SEDIMENTOLOGY, AGE, AND GEOLOGIC CONTEXT OF A PLEISTOCENE VOLCANICLASTIC SUCCESSION NEAR SPURR VOLCANO, ALASKA

Trystan M. Herriott¹, Christopher J. Nye¹, Richard D. Reger², Marwan A. Wartes¹, David L. LePain¹, and Robert J. Gillis¹,
¹Alaska Division of Geological & Geophysical Surveys
²Reger’s Geologic Consulting, Soldotna, AK

Date of Oral Presentation: 10 May 2011

Funding for this work has been provided by the State of Alaska and the National Cooperative Geologic Mapping Program’s STATEMAP component
Volcaniclastic Plateau

Capps Glacier

Mount Spurr

volcaniclastic plateau

Chuitna River headwaters

Chakachatna River

Straight Creek
Previous Geologic Mapping of the Volcaniclastic Plateau

Capps, 1935

Barnes, 1966

Magoon et al., 1976

Wilson et al., 2009

Nye et al., unpublished

Yehle et al., 1983
Previous Geologic Mapping of the Volcaniclastic Plateau

- Capps, 1935 – Tk and Qmg: clay, sand, gravel, and tuff with lignite coal; moraine and outwash of Pleistocene age
- Barnes, 1966 – Tv: pyroclastic deposits of lapilli tuff and volcanic breccia; unit apparently several hundred feet thick
- Magoon et al., 1976 – Tv: basaltic lava, tuff, and breccia, may locally include Quaternary volcanic rocks (after Barnes, 1966)
- Yehle et al., 1983 – v: volcaniclastic deposits of Tertiary to Quaternary (?) age
- Wilson et al., 2009 – Qhv: volcanic rocks associated with Holocene volcanic centers; Twf along Capps Glacier
- Nye et al., unpublished – Ql: lahar deposits associated with ancestral Mount Spurr (~255 ±42 ka to ~59 ±14 ka (Nye and Turner, 1990)); Qd: drift of Pleistocene age in ground moraine

Summary of previous age assessments and lithologic descriptions

- Miocene – Holocene age
- Basaltic lava, tuff, and breccia to pyroclastic deposits to volcaniclastic deposits to lahar deposits to glacial deposits
Geologic Mapping – This Study

- Gillis et al., in prep – Qvc: massive volcaniclastic conglomerate and sandstone; conglomeratic beds to ~10 meters apparent thickness
- ~275-m-thick at northern extent of the plateau
- Horizontal to ~6 degree apparent dip (primary?) to ~north
- Overlies, with angular unconformity, West Foreland and Tyonek formations
- Succession is a thicker to the north package of coarse volcaniclastic strata comprising the erosional remnant of incised paleovalley-fill deposits (see also Yehle et al., 1983)
Geologic Mapping – This Study

- Gillis et al., in prep – Qvc: massive volcaniclastic conglomerate and sandstone; conglomeratic beds to ~10 meters apparent thickness
- ~275-m-thick at northern extent of the plateau
- Horizontal to ~6° apparent dip (primary?) to ~north
- Overlies, with angular unconformity, West Foreland and Tyonek formations
- Succession is a thicker to the north package of coarse volcaniclastic strata comprising the erosional remnant of incised paleovalley-fill deposits (see also Yehle et al., 1983)
Qvc – Sedimentology

- Volcaniclastic sandy conglomerate and gravelly sandstone with minor pebbly mudstone
 - Clasts and matrix chiefly comprise pumiceous/scoriaceous pyroclasts and vesicular to dense lava
 - Moderately to poorly indurated
- Four lithofacies identified:
 - 1) Matrix-supported, massive conglomerate
 - 2) Clast-supported, massive conglomerate
 - 3) Massive to faintly horizontally stratified sandstone
 - 4) Matrix-supported, massive pebbly mudstone
Lithofacies 1 – Description

- Matrix-supported, very thick-bedded, sandy pebble to boulder conglomerate

- Structureless beds to ~10 m
- Very poorly sorted
- Clasts largely sub-angular
 - Outsized to >5 m³
- Coarse sand matrix

~2 meters
Lithofacies 1 – Interpretation

- Matrix-supported, massive conglomerate
- Noncohesive debris flow deposits
Lithofacies 2 – Description

- Clast-supported, thick- to very thick-bedded, sandy pebble to cobble conglomerate

- Structureless to crudely stratified
- Very poorly sorted
- Clasts sub-angular to sub-rounded
- Commonly forms channel fill
Lithofacies 2 – Interpretation

- Clast-supported, massive conglomerate

- Channelized to overbank noncohesive debris flow deposits (see Zernack et al., 2009)
Lithofacies 3 – Description

- Thick-bedded, granule bearing to pebbly sandstone
- Structureless to faintly horizontally stratified
- Moderately sorted
- Sub-angular to sub-rounded
- “Floating” outsized pebbles and cobbles
- Pumice “trains” and silty partings occur locally
Lithofacies 3 – Interpretation

- Massive to faintly horizontally stratified sandstone
- Hyperconcentrated flow deposits
- Silty partings within med. to coarse sand possibly reflect dewatering (see Vallance, 2000)
- Pumice trains commonly observed within HF deposits (see Zernack et al., 2009)
Lithofacies 4 – Description

- Matrix-supported, very thick-bedded, pebbly clay-rich mudstone
 - Structureless
 - Moderately to poorly sorted
 - Clasts chiefly volcanic and sub-angular; rounded granitic pebbles to boulders occur locally
 - Silt- to clay-rich matrix
Matrix-supported, massive, pebbly clay-rich mudstone

- Cohesive debris flow deposits
- Clay-rich volcaniclastic debris commonly sourced from hydrothermally altered rock within volcanic edifice (Crandell, 1971; Scott et al., 1995; see also Vallance and Scott, 1997)
Flow Types, Sediment Suspension Processes, and Deposit Characteristics of Sediment-Water Mixtures in Volcanic Settings

- Turbulence
- Fluid viscosity
- Fluid density
- +/- Dynamic grain interactions
- Matrix supported
- Pebble- to boulder-sized clasts in sandy to clayey matrix
- Very poorly to poorly sorted
- Massive, commonly lacking internal stratification
- Meter-sized boulders occur
- Dynamic grain interactions
- Fluid density
- Fluid viscosity
- +/- Cohesive matrix strength
- Matrix supported, commonly clay-rich
- Clasts to tens of meters and debris blocks to hundreds of meters
- Very poorly sorted
- Massive and unstratified
- Deposits commonly have hummocky surface morphology

Flow Type: Water Flow
- Turbulence
- Clast supported
- Mud to sand to rounded gravel
- Moderately to well sorted, with poor sorting in rapidly aggraded sequences
- Horizontally- to cross-stratified to massive
- Lenses of cross-stratified sand and pebbly sand common

Flow Type: Hyperconcentrated Flow
- Sand to pebbly sand
- Poorly to moderately sorted
- Massive to faintly horizontally-stratified to well bedded
- Outsize clasts to boulder-size occur

Flow Type: Debris Flow
- Dynamic grain interactions
- Fluid density
- Fluid viscosity
- +/- Cohesive matrix strength

Flow Type: Debris Avalanche
- Dynamic grain interactions
- Cohesive matrix strength

Figure modified after Smith and Lowe, 1991
Water flow parameters after Smith and Lowe, 1991; Pierson, 2005; and Zernack, et al., 2009
Hyperconcentrated flow parameters after Vallance, 2000; Pierson, 2005; and Zernack et al., 2009
Debris flow parameters after Vallance, 2000 and 2005; and Zernack et al., 2009
Debris avalanche parameters after Smith and Lowe, 1991; Glicken, 1996; and Iverson, 2005

modified after Smith and Lowe, 1991
Modern Analogous Environments of Deposition(?)
Modern Analogous Environments of Deposition(?)
How young are these rocks?

Gillis et al., in prep
Detrital Zircons – Maximum Depositional Age

- 16 Pleistocene zircons (n=16/190)
- 9 zircons are younger than 1 Ma
- Robust indicator of 660–440 ka maximum depositional age
Detrital Zircons – More Than Maximum Depositional Age

figure from Finzel et al., 2011, EPSL
Glacial Deposits – Minimum Depositional Age

- MIS 4 glacial deposits overlie Qvc along western and eastern plateau escarpments/margins (R. Reger, unpublished data)
- MIS 4 minimum depositional age (~70–55 ka)

R. Reger, unpublished
Deformed Strata

- Moderately dipping to overturned bedding: soft sediment deformation?
Soft Sediment Deformation.

- Sand injection features locally observed; evidence of fluidization/liquefaction of water saturated sandy horizons.
- Likely trigger? Volcanogenic or tectonic seismicity, high instantaneous sedimentation rates, unstable slopes, or combination thereof.
Summary and Conclusions

- Qvc is ~ 275-m-thick section of poorly-sorted, thick-bedded, conglomeratic volcaniclastic strata
 - Interpreted to record lahars transported as debris and hyperconcentrated flows
- Maximum age of Qvc is 660–440 ka (DZ)
- Minimum age of Qvc is ~70–55 ka (MIS 4 glacial deposits)
- Evidence of fluidization/liquefaction suggests soft sediment deformation
Summary and Conclusions – Significance (?) and Some Unanswered Questions

- Fundamental geologic questions are addressed in this study
- General societal impacts of laharic processes
- Similar volcanogenic processes have local implications for energy infrastructure

- What are the paleogeographic implications of these deposits?
- What are the tectonic implications of the Oligo-Miocene detrital zircon gap in Cook Inlet?
Additional Acknowledgements – Colleagues

Paul Decker and Ken Helmold – DOG
Jeff Benowitz and Paul Layer – UAF
De Anne Stevens – DGGS
Rick Stanley – USGS ● Jacob Mongrain – UAF
Keane Richards and Kandace Krejic – DGGS Interns
Thank You