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During the 2017 field season, geologists from the Alaska Division of Geological & Geophysical Surveys 
(DGGS) conducted geologic mapping and sampling of part of the Richardson Mining District southeast 
of Fairbanks. The project area is about 30 miles west of the Pogo gold mine and covers gold exploration 
activity at the Montecristo and Uncle Sam properties. The goal of this work is to build an improved 
understanding of the area geology and controls on gold mineralization for purposes of exploration 
targeting and mineral resource assessment. 

The 260-square-mile map area lies between the Salcha River and Shaw Creek and is bounded by the 
Trans-Alaska Pipeline access road to the southwest (figure 1). The area is characterized by forested, 
moderate-relief hills blanketed by vegetation, loess, and locally, sand dunes. Rock outcrop is less than one 
percent, consequently, the map interpretation relies heavily on the DGGS East Richardson airborne 
magnetic and electromagnetic survey (Burns and others, 2006) as well as rocks collected from pits dug 
into rocky colluvial deposits below the surficial loess or sand. 

Metamorphic rocks form a map-scale upright synform plunging gently northwest (figure 1). Sillimanite-
bearing paragneiss displaying migmatitic textures (unit mpg) forms the lowest structural level. The 
overlying unit is characterized by similar paragneiss but lacks migmatitic texture (unit pg). The 
structurally highest rock package (unit sg) is a mixed unit comprised of similar sillimanite-bearing 
paragneiss, biotite and muscovite schist, quartzite, calc-silicate rock, and graphitic schist and quartzite. 
This unit also contains small, discontinuous bodies of granitic orthogneiss, amphibolite, and serpentinite. 
These subsidiary units are mapped separately where possible. 

The map area is intruded by abundant dikes and several small stocks of muscovite ± tourmaline ± garnet-
bearing granite (unit tmg), as well as biotite granite. Whole-rock geochemical analyses indicate both are 
peraluminous granites of arc character (Twelker and others, 2017). They most closely resemble the early 
Cretaceous (105-114 Ma) peraluminous felsic dikes documented in the southeastern Richardson district 
(Graham and others, 2002). Altered hypabyssal quartz-feldspar porphyry dikes found south of the study 
area may correlate with ca. 90 Ma dikes of similar composition and texture at the Democrat prospect. 

Shallowly dipping, brittle–ductile-style shearing is evident in drill core, and these structures are an 
important host for gold mineralization at the Naosi and other prospects in the area. At map scale, fault-
bounded and discontinuous bodies of serpentinite offer evidence of a broader, layer-parallel shear zone 
affecting the structurally uppermost mixed schist-gneiss unit. A similar broad shear zone cutting a similar 
mixed lithologic package hosts the low-angle veins at Pogo gold mine. 

Two sets of high-angle faults cut the area; these are mappable as lineaments and offsets in airborne 
magnetic and electromagnetic survey data. Northwest-trending high-angle structures show apparent right-
lateral offset of geologic markers, and faults of this orientation are mapped at both the Naosi and Lone 
Tree prospects. A similar structure localizes the porphyry dikes of the Democrat prospect south of the 
map area. Several northeast-trending structures cut the area, and these apparently cut the northwest-
trending faults. The most prominent of these faults (at map center, figure 1) shows clear left-lateral offset 
of geological and geophysical markers, while a similarly oriented structure in the western map area 
connects the areas of the Lone Tree, Wolf, Naosi, and Democrat prospects. 
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Figure 1. Preliminary draft geologic map of the Richardson-Uncle Sam area, interior Alaska 
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Mapping objectives: 
Find/trace gold-related geologic features

• Low angle structures 
– Pogo Mine, LMS, Naosi

• High angle structures 
– Fairbanks District, Pogo N Zone

• Mineralized quartz-feldspar porphyry dikes
– Richardson district: Democrat Lode, etc.

• Mineralized plutons 
– Fort Knox

5



Pogo geologic setting
• Low angle veins (L1, etc.)
• Exploit regional (?) shear zone
• ‘Slippery’ lithologies:

– serpentinite, graphitic schist
– also: amphibolite, orthogneiss, 

paragneiss
• High angle veins (N zone)
• District-scale ‘Pogo Trend’

– WNW structural control?

6

~104 Ma pluton
“at depth”

± 1 km 
regional 
shear zone

Gold-bearing quartz veins
Serpentinite, amphibolite
Graphitic schistHigh-angle 

structures

Distance unknown 
and/or varies

Alteration 
envelope

Hydrothermal 
fluids

Pogo

after Larimer, 2016
10 mi / 16 km

after Larimer, 2016



Democrat Lode geologic setting

• Syn-mineral (± 90 Ma) quartz-feldspar porphyry dikes host 
gold at many of the prospects in Richardson district
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3 mi / 5 km

Democrat lode

Quartz-feldspar porphyry dike (QFP)

Fault QFP-related prospect

Schist

Gneiss

• Structural control 
along NW-trending 
apparent right-lateral 
fault

• ‘Distal’ style gold 
mineralization

• Relatively shallow 
emplacement, 
lower T?

Adapted from Singh and others (2017)



8260 square mile map area: roughly 1 outcrop per 3 square miles

USGS 1:250,000 geology (bedrock mapped generously)

‘Q’
loess
sand

‘Gneiss’

‘Schist’

Sand dunes in lidar data
Trans-Alaska Pipeline corridor

Loess, reworked loess/colluvium (> 1m)

deeply oxidized bedrock

Wilson et al (2015) after Weber et al (1978)

Presenter
Presentation Notes
This slide illustrates the state of the existing USGS geologic maps of the area ( 1:250,000)
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Make your own outcrop!*

*subcrop at best



2017 field 
project
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Field stations
XRF Data

~700 field stations
225 XRF analyses

He-purge XRF… 
measures Na!

Boots, hammers/shovels, and 

high-tech!



11low

high

Total 
magnetic 
field

East Richardson geophysical survey (Burns and others, 2006)

Geophysical 
Survey

serpentinite

faults



12

Porphyry
Musc-tour granite
Biotite granite
Diorite

Intrusive rocks
Draft bedrock 
geologic map
± inch to mile scale

Mixed schist + gneiss
Quartzite
Orthogneiss
Serpentinite
Amphibolite
Calc-silicate rock
Graphitic schist and quartzite

Paragneiss
Paragneiss and migmatite

sg

q

og

s

a

mpg

pg

gsq

cs

Metamorphic rocks

sg

sg

sg

sg

pg

pg

pg pg

mpg

mpg

mpg

tmg

og

q

s

s

q

q

gsq

cs

s



13

Structure:
Generalized 
map-scale 
synform
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Salcha River gneiss dome

14
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• A structural dome, but…
• Dome core records lower grades
• Center of fluid/reset event
• Relict higher grades are regional 
• Structure at greenschist-

amphibolite boundary??
(but that’s a bigger question)

DGGS 
Map Area

mpg

mpg

mpg
mpg = paragneiss with migmatitic textures

‘schist’ ‘gneiss’

Detailed P-T work (Lessard, 2006)
• Relict higher P, T metamorphism
• Sillimanite is overprint, fluid event

Dusel-Bacon and Foster, 1983:

Presenter
Presentation Notes
The map area sits on the southwest flank of the Salcha River gneiss dome, and our work (based on hand samples, thin sections pending) indicates that kyanite occurs in the area, similar to what is seen on the northeast flank of the dome.
Detailed geothermobarometric work in the Caribou Creek area by Lessard (2006) suggests that kyanite is indicative of high P, T mineralization at upper amphibolite grades and was formerly present throughout the dome. The sillimanite core is a retrograde overprint related to a later fluid flux event.
If a detachment structure exists, it might be at the greenschist-amphibolite boundary.



15

Mixed schist + gneiss
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Presenter
Presentation Notes
Migmatitic-textured rocks (mpg) occupy the structurally lowest levels of the map area. Brown boxes indicate localities where migmatitic textures were noted.



16
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Paragneiss
(and not much else)

Presenter
Presentation Notes
Structurally above the migmatitic paragneiss is a unit of generally homogenous paragneiss (pg). This unit lacks migmatitic textures and interfoliated lithologies (quartzite, orthogneiss, amphibolite, etc.) seen in the underlying and overlying packages.
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Highest structural level:
Mixed schist, 
gneiss and more

Augen orthogneiss

Presenter
Presentation Notes
The highest structural level comprises a mixed unit including paragneiss, biotite and muscovite schist, quartzite, granitic orthogneiss, serpentinite, IAT/MORB-type amphibolite, calc-silicate rock, and graphitic schist. These are mapped individually (as either polygons or points) when appropriate, and they are included within the mixed unit labeled ‘sg’. Serpentinite and graphitic lithologies where mapped with the aid of airborne mag and EM surveys, respectively.



Pogo-area comparison: Generalized stratigraphy

18

Upper package:
• Schist, paragneiss
• Orthogneiss
• Amphibolite (arc)
• Ultramafics
• Quartzite, calc-silicate 

Salcha-River Pogo Richardson, Uncle Sam

Mid package:
• Schist, paragneiss
• Amphibolite (rift)
• Quartzite 

Lower package:
• Paragneiss
• Local quartzite 

Mixed package:
• Paragneiss, schist
• Orthogneiss
• Amphibolite (arc)
• Graphitic schist, qtzt
• Serpentinite
• Quartzite, calc-silicate 

Predominantly 
paragneiss

Paragneiss, locally 
migmatitic
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Generalized from mapping 
of Werdon et al (2004) This study

Presenter
Presentation Notes
This slide suggests a general comparison between the amphibolite grade metamorphic rocks of the Salcha River Pogo area and those of the Richardson-Uncle Sam area. Both areas have monotonous paragneiss at lower levels and a mixed assemblage including orthogneiss and arc (IAT/MORB) type amphibolite at higher structural levels. 
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Structure:
Low angle

Core drilling:
Low angle brittle-
ductile shears 
host gold at
Naosi,
Uncle Sam
Beppu (2015), Eden (2010)

Naosi
25

Structurally-bound 
serpentinite slivers: 
may reflect shear zones?
• talc, anthophyllite:

experienced amphibolite facies
(unlike Seventymile mafic rocks)

Uncle 
Sam

40

Presenter
Presentation Notes
Low angle shearing is directly observed in drilling at prospects in the northwest part of the map area.
We infer that sheared slivers of serpentinite found during the mapping (and traceable in the geophysical survey) that may indicate additional low angle shears in the broader map area.



20Salcha-River Pogo Richardson, Uncle Sam
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• Distance unknown
• Section missing?
• Major shear zone?

To greenschist To greenschist

Pogo shear zone Naosi/Uncle 
Sam shear zone

Presenter
Presentation Notes
Larimer (2016) describes a regional shear zone that hosts the low angle gold-bearing quartz veins of the Pogo mine. Low angle shears are also described as hosting mineralization at the Naosi and Uncle Sam (Wolf, Lone Tree) prospects (Eden, 2010; Beppu, 2015). Both shear zones occur in the structural uppermost portion of the described metamorphic stratigraphy. Contact relationships with the overlying rock package (likely greenschist grade Butte assemblage; see slide 4) are not well understood, but this contact is interpreted to be a regional low angle normal fault, e.g. Dusel-Bacon and others (2017).
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Porphyry
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Tertiary-Cretaceous 
granitic plutons 
mapped by USGS
(Weber and others, 1978)

Naosi prospect drilling:
Numerous dikes intercepted, 
max roughly 50 % of rock
(Beppu, 2015)

Presenter
Presentation Notes
Existing maps of the area (USGS 1:250,000 scale mapping of Weber and others, 1978) indicate several pluton-sized granitic bodies. Recent more detailed work (this study) and core drilling at the Naosi prospect suggest that these are better described as dike swarms rather than plutons.
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Porphyry
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Composition similar to the 
± 114 Ma muscovite-bearing 
dikes to southwest of map area 
(Graham, 2002)

Muscovite-tourmaline granite

Biotite granite

Presenter
Presentation Notes
Our map depicts two types of granitic dikes as point symbols. These form generalized clusters with slightly different spatial distribution. The Montecristo Creek and Naosi prospect area (northwest central map area) contains the highest density of muscovite-tourmaline granite dikes.
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• all observations granite
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Presenter
Presentation Notes
We did map some small stocks of muscovite-tourmaline granite in areas where 1) all samples were granitic and 2) distinctive high resistivity anomalies appear in the EM geophysical survey.
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Porphyry
Musc-tour granite
Biotite granite
Diorite
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(with quartz-sericite-pyrite alteration)

Age is ~ 90 Ma if related to Democrat dike

Presenter
Presentation Notes
We located a few hypabyssal quartz-feldspar porphyry dikes of rhyolitic composition; these appear to occur in the part of our map area that is closest to the compositionally- and texturally-similar dikes at the Democrat prospect. These dikes are altered but our sampling did not yield significant gold values.



25resistive

conductive

Resistivity 
(7200 Hz)

East Richardson geophysical survey (Burns and others, 2006)

High angle 
structure

Presenter
Presentation Notes
The airborne resistivity survey highlights a series of northwesterly-striking high angle structures.
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High angle 
structure

Prospects:
Generalized 
association with 
NE-structures?
(even if hosted
by low angle
shears)

Naosi

Lone Tree

Wolf

NW-trending faults:
Right-lateral offset of 
geological features
(even more apparent off-
map to SW) 

Presenter
Presentation Notes
These structures offset some geological markers, including serpentinite and graphitic units.
The most significant prospect seem to occur near these structures.
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conductive

Resistivity 
(7200 Hz)

East Richardson geophysical survey (Burns and others, 2006)

High angle 
structure

Presenter
Presentation Notes
The geophysical survey also highlights some northeasterly-striking structures, either as conductors or as discontinuities between geophysical domains. (See also magnetics map in slide 11).
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High angle 
structure

NE-trending faults:
• Left-lateral offsets

(at least in some cases)
• Cut (or terminate?) NW faults
• Conjugate fault system? 

Presenter
Presentation Notes
Some of these have a demonstrable left-lateral offset, however, others are ambiguous. Some of the northwesterly striking faults are not mappable across the central northeasterly striking fault system (circled); the former may be terminated rather than cut but the latter.
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Mineralization
zoned or multi-phase?

Naosi

Lone Tree

Wolf

Arsenopyrite, sphalerite, 
jamesonite, stibnite, gold
Pyrite, tetrahedrite, 
boulangerite, pyrargyrite
(Beppu, 2015)

Arsenopyrite, pyrite, stibnite, 
sphalerite, galena, jamesonite
(Eden, 2010)

Pyrite-arsenopyrite 
stibnite, pyrrhotite
Bi-Au correlation
(Eden, 2010)

Presenter
Presentation Notes
Mineralization in the map area displays a range of mineral assemblages indicating a range of geochemical conditions of deposition. Pyrrhotite-bearing assemblages, such as observed at Wolf, are interpreted as indicating relatively reduced conditions, and/or deposition proximal to a source intrusion. Pyrrhotite-free mineralization carrying sulfosalt minerals such as jamesonite is interpreted to represent more oxidized hydrothermal conditions, lower temperatures, and/or deposition distal from an intrusion.
Mineralization here could represent a single zoned system or multiple overprinting systems of different type, separated in time.
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Gold Antimony

BismuthDGGS rock sample 
geochem results
New data released at
dggs.alaska.gov
(RDF 2017-11)
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**non-systematic sampling, especially 
the more covered Uncle Sam area**

Presenter
Presentation Notes
DGGS’s 2017 rock sample data indicates a general correlation between the area of anomalous gold and that of antimony (typically enriched in ‘distal’ mineralization). There is little spatial correlation of these elements to bismuth.
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Mineralization
zoned or multi-phase?

Naosi

Lone Tree

Wolf

Democrat

Arsenopyrite, sphalerite, 
jamesonite, stibnite, gold
Pyrite, tetrahedrite, 
boulangerite, pyrargyrite
(Beppu, 2015)

Arsenopyrite, pyrite, stibnite, 
sphalerite, galena, jamesonite
(Eden, 2010)

Bald Knob

Pyrite-arsenopyrite 
stibnite, pyrrhotite
Bi-Au correlation
(Eden, 2010)

Pyrite, arsenopyrite, 
stibnite, jamesonite
~90 Ma, higher fO2, fS2
(McCoy et al, 1997)

Pogo (Liese veins)
pyrite-arsenopyrite ±
pyrrhotite ± chalcopyrite, 
bismuthinite, native bismuth
Low fO2, fS2
~104 Ma
(Smith et al [1999], Selby et al [2002])Pyrrhotite, Bi7Te3

native bismuth
Low fO2, fS2
~104 Ma
(Graham, 2002)

Presenter
Presentation Notes
Considering the ages of better understood mineralization in the area, it appears that reduced or ‘proximal’ style mineralization may be older (ca. 104 Ma) than the more oxidized ‘distal’ style of mineralization (ca. 90 Ma). This suggests that there may be multiple episodes of mineralization affecting the map area, however, additional research is necessary to test this hypothesis.



Conclusions
• General metamorphic ‘stratigraphy’ of the area is 

similar to that of the Salcha River-Pogo area
• Shear zone(s) may occupy the same structural position, 

‘slippery’ lithologies as at Pogo
– top of amphibolite facies, transition to greenschist?

• Intrusions here are small stocks and dike swarms
– Compare to plutons, batholith around Pogo

• Richardson/Uncle Sam is mostly more “distal”, oxidized, 
lower T compared to Pogo, however:
– Exploits some of the same structural preparation?

• We suggest multiple stages of mineralization, but…
– More work needed
– Richardson District is a great place to study this question
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Thanks!
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