd (Jeolo	уgy	Section	Z Oth	ner E)enali	Drillir	Naska Ng	Distri	CI			tion MSL	Datum:
		E	X	רב	OF	RATI	0	LOG	Location:	No Ea	rthin sting): 6,: (316,859 641,130	5 ft. ± 6 ft. ±			Top o Eleva	f Ho tion:	le
	Hole TB	= Nu -01	mber,	Field	:	Permar BIA-0	ient: 1		Operator: Lyle Ca	ain & Tı	avis	Coghil	I			Inspector: Aaron I	Banks		
	Тур	e of Tesi	Hole: Pit		other luger l	Auger Hole] Mor	itoring Well	ezometer	Depth	to G	ound	water:			Depth Dril 30.0 ft.	led:		Total Depth: 31.5 ft.
	Han 34	ome O ib:	Weig	ht:	Spl Spl	it Spoon I 3 in.	.D:	Size and Type c 7 in. Hollow Ster	of Bit: n Auger		Ту	oe of E CME-4	Equipn 15	nent:			Type o Grai	f Sa b and	mples: d Drive
	L)	Y		0 4083	2-5.	at		Classification ASTM: D 2487 or D 24	188	-	Grain	Size	; (in.)	(î		Fongy -15	Descri	ption	and Remarks
	Depth (I	Litholog	Sample	Frozen ASTM D	Frost CI TM 5-82	Blow Co	Symbol			6Gravel	Sand	6Fines	lax Size	ID (ppr	6 Water	10997,-10	uegieea	, 5 m	pri wilus
ļ			1	Ice		5 13	ICE	ICE with Sand/Fines	Inclusions						6	No sampl crystals la	e collecte arger that	ed, cl n 2 in	ear, ice, planar ice iches with white
ł	- 2															interstitia	lice		
F	- 4																		i
ŀ	- 6		2	Vr	F4	5	SM	Silty SAND					0.25			Gray/ bro	wn, froze	n, su	brounded gravel, fine
╞	Ŭ					28										estimated	sand, no l 45% clea interstitia	npla: ar ice al ice	stic (NP) fines, e crystals less than .5
ľ	- 8						•	· · · · · · · · · · · · · · · · · · ·								gravel pre	esent in c	uttin	qs
+	-10			Nbe	S2	19	SP-	Poorly graded SAN) with Silt	23	70	7	0.5			Brown fr	0700 eub	roun	ided gravel fine to
ľ	-12					44 50/ 4in.	SM	and Gravel								coarse sa	ind	loui	
╞																			
t	-14																		
-	-16	•	4	Vr	S1	29 33 54	SP- SM	Poorly graded SANI and Gravel) with Silt				0.25			Light brow coarse sa	wn, frozei nd, Estin	n, sul nated	brounded gravel, fine to 30% clear and cloudy
1/05	-18															ice crysta	is randor	nly d	istributed
DT 3/1										-1									
ANC.G	-20		5	٧x	F4	30 40	SM	Silty SAND		1	74	25				Brown an	d gray, fr	ozen	, fine to coarse sand,
PJ ACE	-22					52		,								small ciou	idy ice cr	ystal	ice, u.o-inch clusters of
TION.G	-24									-									
REDUC				Vr	F1	18	ML	SILT								Grav froz	on ND fir	10C I	andomly
AMAGE	-26		6			26 26										oriented-c crystals, e	clusters a	nd ve 15%	eins of small white ice
TORMD	-28														r.				
ROWS	-30		·																
OG BAF			7	Vs	F4	11 17 24	ML	SILT							- 	Gray, froz horizontal	en, NP fir Ily stratifi	nes, e ed 1/	estimated 10% ice, 16 inch veins of small
ATION L	-32															Cloudy ice Bottom of PID = (Col	crystals Hole 31. d/Hot) Ph	5 ft. Ioto I	onization Detector
XPLOR	VPA Mav	Fori 94 F	n 19-E rev. F	d. Oh	solete					Proje	ect: C	pastal	Storm	Dama	ge Re	duction			Hole Number:
шĽ										_1		_			_				BIA-U1

							DISTRICT ENGINEERS	Project:	Coasta Barrow	I Stor /, Ala:	m Da ska	mage	Reduc	tion			Pag Date	e 1 of 1 e: 12 Apr 2004
	S	oils	an	nd C	Geolo)gy	Section	Drilling Age	ency: er De	mali [□ A Drilling	laska 1	Distri	ct		Eleva	ition E MSL	Datum:
	E	X	PL	OF	ITA	ÔN	I LOG	Location:	Nor	hing: tina:	6,3 6	9 01,091 45.540	ft. ±			Top o	f Hole	
Hol TE	e Nu 3-08	mber,	Field		Perman BIA-0	ent: 8		Operator: Lyle Cai	in & Tra	vis C	ahill				Inspector: Aaron F	Banks		
Тур	e of Test	Hole: Pit		other	Auger Hole	1 Mon			Depth to	o Gro	undw	ater:			Depth Dril	led:	-	Total Depth:
Har 3	nmer 10 Ibs	r Weig s	ht:	Spli	it Spoon I 3 in.	.D:	Size and Type o	of Bit:		Туре	of E	quipm	nent:			Type o	of Sam	aples:
F			8				Classification		G	rain S	ize	,] _	<u> </u>	— —		Description	o and	nd Demode
epth (ft.)	ithology	ample	rozen STM D 40	rost Class M 5-822-5	low Count	ymbol	ASTM: D 2487 or D 24	188	Gravel	Sand	Fines	ax Size (in	(mqq) D	Water	Sunny, 5 d	Descri legrees, 3	ption a 30 mpl	na Remarks 1 winds
- 2 - 4 - 6 - 10 - 12			Nbe Vx	F2 F2	38 50/4in. 32 44 52	SP- SM	Poorly graded SANI	D with Silt 	18	58	24	0.25			Gray, froz Gray, froz fine sand, small whi	en, fine s 	Sand, r 	ionplastic (NP) fines
		3	lce + Vx	F3	53 44 35	SM	Silty SAND			51	49				Gray and one 4-incl crystals w	brown, fr 1 thick ba rith silt ar	rozen, and of nd whi	fine sand, NP fines, flat clear large ice te interstital ice
- 		4	Vx	F3	24 35 45	SM	Silty SAND		2	54	44	0.5			Dark gray sand, NP crystals le	, frozen, : fines, ind ess than (subrou lividua 0.5 inc	Inded gravel, fine I clusters of white ice h thick
-24 - -26 - 28		≝ 5 ≊	Nbe	S2	50/ 4in.	SP	Poorly graded SAN)							Gray, froz	- — — —	and	
- 		6	Nbe	NFS	<u>50/ 4in.</u>	SP	Poorly graded SANE)							Not enoug Bottom of Groundwa PID = (Col	<u>ih sample</u> Hole 30, Iter Not E d/Hot) Pf	<u>e to co</u> 4 ft. Encour noto lo	ullect data Intered nization Detector
NP/ May	VFor 94 F	m 19- Prev. E	E Ed. Ob	osolete)				Projec	t: Co	astal	Storm	Dama	ge Re	duction			Hole Number:

	หมาง					۱ ۵ ۸	ISTRICT	Project:	Coasta	l Stor	m Da	mage	Reduc	tion			Dee	
				1	CORPS	OF	ENGINEERS	i rojoot.	Barrow	, Ala	ska	maye	neuu	uon			Date	e 1 of 1 e: 18 Apr 2004
-	<u>م</u>		200			ERIN	G SERVICES	Drilling Age	ency:			laska	Distri	t		Eleva	tion [Datum:
		л5 УГ	all			yyy	Section	X Othe	r De	nali (Drillin	9					MSL	other
	E	X۲	' L'	UH		Or	LOG	Location:	Nor Eas	hing: ting:	6,2 6	88,499 40,373	9 ft. ± 3 ft. ±			Top of Elevat	f Hole tion:	•
Ho	e Nun 3-13	nber,	Field:		Perman BIA-1	ent: 3		Operator:	n & Tra	vie C	anhill				Inspector:	lanke		
Ту	be of H	lole:	X	other	Auger				Depth t	o Gro	undv	vater:			Depth Drill	ed:	Т	Total Depth:
	Test	Pit	XA	uger I	Hole 🗆] Mon	itoring Well D Pie	ezometer			N				30.0 ft.			31.5 ft.
Ha 3	nmer 40 lbs	weigi	nt:	Spil	t Spoon I 3 in.	.D:	Size and Type o 7 in. Hollow Sten	of Bit: n Auger		Туре С	e of E ME-4	quipri 5	nent:			Type of Grat	f San b and	nples: Drive
l 🗊	~		4083	ass. 2-5	nıt		Classification ASTM: D 2487 or D 24	188	G	rain S	ize	(in.)	Ê		Suppy 10	Descrip	ption a	ind Remarks
Depth (I	itholog	ample	STM D	Tost CI M 5-82	low Co	ymbol			Gravel	Sand	Fines	ax Size	ID (ppr	Water	ounny, 10	acg1003,	10 11	un milita
	000 000	0			<u>®</u>	PT	PEAT			%	<u> </u>	Σ	<u> </u>	%	Brown, fro	zen		
- 2	000 000 000																	
Ĺ	888 888 888																	
ŀ			Ice		11	lce	Ice		·						Large clea	ir ice crv:	stals	with white interstital
- 6					20										ice, no soi	l color		
- 8																		
+		2	Nbe	F2	11 26 34/ 3in.	SM	Silty SAND								Gray and I than .25 in	brown, fr ich, fine s	ozen, sand,	trace of gravel less nonplastic (NP) fines
-12																		
-14																		
L_16		3	Vx	F3	50 50	SM	Silty SAND		1	61	38	0.5		1	Gray and I	brown, fr	ozen,	subrounded to
_ ا		*****			50/ 3in.										5% ice by white ice o	volume, i volume, i rystals k	indivi ess th	d, NP fines, estimate dual clusters of small an 1/2 inch wide
18	Ш								-									
20		~4~	Nbe	NFS	50/ 3in.	SP	Poorly graded SAN	,		03		0.25		•	l ight brou	m france		nded group! fine to
							i ooniy giuudu orall		1		ľ	0.25		Ů	medium s	and, NP f	fines	ided gravel, fine to
N.GPJ																		
01-24																		
AGERE AGERE	Ш	5	Vx	F4	52 42 50/ 3in	SP ML	Poorly graded SANE Sandy SILT)	1						Dark gray	and brov	vn, fin	e sand, NP fines,
MDAM															white ice of retained (s	rystals, f	first 3 sampl	inches of sample not e 4)
MST0																	-	
BARR		6	٧x	F4	30 42	ML	Sandy SILT								Dark gray, visible ice	frozen, f individu	fine sa Jal, .12	and, estimated 2% 25 inch thick veins of
0 N N			<u> </u>		54				-						small whit Bottom of	Hole 31.	stals 5 ft.	atom d
ITAN NP	Form	19-5							Proise	+ 0					PID = (Col	d/Hot) Ph	ncou noto lo	nization Detector
May	94 Pi	rev. E	d. Ob	solete					Projec	a. CO	astal	Storm	Dama	ge Re	auction			BIA-13

						KA [S OF E	DISTRICT	Project:	Coasta Barrov	al Sto v, Ala	rm Da ska	mage	Reduc	tion		F	Page 1 of 1 Date: 18 Apr 2004
<u>-</u> 4	S	oil	s ai	≞_ nd (engine Geolo	ERIN D G Y	G SERVICES Section	Drilling A		anali I	⊡ A Drilline	laska	Distri	ct		Elevatio	n Datum:
	E	EX	PL	OF	RATI	Ö N	I LOG	Location:	Nor	thing:	6,2 6	99,916 45,564	6 ft. ± 4 ft. ±			Top of H Elevatio	lole n:
Hol TI	le Na B-19	umbe	r, Field	d:	Permar BIA-1	nent: 19		Operator: Lyle C	: ain & Tra	vis C	oghill			_	Inspector: Gregory	/ Carpenter	r
Тур	oe of Tes	f Hole st Pit	: X	othe Auger	r Auger Hole [] Mon	itoring Well 🔲 Pi	ezometer	Depth t	o Gro	oundw NE	ater:			Depth Drill 30.0 ft.	ed:	Total Depth: 30.8 ft.
Hai 3	mme 40 lb	er We Is	ight:	Sp	lit Spoon 3 in.	I.D:	Size and Type of 7 in. Hollow Ste	of Bit: m Auger	·	Туре С	e of E	quipm 5	nent:		L	Type of S Grab a	Samples: Ind Drive
pth (ft.)	Voloav	mole	IZEN TM D 4083	st Class.	w Count	lodin	Classification ASTM: D 2487 or D 2	488	iravel	arain S	ize ues	k Size (in.)	(mdd) (Vater	Clear, 0 de	Description grees	on and Remarks
å	THE LEA	Sa	Fro	2 EF	8	S OL	Organic SILT		9%	S%	Ч%	Max		۸%	Brown, fre	ozen, 50% id	ce by volume
- 2																	
- 4 - 6			lce	F4	11 29	ICE +	ice with silt inclusio Organic SII T	ons to							White ice	with organi	cs and nonplastic (NP)
- 8			<u> 28</u>	,	35	OL											
-10 -12		2		F4	22 60	ML	Sandy SILT							-	Brown, fro volume	ozen, fine sa	and, NP fines, 30% ice by
-14		3	Vr a Vx	& F4	15 44	ML	Sandy SILT								Brown, fro fines, 40%	ozen, round ice by volu	led gravel, fine sand, NP ume
-20		4	Vr 4 Vx	k F3	29 60	SM	Silty SAND	— — — — —	4	78	18	0.5			Brown, fro	zen, round ice by volu	ed gravel, fine sand, NP Ime
-24 -26 -28		5	Vx a Vr	§ F4	21 51	SM	Silty SAND								Brown, fro volume	ozen, fine sa	and, NP fines, 25% ice by
-30 -32	4.44		Vr Vr	NFS F4	27 - 52/ 3in.	SP PT	Poorly graded SAN	D							Gray, froz Dark brow Bottom of Groundwa PID = (Col	en, fine san /n peat, froz Hole 30.8 f ater Not Enc	id ten t. countered to lonization Dataster
NP/ May	L A Fo / 94	rm 19 Prev.)-E Ed. C) bsolet	le	<u> </u>	l		Proje	ct: Co	astal	Storm	Dama	lge R	eduction	arnot) Phot	Hole Number:

				[ALAS CORPS ENGINE		DISTRICT ENGINEERS G SERVICES	Project:	Coa Ban	stal row,	Stor Alas	m Da ka	mage	Reduc	tion		1	Page Date	e 1 of 1 : 20 Apr 2004
	S	oils	an	d C	Geolo	gy	Section	Drilling A	gency her	: Der	nali D	⊐ A rilling	laska J	Distrie	ct		Elevatio	on Da SL	atum:
	E	XI	יר	OR	RATI	ON	I LOG	Location:	: N	lorth asti	ning: ng:	6,2 6	82,420 42,146) ft. ± ; ft. ±			Top of I Elevatio	Hole on:	
Hol TE	e Nu 3-15	mber,	Field:		Perman BIA-1	ent: 5		Operator Lyle C	: ain & T	Frav	ris Co	ghili				Inspector: Aaron E	lanks	-	
Typ	e of Test	Hole: Pit	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	other uger l	Auger Hole] Mon	itoring Well 🔲 Pie	_ ezometer	Dept	h to	Gro	undw	ater:			Depth Drill 30.0 ft.	ed:	1	Total Depth: 31.5 ft.
Har 34	nmei 40 lbs	Weig	ht:	Spli	it Spoon I 3 in.	.D:	Size and Type o 7 in. Hollow Sten	f Bit: n Auger	I		Туре Сі	of E	quipm	ient:			Type of S Grab	Sam and I	ples: Drive
1	>		4083	ass. 2-5	tun		Classification ASTM: D 2487 or D 24	188		Gr	ain Si	ze	(in.)	Ê		Suppy -5 (Descripti	on ar	nd Remarks
Depth (f	Lithology	Sample	Frozen ASTM D	Frost Cla TM 5-82	Blow Co	Symbol				%Gravel	%Sand	%Fines	Max Size	PID (ppr	% Water	ounny, o	Jegices, 11	, mbi	i winus
- 2 - 4 - 6 - 6 - 7 - 10 - 12 - 12 - 14 - 16 - 12 - 14 - 16 - 16 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	لى دې دو لو وې دې وې وې وې دې دې وې		Vr Nbn Vx	F4 F3	24 33 50 14 50 50/5in.	ML- OL SM	Sandy SILT-Organic	: SILT mix		4	65	31	0.75			Gray and (NP) fines sufaces, e 10% organ Gray and rounded g Gray and NP fines, inclusions less then	brown, froz , small whi stimated 1 nics by vol brown, froz ravel, fine brown, froz stimated 2 s of small v .5 inch thic	zen, f te icc 0% v ume zen, f to m zen, f 2% vi vhite :k	ine sand, nonplastic orystals on fresh isible ice, estimated subrounded to edium sand, NP fines ine to coarse sand, sible ice, individual to clear ice crystals
22			Nbe	F4	33 50/ 5in.	ML	Sandy SILT				49	51	0.5			Gray and rounded g	brown, froz ravel, fine	zen, s to co	subrounded to parse sand, NP fines
- 26 28 -		5	Nbn	F4	10 10 14	ML	SILT									Dark gray	, frozen, Ni	P fine	S
- 30		6	Nbn	F4	17 17 16	ML	SILT									Dark gray	, frozen, Ni	P fine	s
-32																Bottom of PiD = (Col	Hole 31.5 d/Hot) Pho	ft. Ito loi	nization Detector
3 NP/ 3 May	4 For / 94 I	m 19- Prev. I	e Ed. Ob	solete	9				Pro	ojec	t: Coa	istal	Storm	Dama	ige Re	duction			Hole Number: BIA-15

							DISTRICT ENGINEERS	Project:	Coasi Barro	al Sto w, Ala	rm Da ska	image	Redu	ction			Pag Dat	ge 1 of 1 e: 23 Apr 2004
	S	oils	ar	nd (Geolo	bgy	Section	Drilling Aç XX Oth	gency: er C	enali	Drillin	laska g	Distri	ct		Eleva	tion I MSL	Datum:
	E	X	٦C	OF	RATI	ON	LOG	Location:	No Ea	rthing sting:	6,3 6	16,412 42,048	? ft. ± 3 ft. ±			Top o Eleva	f Hol tion:	e
Ho	le Nu B-28	mber,	Field	:	Permar BIA-2	nent: 28		Operator: Lyle Ca	iin & Tr	avis C	oghill				Inspector: Aaron E	Banks	•	
	De of Test	Hole: Pit		other	Auger Hole] Mon	itoring Well	_ ezometer	Depth	to Gro	oundv	vater:			Depth Drill 30.0 ft.	led:		Total Depth: 30.9 ft.
Hai 3	mmer 40 lbs	Weig	ht:	Spl	lit Spoon I 3 in.	l.D:	Size and Type o 7 in. Hollow Sten	f Bit: n Auger		Тур С	e of E ME-4	quipm 5	ent:			Type o Grai	f Sar b and	nples: I Drive
Depth (ft.)	Lithology	Sample	Frozen ASTM D 4083	Frost Class. TM 5-822-5	Blow Count	Symbol	Classification ASTM: D 2487 or D 24	88	%Gravel	Grain S	Eines %	Aax Size (in.)	PID (ppm)	6 Water	Cloudy, 10	Descri degrees	otion a , 10 n	and Remarks nph winds
		2 3 3 5 5 6 6	Ice Vx Nbe Vx	F3 F3 S2 F2 F2	13 24 50 36 46 50/ 5in. 41 39 48 80 61 61	ICE SM SP SM	ICE with Sand/Fines Silty SAND with Grad Silty SAND with Grad Silty SAND	Inclusions vel	10 12 46	58 44 49 Ct: Co	32 29 5	0.375 0.5 1	Dama	ge Re	Ice, large interstitial Light brow gravel, fin estimate 5 crystals in Light brow subround fines, estii crystals in Brown, fro gravel, fin Gray and I estimate 2 white Inter Bottom of PID = (Cole	flat clear ice and wn, frozeu e sand, r % visible clusions and co- zen, sub e and co- zen, sub s and co- clusion for wn, fr % visible stitial (co- stitial (co- stitia))))	ice ci some is some i ce, i ce, i ce, i ce, i ce, i ce, i vien j ft.	rystals with white trace of gray silt rounded to rounded astic (NP) fines, small white ice thick and coarse sand, NP e ice, small white ice 5 in. thick lar to subrounded and fine sand, NP fines clear ice crystals with < 0.25 in. prization Detector Hole Number:
OI NPA May	94 P	n 19-E rev. E	d. Ob	solete)				Proje	ct: Co	astal S	Storm	Dama	ge Re	duction			Hole Number: BIA-28

APPENDIX C: 2022 DOT&PF TEST HOLE LOGS

Ľ	m.	SPICILITEL	STA Norti	TE OF J	ALASKA gion Mate	DOT erials	/PF			FINAL TEST HOLE LOG	leet 1012
A STATE	OF ALASI	55.	Geol	ogy Sec	tion			Proj	ect	ASTAR 2022 Test Hole Number <u>11122-2012</u>	
Field			m	m 1				Proj	ect I	Number Total Depth 47 feet	000
Field	l Crew	ugisi /	 	Lanigan	D Coke 1	f Hart	ford	Fau	inme	ent Type CME 45 Heli-drill Station Offset	022
i icia	oren			bangan,	D.COKe, 1			Wea	athe	r 48°F. 15 mph wind, partially sunny Latitude, Longitude N71.2352027°.	W156.74
TH F	inaliz	ed By	Т	.TANNE	NBAUM			Veg	etati	ion tundra Elevation 47.0	
				Sam	ple Data		L.			Ground Water Data GENERAL COMMENTS:	
Drilling Method	Depth in (Feet)	Casing Blows / ft	Method	Number	Blow Count (raw) Sample Interval	Uncorrected	Embankment Heigh	Frozen	Graphic Log	While Drilling After Drilling MS target 7. CCR resistivity high and surface morpholo, suggest beach ridge. Depth in (ft.)	gy
_	0 -	-	_				-			SUBSURFACE MATERIAL TEST RESULTS	0
	-				WOH 5	-				ORG MAT	
	1 -		MC		7	-			\forall	hi Org, Nbe	1
	_ 1				9	1				Gy SILT	-
	2 -					1		í.	1	Vx, 50-70% ice. <1/4" ice crystals.	2
	3 -					4			11	Tn-Bn Silty SAND	3
	-					-			/	Nbn, silty sand with 5% coarse sand /	5
	4 -					-				fine gravel content. rounded to	4
	_ 1					1			1	coarse sand/ fine gravel. 31.0°f. Nbn	
	5 -				6				11	with lenses of Vx 0.1' in size. 10%ice 22-2080 (5.0-7.0)	-
	6]		2	22-2080	11				//	USCS (wash)=SM 200=33.8%	4
	· -		2	22-2000	12				1	NM=27.4%	C
	7 -				14			4	11	LL=NV	7
	-					-			1	PIENP PLENV	
	8 -					1					8
	1					1			//		
	"]								11		9
	10 -								11		10
	-				3			/		<u>22-2081 [10.0-12.0]</u> USCS (wash)=SM	
	11 -		MC	22-2081	14				11	P200=39.0% NM=24.8%	1
5					18				/	ORG=5.2%	
<u>9</u>	12 -							1		PI=0	13
	13 -							1	1	PL=17	1
:						4		1	11		1.
	14 -					-			11		1
	-					1			1		
	15 -				15			1	1	Bn Silty SAND w/ Gravel 22-2082 (15.0-16.5)	1
	16-		MC	22-2082	29				191	Nbn, dark brown fine to medium silty USCS (wash)=SM P200=16.0%	1
					20	-			0/	33°f. ORG=3.9%	1
	17 -				26	-				Wh ICE	1
						1				ICE, Reticulate ice. White opeque ice	
	18 -					1			a	Tn-Bn Well-graded SAND w/ Gravel	1
	10]]			ρ.	Nf, medium to coarse sand with fine to	1
	· -					4				medium subrounded black to tan chert gravel. Rare subrounded	1
	20 -		2	22_2082	25/P				0	gravel to 2". 22-2083 (20 0-20 5)	20
			A	22-2003	2.5/R					Tn-Bn Poorly-graded SAND w/ Gravel	
	21 -					1			0	Nbn, medium to coarse sand with fine NM=8.6%	2
	~]		_]			0	to medium subrounded black to tan ORG=1.5%	~
]		GER	22-2084						gravel to 2".	2.
	23 -		Ν					•	0	P200=3.6%	23
	-					-				NM=1.5% ORG=2.0%	
- 1	24 -					1				LL=NV PI=NP	2
			I			_	1	1.1			

42

	SUNTR	N & PUBL	CER	et/			KA.	οοτ	DE			FINAL TEST HOLE LOG		Sheet 2 of 2
		~	CHATLES	SIA Nort Geo	thern Re	aLASI gion M	A l	ials	PF				Test Hole Number <u>TH22-2012</u>	
	STATE	OF ALAS	and the second s		,og) ood									
					Sam	nple Data			eight					
	Aethod	(Feet)	÷			unt (rav	Interval	cted	ment H		Log			
	Irilling N	lepth in	asing lows / f	lethod	lumber	low Co	ample	Incorrect -Value	mbank	rozen	iraphic			
F	-	25 -	08	2	Z	21	0 U	JZ	ш	ш	7. 7.	SUBSURFACE MATERIAL Tn-Or Silty SAND	TEST RESULTS 22-2085 (25.0-27.0)	25 -
-		26 -		MC	22-2085	47						Nbn, tan orange gray laminated fine grain to medium grain sand with rare	USCS (wash)=SM P200=18.8% NM=17.3%	26 -
-		27 -				43						coarse sand of subrounded gray to tan chert. 29.2°f	ORG=2.3% LL=NV	27 -
_		28 -											PL=NV	28 -
		29 -												29 -
		30 -												30 -
		21 -		2		11 26						Bn SILT Nhn, clean ML with very rare medium		31 -
		20		Ň		50/3"						gravel, 25.7°f		22
		52 -										Nbn, laminated tan to black medium sand with marine shell fragments		32 -
							\square							
ſ		34 -												34 -
F	uger	35 -				50/4"								35 -
F	I-S A	36 -		MC										36 -
-	-	37 -												37 -
F		38 -												38 -
F		39 -												39 -
8/22		40 -				4						Bk Lean CLAY	22-2086 (40.0-	40 -
DT 11/		41 -		MC	22-2086	8 10						Nbn, CL/ML with marine shells fragments, 27.4°f	P200=62.5% NM=19.0%	41 -
2020.G		42 -				22							ORG=10.2% LL=25 PI=5	42 -
APRIL		43 -											PL=20	43 -
Ľ-		44 -												44 -
ap. Ak		45 -				5	\square							45 -
LABS.(46 -		MC		7								46 -
22 MS		47 -				9						BOH		47 -
FAR_20												boll		
CS AST														
G - US														
OLE LO														
EST H														
XDOT 1														
NR A														

		STATUTES.	STA Nort Geo	TE OF thern Reg logy Sec	ALASK/ gion Mat ction	A DO erials	T/P	F		FINAL TEST HOLE LOG		Sheet 1 of 2
STATE	OF ALAS							P P	roject roject	ASTAR 2022 Number	Test Hole Number Total Depth	
Field	d Geol	ogist	 	.Tannenb	aum D.Calca	THer	tfor		auinm	ant Type CME 45 Halideill	Dates Drilled	8/5/2022 - 8/5/2022
TIER		,	<u> </u>	.Langan,	D.COKC,	1.114	1010	N	/eathe	50°F, 5-10 mph wind, partially sunny	Latitude, Longitud	e N71.23458677°, W156.7
THF	inaliz	ed By	1	T.TANNE	NBAUM		_	_ ^	egeta	on <u>tund</u> ra	Elevation	44.1
Drilling Method	Jepth in (Feet)	Casing Blows / ft	Method	Sam	glow Count (raw)	Uncorrected	N-Value	Embankment Height Frozen	Sraphic Log	Ground Water Data GENERAL While Drilling After Drilling MS target Depth in (ft.)	DOMMENTS: 7. CCR resistivity high and each ridge.	l surface morphology
-	0 -	08	~	~	2					SUBSURFACE MATERIAL	TEST R	ESULTS 0
	1 -		2		3				$\langle \rangle \rangle$	moist	1	1
			M		7					Bn SILT w/ Sand Org, Vx, ML with 5-10% coarse sand.	1	1
	2 -									fine gravel of subrounded black to tan chert, granular to massive whi	e	2
	3 -					-				ice. Relict frost boil		3
	4 -									Vx, granular clear ice		4
					\vdash	-						-
					7	7			Ĺ	Cy Bo Boorly graded SAND	4	5
	6 -		MC		8					Vx, SP-SM w/ 5-10% coarse sand/fin	e	6
	7 -				10					gravel of subrounded tan to black chert. granular ice in .12' lenses		7
	8 -									with individual crystals to 1-3mm. 30.6°f		8
						-						0
	9 -											9
	10 -				10				17	Tn-Bn Silty SAND	22-2087 (10.0-12.0)	10
	11 -		MC	22-2087	13				11	Nbn, fine sand with 10% coarse sand/fine gravel of subrounded tan	USCS (wash)=SM P200=40.4%	11
5	12				14				[]	to black chert. 29.3°f	ORG=3.9%	12
	12 -								11		PI=2 PL=14	12
1	13 -								//			13
	14 -				\vdash	-			11			14
	15 -											15
			0		10 18	-			//			1
	- 10		Ŵ		14	7				27.2°f		16
	17 -				2.3				//			17
	18 -				\vdash	-			11			18
	19 -					1			11			19
									[]			2
	20 -				9				$\langle \rangle$	Tn-Gy Sandy SILT Vr. fine sand with trace coarse sand		22-2088 (20.0-22.0) USCS (wash)=ML
	21 -		MC	22-2088	10					with lenses of white ice. 23.8°f		P200=57.1% 21 NM=25.4%
	22 -				14							ORG=6.0% LL=18 22 Pl=3 22
	23 -											PL=15
					\vdash	-						-
	24 -											24
	25 -				\vdash	-			£7.			25

		A SE PUIRI	SERCILITIES .	STA Nort Geo	TE OF I hern Reg logy Sec	ALASK/ gion Mat	A DOT erials	/PF			FINAL TEST HOLE LOG			She	et 1 of 2
	Field	Geol	logist	Т	.Tannenb	aum			Proje Proje	ect ect I	_ASTAR 2022		Test Hole Number Total Depth Dates Drilled	TH22-2014 42 feet 8/6/2022 - 8/6/20	22
	Field	Crev	V	P	.Lanigan,	D.Coke,	T.Hartf	ord	Equi Wea	pme the	ent Type CME 45 Heli-drill		Station, Offset Latitude Longitude	N71 23520957°	W156 73669
	TH F	inaliz	ed By		TANNE	NBAUM			Vege	etati	on tundra		Elevation	46.2	
	Drilling Method	Depth in (Feet)	Casing Blows / ft	Method	Sam	Blow Count (raw)	Uncorrected N-Value	Embankment Height	Frozen	ытарліс Log	Ground Water Data GFNR While Driling After Driling MS Depth in (ft.) sugge Time Date Symbol	ERAL COMM target 7. Co gest beach ri	ENTS: CR resistivity high and dge.	surface morpholog	IY
F	-	0 -				WOH			=	7-1	SUBSURFACE MATERIAL Bn ORG MAT		TEST R	ESULTS	0 -
-		1 - 2 -		MC		WOH 4 11					moist Bn SILT <i>hi Org</i> , Vx, frozen peat interlayer with organic silt with granular i	red ice			1 - 2 -
-		3 -													3 - 4 -
-		5 - 6 - 7 -		MC		9 12 11 13					Gy-Bn Silty SAND Vx, granular white Vx ice. 30%S 70% ice. SM with minor fine g of subrounded tan to gray chei 30.2°f	SM/ gravel ert.			5 - 6 - 7 -
-		8 - 9 -								1.111					8 - 9 -
-	sr	10 - - 11 -		MC	22-2090	11 11 11					Tn Clayey SAND Vx, 0.5' layers of SC with 50 % V and SC with gravel (Nbn). Coa sand/ fine gravel of subrounde	Vx ice arse ed tan -		22-2090 (10.0-12.0) USCS (wash)=SC P200=44.7% NM=19.2% ORG=4.7%	10 - 11 -
8/22	Auge	12 -		GER	22-2091	14				1	black chert. 28.7°f Tn Silty SAND w/ Gravel	2	<u>2-2091 (12.0-13.0)</u> ISCS (wash)=SM	LL=22 PI=8 PI=14	12 -
11/1/	R-H	13 - 14 -		AU						1/1/1/	Vx		200=32.6% IM=19.7% IRG=4.1% L=17	FL-14	13 - 14 -
PRIL 20		- 15								0	Vx, SP with fine to medium grave subrounded tan to black chert.	/elof F	1-2 L=15		15 -
AK DOT - AI		- 16 -		MC	22-2093	18 5"/52			o	Ø	ice in granular SP. 31.1°f		22093 (10.0-16.0) SCS (wash)=SP 200=2.3% IM=8.3% IRG=1.1%		16 -
ABS.GPJ		17 - - 18 -							Ø			L F F	L=NV I=NP L=NV		17 - - 18 -
MS_L		10								0					10
TAR_2022		19 - 20 -		MC		4"/50					Tn Poorly-graded SAND Nf, SP with 10% fine gravel of subrounded tan to black chert	tin			20 -
CS AS		21 -		~		\square	-				U.3-U.5" lenses. Nt > Nbn ice.	31.1*1			21 -
SUL- DOL:		22 -													22 -
HOLE		23 -													23 -
T TESI		24 -													24 -
AKDO		25 -				\vdash	_								25 -

TRANSPORT		STATIES .	STA Nort Geo	TE OF hern Re logy Sec	ALASI gion M ction	KA I later	DOT// rials	PF			FINAL TEST HOLE LO	G		She	eet 1 of 2
3741	E OF ALAS	K.P.							Pro Pro	ject ject	ASTAR 2022		_ Test Hole Number _ Total Depth	TH22-2015 40.2 feet	
Fiel Fiel	d Geo d Crev	logist v	T P	.Tannenb Lanigan,	aum D.Cok	e, T.	Hartfo	ord	Equ	uipm	ent Type CME 45 Heli-drill		Dates Drilled Station, Offset	8/6/2022 - 8/6/20	22
тн	Finaliz	ed By	<u> </u>		ENBAU.	М			We Ve	athe getat	r <u>41°F, overcast, 15 mph wind, dr</u> ion <u>tundra</u>	rizzle	Latitude, Longitude Elevation	N71.23583712°, 48.3	W156.736
rilling Method	epth in (Feet)	asing lows / ft	ethod	Sam	low Count (raw)	ample Interval	ncorrected -Value	mbankment Height	lozen	raphic Log	Ground Water Data While Driling After Driling Depth in (ft.) Image: Compare the second sec	GENERAL COM MS target 7. 4 suggest beach	- MENTS: CCR resistivity high and ridge.	surface morpholog	37
Δ	0 -	U III	Μ	Ż	WOU	Ø	ΞŻ	ū	Ē	0	SUBSURFACE MATE	RIAL	TEST RI	ESULTS	0 -
	1 -		MC		1 7	F			Ľ	Z	Bn SILT moist, <i>hi Org</i> , 32.3°f				- 1
	2 -				8	\square					Bn SILT <i>hi Org</i> , Vx				2 -
	3 -					F									3 -
	4 -														4 -
	5 -				6					\angle	Wh-Bn ICE				5 -
	6 -		MC		13 13						Ice +, white ice with org subrounded coarse sand 30.8°f	anic silt and inclusions.			6 -
	7 -				19	F									7 ·
	8 -														8 - 9 -
	10 -														10 -
	. 11 -		MC		9 15 13						Vx, SM with 5-10% coarse gravel of subrounded bla	sand/ fine ack to tan			11 -
Auger	12 -				17					[]	chert. 27.9°f				12 -
H-2/	13 -									//					13 -
	14 -														14 -
	15 -				14					1					15 -
	16 -		MC		15						28.1%f				16 -
	17 -				18	Ħ					20.11				17 -
	18 -					Ħ				0 Q	Tn-Bn Poorly-graded SAND w/ Nf, SP with medium subro	Gravel unded tan to			18 -
	19 -					Ε				0	black chert gravel. Nf > I .12' Nbe lenses. 31.3°f	Nbn, few			19 · 20 ·
	20 -		MC	22-2094	4"/52					Ø				22-2094 (20.0-20.5) USCS (wash)=SM P200=13.9%	20 -
	22 -					Ħ				0 0				NM=8.8% ORG=1.3% LL=NV PI=NP	22 -
	23 -					Ħ				0 0				PL=NV	23 -
	24 -					Ħ				o n					24 -
	25 -					Ħ									25 -

	N & PUBL	SENCHATURS .	STA Nort Geo	TE OF I hern Reg logy Sec	ALASK gion Ma tion	A D teria	OT/F Is	۶F		FINAL TEST HOLE LOG		Sh	eet 1 of 2
Field	Geo	ogist	т	Tannerb	91109				Project Project	_ASTAR 2022Number	_ Test Hole Number _ Total Depth _ Dates Drilled	TH22-2016 40.5 feet	022
Field	Crew	i I	P	. Lanigan,	D.Coke,	T.Ha	artfor	d	Equipm	ent Type_CME 45 Heli-drill	_ Station, Offset	6/1/2022 - 6/1/20	022
тне	inaliz	ad By		TANNE	NIRATIN	1			Weathe	r 55°F, partially sunny, 15 mph wind	Latitude, Longitude	N71.23551915°,	W156.732
	India			Sam	ple Data	1		ŧ	Vegeta	Ground Water Data GENERAL COM	MENTS:	50.0	
Drilling Method	Depth in (Feet)	Casing Blows / ft	Method	Number	Blow Count (raw)	Sample Interval	Uncorrected N-Value	Embankment Heigh	Frozen Graphic Log	While Driling After Driling MS target 7. Depth in (ft.) suggest beach Time Date Symbol	CCR resistivity high and ridge.	surface morpholo	gy
-	0 -				WOH	+	-	+		SUBSURFACE MATERIAL	TEST R	ESULTS	0 -
.	1 -		Ş		1					moist			1 -
			~		9 12	-			$\langle \rangle$	hi Org, Vx, clear to white ice			
	2 -									Wh-Bn ICE Ice + white ice with 15% ML			2 -
	3 -									inclusions			3 -
	4 -									10/L ICE			4 -
						_				lce +, White ice with < 5% ML			
					7					Tn Sandy SILT	22-2097 (5.0-7.0) USCS (wash)=ML		
	6 -		MC	22-2097	13					Vx, < 5% coarse sand/fine gravel. Nbn with few 02-0.3' lenses of Vx	P200=56.4% NM=45.6%		6 -
	7 -				14					with 40% ice. 30.2°f	LL=16 PI=0		7 -
	8 -								[]]		PL=16		- 8
	-					-							
	9 -								1	Tn Silty SAND			9 -
	10 -				10					fine gravel of subrounded tan- black			10 -
	11 -		MC		12	_				with 50 % ice. 25% overall ice.			11 -
ger	12 -				16					20.41			- 12 -
S Au						-			//				12
Ξļ	13 -												13 -
	14 -					-							14 -
	15 -				10				/				15 -
	16		MC		10								- 16
	10 -				5"/52					Tn Poorly-graded SAND Nf. fine sand with 15% coarse sand			- 10
	17 -									and fine to medium gravel of subrounded tan to black chert			17 -
	18 -				\vdash	-							18 -
	19 -												- 19 -
	20.1												
	20 -		MC	22-2098	8							22-2098 (20.0-21.0) USCS (wash)=SP	20 -
	21 -				40 0"/12							P200=4.5% NM=5.7%	21 -
	22 -					4						UKG=3.7% LL=NV PI=NP	22 -
	23 -											PL=NV	- 23
					\vdash	\dashv							
	24 -									7. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			24 -
	25 -				\vdash	-				In Poorly-graded SAND			25 -

		Sevenites.	STA Nort Geo	TE OF I hern Re logy Sec	ALASK gion Ma	A L	DOT/I ials	PF		FINAL TEST HOLE LOG Sheet	1 of 2
57.37	EOF ALN	KP		m :				F	Projec Projec	ASTAR 2022 Test Hole Number <u>TH22-2017</u> Number Total Depth <u>40.1 feet</u>	
Fiel	a Geo d Crev	iogist v	 P	. Tannenb .Lanigan,	aum D.Coke	, T.I	Hartfo	rd I	Equipr	nent Type_CME 45 Heli-drill Station, Offset	
ты	Finalia	a d D				,			Veath	er 50°F, partially sunny, 10 mph wind Latitude, Longitude_N71.23616052°, W	<u>156.73</u> 2
П	Finaliz	еа Бу		Sam	NBAUN	1		<u> </u>	/egeta	Ground Water Data GENERAL COMMENTS:	_
Drilling Method	Depth in (Feet)	Casing Blows / ft	Method	Number	Blow Count (raw)	Sample Interval	Uncorrected N-Value	Embankment Heigh	Graphic Log	While Driling After Driling MS target 7. CCR resistivity high and surface morphology suggest beach ridge. Time	
	0 -				WOH	+		+		SUBSURFACE MATERIAL TEST RESULTS	— o -
-	1 -		MC		WOH WOH					BillT w/ Sand moist, hi Org, < 5% coarse sand of	1 -
-	2 -				2	_				Bn-Wh SILT	2 -
-	3 -									hi Org, Vx, Organic silt with 30% Vx ice	3 -
-	4 -										4 -
-	5 -				11				4	To Bo Silty SAND 22-2099 (5.0-7.0)	5 -
-	6 -		MC	22-2099	19				/	Vx, fine sand with < 20% coarse sand fine gravel of subrounded tan to NM=20754	6 -
	7 -				20					:] black chert. Vx > Nbn. 31.1°f UL=NV PI=NP	7 -
	8 -								1	PL=NV	8 -
-	9 -										9 -
-	10 -				14	_			/		10 -
-	11 -		MC		18 21						11 -
Auger	12 -				23				//		12 -
H-S/	13 -					_					13 -
	14 -					_			/	Bn-Tn Poorly-graded SAND	14 -
	15 -		4C	22-2100	5"/50					Nf, SP-SM fine sand with coarse sand and fine to medium gravel of <u>22-2100 (15.0-15.5)</u>	15 -
	16 -									subrounded tan to black chert. Nf USCS (wash)=SP-SM with few < 0.1' lenses of Nbe ice. P200=5.0% NM=16.7%	16 -
	17 -									0RG=1.2% LL=NV PI⊨NP	- 17 -
-	18 -									PL=NV	- 18 -
-	. 19 -										- 19 -
	20 -		Ę		5"/50						20 -
-	21 -		Ň		5.50						- 21
-	22 -										- 22 -
	23 -										23 -
	24 -										- 24
-	25 -									<u> </u>	25 -

		SPACIFICS	STA Norti Geol	TE OF / hern Reg logy Sec	ALAS i gion M ction	KA latei	DOT // rials	PF			FINAL	TEST HO	DLE LO	3		Sh	neet 1 of 2
STATE	OF ALAS	R.M.							Pro Pro	oject oject	_ <u>AS</u> Number	TAR 2022			_ Test Hole Number _ Total Depth	TH22-2018 36 feet	
Field	Geol	ogist	T.	Tannenba	aum				_						Dates Drilled	8/8/2022 - 8/8/2	022
Field	Crew	V	P.	Lanigan,	D.Cok	e, T.	.Hartfc	ord	Equ We	uipm eathe	ent lype <u>CN</u> r 50°	<u>IE 45 Heli-drill</u> F. sunny, 10 m	ph wind		_ Station, Offset Latitude, Longitude	N71.23620182°	W156.72
TH F	inaliz	ed By	T	TANNE	NBAU	Μ			Veg	getat	ion tun	dra, rare incipi	ent frost boils		Elevation	48.8	
illing Method	epth in (Feet)	asing ows / ft	ethod	Sam	ow Count (raw)	ample Interval	ncorrected Value	nbankment Height	ozen	raphic Log	Depth in (ft.) Time Date Symbol	Ground Water While Drilling	Data After Drilling	GENERAL COM MS target 7. (suggest beach	MENTS: CCR resistivity high and ridge.	surface morpholo	ogy
ā	ŏ -	ប៉ីញី	ž	ž	ā	ů	Ξż	ш	μ	ō		SUBSURF	ACE MATER	RIAL	TEST R	ESULTS	0 .
	· -				WOH	\vdash			Ē	11		/AT					0
	1 -		MC		WOH	\vdash				\mathbb{Z}		oist					1 -
	2 -				8					Z	Bn SIL	T Ora Vx ora:	anic ML with	rare fine			2 -
	-				<u> </u>	-					\ <i>"</i> ''	gravel of sub	rounded tar	to black			
	3 -										Wh-Bn	SILT	1051 0011. 31	<u> </u>			3 -
	4 -				<u> </u>	\square					Vx	د, ML with 70	% interstitia	white ice			4 ·
	- -									Ľ							5
	6 -		MC		7						Tn-Wh	SILT w/ Sar (, Sandy ML subrounded t	nd with 5% coa an and blac	rse sand of k chert.			6
					12	\vdash						30.2°f					7
	/ -																/
	8 -					\vdash				//							8
	9 -									//							9
	-				<u> </u>	\vdash											
	10 -				11					1	Tn-Bn	Silty SAND	-0/				10
	11 -		MC		18	\vdash				11		to black cher	o% coarse s t	and of tan			11
5	12 -				3"/50					0	Tn Poo	orly-graded S	AND w/ Gra	ivel			12
Ĩ	12				<u> </u>					0		to medium gi	ravel of subi	ounded tan			12
2	13 -					\vdash				o	1	to black cher	t				13
	14 -									0							14
					-	\vdash				0							
	15 -		MC		5"/50					° Ø							15
	16 -				├──	\vdash				0							16
	17 -									ø							17
					<u> </u>	\vdash				0							17
	18 -									0							18
	19 -									0							19
	20 -		ç		4"/50	\vdash				0	Th Por	orly-graded S	AND				20
	21		Ä								N	on, medium t	o coarse SF	with < 5%			21.
	21					\square						meaium grav	ei in ienses				21
	22 -				L												22 -
	23 -																23
					<u> </u>	\vdash											~
	24 -																24 -
	25 -				<u> </u>	\vdash			1								25 -

	N & PUBL	STRUTTERS.	STA Nort Geo	TE OF I hern Reg logy Sec	ALASK gion Ma tion	(A L aten	DOT/I ials	PF		FINAL TEST HOLE LOG		Sheet 1 of 2		
STATE	OF ALAS	A.C.						I	^o rojec ^o rojec	ASTAR 2022 T Number T	est Hole Number otal Depth	TH22-2019 36 feet		
Field Field	d Geo d Crev	logist v	 	.Tannenb Lanigan,	aum D.Coke	, T.I	Hartfo	rd	Equip	nent Type_CME 45 Heli-drillS	ates Drilled itation, Offset	es Drilled <u>8/9/2022 - 8/9/2022</u> tion, Offset		
тн ғ	inaliz	ed By		TANNE	NBAUN	M			Veath /eget	er <u>45°F, 15 mph wind, overcast</u> Lition <u>tundra</u> E	atitude, Longitude levation	N71.23538483°, W156.72 49.1		
illing Method	pth in (Feet)	ising bws / ft	sthod	Sam	w Count (raw)	mple Interval	rcorrected Value	nbankment Height	aphic Log	Ground Water Data GENERAL COMMEN While Driling After Driling MS target 7. CCI suggest beach ridg	NTS: R resistivity high and : ge.	surface morphology		
ā	8 0 -	Se	Me	NN	ă	Ŝ	Ξż	шī	i 5	SUBSURFACE MATERIAL	TEST RE	SULTS 0 -		
	1 -		MC		WOH WOH 3					ORG MAT Bn SILT moist, <i>hi Org</i> , <5% coarse sand		1 -		
	2 -				12				6	Bn SILT hi Org, Vx		2 -		
	3 -									Bn SILT Vx		3 -		
	4 -											4 -		
	5 - 6 -		1C		6 12					Gy-Bn Silty SAND Org, Vx, interlayered gray SM and		5 -		
	7 -		N		13 17					coarse sand. 28.3°f		7		
	8 -					_						8		
	9 -					_						9		
	10 -				8	_				Bn Silty SAND		10		
	11 -		MC		15 13				/	Nbn, laminated interlayered SM and sandy ML with 5% coarse sand of subrounded tan to black chert, 28.1°f		11		
Auger	12 -				16				/			12		
S-H	13 -											13		
	14 -											14		
	15 -		2	22 2102	16 20					Tn-Bn Sandy SILT Vx, ML with 5% coarse sand and rare	-2103 (15.0-17.0) iCS (wash)=ML 00=50.6%	15		
	10 -		M	22-2103	20 25					chert. 29.5°f	1=33.1% IG=4.2% =16	10		
	18 -					╡				PI= PL=	=1 =15	18		
	- 19 –											19		
	20 -		MC.		4"/50	╡			Ĺ	Tn-Bn Well-graded SAND		20 -		
	21 -		đ							Nbn, lenses with up to 15% coarse sand and fine gravel with rare		21		
	22 -									medium to coarse gravel. 31.3 T		22		
	23 -											23 -		
	24 -											24		
	25 -									1	_	25 -		

	STATE OF ALASKA DOT/PF Northern Region Materials Geology Section	FINAL TEST HOLE LOG	
Field Geologis	tT.Tannenbaum	Project ASTAR 2022 Project Number	Test Hole Number TH22-2020 Total Depth 12.5 feet Dates Drilled 8/10/2022 - 8/10/2022
Field Crew	P.Lanigan, D.Coke, T.Hartford	Equipment Type CME 45 Heli-drill Weather 38% 15 mph wind overaget drizzle	Station, Offset
TH Finalized B	y T.TANNENBAUM	Vegetation <u>tundra</u>	Elevation57.5
Drilling Method Depth in (Feet) Casing Blows / ft	Vethod Vumber Blow Count (raw) Sample Interval Durbuneteded Thomment Height	Ground Water Data Ground Water Data Depth in (ft.) Generating Generating Depth in (ft.) Generating Generati	ENTS. R resistivity high on topographic high.
0 - 1 - - 2 - - 3 - - 4 - - 5 - - 5 - - 5 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 -	2 u v v z u W v z u V v v v v v v v v v v v v v v v v v v v	Bubble Subsurface Material ORG MAT Bn Sandy SILT Vx, <5% coarse sand of black chert	TEST RESULTS 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -

TRANSPORT.	STUS & PUR	AC STATUTES	STA Nort Geo	TE OF thern Re logy Sec	ALASKA gion Mate	DOT / erials	PF		FINAL TEST HOLE LOG		Sheet	t 1 of 2
F	ield Geo	logist	т	Tannenh	90.00			Projec Projec	ASTAR 2022 Number	_ Test Hole Number _ Total Depth _ Dates Drilled	TH22-2021 41 feet 8/10/2022 - 8/10/20	
F	ield Cre	N	P	Lanigan,	D.Coke, '	Г.Hartfo	ord	Equip	nent Type_CME 45 Heli-drill	Station, Offset	0/10/2022 - 0/10/20	
Т	H Finali:	zed By	/ 1	I.TANNE	NBAUM			Weath	er <u>41°F</u> , 20mph wind, overcast, light mist tion tundra	Latitude, Longitude Elevation	<u>N71.19049292°, W</u> 59.6	156.78519
-				Sam	nple Data		Ħ		Ground Water Data GENERAL COM	- MENTS:		
Drilling Method	Depth in (Feet)	Casing Blows / ft	Method	Number	Blow Count (raw) Sample Interval	Uncorrected N-Value	Embankment Heig	Frozen Graphic Log	Depth in (ft.) Time Date Symbol CLIDECLIDECACE MATERIAL	CCR resistivity high on t	opographic high.	
_	0.				WOH			7	ORG MAT	TESTR	ESULIS	- 0 -
-	1.	-	MC		WOH WOH	-			Bn SILT moist, <i>hi Org</i>			1 -
	2.	1			4	1			Bn SILT			2 -
		-			\vdash	-			/// O/g, VA			
Γ	3.]				1						3 -
F	4 ·					1			Wh ICE			4 -
F	5 .	-			4	-			inclusions			5 -
Ļ	6.	1	ΨC		10	1						6 -
	7	1			11	-						7
		-				-						
-	8.					1			Tn-Wh ICE			8 -
F	9.	-				-			inclusions			9 -
F	10 -]			7	-		6				10 -
-	11 .		MC		11 11				Vx, SM finely laminated gray fine sand w/ 50% interstitial ice			11 -
22	a 12 ·	-			7	-			Ice +, white ice with 10% ML			12 -
11/8/	13-	1				1		Ź	Tn Sandy Silty CLAY			13 -
2020.GDT	14 -	-							Nbn, rare coarse sand. Few Nbe/Vx lenses with 10% ice. 27.8°f			14 -
- FRIL	15 -]			11			7			22-2110 (15 0-17 0)	15 -
- TOT - A	16 -	-	MC	22-2110	12			/ /			USCS (wash)=CL-ML P200=58.2% NM=29.5%	16 -
AK -	17 -	1			12			7			ORG=6.9% LL=22	17 -
LABS.GF	18 -	-									PI=7 PL=15	18 -
W	19.	1				1		//				19 -
R 2022	20 ·	-	0					Ź				20 -
S ASTA	21	-	MC	22-2111	5"/50			/	Gy-Bn Poorly-graded SAND w/ Silt Nbn, fine > medium sand with < 5% coarse sand of tan to black chert	22-2111 (20.0-20.5) USCS (wash)=SP-SM P200=6.7%		21 -
JG - USC	22 -	-						1	and occasional shell fragments. 30.8°f	ORG=1.6% LL=NV PI=NP		22 -
OLELC	23 -					-		/ .		PL=NV		23 -
TEST H	24 ·					1		/				24 -
AKDOT	25 -	-						/)				25 -
≚l Not	te: Unless d	therwise	e note	d all same	les are take	n with 1-	3/8-in	ID Stan	ard Penetration Sampler driven with 140 lb. hammer with 30-in. drop.	CME Auto Hamm	er Cathead Rope	e Method

		STRUTTES.	STA Nort Geo	hern Reg logy Sec	ALASKA gion Mat tion	A DO eria	OT/F Is	PF		FINAL TEST HOLE LOG	She	et 1 of 2
Fiel	d Geo	logist	T.	Tannenb	aum			F F	Project Project	ASTAR 2022 Number	Test Hole Number TH22-2022 Total Depth 42 feet Dates Drilled 8/11/2022 - 8/11/2	2022
Fiel	d Crev	v	P.	Lanigan,	D.Coke,	T.Ha	artfor	<u>d</u> E \	Equipm Veathe	ent Type CME 45 Heli-drill r 44°F. overcast. 25 mph wind. drizzle	Station, Offset Latitude, Longitude N71,19218888°.	W156.785
тн	Finaliz	ed By	/ <u> </u>	TANNE	NBAUM			_ \	/egeta	ion tundra	Elevation 62.0	
Drilling Method	Depth in (Feet)	Casing Blows / ft	Method	Sam	Blow Count (raw)	Lacorrocted	Uncorrected N-Value	Embankment Height	Graphic Log	Ground Water Data GENERAL COMI While Drilling After Drilling Depth in (ft.) Time Date Symbol	JENTS CCR resistivity high on topographic high.	
	0 -				WOH			+		ORG MAT	TEST RESULTS	— o –
-	1 -		MC		WOH 8					Bn SILT moist, <i>hi Org</i>		1 -
-	2 -				9							2 -
F	3 -									Wh ICE lce +, horizontally stratified white and gray ice. Trace to minor silt in subscript inclusions		3 -
F	4 -									subvenical inclusions		4 -
F	5 -				4	-						5 -
-	6 -		MC		7							6 -
-	7 -				16							7 -
+	8 -					-						8 -
Ļ	9 -								1.1.			9 -
-	10 -				8					Nbn, finely laminated SM w/ < 5% fine gravel of subrounded tan to black		10 -
-	11 -		MC		11 11					chert. Nbn > Vx. Lens of vx with 20% ice. total ice content 10%. 25.4°f		11 -
Auger	12 -				15				//			12 -
H-S/	13 -					-			[]			13 -
-	14 -											14 -
	15 -				9							15 -
-	16 -		MC		14 27	-			//			16 -
	17 -				24	-			//			17 -
LABO	18 -				$\left \right $	-			//			18 -
ŚW 77	19 -				$\left \right $				[]			19 -
I I	20 -				31				//,	Gv-Bn Poorly-graded SAND w/ Silt	22-2112 (20.0-21 0)	20 -
	21 -		MC	22-2112	4"/50				/ /	Nbn, fine sand with silt with <10% fine to medium gravel of tan to black chert 30.2°f	USCS (wash)=SP-SN P200=7.2% NM=18.0%	21 -
	22 -										UKGZZ.1% LL=NV PI=NP PI=NV	22 -
HOLE	23 -								/ /		FL-144	23 -
	24 -								<i></i>	Gy-Bn Poorly-graded SAND Nbn, fine sand with 10% fine to		24 -
≩ ¥ Note: I	25 - Unless o	 therwise	e note	d, all samp	les are take	−] en wit	ith 1-3.	/8-in.	ID Stand:	ard Penetration Sampler driven with 140 lb. hammer with 30-in, drop.	X CME Auto Hammer Cathead Ro	25 - pe Method

TRANSPORT OF	NN & PURP	STATUTES.	STA Nort Geo	TE OF / hern Reg logy Sec	ALASK gion Ma tion	(A I ater	DOT/I ials	PF			FINAL TEST HOLE LOG		Shee	et 1 of 2
STAT	TEOF ALAS	1 th							Pro Pro	ject ject∣	_ASTAR_2022 Number	Test Hole Number Total Depth	TH22-2023 42 feet	
Fiel Fiel	ld Geol Id Crev	ogist ′	 	Tannenba Lanigan	aum D Coler	т	Hartfo	rd.	Fai	uinm	ant Type CME 45 Heli-drill	Dates Drilled Station_Offset	8/12/2022 - 8/12/2	2022
		,	<u> </u>	.cangan,	D.COKe	<u>, 1</u> .	110110	<u>1u</u>	We	athe	48°F, overcast, drizzle, 25 mph wind	Latitude, Longitude	N71.1924943°, W	156.789
ΤH	Finaliz	ed By	1	TANNE	NBAUN	M		_	Veç	getat	on <u>tundra</u>	Elevation	59.7	
Drilling Method	Depth in (Feet)	Casing Blows / ft	Viethod	Jam	alow Count (raw)	Sample Interval	Uncorrected N-Value	mbankment Height	rozen	Graphic Log	GENERAL COMM While Driling After Driling Depth in (ft.) MS target 8. C Time	IENTS: CCR resistivity high on t	opographic high.	
	0 -	08	~	~	WOU		52	-	<u> </u>		SUBSURFACE MATERIAL	TEST RI	ESULTS	0 -
			C		WOH						Bn SILT			1 -
	-		Ν		5						hi Org Bn SILT			1
	2 -										hi Org, Vx, Organic frozen ML with occasional fine gravel, relict frost			2 -
	3 -								/		boils To Silty SAND			3 -
	4 -									11	Vx, <5% fine gravel in cuttings			4 ·
	5									1				5 .
	· -				10	_				1	Tn Poorly-graded SAND w/ Silt Nbn, < 5% fine gravel of subrounded			5
	6 -		MC		14					1	tan to black chert, rare < 0.1' lenses of Vx w/ 30% ice, 29.0°f			6 ·
	7 -				17	_				1				7
	8 -													8
										, ,				0
	[•] -					_				/ /				
	10 -				10					1	Th Silty SAND			10 -
	11 -		$\rm MC$		20 17	_				$\langle \rangle$	subrounded tan to black chert, rare <			11 -
ıger	12 -				40					//	30.2°f			12
S At	12									1				12.
Ξ	15					_				[]				15
	14 -									1				14 ·
	15 -				11					[]		22-2115 (15.0-17.0)		15
	16 -		MC	22-2115	23					//		USCS (wash)=SM P200=36.4% NM=20.5%		16
	17				22					$\langle \rangle$		ORG=4.3% LL=NV		17
	''-					_				[]		PI=NP PL=NV		17
	18 -									1				18
	19 -					_				<u> </u>	Tn Poorly-graded SAND w/ Gravel			19
	20 -		0	22 2110	58/50					0	Nf, fine to medium sand with fine to coarse gravel of subrounded tan to		22-2116 (20 0-20 5)	20 -
	21		Μ	22-2116	5750					0	black chert. Rare subangular sandstone gravel		USCS (wash)=SP P200=3.4%	21
						_				o Ø			NM=13.1% ORG=2.0%	21
	22 -									0			LL=NV PI=NP	22 -
	23 -				\vdash	_				q				23 -
	24 -									0				24 -
	.				\vdash	_								

	SN & PUHL	SERCILITIES	STA Norti Geol	TE OF / hern Reg logy Sec	ALASKA gion Mate	DOT. erials	/PF			FINAL TEST HOLE LOG	Sheet 1 of 2]
57.47	POF ALAS	A.P.						Pro Pro	oject oject l	_ASTAR 2022 Number	_ Test Hole Number _ <u>TH22-2024</u> _ Total Depth <u>30 feet</u>	
Fiel Fiel	d Geol d Crev	logist v	<u> </u>	Tannenba Lanigan,	aum D.Coke, 1	.Hartf	ord	Equ	uipme	ent Type CME 45 Heli-drill	Dates Drilled 8/12/2022 - 8/12/2022 Station, Offset	
ТНІ	Finaliz	ed By	T	TANNE	NBAUM			We Veg	athe getati	n 48°F, overcast, drizzle, 20 mph wind on tundra	Latitude, Longitude <u>N71.19108665°</u> , <u>W156.78</u> Elevation <u>59.3</u>	<u>9</u> 1
Drilling Method	Depth in (Feet)	Casing Blows / ft	Method	Sam	slow Count (raw) ald Somple Interval	Uncorrected V-Value	Embankment Height	rozen	Braphic Log	Ground Water Data GENERAL COM While Driling After Driling MS target 8. Time	MENTS: CCR resistivity high on topographic high.	
	0 -	0	2	2	WOH 0	- 2				SUBSURFACE MATERIAL	TEST RESULTS 0	-
-	1 -		MC		WOH 7 8					Bn SILT moist, <i>hi Org</i> Bn SILT	1	
-	3 -					-				Wh ICE ICE, horizontally laminated white and gray slightly translucent ice with <	3	-
	4 - - 5 -				6	-				5% wispy silt inclusions	4 5	-
-	6 -		MC		8						6	
-	7 -				10	-					7 8	-
-	9 -					-					9	-
	10 -		MC		11					Tn-Gy Silty SAND Vx, fine silty sand with 5% subrounded coarse sand/ fine to medium gravel	10	
Auger	12 -				23	-				of subrounded tan to black chert. 28.3°f	12	-
H-S-H	13 - - 14 -					-					13	-
	15 -				10			ł			15	
	16 - - 17 -		MC		18 26 31						16	
LABS GF	18 -								$\left \right $		18	
	19 -					-					19	-
	20 -		MC		10 26 32	-					20 21	
	22 -				3"/50						22	
	23 -										23 24	
	25 -									Ice +, gray and white granular ice	25	
Kote: l	Jnless of	herwise	note	d, all samp	les are take	n with 1	-3/8-	in. ID S	Standa	rd Penetration Sampler driven with 140 lb. hammer with 30-in. drop.	CME Auto Hammer 🗌 Cathead Rope Method	1

		STRUTTES.	STA Nort Geo	TE OF thern Reg logy Sec	ALASKA gion Mate	DOT erials	/PF			FINAL TEST HOLE LOG			Shee	et 1 of 2
	EOF ALAS							Pr Pr	roject roject	_ASTAR 2022		Test Hole Number Total Depth	TH22-2025	
Fiel	d Geo d Crev	iogist v	 P	.Tannenb. .Lanigan,	aum D.Coke, 1	.Harti	ord	Ec	quipme	ent Type_CME 45 Heli-drill		Station, Offset	8/13/2022 - 8/13/2	:022
_{TU}	Finalia	a d D						W	eathe	35°F, overcast, 20 mph wind		Latitude, Longitude	N71.1902698°, W	156.7924
	Finaliz	ea by	/ 	Sam	NBAUM		1		egetat	Ground Water Data GENERA		ENTS	57.8	
Drilling Method	Depth in (Feet)	Casing Blows / ft	Method	Number	Blow Count (raw) Samble Interval	Uncorrected N-Value	Embankment Heigh	Frozen	Graphic Log	While Drilling After Drilling MS targ Depth in (ft.)	get 8. C	CR resistivity high on to	pographic high.	
	0 -				WOH				777		\pm	TEST RE	SULIS	- 0 -
-	1 -		MC		WOH	1				Bn SILT				1 -
					9					Bn SILT				2
					\vdash	-				ni Org, Vx				
F	3 -					1				Wh ICE				3 -
-	4 -					-				loe +, white and gray horizontall laminated ice with <2% ML in wis	spy			4 -
Ļ	5 -					1				stringers at 30 degrees to vertica				5 -
			5		5 4	1								_
	0 -		Μ		11]								- 0
-	7 -				1.5									7 -
-	8 -					-								8 -
-	9 -					1								9 -
	- 10				\vdash	1				Nbn, < 5% subrounded fine gravel	of			10
Γ	10 -				8	-				tan to black chert. 29.0°f				10 -
F	11-		MC		12	1								11 -
nger	12 -				16	-								12 -
-SA	13 -					1								13 -
Ŧ	14													-
	14 -													14 -
-	15 -				12				(7)	Tn Silty SAND		22-2117 (15.0-17.0)		15 -
<u>-</u>	16 -		MC	22-2117	20				//	Nbn, fine silty sand with 10% fine to medium subrounded gravel of tar	n to	200=31.1% M=18.7%		16 -
	17 -				31					black chert. Nbn with occasional 0.2' thick lenses of 30% Vx ice.	< (DRG=4.0% L=NV		17 -
5	10				\vdash	1			[]	28.4°f	F	PI=NP PL=NV		10
	18 -					-			$\left(\right)$					- 81
1	19 -					1			11					19 -
	20 -				25				<i>[]</i>	Bn Poorly-graded SAND w/ Silt			22-2118 (20.0-21.0)	20 -
-	21 -		MC	22-2118	5"/50				//	Nbn, Nbn to Nf frozen finely lamina fine to medium sand with 5% fine medium subrounded gravel of tar	ated ne to n to		USCS (wash)=SP-SM P200=6.8% NM=23.5% ORG=2.0%	21 -
ŝ	22 -				\vdash	1			11	black chert. 29.7°f			LL=NV PI=NP	22 -
	23 -					1			/ /				PL=NV	23 -
5	24								, ,					24
5	24 -					-			//					24 -
	25 -	thornic	 	d all			1.2/0	in 17		d Departmention Complex driven with 140 lb. however with 20 1		CME Arts Us		25 -

APPENDIX D: SYMBOLS AND DEFINITIONS

Part I Description of Sol <u>Phase (a)</u> (Independent of				DESC	RIPTION AN	DCLA	SSIFICATION OF F	ROZEN	SOILS
Part II Description of Frozen Soli	Major Group Sub-Group						Guida for Construction on Solis Subject to Freezion and Thaving		
	Description (2)	Designation (3)	Description (4)	Designation (5)	Field Identification (6)		Pertinent Properties of Frozen Materials which may be measured by physical tests to supplement field identification. (7)	Thaw Characteristics (8)	Criteria (9)
	1	N	Poorly Bonded or		Identify by visual examination. To determine presence of excess ke, use procedure under note (c) below and hand magnifying lens as necessary. For soils not fully saturated, estimate degree of ice saturation: Medium, Low. Note presence of crystals, or of ice coalings around larger particles. For ice phase, record the following as applicable: Location Size Orientation Size Orientation Size Spacing Pattern of arrangement Length Hardness } Structure } per part III Below Color } Estimate volume of visible segregated ice present as percent of folal sample volume		In-Place Temperature Density and Void Ratio a) In Frozen State b) After Thawing in Place Water Content (Total H-0, including ice) a) Average b) Distribution Strength a) Compressive b) Tensite c) Shear d) Adtreeze Elastic Properties Plastic Properties Plastic Properties Thermal Properties Ice Crystal Structure (using optional instruments.) a) Orgentation of Axes b) Crystal strape d) Pattern of Arrangement	Usually Thaw-Stable	The potential intensity of ice segregation in a soil is dependent to a large degree on its void sizes and may be expressed as an empirical function of grain size as follows. Most inorganic soils containing 3 percent or more of grains finer than 0.02 mm in diameter by weight are froat-susceptible. Gravels, well-graded sands and sitty sands, especially those approaching the theoretical maximum density curve, which contain 1,5 to 3 percent finer than 0.02 mm by weight without being frost-susceptible. However, their tendency to occur interbadded with other soils usually makes it impractical to consider them separately. Soils classed as frost-susceptible under the above criteria are likely to develop significant ice segregation and frost heave if frozen at normal rates with free water readily available. Soils so frozen will fail into the thew-unstable category. However, they ma also be classed as non-frost-susceptible ("NFS) under the above criteria usually occur without significant ice segregation and are not exact and may be inadequate for some structure applications exceptions may also result from minor soil variations.
	Segregated ice is not visible by eye (b)		No excess ice Well Bonded Excess ice	ND e					
	Segregated ice Is visible by eye. (Ice 1 inch or less in thickness) (b)	v	Individual ice crystals or inclusions ice coatings on particles Random or	Vx Ve					
			Irregularly oriented ice formations Stratified or distinctly oriented ice formations	Vs					
Part III	ice (Greaterthan 1 inch in thickness) Ice	ice	ice with soil inclusions	lce + Soil Type	Designate material as ICE (d) and use descriptive terms as follows, usually one item from each group, as applicable:				
Description of Substaniial Ice Strate			ice without soil inclusions	lte	Hardness Structure Color Hard Clem 4.g. Soft Cloudy Color (maxy Phonois level not inde Candidet Gray (dystals) dysmotar Blay Sreathed	Contains Thm Silt Inclus	Same as Part II above, as applicable, with special emphasis on Ice Crystal Structure,		In permafrost areas, ice wedges, pockets, velns, or other ice bodies may be found whose mode of origin is different from that described above. Such ice may be the result of leng-time surface expansion and contraction phenomena or may be glacial or other ice which has been buried under a protective earth cover.
DEFINITIONS: ice Coalinge on P particles in a froze crystals, which ha ice Crystal is a vec- Crystal's may be p Cloudy Ice is transp- Cloudy Ice is transp- Cloudy Ice is transp- and the comparison of the second cloudy Ice is transp- and the comparison of the second materials in the win- mass relations its at materials in the win- mass relations is at comparison of the second comparison of	articles are disce en soil mass. The we grown into vo ry small individus vesent alone or il slucent, but essen snumerous voic sluches, but essen snumerous voic to ubbles or along ater, or from the t tructural unity, which has rotted ed together, mposed of coarsi gelther, nticular ice format ormal to the direct the growth of foc	mible layers of y are sometime ids produced by dice particle vis a combination is only a moder tially sound an is, usually inter- reasing of satur or otherwise fo a, more or less tions in soil occi tion of heat loss a sidistinct lens	ice found on or beil is associated with i y the freezing actio sible in the face of a swith other ice form rate number of air b d non-pervious connected and usu connected and usu cas from presence rated anow. Thougi rmed into long colu- equidimensional, ic urring essentially p is and commonly in ses, layers, veins	ow the larger sol noarfrost n, a soll mass, nations, nubbles (e) aily resulting of sail or other h porous, the ammer crystals, ce crystals araliel to each repeated layers	Well-bonded signifies that it possesses relatively high n <u>Poorly-bonded</u> signifies that consequently has poor rest <u>Friable</u> denotes a condition <u>Thaw-Stable</u> frozen soils d nor produce detrimental se <u>Thaw-Unstable</u> frozen soils values and/or significant se Modified from: Linell, K. A <i>Frozen Soils</i> , Proc. (Inter U.S. National)	the soil particle esistance to ch at the soil partic istance to chip in which male o not, on thewi dtlement. s show on thew ettlement, as a and Kaplar. C	is are strongly held logether by the lice and the lipping or breaking. Lies are weakly held together by the lice and the ping or breaking. Irrial is easily broken up under light to moderating, show loss of strength below normal, long ving, significant loss of strength below normal, long ving, significant loss of strength below normal direct result of the melling of the excess lice C. W., 1966, Description and Classification of rence on Permatrost (1963). Lafayette, IN, clences. Publ. 1287, pp 481-487.	hat the frozen soil that the frozen soil the pressure, -time thawed values In the soil.	NOTES: (a) When rock is encountered, standard rock classification terminology should be used. (b) Frozen solis in the N group may on close examination indicat presence of ice within the voids of the material by crystalline reflections or by a sheen on fractured or trimmed surfaces. However, the impression to the unaided eye is that none of the frozen water occupies space in excess of the original voids in the soil. The opposite is true of trozen soils in the V group. (c) When visual methods may be inadequate, a simple field test to ald evaluation of volume of excess ice can be made by placin some frozen soil in a small jar, allowing it to meti and observing the quantity of supernatant water as a percent of total volume. (d) Where special forms of ice, such as hoarfrost, can be distinguished, more explicit description should be given. (e) Observer should be careful to avoid being misled by surface

Peat and Organic Soil Classification System

INCREASING ORGANIC CONTENT