Along-Strike Geochemical Variations in the Late Triassic Nikolai Magmatic System, Wrangellia, Central Alaska
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and Skolai Arc) have been conducted, however none of those was able to simulate the chemical composition of the Nikolai groups.

. . . . The models are plotted on bivariate plots (Thvs. Y, Cevs. Y, TiO, vs. Zr and Sm vs. Zr) with average low TiO, and high TiO, groups and
Fig. 2 Rock samples classified based on titanium and zirconium composition (Pearce and Cann, 1973). High Green polygons outline upper and lower Nikolai basalts analyzed by Taylor et al. (2008) and orange polygons outline cumulates. 50 to 60 % of assimilation and fractional crystallization of the experiment with crystallization of 65% olivine, 20% of

TiO, volcanic rocks lie stratigraphically on top of low TiO, volcanicrocks, and generally have greater thickness data collected by Greene et al. (2005; 2008; 2009). DGGS data geerally falls within their compositional polygons. clinopyroxene and 15% of feldspar best explain the low TiO, Nikolai composition. The high TiO, Nikolai group can be explained by
(Twelker et al., 2015), however the geographic distribution of both is similar. both experiments, however model 1is a slightly better fit.
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