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and modified after Decker et al., 2008). Some Ivishak River sistent with it being essentially autochthonous; the Gilead syncline may comprise a passive roof
exposures of the Gilead succession exhibit especially complex structural relationships that may be overlying structurally thickened Valanginian and older strata (see schematic cross-section above by
suggestive of multiple phases of deformation (lower figure; see discussion and original figure cap- W.K. Wallace).

tions in Decker et al., 2008).
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Quaternary mapping largely simplified after Waythomas (1991).
The current authors thank C.F. Waythomas for allowing us to
simplify his original surficial mapping and present it here.
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