Division of Geological & Geophysical Surveys

RAW DATA FILE 2000-3

GEOCHEMICAL ANALYSIS OF OUTCROP SAMPLES FROM TINGMERKPUK 1998 PROJECT

by Wallace G. Dow DGSI, Inc.

June 2000

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS.

Released by

STATE OF ALASKA
DEPARTMENT OF NATURAL RESOURCES
Division of Geological & Geophysical Surveys
794 University Avenue, Suite 200
Fairbanks, Alaska 99709-3645

\$20.00

		K Take to a

GEOCHEMICAL ANALYSIS OF OUTCROP SAMPLES FROM TINGMERKPUK 1998 PROJECT

This report contains analytical data on the organic geochemistry 96 shale samples from the foothills of the northwestern DeLong Mountains of the western Brooks Range, collected as part of a regional study of the hydrocarbon potential of the northwestern Arctic Slope.

This study is one of a series in a project investigating the geology of the western Brooks Range and Arctic Slope of northern Alaska. The objective of the project is to expand the data base for evaluation of potential hydrocarbon exploration objectives of the future on the western part of the Colville basin, including the western part of the National Petroleum Reserve, Alaska (NPRA). The project includes geologic mapping and acquisition of data concerning the stratigraphy, paleontology, organic geochemistry, and tectonic evolution of the foothills of the western DeLong Mountains. Field operations and analytical studies were partially funded by grants from Anadarko Petroleum Corporation, ARCO Alaska, Inc, Arctic Slope Regional Corporation, BP Exploration Inc., North Slope Borough, Phillips Petroleum Company, the U.S. Geological Survey, and Alfred James III.

Additional DGGS reports in this series include:

- Crowder, R. K., Adams, K.E., and Mull, C.G., 1994, Measured stratigraphic section of the Tingmerkpuk Sandstone (Neocomian), western Brooks Range, Alaska: Alaska Division of Geological and Geophysical Surveys Public-data file report 94-29, 5 p, 1 sheet.
- Dow, W.G., and Talukdar, S.C., (DGSI, Inc.), 1995, Geochemical analysis of outcrop samples, western DeLong Mountains, Brooks Range, Alaska: Alaska Division of Geological and Geophysical Surveys Public-data file report 95-29, 40 p.
- Dow, W. G., (DGSI, Inc.), 1998, Organic Geochemistry of Cretaceous, Jurassic, and Triassic Shales from the Northwestern DeLong Mountains, western Brooks Range, Alaska, 1994-1997, Alaska Division of Geological and Geophysical Surveys Public-data file report 98-35, 181 p.
- Elder, William P., 1998, Cretaceous and Jurassic megafossil collections, 1995-1997, Tingmerkpuk Project, northwestern DeLong Mountains, western Brooks Range, Alaska: Alaska Division of Geological and Geophysical Surveys Public-data file report 98-38, 9 p.
- LePain, D.L., and Adams, K.E., 1999, Stratigraphy and depositional setting of the Tingmerkpuk sandstone (Neocomian), northwestern DeLong Mountains, western Arctic Slope, Alaska: Alaska Division of Geological and Geophysical Surveys Preliminary Interpretive Report 1999-2, 7p., 1 sheet.
- LePain, D.L., Adams, Karen, and Mull, C.G., 2000 in press, Measured section and interpretation of the Tingmerkpuk Sandstone (Neocomian), Northwestern DeLong Mountains, western Arctic Slope, Alaska, in Short Notes on Alaska Geology, 1999, DeAnne Pinney, editor: Alaska Division of Geological and Geophysical Surveys Professional Report 119, 18 p.
- Mickey, M.B., Haga, Hideyo, and Mull, C.G., 1995, Paleontologic data: Tingmerkpuk Sandstone and related units, northwestern DeLong Mountains, Brooks Range, Alaska: Alaska Division of Geological and Geophysical Surveys Public-data file report 95-31, 42 p.
- Mickey, M.B. and Hideyo Haga, Micropaleo Consultants, Inc., 1998, Micropaleontology of Cretaceous and Jurassic shales from the northwestern DeLong Mountains, western Brooks Range, Alaska,

- 1996-1997, Alaska Division of Geological and Geophysical Surveys Public-data file report 98-34, 193 p.
- Mickey, M.B. and Hideyo Haga, 2000, Biostratigraphy report, 129 outcrop samples, western DeLong Mountais (Tingmerkpuk), North Slope, Alaska: Alaska Division of Geological and Geophysical Surveys Preliminary Interpretive Report 2000-8, 199 p.
- Mull, C.G., 1995, Preliminary evaluation of the hydrocarbon source rock potential of the Tingmerkpuk Sandstone (Neocomian) and related rocks, northwestern DeLong Mountains, Brooks Range, Alaska: Alaska Division of Geological and Geophysical Surveys Public-data file report 95-30, 20 p.
- Mull, C.G., 2000, Summary report on the geology and hydrocarbon potential of the foothills of the northwestern De Long Mountains, western Brooks Range, Alaska: Alaska Division of Geological and Geophysical Surveys Preliminary Interpretive Report 2000-9.
- Mull, C.G., Harris, E.E., Reifenstuhl, R.R., and Moore, T.E., 2000, Geologic map of the Coke Basin-Kukpowruk River area, DeLong Mountains D-2 and D-3 quadrangles, northwestern Alaska: Alaska Division of Geological and Geophysical Surveys Report of Investigations 2000-2, 1 sheet, scale 1:63,360.
- Reifenstuhl, R.R., Wilson, M.D., and Mull, C.G., 1998,, Petrography of the Tingmerkpuk Sandstone (Neocomian), northwestern Brooks Range, Alaska: A preliminary study, in J.G. Clough and Frank Larson, (editors), Short Notes on Alaska Geology, 1997, Alaska Division of Geological and Geophysical Surveys Professional Report 118, p. 111-124.
- Wartes, M.A., and Reifenstuhl, R.R., 1998, Preliminary petrography and provenance of six Lower Cretaceous sandstones, northwestern Brooks Range, Alaska, in J.G. Clough, J.G., and Frank Larson, (editors), Short Notes on Alaska Geology, 1997, Alaska Division of Geological and Geophysical Surveys Professional Report 118, p. 131-140.
- Additional background information concerning this project has been presented by:
- Crowder, R. K., Mull,, Charles G., and Adams. Karen E., 1995, Lowstand depositional systems related to Early Cretaceous rifting of the Arctic Alaska plate: A new stratigraphic play on Alaska's North Slope (abstract): 1995 Abstracts with Program, Pacific Section AAPG/SEPM meeting, San Francisco, May 3-5, 1995, p. 29.
- Grow, J.A., Miller, J.J., Mull, C.G. and Bird, K.J., 1995, Seismic stratigraphy near the Tunalik well, North Slope, Alaska (abstract): 1995 Abstracts with Program, Pacific Section AAPG/SEPM meeting, San Francisco, May 3-5, 1995, p. 33.
- LePain, D.L., Adams, Karen, and Mull, C.G., 1999, Outer-shelf to upper-slope storm deposits in the Tingmerkpuk sandstone (Neocomian), western North Slope, Alaska (abstract): 1999 Abstracts with Program, National AAPG/SEPM meeting, San Antonio, April 11-14, 1999, p. A81.
- Mowatt, T.C., Mull., C.G., Banet, A.C., Wilson, M.D., and Reeder, John, 1995, Petrography of Neocomian sandstones in western Brooks Range, and Tunalik, Burger, and Klondike wells, northwestern Arctic Slope-Chukchi Sea (abstract): 1995 Abstracts with Program, Pacific Section AAPG/SEPM meeting, San Francisco, May 3-5, 1995, p. 41.

- Mull, C. G., Crowder, R.K., and Reifenstuhl, R.R., 1995, Exploration frontiers in Neocomian sandstones in northwest Alaska (abstract): 1995 Abstracts with Programs, Cordilleran Section, Geological Society of America meeting, Fairbanks, Alaska, May 24-26, 1995, p. 66.
- Mull, C.G., 1997, Exploration Frontiers in Neocomian to Upper Jurassic sandstones, National Petroleum Reserve in Alaska (NPRA) (abstract): Alaska Geological Society newsletter, vol. 26, no. 10, May 1997.
- Mull, C. G., Reifenstuhl, R.R., Harris, E.E., and Crowder, R.K., 1995, Neocomian source and reservoir rocks in the western Brooks Range and Arctic Slope, Alaska (abstract): 1995 Abstracts with Programs, Pacific Section AAPG/SEPM meeting, San Francisco, May 3-5, 1995, p. 41.
- Mull, C. G., Reifenstuhl, R.R, Harris, E.E., Kirkham, R.A., and T.E. Moore,, 1999, Future exploration plays in the western Colville Basin and National Petroleum Reserve, Alaska (NPRA) (abstract): 1999
 Abstracts with Program, National AAPG/SEPM meeting, San Antonio, April 11-14, 1999.
- Wartes, Marwan A., 1997, Mesozoic stratigraphy at Surprise Creek: Preliminary evidence for anomalous Brookian tectonism and burial history, northwestern Brooks Range, Alaska (abstract): 1997 Abstracts with Programs, Geological Society of America annual meeting, Salt Lake City, www.geosociety.org.

C.G. Mull Project leader June 2000

GEOCHEMICAL ANALYSIS OF OUTCROP SAMPLES FROM TINGMERKPUK 1998 PROJECT

Prepared For:

Alaska Division of Geological and Geophysical Surveys 794 University Avenue, Suite 200 Fairbanks, AK 99709

Prepared By:

Wallace G. Dow DGSI Project: 98/4372 February 10, 1999

DGSI • 8701 NEW TRAILS DRIVE • THE WOODLANDS, TX 77381

(281) 363-2176 • FAX (281) 292-3528 • EMAIL: dgsilab@onramp.net • www.dgsilab.com

Sample #	Location	Collector	Formation	Integrated age	Description	Comments	LAT	LONG
	XUKPOWRUK REDWUL MEA	SURED SECTION		Paleontology by	y Micropaleo Consultants, Inc.	30 samples		
	SEGMENT 1, TOP OF BLUFF					Measured interval in segment		
98 Mu 11	Redwul, Kukpowruk River	Mult/Kirkham	HRZ	Probable Berremian	Sooty bk sh w bentonite	19 m. Top of exposed section	68.715	161.213
98 Mu 11-1	Redwul, Kukpowruk River	Mull/Kirkham	HRZ	Probable Barremian	Scoty bk sh	17.2 m. Wet gummy sample	68.715	161.213
98 Mu 11-2	Redwul, Kukpowruk River	Mull/Kirkham	HRZ	Probable Barremian	Fissile paper sh	16.7 m. Wet gummy sample	68.715	161,213
98 Mu 11-2A	Redwul, Kukpowruk River	Mull/Kirkham	HRZ					
98 Mu 11-3	Redwul, Kukpowruk River	Mult/Kirkham	HRZ	Probable Barremian	Sooty earthy shiand bentonite, slumped	15 m.	68.715	161.213
98 Mu 11-4	Redwul, Kukpowruk River	Muli/Kirkham	HRZ	Probable Hauterlyian	Sooty earthy sh and bentonite	13 m	69.715	161.213
98 Mu 11-S	Redwul, Kukpowruk River	Mull/Kirkham	Pébbie Shale	Probable Hauterivian	Silic silty sh	10 9 m, just below tuff	68,715	161,213
98 Mu 11-6A	Rodwul, Kukpowruk River	Muli/Kirkham	Pebble Shale					
98 Mu 11-6	Redwul, Kukpowruk River	Mull/Kirkham	Pebble Shale	Hauterivian	Silic sitty sh	9 m. 110*, 65* S	68.715	161.213
98 Mu 11-7	Redwul, Kukpowruk River	Mull/Kirkham	Pebble Shale (7)	Oxfordian or Hauterivian?	Silic sitty sh, red br oxidized) m	68.715	161 213
98 Mu 11-8	Redwul, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Gr to bk fissile clay sh, rusty surface weathering	3.8 m	68.715	161.213
98 Mu 11-9	Redwul, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Gr to bk fissile clay sh, rusty surface weathering	1.0 m	68.716	161.213
	SEGMENT 2, OFFSET TO EAS	ST IN SMALL GULL	Y			Measured interval in segment		
98 Mu 11-10	Redwul, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Fissiin dk gr clay sh	6 m	68.715	161.213
98 Mu 11-11	Redwul, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Fissile dk gr day sh	4 m	68 716	161.213
98 Mu 11-12	Redwul, Kukpowruk River	Mull/Klrkham	Kingak Shale	Oxfordian	Fissile dk gr clay sh	2 m. 120*, 55*SW, on hard sittstone	88 715	161.213
98 Mu 11-13	Redwuł, Kukpowruk River	Mull/Klrkham	Kingak Shale	Oxfordian	Fissile dk gr clay sh	0 m	68.715	161.213
	SEGMENT 3, OFFSET TO EAS	ST ON SLOPE FACE	<u> </u>			Measured interval in segment		
98 Mu 11-14	Redwul, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Fissile dk griclayish, has white sulfate powder on surface	12 m. 120°. 60°S	68.715	161.213
98 Mu 11-15	Redwui, Kukpowruk River	Muli/Kirkham	Kingak Shale	Oxfordian	Fissite dk griclay sh with occasional thin sitistone beds, has rusty surface weathering	10 m.	68,715	161,213
98 Mu 11-16	Redwul, Kukpowruk River	Muli/Kirkham	Kingak Shale	Oxfordian	Shale as above, slightly harder (slity?), more rusty weathering, some intervals of dk gr clay shale	8 m.	68.715	161.213
98 Mu 11-17	Redwol, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Shale as above, with scattered discontinuous concretions and three intervels of dk gr imestone with abundant inoceramus, some large and thick prisms	6 m. Sample just below Inoceramus Is lens, One lens 30 cm, thick, 2 m long	68.715	161.213

Sample #	Location	Collector	Formation	Integrated age	Description	Commission	LAT	LONG
98 Mu 11-18	Redwul, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Fissile clay shale with nisty weathering shale, occasional thin yel white dry bentonite searns, as above, ovoid concretions more abundant below.		68.715	161.213
98 Mu 11-19	Redwul, Kukpowruk River	Multi/Kirkham	Kingak Shalo	Oxfordlan	Rusty weathering shale as above, with some dank gray fissile Intervals	2 m. One belemnite in fragments.	68.715	161,213
98 Mu 11-19A	Redwul, Kukpawruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Rusty weathering shale as above, with some dark gray fissile intervals	0 m	68.715	161.213
	SEGMENT 4, OFFSET TO WE	ST IN BOTTOM OF	GULLY			Measured interval in segment		
98 MU 11-20	Redwul, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Shale, dk gr, fisslis, partly oxidized.	SAMPLE NOT LISTED PREVIOUSLY	68.715	161.213
98 Mu 11-21	Redwul, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Shale, as above, concretions more abundant downward, range from cannon ball size up to 25 cm thick avoid. Section appears to have bentontite shale intervals, seen in weathering surface.	23 m.	68 71\$	161 213
98 Mu 11-21A	Redwul, Kukpowruk River	Mull/Kirkham	Kingak Shale	Oxfordian	Or gr fissile clay shale	22 m. Surface sample	68.715	161.213
98 Mu 11-22	Redwul, Kukpowruk River	Muli/Kirkham	Kingak Shale	Oxfordian	Dr gr fissile clay shale, with abundant red br oxidized intervals, some thin bentonitic shale intervals	19 m.	69.715	161.213
98 Mu 11·23	Redwul, Kukpowruk River	Muli/Kirkham	Kingak Shale	Oxfordlan	Dk gr clay shale, with abundant red oxidized zones as above, abundant concretions	17 m. 5 m interval below, covered by talus.	68.715	161,213
98 Mu 11-24	Redwul, Kukpowruk Rivar	Mull/Kirkham	Kingak Shale	Oxfordlan	Ok griclay shale, 1/2 m interval in overall red oxidized shales	10 m.	68.715	161 213
98 Mu 11-25	Redwul, Kukpowruk River	Mull/Kirkham	Kingák Shalé	Oxfordian	Dk gr clay shale, 1/2 m interval in overall red oxidized shates	6.8 m. Sample below 30 cm X 1 m concretion.	68 715	161.233
98 Mu 11·26	Redwul, Kukpowruk Rivar	Mult/Kirkham	Kingak Shale	Oxfordian	Dk gr clay shale, 1/2 m interval in overall red oxidized shales	4 m.	68.715	161.213
98 Mu 11·27	Redwul, Kukpowruk River	Mult/Kirkham	Kingak Shale	Oxfordian	Dk gr shale, oxidized as above	2 m. Base of exposed section.	68.715	161 213
	HORSESHOE BEND MEASUR	ED SECTION		. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		12 samples	:	
98 Mu 19-11	Horseshoe Bend, Ipewik R.	Mull	Pebble Shale	Indeterminate	Organic-rich paper shale	50 yards up gulch from 19-10		
	SEGMENT 2, measured 100 a	n up gully				Measured Interval in segment		
98 Mu 19-10	Horseshoe Bend, Ipewik R.	Xirkham/Harris	Kingak Shale	Oxfordien	Ck gr to bk clay sh,	Top of measured segment, 4,8m		
98 Mu 19-9	Horseshoe Bend, Ipewik R.	Kirkham/Harris	Kingak Shale	Oxfordian	Dk gr to bk clay shale, bentonittic, w/ glauconite layers	3.5m. Glauconite layer found in ~15cm interval		

Sample #	Location	Collector	Formation	Integrated age	Description	Comments	LAT	LONG
98 Mu 19 6	Horseshoe Bend, Ipewik R.	Kirkham/Harris	Kingak Shale	Oxfordian	Dk gr to bk clay shale, bentonittic, w/ glauconite layers	1 5m		
98 Mu 19-7	Horseshoe Bend, Ipewik R.	Kirkham/Harris	Kingak Shale	Oxfordian	Dk gr to bk clay shale, intermitant Fe staining	0 m. Base of exposed section		
	SEGMENT 1, measured at me	cuth of gully off (p	ewik River			Measured interval in segment		
98 Mu 19-6	Horseshoe Bend, ipewik R	Mult/Kirkham	Kingak Shale	Oxfordian	Dk gr to bk clay sh, bentonitic	12 m, sampled section. Stratigraphic top uncertain.		
98 Mu 19-S	Horseshoe Bend, Ipewik R,	Mull/Kirkham	Kingak \$hale	Probable Oxfordian	Dik gr to bik clay sh, bentonitic	10 m, sampled section		
99 Mu 19·4	Horsestice Bend, Ipewik R	Mull/Kirkham	Kingak Shale	Probable E - M Jurassic	Ok gr to bk clay sh, bentonitic	8 m, sampled section		
98 Mu 19-3	Harseshoe Bend, Ipewik R.	Mulii/Kirkham	Kingak Shale	Probable E · M Jurassic	Ok gr to bk clay sh, bentonitic	6 m, sampled section		
98 Mu 19-2	Horseshoe Bend, Ipewik R.	Muit/Kirkham	Kingak Shale	Probable E - M Jurassic	Dk gr to bk clay sh, bentonitic	4 m, sampled section		
98 Mu 19-1	Horseshoe Bend, Ipewik R.	Mull/Kirkham	Kingak Shale	E · M Jurassiç	Dk gr to bk clay sh, bentonitic	2 m, sampled section		
98 Mu 19	Horsesbae Bend, Ipewik R	Mull		Probable E - M Jurassic	Dk gr to bk clay sh, bentonitic	0 m, sampled section		
	IPEWIK TRIBUTARY MEASUR	RED SECTION				7 samples		
98 Mu 33-7	lpewik River tributary	Kirkham/Hamis	Pebble shale/HRZ	Probable Barremian	bk to dk gr paper sh, w/ red/yellow dirty clay	Top of exposed section, 15.5m	68'37 9	164°35 S
98 Mu 33-6	Ipewik River tributary	Kirkham/Hamis	Pebble shale/HRZ	Probable Barremian	Bk to dk gr paper shale,	14m	68*37.9	164*35 5
98 Mu 33-5	lpewik River tributary	Kirkham/Harris	Pebble shale/HRZ	Probable Barremian	Bk paper sh	13m	68'37.9	164*35.5
			SI KOTEZ TINZ	Garrengors		Covered interval 7m		
98 Mu 33-4	Ipewik River tributary	Kirkham/Harris	Pabble shale/HRZ	Probable Barremian	Dk gr to bk paper sh	6m	68'37.9	164*35.6
98 Mu 33-3	lpowik River tributary	Kirkham/Harris	Pebble shale/HRZ	Probable Barremian	Bk scoty paper sh, w bantonite	4m	68*37.9	164*35 5
98 Mu 33-2	Ipewik River tributary	Kirkham/Harris	Pebble shale/HRZ	Probable Barremian	gr to bk paper sh w/ yellow bentonite	2m	68*37.9	164*35.5
98 Mts 33-1	Ipewik River tributary	Kirkham/Harris	Pebble shale/HRZ	Probable Barremian	Gr paper shale, red oxidation abundant	Base of exposed section, Om	60*37.9	164*35.5
-	TOP OF TAMEMERKPUK MOL	UNTAIN MEASURE	D SECTION	,		2 samples		
98 OL 120-27	Tingmerkpuk Mtr.	LePain/Adams	Yingmerkpuk	Possible Aptian (w/rewrk Valanginian)	Bk clay shale	Tingmerkpuk section 6 m below top		
98 OL 120-26	Tingmerkpuk Mln.	LePein/Adams	Tingmerkpuk	Possible Aptian (w/rewrk Valanginian)	Bk clay shale	Tingmerkpuk measured section, 77 m		
	SURPRISE CREEK MEASURE	D SECTION				6 samples		
98 RK1-91	Surprise Craek	Kirkham/Harris	Kingak	Possible Aptian-Albian	Ok brn shale, small clay component	Resample of 96MAW22, 91m		-
98 RK1-84	Surprise Creek	Kirkham/Harris	Kingak	Oxfordian- Albian?	Bk sh, small clay component	84m		
98 RK 1-78	Surprise Creek	Kirkham/Herris	Kingak	Oxfordlan- Albian?	Dk gr to bk sh, has a significant color change at bottom of auger hole, changes to brn-dk brn color, minor clay content	78m		
98 RK1-65	Surprise Creek	Kirkham/Harris	Kingak	Oxfordian- Albian?	dk gr to bk shale, minor clay content,	65m		
				144-0111				

Sample #	Location	Collector	Formation	Integrated age	Description	Сонитивне	LAT	FONG
JÐ RK1-57	Surprise Creek	Xirkham/Harris	Kingak	Possible Oxfordian-	Bk sh w/ significant clay content, mostly water & ice.	57m		
99 RK1-43	Surprise Creek	Kirkham/Harris	Kingak	Oxfordian- Albian?	Bk sh, very high clay content, mostly water &ice?	43m		
	SOUTH TINGMERKPUK MEA	SURED SECTION				Section underlies Tingmerkpuk Ss, southern facies, 12 samples		
99 JC 302-1	South Tingmerkpuk	Clough/Kirkham	Kingak	Valanginian	Gr to med dk gr sh, alternating greenish gr sh	3 m. Top of section,		
98 JC 302-2	South Tingmerkpuk	Clough/Kirkham	Kingak	Velanginian	brownish gr sh	12 m.		
B TC 305-3	South Tingmerkpuk	Clough/Kirkham	Kingak	Valanginian	Greenish gr sh	17.5 m.		
B JC 302-4	South Tingmerkpuk	Clough/Kirkham	Kingak	Valanginian	brown gr sh	36 m.		
8 JC 302-5	South Tingmerkpuk	Clough/Kirkham	Kingak	Vətanginları	gr to br sh	53 m.		
98 JC 302-6	South Yingmerkpuk	Clough/Kirkham	Xingak	Valanginian	gr sh	63 m.		
78 JC 302-7	South Tingmerkpuk	Clough/Kirkham	Kingek	Probable Valanginian	mareon to brnish sh	78 m.		
8 JC 302-8	South Tingmerkpuk	Clough/Kirkham	Kingak	Valanginian	Gr clay sh	90 m.		
8 JC 302-9	South Tingmerkpuk	Clough/Kirkham	Kingak	Valanginian	Gr sh	108 m.		
8 JC 302-10	South Tingmerkpuk	Clough/Kirkham	Kingak	Valanginian	Grnish bk sh	121m.		
8 JC 302-11	South Tingmerkpuk	Clough/Kirkham	Kingak	Valanginian	Gr shale	133 m.		
8 JC 302-12	South Tingmerkouk	Clough/Kirkham	Kingak	Valanginian	gr to dk gr shale	141 m. Base of section.		
	MISCELLANEOUS GRAS SAN	APLES				27 semples		
8 Mu 7-1	Kukpowruk River, Redwui	Mull	KUK	Probable Barremian	Bk cl sh, soft	2 m exposure, composite of 7-1 and 7-		
18 Mu 7-3	Kukpowruk River, Redwul	Mull	куқ	Oxfordian- Kimmeridgian	BK claystone	Claystone around concretion		
8 UM 8	Kukpowruk River, Redwul	Mull	KJk	Valanginian Hauteriylən	Shalo, dk gr	080" 42" S. Sequential samples w auger, 1/2 m above hard siltstone		
98 Mu 8-1	Kukpowruk River, Redwul	Muli	KJk	Probable Oxfordian	Shale, med gr.	98 Mu 8. Fissile shale in coutcrop, contains ovoid concretions w pyrite-marcesite knobs		
98Mu 8-2	Kukpowruk River, Redwui	Muli	K Uk	Probable Oxfordlan	Shale, med gr	7 m below. Auger sample lighter gray. Slope above has popcom whtrg		
8-3 uM8	Kukpowruk River, Redwul	Muli	KJK	Possible Valanginian	Shale, br gr	-7 m below. No apparent conc		
98Mu 8-4	Kukpowruk River, Redwul	Mult	KJK	Probable Oxfordian	Shale, br gr	'7 m below. Dk gr weathered . Has 1/2 cm bent above hole. Conc with B sublaevis coquina in float.		
8 Mu 8-5	Kukpowruk River, Redwul	Muli	K.Jk	Probable Oxfordian	Shale, dk br gr	10 m below 98 Mu 8. Gr fissite shion weathered surface, Interval conteins large round to ovoid concretions, some wilarge Buchias, poss 8, rugosa (Jur.). = 98 Mu 7.3		
9 Mu 9	Kukpowruk River, Redwui	Mult	KJk	Valanginian- Hauterivian	Stale, gr, whirs it gr-wh	Sh Intibd with oxidized gr siltstone, Section has distinctive red by withrd appearance. Silts prob bloturbated. Sect downstream from above, prob acruss fault		

Sample #	Location	Collector	Formation	Integrated age	Description	Comments	LAY	LONG
98Mu 9-7	Kukpowruk River, Redwul	Muil	KJk	Oxfordian- Barremian	Shale, gr, whirs it gr-wh	Sh Intod with oxidized gr siltstone. Section has distinctive red br withrd appearance. Silts prob bioturbated.		
98 Mu 12	Redwul Kukpowruk	Mail	Pebble Shale	Possible Hauterivian	8k sooty clayst & bentonite			
98 Mu 14-1	Upper Ipewik River	Mulf	Upper Kingak?	Indeterminate	Fissile clay shale	Composite from siksik holes on slope		
98 Mu 24	East Tingmerkpuk	Mull	Kingak	Probable Hauterivians Barremian	Hard gn gr shale		68°33.98	162*27.1
98 Mu 24·1	East Tingmerkpuk	Mdl	Kingak	Possible Rauterivian Samemian	Hard gn gr shale		68*33 98	162*27.1
98 Mu 32	lpewik River tributary	Mult	Shublik	Upper Triassic	Black Ilmestone, strong odor			
98 Mu 32 A	Ipowik River tributary	Mult	Shublik	Upper Triassic	Flakes of platy limestone, weathered, contain Monotis and			
98 Mil 32-1	Ipewik River tributary	Harns	?? Float	\overline{n}	Gilsonite, solid hydrocarbon, float			
98 Mb 34	lpewik River tributary	Muß	Łower Brockian	Possible Hauterivlan- Barremian	Bk claystone		68137	164*28.5
98 Mu 38	S fork Ipewik	Mult	Lower Brooklan ?	Probabite Barrem-Aptian	Clay shale, bentonitic, with oxidixed siltstones		69*32.1*	164'14.6'
98 Mu 39	lpewik valley	Muli	Lower Brooklan ?	Probable Barremian	Clay shale, bentonitic, with oxidixed sitistones		68*34.35	164'17.25
98 Miu 39-1	Ipewik valley	Mull	Pebble Shale ?	Indeterminate	Black sooty claystone		68*34 35'	
98 Ha128	E. of Sooner, SW of Kukpowruk R.	E. Harris	Kk	Probable Oxfordian- Kimmendgian	Snales	Ammonite, Buchia (large)	er a Pinerii i	<u> 200 2</u>
98 Ha129	lpewik R.	E. Harris	JKk	Probable Oxfordian Kimmeridgian	Black shale	Concretions	erra sarat a	
98 RR 185B	Dugout syncline	Reifenstuhl	Torok	Probable Aptian	Silty sh	e de la comita del la comita de la comita del la comita de la comita del la co	Proceeding Section	
98 RR 186B	Dugout syncline	Reifenstuhi	Torak	Probable Aptian-Albian	Silty sh			
98 RR 197C	Dugout syncline	Reifenstuhl	Yorak	Indeterminate	Siltstone			
98 RR 2408	Kokolik-Tupikshak	Relienstuhl	Torok	Possible Barremian-	Siltstone			
98 RR 250	Tupikchak Mtn	Reiferistual	Torok	Possible 8arremian-	Siltstone			-
96 RR 251A	S of Tupikchak Min	Reifenswhi	Yorok	Possible Barremian-	Siltstone			
Micropaleo data	by Micropaleo Consultants, I	nc., formation desi	gnations by C.G. I	Mull, table compi	iled by C. G. Mull, May 2000.			

ORGANIC CARBON AND PYROLYSIS DATA

Total Organic Carbon (TOC) and Rock-Eval pyrolysis data provide basic geochemical information and are frequently used to select samples for more detailed studies, particularly kerogen microscopy, extract chromatography and biomarker analyses. Well data can be plotted to make geochemical logs. Unless otherwise specified by a client, DGSI uses LECO TOC then Rock-Eval II pyrolysis as the standard analytical sequence and Rock-Eval is recommended for samples with greater than 0.4% TOC. Samples for LECO TOC and Rock-Eval pyrolysis are ground to pass through a 60 mesh sieve to assure homogeneity.

LECO Organic Carbon and Total Sulfur

Total Organic Carbon is best determined by direct combustion. Approximately 0.15 grams of sample are carefully weighed, treated with concentrated HCl to remove carbonates, and vacuum filtered on glass fiber paper. The residue and paper are placed in a ceramic crucible, dried, and combusted with pure oxygen in a LECO EC-12 or LECO CS-444 carbon analyzer at about 1,000°C. A laboratory standard is run every five samples. Total, insoluble, mineral plus organic sulfur can be determined by the CS-444 analyzer during the carbon analysis. Total carbonate can be determined from sample and acid residue weight differences or by LECO combustion TOC differences before and after acid digestion.

Rock-Eval II Pyrolysis

Rock-Eval II pyrolysis is used to determine kerogen type, kerogen maturity and the amount of free hydrocarbons. About 0.1 grams of the same ground sample used for LECO TOC are carefully weighed in a pyrolysis crucible and then heated to 300°C to determine the amount of free hydrocarbons, S_1 , that is thermally distilled. Next, the amount of pyrolyzable hydrocarbons, S_2 , is measured when the sample is heated in an inert environment which rises from 300° to 550°C at a heating rate of 25°C/minute. S_1 and S_2 are reported in mg HC/g sample. T_{max} , a maturity indicator, is the temperature of maximum S_2 generation. When S_2 values are less than 0.2 mg HC/g sample, the S_2 maximum typically has poor definition and thus, Tmax cannot be reliably determined (Peters, 1986). T_{max} values are reported as N.A. on samples with 0.00 S_2 . Carbon dioxide generated during the S_2 pyrolysis, an indicator of kerogen oxidation, is collected up to a temperature of 390°C and reported as S_3 in units of mg CO2/g sample. A laboratory standard is run every 10 samples. Hydrogen Index (HI = S_2 *100/TOC) and Oxygen Index (OI = S_3 *100/TOC) are used as kerogen type indicators when plotted on a van Krevelen type diagram.

Rock-Eval II Pyrolysis with TOC

Rock-Eval II Plus TOC is used to determine both Rock-Eval data (S_1, S_2, S_3, T_{max}) and TOC of a 0.1 gram ground sample. With this instrument, the pyrolysis stage (S_2) ramps to 600°C at which point the sample is switched to an oxidation oven where the sample is oxidized at 600°C for 5 minutes in air to measure the residual organic matter (S_4) . A laboratory standard is run every 10 samples. S_1, S_2, S_3 , and S_4 are summed appropriately to calculate TOC. True TOC will be greater than this calculated sum for samples with maturity greater than about 1.0% R_0 because the Rock-Eval final temperature is inadequate for complete combustion (Peters, 1986). This instrument is preferred when there is insufficient sample to run TOC and pyrolysis separately, or when all samples in a study are to be analyzed for both TOC and Rock-Eval data without prior TOC screening.

Tingmerkpuk 1998 Project Samples

DGSI Project: 98/4372

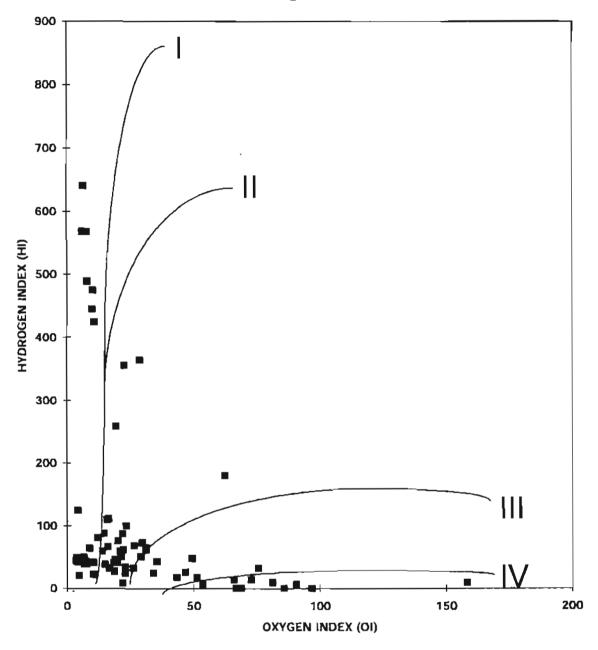


FIGURE 1 - Kerogen type determination from TOC and Rock-Eval pyrolysis data. Types I and il will generate oil, type III gas, and type iV little or no hydrocarbons.

ORGANIC CARBON AND ROCK-EVAL PYROLYSIS DATA

Tingmerkpuk 1998 Project Samples

DGSI Project: 98/4372

SAMPLE DGSI ID	IDENTIFICATION	TOC Wt%	\$1 mg/g	52 mg/g	53 mg/g	Tmax degC	S1/ TOC	HI	Öl	\$2/ \$3	PI
	RUK REDWUL MEASU				SEGMEN						0.40
1 : 2 : 3 : 4 : 5 :	98 Mu 11 98 Mu 11-1 98 Mu 11-2 98 Mu 11-2A 98 Mu 11-3	5.49 3.79 6.61 4.03 5.24	0.40 0.16 0.47 0.15 0.33	3.66 1.28 2.71 1.29 2.41	0.88 0.87 1.22 1.06 0.99	420 419 423 428 426	7 4 7 4 6	67 34 41 32 46	16 23 18 26 19	4.16 1.47 2.22 1.22 2.43	0.10 0.11 0.15 0.10 0.12
6 : 7 : 8 : 9 : 10 :	98 Mu 11-4 98 Mu 11-5 98 Mu 11-6A 98 Mu 11-6 98 Mu 11-7	7.36 0.44 11.16 4.09 0.30	0.35 0.01 0.61 0.18 0.02	4.57 0.06 13.89 0.92 0	1.64 0.32 0.48 0.42 0.20	437 451 438 474 N.A.	5 2 5 4 7	62 14 124 22	22 73 4 10 67	2.79 0.19 28.94 2.19	0.07 0.14 0.04 0.16
11 : 12 :	98 Mu 11-8 98 Mu 11-9	1.34 1.96	0.15 0.14	0.63 1.16	0.66 0.27	444 446	11 7	47 59	49 14	0.95 4.30	0.19 0.11
13 : 14 : 15 : 16 :	98 Mu 11-10 98 Mu 11-11 98 Mu 11-12 98 Mu 11-13	SEGN 1.94 2.15 2.02 2.03	0.11 0.10 0.16 0.21	0.81 1.07 0.83 0.9	T TO EAS 0.18 0.14 0.4 0.07	6T IN SN 444 447 442 446	MALL GU 6 5 8 10	3LLY 42 50 41 44	9 7 20 3	4,50 7,64 2,08 12,86	0.12 0.09 0.16 0.19
17 : 18 : 19 : 20 :	98 Mu 11-14 98 Mu 11-15 98 Mu 11-16 98 Mu 11-17	SEGN 2.23 2.09 2.12 1.96	0.15 0.22 0.10 0.16	0.95 1.02 1.02 0.81	T TO EAS 0.09 0.11 0.09 0.20	6T ON S 441 446 442 437	LOPE F, 7 11 5 8	43 49 48 41	4 5 4 10	10.56 9.27 11.33 4.05	0.14 0.18 0.09 0.16
21 : 22 : 23 :	98 Mu 11-18 98 Mu 11-19 98 Mu 11-19-A	2.17 2.80 2.08	0.10 0.11 0.09	1.07 1.27 0.8	0.08 0.19 0.31	447 446 445	5 4 4	49 45 38	4 7 15	13.38 6.68 2.58	0.09 0.08 0.10
24 : 25 : 26 : 27 : 28 :	98 Mu 11-20 98 Mu 11-21 98 Mu 11-21 98 Mu 11-21 98 Mu 11-22 98 Mu 11-23	SEGMEN 2.10 1.85 1.80 2.46 2.33	NT 2, Of 0.06 0.21 0.12 0.30 0.21	FFSET T 0.81 1.18 0.58 2.15 1.88	O WEST 0.16 0.16 0.30 0.54 0.28	IN BOT 447 447 438 447 450	TOM OF 3 11 7 12 9	GULLY 39 64 32 87 81	8 9 17 22 12	5.06 7.38 1.93 3.98 6.71	0.07 0.15 0.17 0.12 0.10
29 : 30 :	98 Mu 11-24 98 Mu 11-25	2.52 2.39	0.18 0.53	1.26 2.66	0.54 0.39	450 449	7 22	50 111	21 16	2.33 6.82	0.13 0.17
31 : 32 :	98 Mu 11-26 98 Mu 11-27	2.20 1.71	0.32 0.26	1.67 0.86	0.44 0.50	447 449	15 15	76 50	20 29	3.80 1.72	0.16 0.23
HORSES 33 :	HOE BEND MEASURED 98 Mu 19-11	9.65		1.96	0.45	468	0	20	5	4.36	0.00
34 : 35 :	98 Mu19-10 98Mu19-9	1.18	SEGM 0.03 0.07	ENT 2, п 0.46 0.58	0.08 0.28	100 m u 440 439	p gully 3 8	39 64	7 31	5.75 2.07	0.06 0.11
36 : 37 :	98Mu19-8 98Mu19-7	0.87 0.91	0.10 0.08	0.53 0.66	0.27 0.27	439 439	11 9	61 73	31 30	1.96 2.44	0.16 0.11
	SEC	 SMENT 1	, measu	red at m	outh of gu	lly, north	side of	lpewik Rive	er		

ORGANIC CARBON AND ROCK-EVAL PYROLYSIS DATA

Tingmerkpuk 1998 Project Samples

DGSI Project: 98/4372

DGSI ID		TOC Wt%	mg/g	mg/g	mg/g	Tmax degC	S1/ TOC	Hi	Ol	\$2/ \$3	Pĭ
38 : 39 :	98 Mu 19-6 98 Mu 19-5	1.95	0.11	1.71	0.28	428	6	88	14	6.11	0.06 0.00
40 :	98 Mu 19-4	1.97	0.08	0.35 1.18	0.29 0.41	458 425	0 4	43 60	35 21	1.21 2.88	0.06
41 : 42 :	98 Mu 19-3 98 Mu 19-2	2.37 2.90	0.12 0.11	1.61 7.48	0.63 0.56	425 436	5 4	68 258	27 19	2.56 13.36	0.07 0.01
43 : 44 :	98 Mu 19-1 98 Mu 19	2.44 2.73	0.15	2.44	0.57 0.43	429 430	6	100 110	23 16	4.28 6.95	0.06
	RIBUTARY MEASURE										
45 :	98Mu 33-7	21.28	2.96	77.56	6.12	420	14	364	29	12.67	0.04
46 : 47 :	98Mu 33-6 98Mu 33-5	16.17 13.49	1.61 0.64	91.82 76.55	0.97 1.04	432 431	10 5	568 567	6 8	94.66 73.61	0.02 0.01
48 :	98Mu 33-4	9.68	0.59	47.37	0.76	430	6	489	8	62.33	0.01
49 :	98Mu 33-3	11.94	1.36	50.71	1.27	419	11	425	11	39.93	0.03
50 :	98Mu 33-2	11.93	0.89	53.16	1.17	424	7	446	10	45.44	0.02
51 :	98Mu 33-1	12.03	0.78	57.21	1.20	425	6	476	10	47.68	0.01
SURPRIS 57 :	SE CREEK MEASURED 98 RK 1-91	SECTIO	N (AUG	ER SAM	PLES)						
56 :	98 RK 1-84										
55 ;	98 RK 1-78										
54 :	98 RK 1-65										
53 : 52 :	98 RK 1-57 98 RK 1-43										
зоитн т	INGMERKPUK MEASI	URED SEC	CTION								
58 :	98 JC 302-1	0.58	0.00	0.04	0.31	451	0	7	53	0.13	0.00
59 :	98 JC 302-2	0.32	0.00	0.03	0.26	418	0	9	81	0.12	0.00
60 :	98 JC 302-3	0.28	0.00	0	0.24	N.A.	0		86	-	_
61 :	98 JC 302-4	0.44	0.00	0.06	0.29	467	0	14	66	0.21	0.00
62 :	98 JC 302-5	0.32	0.00	0	0.22	N.A.	0		69	-	_
63 ; 82 ;	98 JC 302-6 98 JC 302-7	0.41	0.00	0.07 80.0	0.21 0.19	515 482	٥	17 18	51 43	0.33 0.42	0.00 0.00
83 :	98 JC 302-7 98 JC 302-8	0.43	0.00	0.08	0.19	498	0 2	26	43	0.42	0.00
84 :	98 JC 302-9	0.32	0.00	0.02	0.29	482	Ō	6	91	0.07	0.00
85 :	98 JC 302-10	0.31	0.00	0	0.30	N.A.	0	_	97	-	-
86 : 87 :	98 JC 302-11 98 JC 302-12	0.53	0.00	0.13 0.13	0.18 0.09	494 491	0	25 27	3 4 19	0.72 1.44	0.00
	ANEOUS GRAB SAM		0.00	0.10	0.00	701	Ū				0.00
	98 Mu 32	5.27	0.78	18.74	1.19	432	15	356	23	15.75	0.04
90 :	98 Mu 32-A	1,01	0.24	1.82	0.63	438	24	180	62	2.89	0.12
91 :	98 Mu 32-1	79.44		508.94	5.00	426	22	641	_6	101.79	0.03
92 :	98 Mu 34	1.47	0.04	0.47	1.11	436	3	32	76	0.42	0.08
93 : 94 :	98 Mu 38 98 Mu 39-1	2.88 5.67	0.12 0.01	0.7 0.51	0.66 8.98	476 411	4 0	24 9	23 158	1.06 0.06	0.15 0.02
95 :	98Ha109a										
96 :	98Ha126	1.00	0.01	0.09	0.22	516	1	9	22	0.41	0.10

KEROGEN MICROSCOPY

Visual kerogen analysis employs a Zeiss Universal microscope system equipped with halogen, xenon, and tungsten light sources or a Jena Lumar microscope equipped with halogen and mercury light sources. Vitrinite reflectance and kerogen typing are performed on a polished epoxy plug of unfloated kerogen concentrate using reflected light from the halogen source. In certain situations, the whole rock is used for analysis. This approach is used for coals, where acid treatment is unnecessary in studies of solid bitumen and graptolites where preservation of rock structure is important, and in samples too small for acid treatment. The digital indicator is calibrated using a glass standard with a reflectance of 1.02% in oil. This calibration is linearly accurate for reflectance values ranging from peat (R_O 0.20%) through anthracite (R_O 4.0%).

Vitrinite Reflectance

Reflectance values are recorded only on good quality vitrinite, including obvious contamination and recycled material. The relative abundance of normal, altered, lipid-rich, oxidized, and coked vitrinite is recorded. When good quality, normal vitrinite is absent, notations are made indicating how the maturity is affected by weathering, oxidation, bitumen saturation, or coking. When normal vitrinite is absent or sparse, other macerals may be substituted. Solid bitumen, for example is present in many samples. Although solid bitumen has a different reflectance than vitrinite, Landis and Castaño's calibration chart is used to obtain an estimated vitrinite reflectance equivalent. Graptolites have a slightly higher reflectance than vitrinite and can often be used to obtain maturity data in Upper Cambrian-Silurian rocks that have no vitrinite.

Maturity calculations are made from the vitrinite reflectance histograms. Decisions as to which reflectance measurements indicate the maturity of the sample are based not only on the histogram but on all of the kerogen descriptive elements as well. Because it is not done at the time of measurement, alternate maturity calculations can be made if kerogen data and geological information dictate.

DGSI's vitrinite reflectance histograms contain much useful information. All reflectance measurements are graphically displayed and the individual readings are listed below the histogram in numeric order. In the reflectance table, each reading is coded with a letter corresponding to the measured maceral. Capital letters are used to designate reflectance values that are used in calculating the mean reflectance while reflectance values falling outside the selected range are shown with a lower case letter code. Reflectance readings lying inside the selected range are marked with a pattern on the histogram diagram and readings falling outside the selected range are left open. Each maceral has a different pattern.

Codes currently in use include: Solid bitumen - B, Granular solid bitumen - X, Coked solid bitumen - Y, Graptolites - G, Inertinite - I, Other 1 - O, Other 2 - W, Vitrinite - V, Lipid-rich vitrinite - L, and Coked Vitrinite - Z. The use of two 'other' categories allows us the flexibility of measuring unusual materials that do not fall into one of the other classes or contamination from mud additives or caving. Specific information regarding 'other' material is shown in the Comments section at the lower right corner of the Figure and in the Comments section of the VKA data sheet.

Statistics for selected macerals are listed adjacent to the histogram and the mean reflectance values are also listed below the TOC and Rock-Eval data at the upper right corner of the Figure. The measured reflectance values for solid bitumen and graptolites are recalculated in order to obtain a <u>vitrinite reflectance equivalent (VRE)</u>. Therefore, for these two macerals we show both the measured reflectance and the VRE. For example, VRE-B signifies vitrinite reflectance equivalent for solid bitumen and VRE-G is the vitrinite reflectance equivalent for graptolites.

In summary, vitrinite reflectance measurements are performed on a polished plug in reflected light, TAI is performed on a slide in transmitted light, and kerogen typing is estimated from both preparations using a combination of reflected, transmitted, and fluorescent light techniques. Fluorescence in blue light is used to enhance the identification of structured and unstructured lipid material, solid bitumens, and drilling mud contaminants. Fluorescence also correlates with the maturity and state of preservation of the sample. Maturity calculations from measured reflectance data are made from the histograms and are influenced by all of the kerogen data.

Visual Kerogen Analysis Techniques

Unstructured lipid kerogen changes in texture and color during the maturation process. Typically, unstructured kerogen at low maturity is reddish brown and amorphous. Somewhere between R_0 0.50 to 0.65%, the kerogen takes on a massive texture and is gray in color. At higher maturity, generally above R_0 1.30%, unstructured kerogen is light gray and micrinized.

Kerogen typing and maturity assessments from the polished plug are enhanced by utilizing fluorescence from blue light excitation. The xenon or mercury lamp is used with an excitation filter at 495 nm coupled with a barrier filter of 520 nm. With the Jena microscope we also have the option of observing fluorescence under ultraviolet excitation. The intensity of fluorescence in the epoxy mounting medium (background fluorescence) correlates well with the onset of oil generation and destruction. The identification of structured and unstructured liptinite is also enhanced with the use of fluorescence in those samples having a maturity less than R₀ 1.3%. The relative abundance and type of pyrite is also recorded.

Thermal alteration index (TAI) is performed using tungsten or halogen light source that is transmitted through a glass slide made from the unfloated kerogen concentrate. Ideally, TAI color is based on sporinite of terrestrial origin. When sporinite is absent, TAI is estimated from the unstructured lipid material. Weathering, bitumen admixed with the unstructured material and micrinization can darken the kerogen and raise the TAI value. The character of the organic matter in transmitted light is correlated with observations made in reflected light for kerogen typing.

Kerogen typing and maturity assessments from the slide preparation are also reinforced by using different light sources. The slide is first observed in transmitted light to obtain TAI color and organic matter structure or type. The light is then switched to reflected halogen light to observe structure and amount of pyrite and finally to reflected blue light excitation from the xenon or mercury source for fluorescence. The fluorescence of structured and unstructured liptonite is not masked by the epoxy fluorescence as it is in the reflected light mode because the mounting medium is non-fluorescent. Lipid structures (e.g. sporinite and alginite) within the unstructured kerogen can often be identified in blue light.

VISUAL KEROGEN ANALYSIS GLOSSARY

Several key definitions are included in this glossary in order to make our reports more self-explanatory. In our reports, we refer to organic substances as macerals. Macerals are akin to minerals in rock in that they are organic constituents that have microscopically recognizable characteristics. However, macerals vary widely in their chemical and physical properties and they are not crystalline.

- 1. UNSTRUCTURED KEROGEN is sometimes called structureless organic matter (SOM) or bituminite. It is widely held that unstructured kerogen represents the bacterial breakdown of lipid material. It also includes fecal pellets, minute particles of algae, organic gels, and may contain a humic component. As described on the first page of this section, unstructured lipid kerogen changes character during maturation. The three principal stages are amorphous, massive, and micrinized. Amorphous kerogen is simply without any structure. Massive kerogen has taken on a cohesive structure, as the result of polymerization during the process of oil generation. At high maturity, unstructured kerogen becomes micrinized. Micrinite is characterized optically by an aggregation of very small (less than one micron) round bodies that make up the kerogen.
- 2. STRUCTURED LIPID KEROGEN consists of a group of macerals which have a recognized structure, and can be related to the original living tissue from which they were derived. There are many different types, and the types can be group follows:
 - a. Alginite, derived from algae. It is sometimes very useful to distinguish the different algal types, for botryococcus and pediastrum are associated with lacustrine and non-marine source rocks, while algae such as tasmanites, gloecapsomorpha, and nostocopsis are typically marine. Acritarchs and dinoflaggelates are marine organisms which are also included in the algal category.
 - b. Cutinite, derived from plant cuticles, the remains of leaves.
 - c. Resinite, (including fluorinite) derived from plant resins, balsams, latexes, and waxes.
 - d. Sporinite, derived from spores and pollen from a wide variety of land plants.
 - e. Suberinite is derived from the corky tissue of land plants.


f. Liptodetrinite is that structured lipid material that is too small to be specifically identified. Usually, it is derived from alginite or sporinite.

The algae are an important part of many oil source rocks, both marine and lacustrine. Alginite has a very high hydrogen index in Rock-Eval pyrolysis. Resins, cuticles, and suberinite contribute to the waxy, non-marine oils that are found in Africa and the Far East. At vitrinite reflectance levels above R_0 1.2 - 1.4%, structured lipid kerogen changes structure and it becomes very difficult to distinguish them from vitrinite.

- 3. SOLID BITUMEN also is called migrabitumen and solid hydrocarbon. In 1992, the International Committee for Coal and Organic Petrology (ICCP) decided to include solid bitumen in the Exsudatinite group. Solid bitumens are expelled hydrocarbon products which have particular morphology, reflectance and fluorescence properties which make it possible to identify them. They represent two classes of substances: one which is present at or near the place where it was generated, and second is a substance which is present in a reservoir rock and may have migrated a great distance from its point of origin. The solid bitumens have been given names, such as gilsonite, imposonite, grahamite, etc., but they represent generated heavy hydrocarbons which remain in place in the source rock or have migrated into a reservoir and mature along with the rock. Consequently, it is possible to use the reflectance of solid bitumens for maturation determinations when vitrinite is not present.
- 4. HUMIC TISSUE is organic material derived from the woody tissue of land plants. The most important of this group are vitrinite and inertinite:
 - a. Vitrinite is derived from woody tissue which has been subjected to a minimum amount of oxidation. Normally it is by far the most abundant maceral in humic coals and because the rate of change of vitrinite reflectance is at a more even pace than it is for other macerals, it offers the best means of obtaining thermal maturity data in coals and other types of sedimentary rocks.

Because the measurement of vitrinite is so important, care is taken to distinguish normal (fresh, unaltered) vitrinite from other kinds of vitrinite. Rough vitrinite does not take a good polish and therefore may not yield good data. Oxidized vitrinite may have a reflectance higher or lower than fresh vitrinite; this is a problem often encountered in outcrop samples. Lipid-rich vitrinite, or saprovitrinite, has a lower reflectance than normal vitrinite and will produce an abnormally low thermal maturity value. Coked vitrinite is vitrinite that has structures found in vitrinite heated in a coke oven. Naturally coked vitrinite is the product of very rapid heating, such as that found adjacent to intrusions. Where it is possible to do so, vitrinite derived from an uphole portion of a well will be identified as caved vitrinite. Recycled vitrinite is the vitrinite of higher maturity which clearly can be separated from the indigenous first-cycle vitrinite population. Often, the recycled vitrinite merges in with the inert group.

- b. Inertinite is made up of woody tissue that has been matured by a different pathway. Early intense oxidation, usually involving charring, fungal attack or biochemical gelification, creates the much more highly reflecting fusinite and semi-fusinite. Sometimes the division between vitrinite and fusinite is transitional. Sclerotinite, fungal remains having a distinct morphology, are considered to be inert. An important consideration is that the inerts, as the name implies, are largely non-reactive "dead carbon" and they have an extremely low hydrogen index in Rock-Eval pyrolysis.
- OTHER ORGANIC MATERIAL
 - a. Lipid-rich, caved and recycled vitrinite. These are put in this section so we can show the percentages of these macerals; they are described above.
 - b. Exsudatinite. Oil and oily exudates fall in this group. Exsudatinite differs from the solid bitumens on the basis of mobility and solubility. We prefer to maintain this distinction although the ICCP has now included the solid bitumens in with the Exsudatinite group.
 - c. Graptolites are marine organisms that range from the Cambrian to the lower Mississippian; it has been found that they have a reflectance slightly higher than vitrinite. Because vitrinite is lacking in early Paleozoic rocks, the proper identification and measurement of graptolites is important in these sediments.
- 6. PYRITE. Various forms of pyrite can be readily identified under the microscope. Euhedral is pyrite with a definite crystalline habit. Framboidal is pyrite in the form of grape-like clusters which are made up of euhedral to subhedral crystals. Framboidal pyrite is normally found in sediments with a marine influence; for example, coals with a marine shale roof rock usually contain framboidal pyrite. Massive pyrite is pyrite with no particular external form. Often this is pyrite that forms rather late in the pore spaces of the sediment. Replacement/infilling is self-explanatory.

CORRELATION OF VARIOUS MATURATION INDICES AND ZONES OF PETROLEUM GENERATION AND DESTRUCTION

Tingmerkpuk 1998 Project Samples

Kukpowruk Redwul Measured Section

SEGMENT 1, Top of Bluff

- Organic matter consists primarily of dark gray, micrinized unstructured lipids with granular solid bitumen inclusions. Some vitrinite and lipid-rich vitrinite fragments have rough texture and are difficult to differentiate from solid bitumen. Rough texture may lower some Rovalues. Solid bitumen formation may raise TAI values.
- 98 Mu 11-1 Organic matter is similar to that in 98 Mu 11, but structured fragments are smaller. There is also a trace of coking material.
- 98 Mu 11-2 Organic matter is similar to that in 98 Mu 11 with more solid bitumen.
- 98 Mu 11-2A Organic matter continues to be similar to that in 98 Mu 11. All Rovalues may be lowered.
- 98 Mu 11-4 Micrinized unstructured lipids with solid bitumen formation, as previously. Difficult to differentiate some solid bitumen fragments from lipid-rich vitrinite.
- 98 Mu 11-5 In reflected light, the unstructured lipids are small particles mixed with mineral. Some particles have a shape similar to terrestrial material, but in transmitted light, the organic matter is evenly dispersed in the mounting medium and has a granular texture.
- 98 Mu 11-6A Organic matter consists of micrinized lipids with solid bitumen formation. It is difficult to differentiate some structured fragments as previously.
- 98 Mu 11-6 Micrinized lipids with small, difficult to identify structured fragments as previously.
- 98 Mu 11-7 Similar to 98 Mu 11-5.
- 98 Mu 11-8 Organic matter type is the same as previously, but appearance is different. Unstructured lipids are brown with dense, grainy texture. Terrestrial fragments are very small and difficult to identify. There is a moderate amount of pyrite.
- 98 Mu 11-9 Unstructured lipids are brown with grainy texture. Some structured lipids.

SEGMENT 2, Offset to East in Small Gully

- 98 Mu 11-10 In reflected light, the unstructured lipids have a grainy texture with solid bitumen inclusions and are mixed with mineral. Some small terrestrial fragments are difficult to differentiate from solid bitumen fragments.
- 98 Mu 11-12 Organic matter consists primarily of micrinized lipids with solid bitumen inclusions. Terrestrial fragments are small and difficult to identify.

SEGMENT 2, Offset to East on Slope Face

- 98 Mu 11-14 Unstructured lipids are gray-brown with grainy-micrinized texture. Solid bitumen and terrestrial fragments are small. There is a trace of sporinite.
- 98 Mu 11-16 Unstructured lipids are brown with grainy texture. Terrestrial fragments are small. There is a trace of sporinite.
- 98 Mu 11-18 Organic matter consists of grainy lipids with small, difficult to identify fragments. There is a trace of graphite.
- 98 Mu 11-19A Organic matter is similar to that in 98 Mu 11-18, plus abundant pyrite.
- 98 Mu 11-20 Organic matter consists primarily of dense masses of brown, grainy, unstructured lipids. Low-rank reflectance values may be on solid bitumen or oxidized vitrinite. There is a trace of graphite.
- 98 Mu 11-21A Unstructured lipids have micrinized-grainy texture. There is a trace of coking vitrinite. Possible oxidation.
- 98 Mu 11-23 Organic matter consists of grainy unstructured lipids with small, difficult to identify terrestrial and solid bitumen fragments. Possible oxidation.
- 98 Mu 11-25 Similar to 98 Mu 11-23.
- 98 Mu 11-27 Unstructured lipids are brown to gray with micrinized texture. Small structured fragments are difficult to identify. Trace of graphite and coking vitrinite.

Horseshoe Bend Measured Section

98 Mu 19-11 Organic matter consists of amorphous-massive textured unstructured lipids with algal structures and formation of angular solid bitumen. Solid bitumen formation may raise TAI value of unstructured lipids.

SEGMENT 2, Measured 100 m. up gully

- 98 Mu 19-10 Small amount of organic matter mixed with mineral. Small terrestrial fragments are difficult to identify some R_o values may be on inertinite. There is a trace of sporinite.
- 98 Mu 19-8 Similar to 98 Mu 19-10.

SEGMENT 1, Measured at mouth of gully, north side of Ipewik River

- 98 Mu 19-6 Organic matter consists of unstructured lipids with some angular solid bitumen formation and small terrestrial fragments. The formation of solid bitumen may raise TAI value of unstructured lipids.
- 98 Mu 19-4 Similar to 98 Mu 19-6, plus several fragments of coking vitrinite.
- 98 Mu 19-2 Similar to 98 Mu 19-6. Terrestrial fragments are very small and difficult to identify.
- 98 Mu 19 Unstructured lipids are similar to 98 Mu 19-6.

Ipewik Tributary Measured Section

- 98 Mu 33-7 Organic matter consists of a sapropelic groundmass of unstructured lipids, bituminite, and structured lipids. Reflectance measurements are on solid bitumen. Solid bitumen formation may raise TAI value of unstructured lipids.
- 98 Mu 33-6 Similar to 98 Mu 33-7. Difficult to differentiate lipid-rich vitrinite and some solid bitumen fragments.
- 98 Mu 33-5 Similar to 98 Mu 33-6, with less bituminite.
- 98 Mu 33-4 Organic matter continues to consist of a sapropelic groundmass of unstructured lipids, bituminite, and structured lipids. Trace of graphite.
- 98 Mu 33-3 Sapropelic material as previously. Difficult to differentiate solid bitumen and some lipid-rich vitrinite.
- 98 Mu 33-2 Similar to 98 Mu 33-3. Trace of graphite.
- 98 Mu 33-1 Organic matter is similar to that in 98 Mu 33-2 with some mineral mixed with it. There is a trace of sporinite.

South Tingmerkpuk Measured Section

- 98 JC 302-1 Organic matter consists of small terrestrial fragments and high-rank sporinite in a mineral groundmass. Some reflectance values may be on inertinite.
- 98 FC 302-4 Small amount of organic matter as in JC 302-1.
- 98 JC 302-7 Organic matter consists primarily of small particles of unstructured lipids mixed with mineral. Vitrinite fragments are small and difficult to identify.
- 98 JC 302-10 Organic fragments are very small and difficult to identify.
- 98 JC 302-12 Small organic fragments as previously. Some vitrinite is beginning to coke.

Miscellaneous Grab Samples

- 98 Mu 32 Organic matter consists of black, micrinized unstructured lipids with angular solid bitumen formation. Solid bitumen formation may raise TAI value on unstructured lipids.
- 98 Mu 32-A Dark gray, micrinized, unstructured lipids with angular solid bitumen formation.
- 98 Mu 32-1 Whole rock sample consists of large solid bitumen fragements that have dark brown fluorescence. Based upon Jacob's solid bitumen classification using reflectance, fluorescence, and solubility tests, the bitumen is probably albertite.
- 98 Mu 34 Organic matter is a mixture of unstructured lipids and small terrestrial fragments.
- 98 Mu 38 Micrinized lipids with angular solid bitumen formation. Some lipid-rich vitrinite and solid bitumen are beginning to coke.
- 98 Mu 39-1 Organic matter consists of black, micrinized lipids with small fragments of oxidized terrestrial material. There is low yellow, background fluorescence in the transmitted light slide.
- 98 Ha 126 Grainy unstructured lipids and small terrestrial fragments in a mineral groundmass. Trace of coking vitrinite.

Tingmerkpuk 1998 Project Samples KUKPOWRUK REDWILL MEASURED SECTION DGSI Project: 98/4372 FEUORESCENCE/TAL ORGANIC MATTER (%) RELATIVE ABUNDANCE REFLECTED TRANSMITTED Ro HUMIC OTHER VITRINITE LIPIDS LIPIDS UNSTRUCTURED STRUCTURED UNSTR. I STRU. UNSTR. STRU. TALLIFILIOR TALLIFILIOR Preparation/Sample T. Concentration 펿 Intensity Undifferentiated Reflectance DGSI Number Bitumen **DGSI** Background Type Amorphous Micrinized Lipid-Rich (nertinite Oxidized Intensity Intensity Massive Intensity Vitrinite Intensity Normal Pyrite 7 Rough Coked Pyrite Value Solid 1 Type Color Color Color Type Type Type Type Sample ld or Depth SEGMENT 1, TOP OF BLUFF က်င 198 Mu 11 BL 0 3-BL V 1.28 Comments: Dark gray, micrinized lipids with granular solid bitumen. Difficult to differentiate some vitrinite, lipid-nich vitrinite, and solid bitumen tragments. 75 98 Mu 11-1 OC. 5 ÐΙ 3-V 1.27 Similar to 98 Mu 11, but ferrestrial tragments are smaller. Trace of coking material Comments: OC. 75 98 Mu 11-2 Similar to 98 Mu 11 with more solid bitumen. Comments: 98 Mu 11-2A OC 80 5 BL V 1.04 Comments: Organic matter continues to be similar to that in 98 Mu 11. All Ro values may be sli ightly lowered. 70 5 98 Mu 11-4 Υ 5 MΑ м BΙ BL V 0.94 Micrinized lipids with solid bitumen formation. Difficult to differentiate some solid bitumen and lipid-rich vitinite. Comments: SAMPLE STRUCTURED OTHER PURITE ABUND. FLUOR. VIT. REFLECT. FLUOR TAI COLOR ANALUST TUPE/PREP LIPIDS ORGANIC MATTER INTENS. EUUIVALENCE COLOR VALUES CTG Cuttings AL Alginite Exsudatinite E Euhedral Моле 0 None Bitumen I- Straw Yellow X O'Connor CC SB Suberinite Conv. Core Graptolites F Fremboid Trece 1 Weak G Grantolites G Green Pale Yellow SWC SideWallCore Cutinite VL Lipid-Rich Vitrinite MA Massive Small Amt. 2 Moderate VL Lipid-Rich Vitrinite Yellow 1+ Yellow LD Liptodetmnite VC VitriniteContamination Quicrop R1 Replace-Mod. Amt. 3 Strong VC Vitrinite Contam. 2- Yellow-Orange 0 Orange No Inform. VR Recycled Vitrioite Undiffer VR Recycled Vitrinite क्तिम Large Amt. 4 Intense Red Golden Cost Sportaite Abundant Brown 2+ Amber MICROSCOPE Resinite BL Black Reddich Room Kerogen 0 Other Medium Brown Zelss WR Whole Rock Dark Brown Jena L Light Brown-Black Leitz VISUAL KEROGEN ANALYSIS a.d. Not Determined D Dark Black

Total Quality Geochemistry

Black-Opaque

Tingmerkpuk 1998 Project Samples KUKPOWRUK REDWUL MEASURED SECTION DGSI Pro ect: 98/4372 FLUORESCENCE / TAI ORGANIC MATTER (%) RELATIVE ABUNDANCE REFLECTED TRANSMITTED Ro LIPIDS HUMIC OTHER VITRINITE FTEIDS LIPIDS UNSTRUCTURED STRUCTURED UNSTR. STRU. UNSTR. STRU. TAI FLUOR TAI FLUOR Concentration Intensity Preparation/Sample 능 Undifferentiated Reflectance DGSI Number Bitumen **DGSI** Background Micrinized Pyrite Type Lipid-Rich Inertinite Oxidized Vitrinite Intensity Organic (Intensity Intensity Intensity Massive Normal Rough Coked Color Color Color Value Color Solid Type Type Type Type <u>^</u> Sample Id or Depth OC. М ΒL 3 81 Vυ 98 Mu 11-5 0 Comments: Small particles of micrinized lipids. In transmitted light, unstructured lipids have a granular texture and are evenly dispersed in mounting medium. 8 T.00 V U.91 98 Mu 11-6A OC 25 ВL Q Comments: Difficult to identify some structured fragments as previously. 8 1.35 3 90 98 Mu 11-6 OC ΒL V 1.21 Michnized lipids with small, difficult to identify structured fragments as previously Comments: OC 100 V 0 98 Mu 11-7 Similar to 98 Mu 11-5. Comments: 3. 3 м BL 98 Mu 11-8 00 95 0 Bι 0 V 1.15 Comments: Brown unstructured lipids have a dense, grainy fexture. Very small structured tragments are difficult to identify. Moderate amount of pyrite SAMPLE STRUCTURED OTHER PYRITE ABUND. FLUOR. VIT. REFLECT. FLUOR. TAI COLOR **ANALYST** TYPE/PREP LIPIDS ORGANIC MATTER **EQUIVALENCE** VALUES INTENS. COLOR Bittmen t- Straw Yellow CTC Cuttings Exsudatinite Euhedral White AL Alginite N None 9 None я X O'Connor Graptolites G Graptolites C Pale Yellow Conv Core SB Suberinite Framboid Υ Trace l Weak Green Side WallCore Cutiquie VI. Lipid-Rich Vitrinite MA Massive Small Amu 2 Moderate VL Lipid-Rich Vitinolia Yellow I+ Yellow oc Outcrop LD Liptodetrinate VC VitriuiteContamination RI Replace-Mod. Amt. 3 Strong VC Virginite Contam. 0 Orange 2-Yellow-Orange NI. No Inform. Undiffer. VR Recycled Vitrinite ititai Largo Amt. 4 Intense VR Recycled Viminite Ř Red 2 Golden B Brown Amber Coal Sporinite Abundant 2+ MICROSCOPE BL Black Resinite Reddish Brown Kerogen 0 Other Medium Brown Zeiss WR Whale Rock Dark Brown Jena 4-Brown-Black L Light

Leitz

a.d. Not Determined

VISUAL KEROGEN ANALYSIS

Total Quality Geochemistry

D Dark

Black

4+ Black-Opaque

Tingmerkpuk 1998 Project Samples KUKPOWRUK REDWUL MEASURED SECTION DGSI Project: 98/4372 FLUORESCENCE / TAI ORGANIC MATTER (%) RELATIVE ABUNDANCE REFLECTED TRANSMITTED Ro LIPIDS HUMIC OTHER VITRINITE LIPIDS LIPIDS UNSTRUCTURED STRUCTURED UNSTR. STRU. STRU. TAL IFLUOR TAL IFLUOR Concentration Preparation/Sample 5 Undifferentiated Reflectance DGSI Number Bitumen **DGSI** Background Amorphous Micrinized Lipid-Rich Inertinite Oxidized Intensity Intensity Intensity Intensity Massive Огдаліс (Vitrinite Normai Rough Pyrite 7 **Pyrite** Coked Value Value Solid 1 Color Color Type Color Color Type Туре Type Type Sample Id or Depth K OC AL ? 3 12 98 Mu 11-9 80 OB 3-V 1.35 Comments: Brown, grainy unstructured lipids. Some structured lipids 98 Mu 11-10 OC Ť 10 MA М BŁ V 1.25 Comments: Grainy unstructured lipids are inixed with mineral. Difficult to identify small terrestrial fragments OC ř Т 98 Mu 11-12 15 V 1.35 Micronized lipids with solid bitumen inclusions. Small terrestrial fragments. Comments: DB BL 3 98 Mu 11-14 OC Ť V 1.44 Comments: Gray-brown, grainy-michnized lipids. OC 85 98 Mu 11-18 MA I М BL û V 1.17 Brown, grainy, unstructured lipids. Comments: SAMPLE STRUCTURED OTHER PYRITE ABUND. FLUOR VIT. REFLECT. FLUOR. TAI COLOR ANALYST TYPE/PREP LIPIDS ORGANIC MATTER INTENS. **EQUIVALENCE** COLOR VALUES CTG Cuttings AL Alginite Exsudatinite Euhedral None None Bitumen White 1- Straw Yellow X O'Connor SB Conv. Core Substinite Graptolites Framboid Trace I Weak G Graptelites C Oreen Pale Yellow SWC SideWallCore Cutinite VL Lipid-Rich Vitrinite MA Massive Small Amt. 2 Moderate VL Lipid-Rich Vitrinite Yellow 1+ Yellow Outcrep VC VitriniteContamination Liptodetrinite RI Replace-VC Vitrinite Contam M Mod. Amt. 3 Strong 0 Orange 2- Yellow-Orange No Inform. Undiffer VR Recycled Vitrinite VR Recycled Vitrinite Large Ami. 4 Intense Red Golden Coal Sporipite Abundans Brown 2+ Αιπόσι MICROSCOPE Resinite BL Black Reddish Brown Keregen 0 Other Medium Brown Zeiss Whole Rock Dark Brown Jena L Light Brown-Black Leitz VISUAL KEROGEN ANALYSIS a.d. Not Determined Dark Ď Black Total Quality Geochemistry Black-Opaque

		Ro				Vit, Reflectance or Eq.		V 1.45		V 1.27		V 1.26		V 1 <u>.</u> 31		V 1.26		R .	cllow	how		Omnige		Brown	Brown	Uwo) lack	anthed
			Γ	Γ	ایم	Intensity	1		1						Ì			TAI COLOR VALUES	Straw Yellow	Pale Yellow	Yellow	Yellow-Orange	Colder	Abides Beddish Brown	Medium Brown	Dark Brown	Brown-Black	Black Black-Opeque
		NCE / TAI TRANSMITTED		STRU.	FLUOR	Color							i		ı			TAI	<u> </u>					د ئ		_		- +
		<u> </u>	LIPTOS	S	7.4	Value							I					1 ~			Ţ							
		SS	1		ž (Intensity		0		0		0	I	٥		0		FLUOR COLOR	¥hite	Great Great	Yellow	Orange	2 .	100			Ľ∰.	Zer Zer
		15 15 15 15 15 15 15 15 15 15 15 15 15 1		UNSTR.		Color	Ī	B		BL		B		BL	Ī	8	1	<u> </u>	I.	ပ							_	۵
		ŠĆE]		٦	¥	əufaV		ep		ક		ઌ		မှ		မှ												
		FLUORESCENCE / TAI CTED TRANSM				Background Intensity		4		4		4		4		4		ECT.			in nife	E.	a ie					
		REFLECTED		:-		Intensity								٥				VIT. REFLECT.	l §	dstes	Lloid-Rich Vimnile	Vicripito Contam.	Recycled Vitrinile					
		LEC	LIPIDS	STRU.	╛	Color			П					Щ				IT. A QUIV	Bihumen	Graptolstes	Lipid	V E	Recyc					
		REF	בֿן	¥		Intensity	_	-0	П			٥		0	ŀ	- 0		<i>></i>	æ	Ö	7	ပ (<u>~</u>					
			L	UNSTR		Color		84		90		圖	,	BL		2 2		ندر له		_	Tale	99	4					
80	z	ഥ		L		Coked	⇃	-				10 T 5 M M M M N 7 T BL	3	_				FLUOR, INTENS,	Z	Wak	Moderale	Shong	plense					
18) L	ABUNDANCE	1	L		Daxibix O	┙					~	30,	٥		~		ΣZ	Ŀ	_	7	_	<u> </u>					SIS S
Sa	372	ND/	VITRUNITE	L		Lipid-Rich	\rfloor					Σ	10.	<u>-</u>							Acrit	Aml	<u>ا</u> لِهِ	Ĭ				AL.)
) a	SUR 84	ABL	5	L		<u>К</u> олбр				<u> </u>		, ,	A)CC			'		ABUND.	None	F.	Small Amt.	Mod. Amil	Large Ami					Sche
Ingmerkpuk 1998 Project Samples	KUKPOWRUK REDWUL MEASURED SECTION DGSI Project: 98/4372	V E	L	Ļ		Normal		+	П	+		Σ	207/0	+		+		1v	z	H		Z	+	:				VISUAL KEROGEN ANALYSIS Total Quality Geochemistry
99	Şi k	RELATIVE	L			Ограніс Сопсепітації	4	+	П	+			Š	Σ		Σ		i s	- -	Poid	ž	4	_					ERC
1	5 5	REI	L		_	Pyrite	4	Σ		+			11911	Σ		Σ		PYRITE	Enhedral	Framboid	MA Massive	Replace	Ē					75 25
Ş	SS SS		L	_		Pyrite Type	4	ğш		_₹		₹ 2		Ψ		¥ٍ ۔		<u> </u>	2	بد	ž	-						SUA Tota
mer	No.		OTHER	L		Type	4		П	-				\dashv		_		ER			4	8						>
DQ	ξ		힏	L		Type	┦			<u>۲</u> ⊢		N V		∑				R ATT	ľ		Vitanit	ntamin.	irrigite					
			HUMIC	L		Vitrinite	4	ري	9.	140		2	Q()	ιΩ		2	vate.	OTHER NIC MA	Exsudatinite	Graptolites	Lepit-Rich Viennite	VitripileConfammation	Recycled Virrieite					
		8	톧	H	٦	Inerdaite	4	<u>⊢</u>	гаса дгартів	<u></u>		I O	Adina	2	ŀ		Teren	OTHER ORGANIC MATTER	ä									
		ORGANIC MATTER (%)		e		Type Solid Bitumen	4	2	308	-5		- 0		-5	ŀ		to at	0	监	ပ	첫	<u> </u>	5					
		AAT		TORED		эдүТ	\dagger		11			_	4				MICU	ŒD				ajie						
		2		STRUCTO		Туре	┪	_	ueub				ž	\dashv	ŀ		ere d	CCTUR LIPIDS	Algiaile	Subennite	Cuthaite	Liptodemaire	Undiffer.	Spormite		Į.		
		GAN	S S	ı	ı	Туре	1		ny fra		ущв.			- C	ł		ents	STRUCTURE! Lipids	ı	_		_						
		OR	LIPIDS	H	┪	Micrinized	┪		, difficult to identify fragments.		d Jurgi		Š	8			hagn	5,	ř	s,	U) ·	0 =	٥ ۵		_	
					ı	9viszaM	1		0) YO		unqe			Ť			пеш	E REP	[_	OIC.	OICoro		Ę		_	Rock		Noi Determined
				2		Amorphous	1		aime		snja		à				д Ри	SAMPLE Type/prep	Cuttings	Cady Core	SideWallCoro	Outcrop	No Inform	<u>8</u>	Keroora	Whole Rock		e Det
				UNSTRUCTURED		Undifferentiated	1			8	1-18,	8	NOW!		<u>.</u>	8	os p	λ T	9		F 1		Z (9
			_		┪	Preparation/Sample T		<u>-</u> 8	with :	~ S	ו שאו	× 8	200	×8	VIIII	8	iriel ar		<u> </u>		y ,	<u> </u>	~	_				
		5					Sample Id or Depth	98 Mu 11-18	Comments: Grainy lipids with small	3 98 Mu 11-19-A OC 90	Comments: Similar to 98	98 Mu 11-20	Cummismis. Daned masses of Drumi, gramy, unsurdand inputs.	5 98 MJ 11-21A OC	Comments: Trace coking	8 98 Mu 11-23 CC 80 T S 5 10	ш	ANALYST		X O'Connor				MACCOSCION	To cooperation	X Zeiss	lens	Leitz
							_	5	Ц	ន		2		56 26	H	78	Ш							_				_

ı								0		ç		ဂ		o	32	ြု	3	Г	DGSI Number				
rens	X Zelss	MICROSCOPE				х О'Солпог	ANALYST	Comments:		Comments:		Comments:		١.	11-27	Comments: dr	11-25	Sample 1d or Depth	DGSI Mulliber				\int
		PE			:	nor	7							nali structurad	8>	Brown, grainy unstructured lipids.	8×	Н	Preparation/Sample T:		Į		
n.d.	≨ ⊼	0	3	ጸ	SWC	<u>ત્ર ર</u>	L	1						Iragn		Struc	8	Γ	Undifferentiated	S]
Noi D	Keregen Whole R	Cog	8			Conv. Co	SAMPLE YPE/PRE	ĺ				H		nenis		in e		Г	Amorphous	77	П		
Not Determined	Karegan Whole Rock		No Inform	ब्र	Side Wall Core	Conv. Core	SAMPLE TYPE/PREP			1	_	П		are c	\Box	lipid.			Massive	UNSTRUCTURED	П		
ž	~				ă					1			_	iragments are difficult	8			Γ	Micrinized	ľ	<u>Ε</u>	0	
	C			5	Ω ;	S	SIR	1		1						Difficult to identify small		Г	Туре		LIPIDS	ORGANIC MATTER (%)	
	Other	Sporinite Resinite	Undiffer.	Liptoc	Culinite	Alginuire Subortnite	STRUCTURED LIPIDS			1	_			to identify		õ		Γ	Туре	STR	П	N	
1		F 3	ğ	Liptodetrinite	â	5 R	DS RE		_				_		1	Yigh			Туре	STRUCTURED	П	W.	
				•			ľ°							race of		smal		Г	Туре	OES#	П	TT	
			¥	٧c	٠ ځ	റെത	OR.							y gra	57	1 3000	ري د	Г	Solid Bitumen	1	П	ER (
			Rocyc	Vário.	Lipíd	Exsudation Grapholites	OTHER ORGANIC MATTER					П		graphite and	5	structured tragments		Г	Inertialte		HMUII	%	
			Rocycled Vitrinite	ileCon	Lipíd-Rich Vitrinite	Exsudatinite Graptolites	NIC MA							BMB	10	o mag	თ	Γ	Vitrinite		ń		_ =
ļ			rinite	VernaiteContamination	îtrinile		[]~							cokar	م بـ	mes	~F	Г	Туре		OTHER		N G
<u></u>				3			~				_			g vitr	T MA	8		Γ	Туре		ER		ner D
VISUAL KEROGEN ANALYSIS				존	Α×	א פי	2	1				П		inde.	₩A	1	UI T		Pyrite Type		Ī		Ingmerkpuk 1998 Project Sample KUKPOWRUK REDWUL MEASURED SECTION DGSI Project: 98/4372
ē.₹			E de	Replace	MA Massive	Esshedrat Framboid	PYRITE	П		1					3		3	Γ	Pyrite			RELATIVE	Pro K
SRO Blity				8	a i	S 3	e								₹	1	+	Г	Organic Concentration			ATI) 198
CEN	·	1	+	3	٠.	-1 2	AB	1						1	+	1	+	Γ	Normal			VE.	Pro
CHEN		Abunderx	Large Ami	Mod. Arrat.	Small Ame	T None	АВИМО							1	7				Rough		4	ABU	ect BURE B/43
ALX		NO.) A	ž	MY.		Ĭ.								ĭ		7		Lipid-Rich		VITRUNITE	ND/	Sa D SE 72
SIS			_	L,	2	- •	2.2	1							ĭ			Γ	Oxidized		Æ	ABUNDANCE	CTIO
			internate	Strong	Moderate	¥ None	FLUOR.	П							ĭ				Coked			æ)N
			•		H H		,,,,	Ш							JB _		무	Г	Color	UNSTR.			1
			γų		۲,	O 4	₩ <	Ш							0		٥		Intensity		μį	REF	ĺ
			Recyc	Vinte	Lipid-S	Biournen Grantofiles	QUIV R	П											Color	STRU.	Saları	LEC	
			Recycled Vitribile	Vintaire Contam.	Lipid-Rich Variaile	ŭ 3	VIT, REFLECT. EQUIVALENCE	П											Intensity	,		FLUO REFLECTED	
			E.	ş	Ti.		SCT.	П				Ш			4	ļ	4		Background Intensity			FLUORESCENCE / TAI	
							L								ပ္		မှ		Value	Ξ_		CE	
9 -		B.C.				ດ ≰	82	П							۴		P	L	Color	FLUOR.		TRA	
A CORP		Drown	2	Orange	Ycllow	Green	COLOR	П							٥		0		Intensity	Ž	LIPIDS	SN.	
															ω			Ĺ	Value	IS IN	IDS	ICE / TAI IRANSMITTED	
* ^ †		÷ ;	7 -		Ŧ :		TAI VA								BE.				Color	STRU.		ŒD	
Brown-Black Black Black-Opequ	Medium Bro Dark Brown	Amber Reddish	Oolden	Ydlow	Yellow	Sunw Yellow Pale Yellow	VALUES								0			L	Intensity	Ä			
Brown-Black Black Black-Opeque	Medium Brown Dark Brown	Amber Reddish Brown		Yellow-Orange		Yellow)								V 1.26		v 1.32		Vit. Reflectance or Equ			Ro	

Jena Leltz	X Leiss WR	MICROSCOPE	0	2.	6	_	X O'Connor CC	cric	T	I race coking with	40 98 Mu 19-4 OC 80	Comments: Grainy, unstructured in	38 98 Mu 19-6 OC 85	Comments: Similar to 98 Mil 19-10	19-8	001.10 g	comments: Small amount of	34 98 Mu19-10 OC 40	Commence: Policyprous-fileserve R	19-11		Sample ld or Depth	DGSI Number DGSI Preparation/Sample T: Undifferentiated	UNST			
Not Determined	Karogen Whole Rock		Conl	No Inform.	Outanoo	Side WallCore	Conv. Core	Chaing	SAMPLE TYPE/PREP	Unstructured lip		some				_	organic matter. Small	-	o le le le course en c	65			Amorphous Massive Micrinized	UNSTRUCTURED	LIPIDS	10	
	O Other		Soomite		Liptodecrinite		SB Subennute C	AC Alginite E	STRUCTURED OF	ngular		10	1 0		-	(a)	Small terrestral tragments are		The Grids of the G	OC 65 1 15 1 20 1 20 1 1 1 1 1 20 1 1	- TA		Type Type Type Solid Bitumen	STRUCTURED	IDS	ORGANIC MATTER (%)	
VIX							Crapiolica	Exsudationite	OTHER ORGANIC MATTER	solid britimen formation.	5 10	1.			20	20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	re difficult to identify and some Ko may be						Inertinite Vitrinite Type Type		HUMIC OTHER	(%)	Tingmerk HORSES D(
SUAL KEROO					RI Replace	MA Massive	F Fransbaid	£ Ethedral	PYRITE	Ko on small	MA . M	abon may raise	5 Y MA M		$\overline{}$		d some Ko may	F & .		MA M +	:		Pyrite Type Pyrite Organic Concentration			RELATIVE	orkpuk 1998 Project Si ESHOE BEND MEASURED SEC DGSI Project: 98/4372
VISUAL KEROGEN ANALYSIS			Abundant	+ Large Ami	M Mod. Aral	 Small Amt 	Trace	None	ABUND.	ragments.	- - -	Sein to Anith N	M M T		-	+ T T	be on mertinite.	• 2		MA M + I WAS INVESTIGATION TO A STATE OF THE	_		Normal Rough Lipid-Rich		VITRINITE	E ABUNDANCE	Ingmerkpuk 1998 Project Samples HORSESHOE BEND MEASURED SECTION DGSI Project: 98/4372
SIS				4 latense	3 Strong	 Moderate 	I Wesk	None	INTENS.		. T D8	00/00	T BL		-	T		18		Blue of unstructured	,		Oxidized Coked Color	UNSTR	L)ples
					YC Vitrinite Contam.	VL Lipid-Rich Vitrinia	C Graptolium	В Влитоер	POULVALENCE		1 08 1 3		0 0 3 2		ļ	1 0 2 3		0 08 1 3		<u> </u>	2 2	1	Intensity Color Intensity Background Intensity	TR. STRU.	I≒	FLUORESCENCE REFLECTED TRA	
D Dan		BL Black	B Brown	R Red	O Orange	Y Yellow		_	COLOR		3 81 0		3 BL 0		1	2+ BL 0		3 BL 0 2+		\vdash	200	1-	Value Color Intensity Value	TAI FLUOR. TAI	SQLAIT	-, ~	
4 Diack 4 Diack 4 Black-Opaque	•	'	2+ Amber	2 Golden	2- Yellow-Orange	1+ Yellow	1 Pale Yellow	1- Straw Yellow	VALUES	100000			γο 2 V	1	,) YO 2 V		0 1		┝	3 8	ļ	Color	STRU. FLUOR		_	
	å	à									V 1.39	1	V 7.U/	'		1.16		V 1.25	<u>'</u>		78.08		Vit. Reflectance or Equ			χ ₀	

Γ											_		T	nar	ner	kpu	k 1	998	Рго	ec	Sa	mp	es			_				_					
															RSE	SHOE	BE	M CH	ASU	RED	SEC														
											_					<u> </u>	Pr	ojec	t: 90	0/43	12					F	LUC	ORE	SCE	NCE	:/ T	A1			г -
ĺ			匚				RGA	NIC	: M/	\TT	er (<u> </u>	REL	AT1	VE .				Ė			LEC					ANS	MIT	TE	D	Ro
			UNS	ŤŔŪĊ	TURE	_	PID\$	STR	υστι	IRED		HUN	iic T	OTH	ER T	┨			├─		TRIN	TE		UNS		PIDS \$tr	U.	ł	⊢	UNSTE	₹,		TRU.		
⊢		l			1	_	┡			_		1	l		ı	ı			l]			⊢	_		_	-	TAI	FLU	OR.	TAI	FU	ЮR.	
DGSI Number	DGSI	Preparation/Sample T	Undifferentiated	Amorphous	Massive	Micrinized	Type	Type	Type	Type	Solid Bitumen	Inertinite	Vitrinite	Type	Type	Pyrite Type	Pyrite	Organic Concentration	Normal	Rough	Lipid-Rich	Oxidized	Coked	Color	Intensity	Color	Intensity	Background Intensity	Value	Color .	latensity	Value	Color	Intensity	Vit. Reflectance or Eq.
\vdash	Sample ld or Depth	K OC	⊢	┢	╁	┼─	⊬	\vdash	⊢	├	\vdash	⊢	┢	┼~~	┞	╀	⊢	╀	⊢		\vdash		├-	┼─	\vdash	\vdash	⊢	2 3	Н		-	╆-	┝	╫	-
42 Con	98 Mu 19-2 ments: Similar to		95 79-6	L Ver	ry sm	all te	restri	al Trac	amen	S Bre	T ami	5 cull to) Ider	ายโง.	<u> </u>	MA	止.	M	+					D8	1	<u> </u>	L_	3	3	BL	0	<u></u>	L.		<u> </u>
44	98 Mu 19	OC.	90			Γ	Γ				5	5	Т	Ĭ ŶĽ		МА		м	м	М	М			DB	1			2 3	3	BL	0				V 1.13
Com	ments: Grainy un	Structu	reo uj	oros (with s	ome	angu:	ar sol	וום סוו	umen	tom	auon	as p	revio	JSIY.	т-	$\overline{}$	T	ı								Τ	T	····	Т		''' '-	, 	Ţ	
Con	ments;			L	Т_	J					L.	L	<u></u>					<u> — </u>	Щ	L	<u> </u>		_	_				<u> </u>	L_	<u>L</u> .	<u> </u>	<u> </u>	<u>L.</u> .		
			<u> </u>	Ī .	Τ.										Γ	Т	Г	Ţ				ļ .		l			Γ	ļ	Г					Τ.	
Сон	ments:	<u> </u>	_	<u> </u>	<u></u>	<u></u>	_		_		<u> </u>	_	_	1	_	_		_	L	_	<u> </u>		_	_				<u> </u>	<u> </u>	_		<u> </u>	L		
			Г		Г		Г		Γ	П		Г			Γ	T]	Π						T	[Г	П	Π	Γ	_	Г	Τ	
Соп	ments:		_				Lacia			_														_					_	1 50		_	-		
	ANALYST				PLE PRE	P	214	UCT Lipii		v	ORG		THEI C M	(ATTE	R	"	YRIT	E	^{АВ}	UND			LUOI TEN:			VIT. I QUIV					CUO! OLO			ALUE	
			стс		-			Algini			E		latinhte			Ε	Enhe			None		•	None		В	Bitum				w	White		t-		Yellow
	X O'Connor		CC		v. Core WallCo		8B	Subcri Cutini			ς VI.	Grapi Linida		Attinite		F MA	Fram		T .	Trace Small		1 2	Weak		G VL	Grapti Lipid-		itrinite		G	Great Yello		L +	Pale Yello	
			oc		crop		LO	Liptoc		ŧ	vc			taminat	ion		Roph		м	Mod			Stron			Vitrin				0	Orang		2.		w-Orange
			NE		loform.		U S	Undif			VR	Recyc	iV bak	trinste		1	mfli	1	÷	Large		١ ٠	Intent	ie	VR	Recyc	led Vit	trinite		R	Red		2	Golde	
	MICROSCOPE		١	Coa	ıL		R	Sporte Resini								1			™	Vpm	Jack									_	Black		3-	Amb	r ish Brown
	V Tales		κ_		ogen		0	Other								1														I			3		um Brown
	X Zelss Jean		WR	Wh	ole Roc	k	—														_									┨,	Light		3*		Brown n-Black
	Leltz		n.d.	Not (Determi	ned									VI			ERO tality												Ď	Dark		4 4+	Black	

Tingmerkpuk 1998 Project Samples **IPEWIK TRIBUTARY MEASURED SECTION** DGSI Project: 98/4372 FLUORESCENCE / TAI REFLECTED ORGANIC MATTER (%) RELATIVE ABUNDANCE TRANSMITTED Ro LIPIDS HUMIC OTHER VITRINITE LIPIDS LUPTOS UNSTRUCTURED STRUCTURED UNSTR. STRU. STRU. UNSTR. TAI | FLUOR. | TAI | FLUOR. Concentration B Intensity Preparation/Sample ö Undifferentiated Reflectance Number Bitumen **DGSI** Background Amorphous Micrinized Type Lipid-Rich Inertinite Vitrinite Intensity Organic (Oxidized Intensity Intensity Intensity Norma Coked DGSI Pyrite ' Rough Pyrite Value Туре Type Color Value Solid Color Color Color Type Type Type Vit. Sample 1d or Depth AL 20 YO OB O B 0.73 ŏ 45 98Mu 33-7 OC. 30 50 Τ DB 3-2 Comments: Sepropelic groundmass of unstructured lipids, bituminite, and structured lipids. Ro on solid bitumen 8 0.69 AL 30 98Mu 33-6 oc 30 T MΑ o Comments: Similar to sample 98 Mu 33-7. AL 20 B 0.77 VL 5 98Mu 33-5 OC 20 ΥO 2 V 0.53 Comments: Similar to sample 98 Mu 33-6, with less bituminite VL 5 В 8 U.61 98Mu 33-4 OC 55 10 25 ОB ΥO Comments: Sapropelic groundmass continues. Trace graphite. VL T B 0.83 98Mu 33-3 60 т OC 10 30 MA Ð 0 OB Comments: Sapropelic material as previously. Difficult to differentiate solid bitumen and lipid-rich vitrinite. STRUCTURED SAMPLE OTHER PYRITE ABUND. FLUOR. VIT. REFLECT. FLUOR. TAI COLOR ANALYST TYPE/PREP LIPIDS ORGANIC MATTER INTENS. EQUIVALENCE COLOR VALUES N None CTG Cuttings AL Alginite Excudatinite E Ephedral 0 None Bitumen White 1- Straw Yellow Х О'Совлог CC Copy. Core SB Suberinite Graptolites F Framboid T Trace I Weak G Graptolites G Green 1 Pale Yellow swc SideWallCore VL Lipid-Rich Vitrinite Cotinite MA Massive Small Amt. 2 Moderate VL Lipid-Rich Virrinite Yellow 1+ Yellow oc Outcrop LD Luptodetrinite VC VitriniteContamination RI Replace-Mod. Amil 3 Strong VC Vitrinite Contam. 0 Orange 2- Yollow-Orange NE VR Recycled Vitrinite VR Recycled Vitanite No Inform. Undiffer. Large Amt 4 Intense Red Golden C Coat Sponnite ↔ Abundant R Brown 2+ Amber MICROSCOPE BL Black Resinite Reddish Brown Kerogen lo. Other Medium Brown Zeiss WR Whole Rock J+ Dark Brown Jena Brown-Black L Light

Leitz

a.d. Not Determined

VISUAL KEROGEN ANALYSIS

Total Quality Geochemistry

D Dark

Black

4+ Black-Opaque

Tingmerkouk 1998 Project Samples **PEWIK TRIBUTARY MEASURED SECTION.** DGSI Project: 98/4372 FLUORESCENCE / TA1 **ORGANIC MATTER (%)** RELATIVE ABUNDANCE REFLECTED TRANSMITTED Ro HUMIC OTHER LIPIDS VITRINITE LIPIDS LIPIDS UNSTRUCTURED STRUCTURED UNSTR. šŤŔŪ. UNSTR. STRIL TAT TFEUOR. TAL IFEUOR. Preparation/Sample T Concentration S 5 Undifferentiated Reflectance Number Solid Bitumen **DGSI** Background Amorphous Micrinized Lipid-Rich Inertinite Vitrinite Intensity Intensity Organic (Oxidized Massive Intensity Intensity Normal Rough Pyrite 7 DGSI Coked Value Color Value Color Color Type Type Color Type Type Type <u>;;</u> Sample Id or Depth AL 20 B 0.80 00E 08 ВО 98Mu 33-2 óċ 40 Comments: Similar to sample 98 Mu 33-3. Trace graphite. AL 20 S V€ 5 98Mu 33-1 OC. 5 MΑ Comments: Similar to sample 98 Mu 33-2, with some mineral mixed with it and more purite than previously. Trace sponnite Comments: Comments: Comments: STRUCTURED SAMPLE OTHER PYRITE ÁÐUND. FLUOR. VIT. REFLECT. FLUOR. TAI COLOR ANALYST TYPE/PREP RUBBIA ORGANIC MATTER INTENS. EQUIVALENCE COLOR VALUES CTG Cuttings Alginite Exaudatinite Enhedral None 0 None Bitumen White 1- Straw Yellow X O'Connor Conv. Core 88 Suberindte G Graptolites Frambold Trace 1 Weak G Graptolites С Green Pale Yellow SWC Side WallCore Cutinite VL Lipid-Rich Vitrinite MA Massive Small Amil 2 Moderate VL Lioid-Rich Vitrinite Yelfow t+ Yellow Outcrop Liptodettinite VC VitriniteContemination 3 Strong R! Replace-VC Vitrinite Contam. Mod. Amt. 0 Orange 2- Yellow-Orange Undiffer. No Inform. VR Recycled Vitrinite infill 4 Intense VR Recycled Vitrinite Large Amt. Red Golden Coel Spormite Abundant Brown 2+ Amber MICROSCOPE Resinite BL Black Reddish Brown Kerogen 0 Other Medium Grown Zeiss Whole Rock Dork Brown Jena L Light Brown-Black Leitz VISUAL KEROGEN ANALYSIS q.d. Not Determined Dark D Black Lotal Quality Geochemistry 4+ Black-Opaque

Tingmerkpuk 1998 Project Samples SOUTH TINGMERKPUK MEASURED SECTION DGSI Project: 98/4372 FLUORESCENCE / TAI ORGANIC MATTER (%) RELATIVE ABUNDANCE REFLECTED TRANSMITTED Ro LIPIDS HUMIC OTHER VITRINITE LIPIDS LIPIDS UNSTR. UNSTRUCTURED STRUCTURED UNSTR. STRU. STŔŪ. TALL FLUOR. TALL FLUOR. Concentration 흅 Intensity Preparation/Sample 능 Undifferentiated Reflectance Number Solid Bitumen **DGSI** Background Pyrite Type Micrinized Lipid-Rich Vitrinite Intensity Intensity Organic (Massive Oxidized Intensity Intensity Normal Rough Coked DGSI Pyrite Value Color Value Calor Color Type Color Type Type Type Type Туре Sample 1d or Depth 20 58 98 JC 302-1 OC 10 20 50 Ŧ MA 7 8L 0 0 3+ BL 0 V 1./8 n.d. Comments: Small terrestnal tragments in mineral groundmass. High-rank sporinite. Some Ro may be on inertified 98 JC 302-4 OC. 20 20 10 50 T MA Т BŁ 0 BL 0 V 1.76 3+ Similar to sample 98 JC 302-1. Trace graphite Comments: 5 BL 98 JC 302-7 OC MΑ V 1,69 В١ Comments: Small particles of unstructured lipids mixed with mineral 2 98 JC 302-10 OC BL 3+ Bt. Comments: Very small organic tragments are difficult to identify. 2 VL T 98 JC 302-12 QC. 80 15 0 BL V 1.68 Small organic fragments. Some vitrinite is beginning to coke. Comments: SAMPLE STRUCTURED OTHER VIT. REFLECT. PYRITE ABUND. PLUOR. FLUOR. TAI COLOR ANALYST TYPE/PREP LIPIDS ORGANIC MATTER INTENS. **EQUIVALENCE** COLOR VALUES CTG Cuttings AL Alginite Exaudatinite Eubodral None 0 None Bitumos White Straw Yellow Х О'Соплог G Graptolites Conv Core SB Suberinite Framboid T Trace t Wesk G Graptolites Green 1 Pale Yellow SWC SideWallCore Cutmite VL Lipid-Rich Vitringe MA Massive Small AmL 2 Moderate VL Lipid-Rich Vitrinite Yellow 1+ Yellow ο¢ Outcrap LD Liptodetrinite VC VitriniteContamination RI Replace-M Mod. Amt. 3 Strong VC Vitrinite Contam. O Orange 2- Yellow-Orange וא Undiffer. VR Recycled Vitrinite VR Recycled Vitrinite No lafom infill Large Aunt 4 Intense R Red 2 Golden Coal Sportnite ++ Abundant B. Brown 2+ Amber MICROSCOPE Resinde BL Black Reddish Brown Kerogen Other Medium Brown Х Zeiss WR Whole Rock Dark Brown

VISUAL KEROGEN ANALYSIS

Total Quality Geochemistry

Brown-Black

4+ Black-Opaque

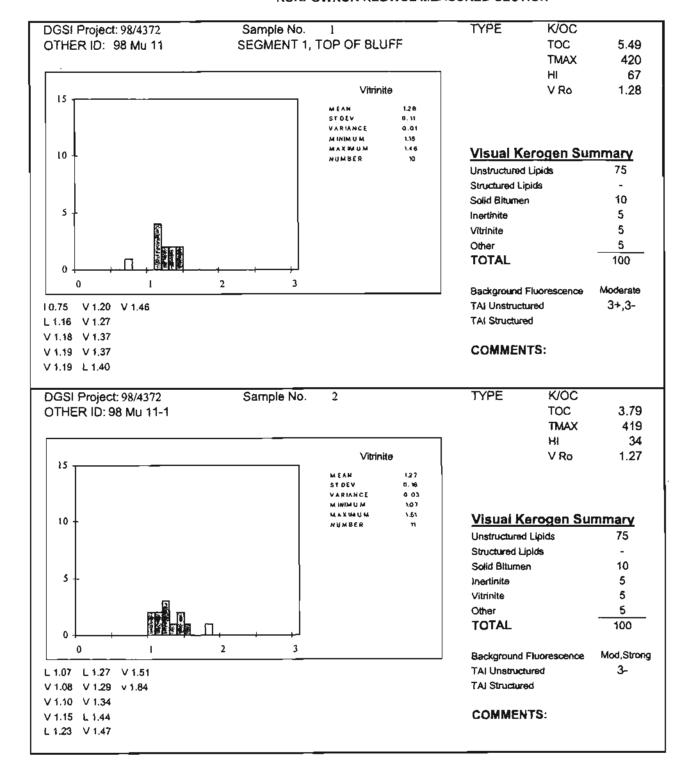
4 Black

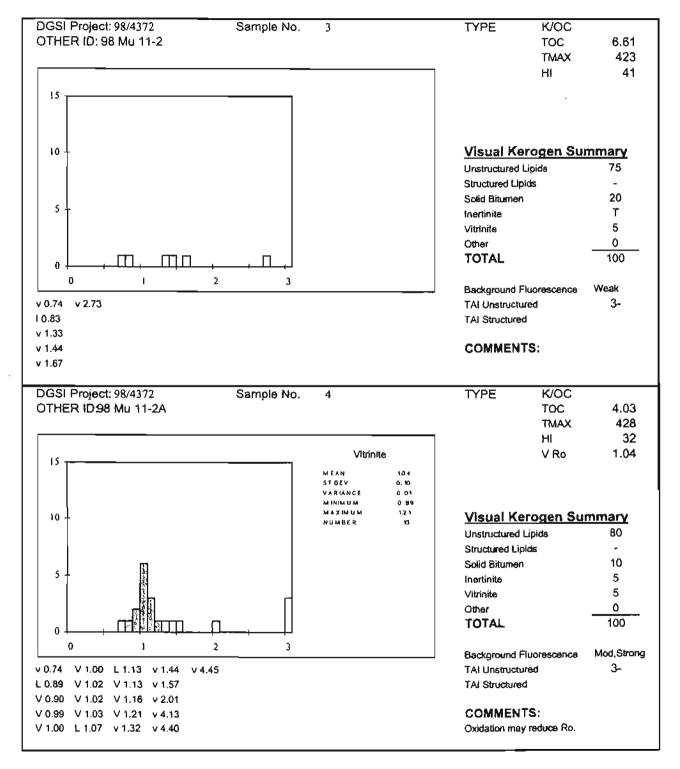
L Light

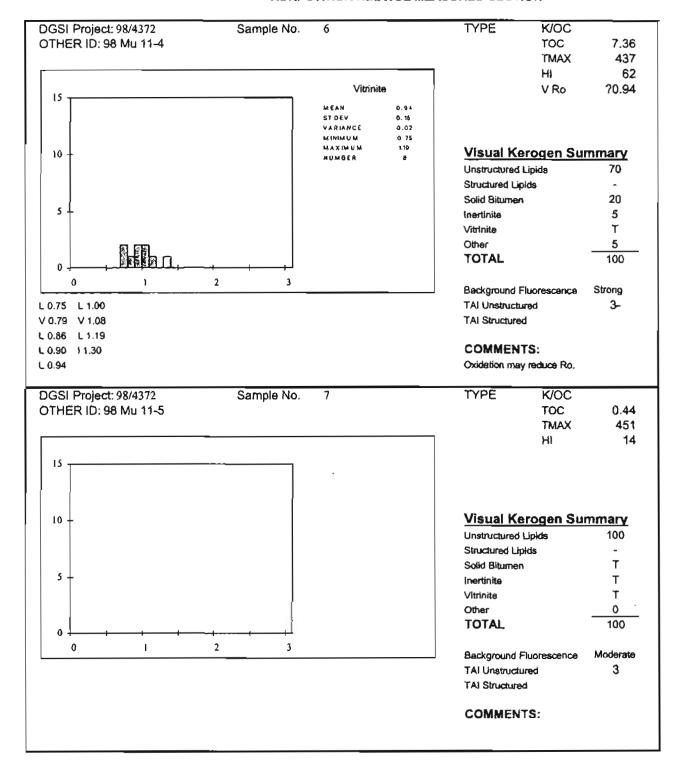
D Dark

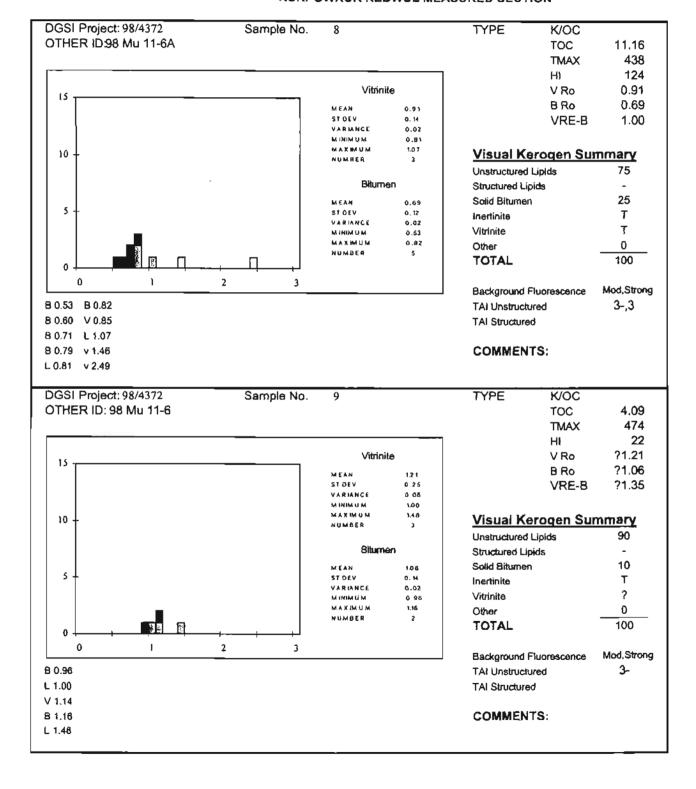
Jena

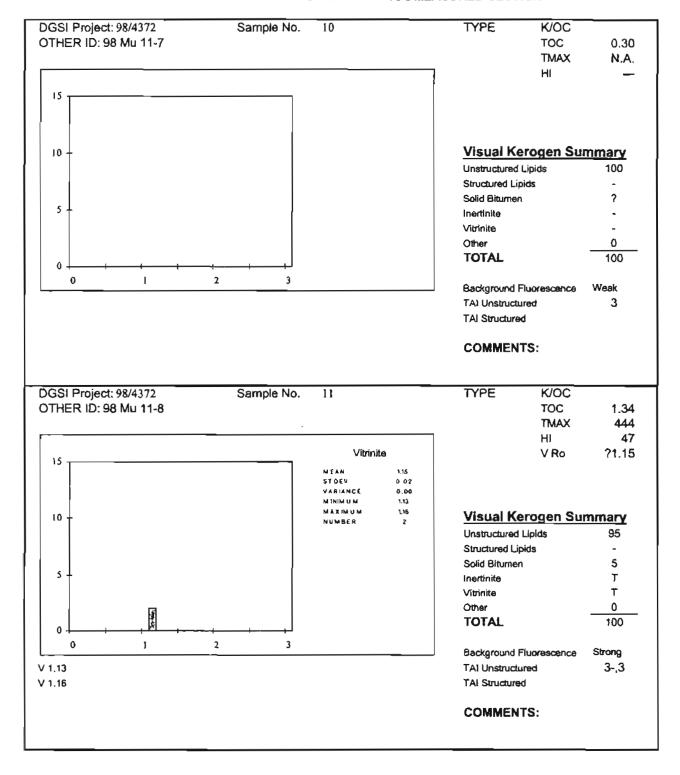
Leitz

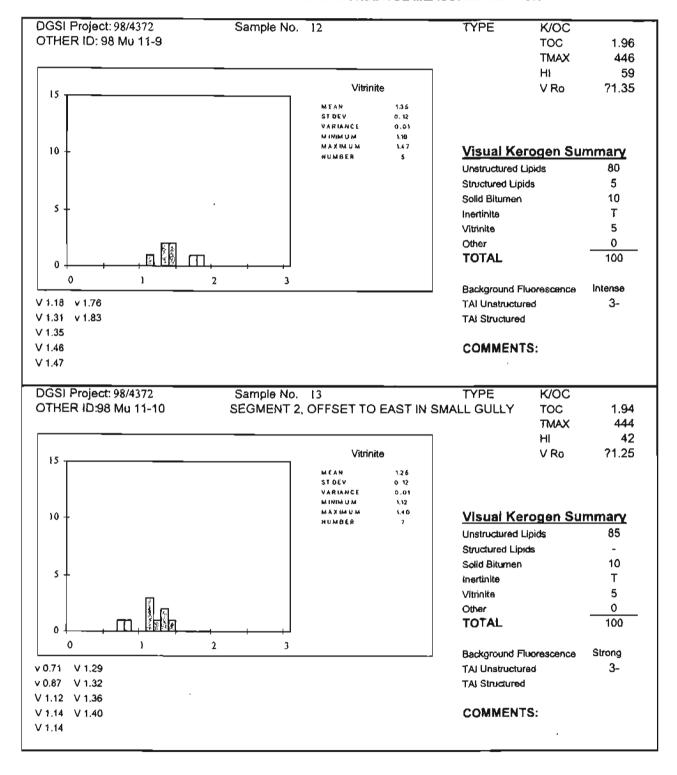

a.d. Not Determined

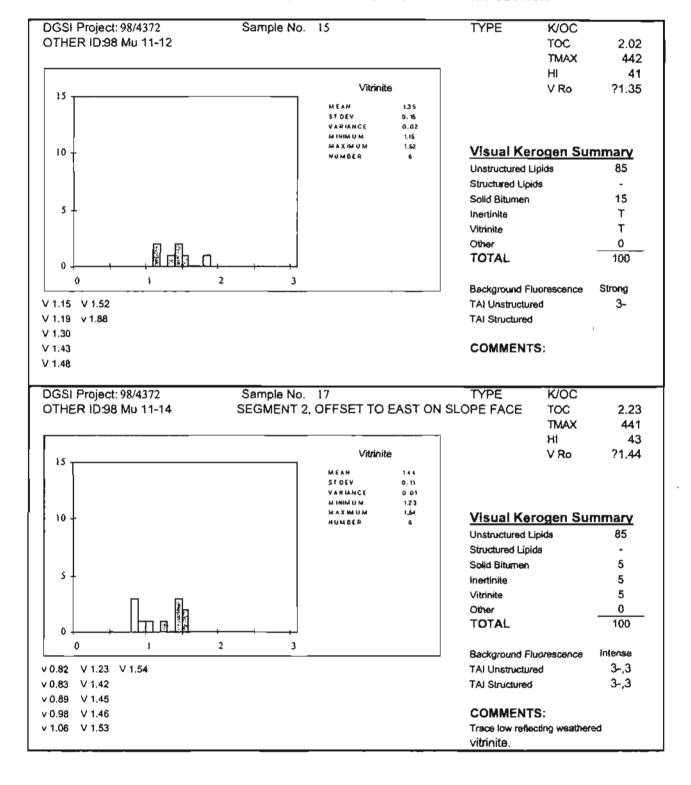

DGSI UNSTRUCTURED Sample id or Depth Sample id or Depth Set Lange Sand K 98 Mu 32 - Dark gray, micronized lipids with engular solid blumen formation. Solid blumen Imments: Dark gray, micronized lipids with engular solid blumen formation. Solid blumen Imments: Dark gray, micronized lipids with engular solid blumen formation. Solid blumen Micronized lipids with engular solid blumen formation. Solid blumen Micronized lipids with engular solid blumen formation. Solid blumen Type Type Type Solid blumen formation. Solid blumen Type Typ							_					Į,	93	c	92	ç	4	3	ò	8	ļ	38	鮤	DGSI Number	Г												
C		ı	I						l			ME	<u></u>	MICHO	<u>8</u>	 	¥	_	MILITA		S	٥	Ä	DOST MAINOCE	-												
C				MICROS					l		ANAU	ents:	8 Mu 38	ents:	8 Mu 34	enta:	9 MIU 32-1	20 4	ents:	8 Mu 32-A	elica.	8 Mu 32	LANEOUS	DG													
Type Type Hullic Cother FLUORESCENCE TALIFORMULTED	j	3 %	55	COPE					Connor		YST	Michnized		Abundant		Large Solic			Dark gray,		בווסביי, ווווכ	FUBCK MIC	ORAB SAM	ar Depth													
Type Type Hullic Cother FLUORESCENCE TALIFORMULTED												lipids v	87	SITIBILITY IN	ጸ፣	יחשום	2	} ₹	michn	გ,	111111111111111111111111111111111111111	8	~	Preparation/Sample T				_									
Tingmerkpuk 1998 Project: Samples Type			×	•	٥	2	8	SWC	ጸ	g	۲,,	uth a		Salle	દ્ધ	87 /X			79d I		בטוטוו			Undifferentiated	UNST												
Tingmerkpuk 1998 Project: Samples Type		<u>z</u>	Whol	•	Cont.	No In	Outer	Side	Conv	Outin	YPE/	ngula		TIES TO		gride	L		spio		1337.64			Amorphous] Rec												
Tingmerkpuk 1998 Project: Samples Type			s Rock			ÔЩ,	용	/allCox	Core	Ą	PREF	Sol		agan		7/3 /7/5			with a		grigo			Massive													
Tingmerkpuk 1998 Project: Samples Type	L	<u>. </u>						<u>"</u>				ם טוני	75	ints.		V8 0			angul	50	101 30	70		Micrinized	Ľ		0										
Tingmerkpuk 1998 Project: Samples Type			ı			c	5				N.15	Well.	٦ 0	1	٦٤	9/X D			ar solid bit		730					ĬŽ.	RGANIC										
Tingmerkpuk 1998 Project: Samples Type			1 E	Roll	Sporin	Undiff	Liplod	Culini	Suberi		LISO	UCT		l		QWD					101770				STR												
Tingmerkpuk 1998 Project: 98H37Z Intensity Project: 98H37Z				ሻ	7	3.	etrioile	7	3	<u>-</u>	SCRE	gion.				Huorescen	Γ		umer		705		T	Туре] [3										
Tingmerkpuk 1998 Project: 98H37Z Intensity Project: 98H37Z												Sam) form		i aucu			Туре													
Tingmerkpuk 1998 Project: 9814372 STRU STRU Type											ORG	e jipi	10			١	Ē	Ì	3t/O/1	50		ıω	╛	Solid Bitumen													
Tingmerkpuk 1998 Project Samples Miscellaneous gapa samples						Rocycl	VinnsiteCont	Lipid	Curp (a	Exude	ANIC	d-Ach	S	J	5		L	_		4	070	1		Inertinite		MAN	&										
ISCELLANEOUS GRAB SAMPLES DGS Project: 98/4372 RELATIVE ABUNDANCE REFLECTED REFLECTED REFLECTED TRANSMITTED TRANSMITTED TRANSMITTED Normal ROugh Lipid-Rich Organic Concentration Normal Rough Lipid-Rich Oxidized Coked Color Intensity DB 1 2 3 BL 0 0 1 ROUGHESTED TANSMITTED TO AND MAINTEN TO COLOR FULIOR FULIO						a Viti		ž V	ð	Š	MA	Vitri	T		40					1	OHO	2		Vitrinite		ಗ		<u>≃</u>									
ISCELLANEOUS GRAB SAMPLES DGS Project: 98/4372 RELATIVE ABUNDANCE REFLECTED REFLECTED REFLECTED TRANSMITTED TRANSMITTED TRANSMITTED Normal ROugh Lipid-Rich Organic Concentration Normal Rough Lipid-Rich Oxidized Coked Color Intensity DB 1 2 3 BL 0 0 1 ROUGHESTED TANSMITTED TO AND MAINTEN TO COLOR FULIOR FULIO		VISUAL KEROGEN ANALYSIS				7	urofpati				TTE	np eur	۶۲ 10		٦۶	1					ואנו נ	3	₫	Туре		HLO		ugn									
Project Samples Project Samples Project Samples	 - 2						9				₽	os br									USTON			Туре		F											
Project Samples Project Samples Project Samples Project Samples FLUORESCENCE / TAI TRANSMITTE UNSTR. STRU.	0(1							X.	סד	7 P	٦	ya pv	П		ΑM		Г			უ }	8 1110	\$ ₹	m	Pyrite Type				SE &									
Project Samples Project Samples Project Samples	2					ī	Replac		France	Euhod		RITE	1		·		2	=		3	1010	Z	1	Pyrite			REL	PEO K									
TRANSMITTED LIPIDS UNSTR. STRU. UNSTR. STRU. Intensity Color Intensity DB 1 Color Intensity Value VIT. REFLECT. EQUIVALENCE G Grapolitics VR Recycled variable VR Recycled variable PUR Recycled variable Light DB 1 Dark Lipids Li							?	7	젎	<u>=</u>		848	+		М		•			+	2			Organic Concentration			ATL	ec Jec									
TRANSMITTED LIPIDS UNSTR. STRU. UNSTR. STRU. Intensity Color Intensity DB 1 Color Intensity Value VIT. REFLECT. EQUIVALENCE G Grapolitics VR Recycled variable VR Recycled variable PUR Recycled variable Light DB 1 Dark Lipids Li	C g				ŧ						AB	urBeg	7		3				П	+	Value	•		Normal		Γ		E Pro									
TRANSMITTED LIPIDS UNSTR. STRU. UNSTR. STRU. Intensity Color Intensity DB 1 Color Intensity Value VIT. REFLECT. EQUIVALENCE G Grapolitics VR Recycled variable VR Recycled variable PUR Recycled variable Light DB 1 Dark Lipids Li	chen				PunqV	Large			Trace	Yonc			*		3									Rough		≤	OBT.	SAW SAW									
FLUORESCENCE / TAI REFLECTED TRANSMITTED LIPIDS UNSTR. STRU. UNSTR. STRU. Intensity Color Intensity DB 1	listr				Ę	ì						0 00	+		Τ						13//0	~		Lipid-Rich		層	ND.	Sa 72									
FLUORESCENCE / TAI REFLECTED TRANSMITTED LIPIDS UNSTR. STRU. UNSTR. STRU. Intensity Color Intensity DB 1	7 5					•	L	1	-	•	32	2.					Ľ		П					Oxidized		Ē	Ž.	<u>a</u> <u>m</u>									
FLUORESCENCE / TAI REFLECTED TRANSMITTED LIPIDS LIPIDS LIPIDS LIPIDS UNSTR. STRU. VIT. REFLECT. EQUIVALENCE Grapolites VI Lipid-Rich Vermine VC Viriante Concur. VR Recycled Verinite VR Recycled Verinite Dark PLUOR TAI FLUOR Value Color Intensity Value Color Intensity Value Color Color Intensity Value Color Intensity Value Color Intensity Value Color Intensity Value Color Grapolites V White BL Godon TAI COLO Value Color Intensity Value Color Intensity Value Color Al FLUOR Value Color Intensity Value Color Al FLUOR Value Color Intensity Value Color Al FLUOR Value Color Intensity Value Color Al Grapolites V Vellow Color Intensity Value Color Al Godon Al Bisch-Op Al						Strong		Noder	Veak	None	LENS ROD		1								מ ווטונ			Coked			æ	89									
FLUORESCENCE / TAI FLUORESCENCE / TAI TRANSMITTED LIPIDS UNSTR. UNSTR. UNSTR. TAI FLUOR Unitable Red Color TAI FLUOR TAI FLUOR TAI COLO EQUIVALENCE COLOR Unitable Red Color TAI COLO T								8					BL		OВ					D8	Ä	۳	몜	Color	SNO	Г											
TAI COLO VALUES VALUES VALUES Andrew Yell Andrew Yel											፱ <		٥		1							_	٩	Intensity	ı	I≒ï	REF										
TAI COLO VALUES VALUES VALUES Andrew Yell Andrew Yel						Recyc	Vimint		Grapio	Bitumen	VIND AIND													Color	518	Ē	TEC F										
TAI COLO VALUES VALUES VALUES Andrew Yell Andrew Yel						2 Va	# Com	Rich V	Ī		ALE	EFC.					Г						T	Intensity	Intensity												
TAI COLO VALUES VALUES VALUES Andrew Yell Andrew Yel						i	3	Crimite.			NCE.		3		2					2		2	2	Background Intensity		_											
TAI COLO VALUES VALUES VALUES Andrew Yell Andrew Yel												П	ဒ	Ш	ပ		Γ			ဍ		ω	T	Value	Z_	Γ	SCE]									
TAI COLO VALUES VALUES VALUES Andrew Yell Andrew Yel	-	, ,								¥	22		38		91		Γ			뽄	1	8	Т	Color	E S		T CE										
TAI COLO VALUES VALUES VALUES Andrew Yell Andrew Yel	3	₹		Black	Вюм	3	Orang	Yellon	Green	While		إوّا	0		0					0		6	1	Intensity	126		SN'T										
Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity					-		*	•			 ~~										1		T	Value	7 ×	툸	TIM	-									
Intensity Intensity Intensity Intensity Intensity Intensity Intensity Intensity	ı	+	<u>~</u> ~	۲	7+	14	4	7	-	÷	₹				0		Г	7			1		7	Color			TED										
One of the section of	Black	Brown	Dark I	Roddi	λmiòc	Calde	रस्र	Yellon	Pale y	Sizew	LCOL				_	ĺ	Г					\lceil	1	Intensity	2												
	Opeque	n-Black	un Brown Jrown	sh Brown	•	d	w-Orange	~	ellow	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	v Yellow	v Yellow	Yellow	Yellow	S		v 1.1/		87.1 A			99.0 B		, ,		,	•	Vil. Reflectance or Equ			R ₀	

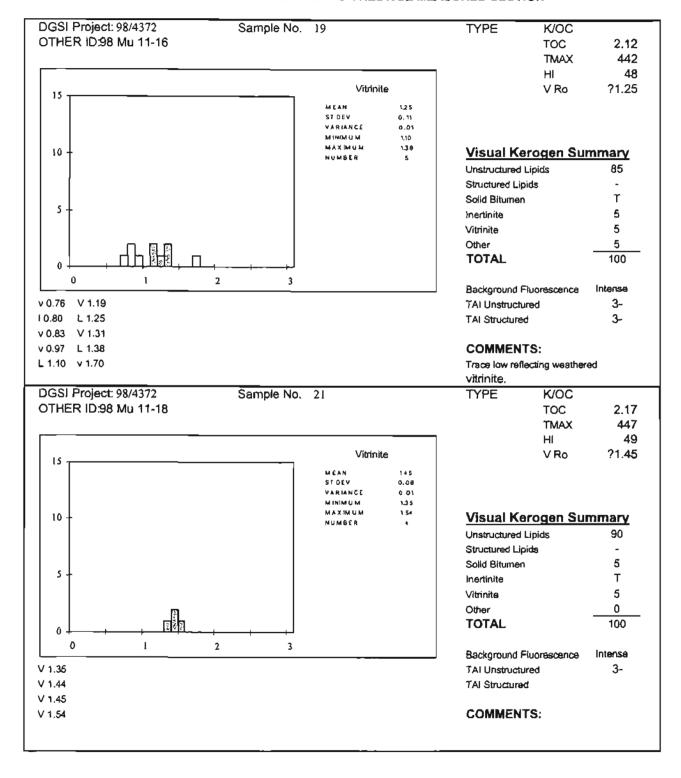

Tingmerkpuk 1998 Project Samples MISCELLANEOUS GRAB SAMPLES DGSI Project: 98/4372 FLUORESCENCE / TAI ORGANIC MATTER (%) RELATIVE ABUNDANCE TRANSMITTED REFLECTED Ro LIPIDS HUMIC OTHER VITRINITE LIPIDS LIPIDS UNSTRUCTURED STRUCTURED UNSTR. STRU. STRU. TAL FLUOR: TAL FLUOR. Concentration Ē Background Intensity Preparation/Sample è Undifferentiated Reflectance Solid Bitumen DGSI Number **DGSI** Lipid-Rich Micrinized Pyrite Type **Spertinite** Vitrinite Intensity Intensity Massive Organic Oxidized Intensity Intensity Normai Rough Coked Value Value Color Color Color Color Туре Type Type Туре Vit Sample Id or Depth 98 Mu 39-1 OC 5 5 81 0 0 3+ BL. 0 Comments: Black, micrinized unstructured lipids with oxidized terrestrial material. Low yellow background fluorescence in transmitted light slide. 5 ΒŁ 0 V 2.30 98Ha126 10 BL Grainy unstructured lipids and small terrestrial tragments in a mineral groundmass. Trace of coking vitrinite. Comments: Comments: Comments: Comments: STRUCTURED OTHER PYRITE FLUOR. TAI COLOR ABUND. FLUOR. VIT. REFLECT. SAMPLE ANALYST TYPE/PREP LIPIDS ORGANIC MATTER INTENS. EQUIVALENCE COLOR VALUES CTG Cuttings AL Alginite Exsudatinite Euhedral N None 0 None Bitumen White 3- Straw Yellow X O'Connor SB Subcrinite Graptolites Framboid T Trace) Weak G Graptolites G Green 1 Pale Yellow CC Conv. Core VL. Lapid-Rick Vitrinite Y Yellow SWC Side Wall Core Cutinite MA Massive Small Aox 2 Moderate VL Lipid-Rich Vitrinite 3+ Yellaw 0 OC LD VC VirisiteContamination RI Replace-VC Vitriente Contam. Orange 2- Yellow-Orange Ошсгор Liptodetrinite Mod. Ami. 3 Strong VR Recycled Vitrimic No faloro Undiffer. VR Recycled Vitrinite Red Golden Large Amat. Sporinite Abundani Brown 2+ Amber Coal MICROSCOPE Resinite BL Black Reddish Brown O Medium Brown Kerogøn Other Zeiss WIL Whole Rock Dark Brown Jena Light Brown-Black VISUAL KEROGEN ANALYSIS Leitz D Dark Black n.d. Not Determined Total Quality Geochemistry 4+ Black-Opaque

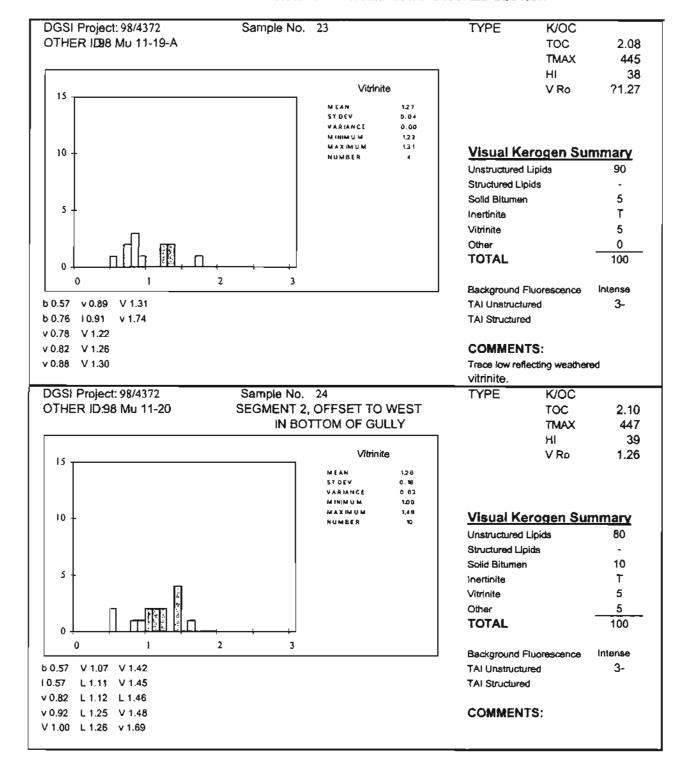

VITRINITE REFLECTANCE

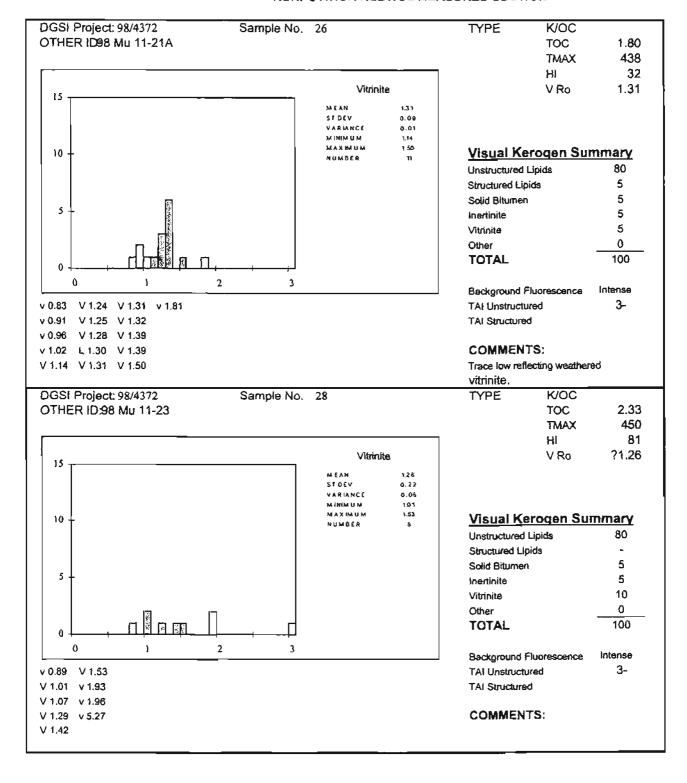

Tingmerkpuk 1998 Project Samples KUKPOWRUK REDWUL MEASURED SECTION

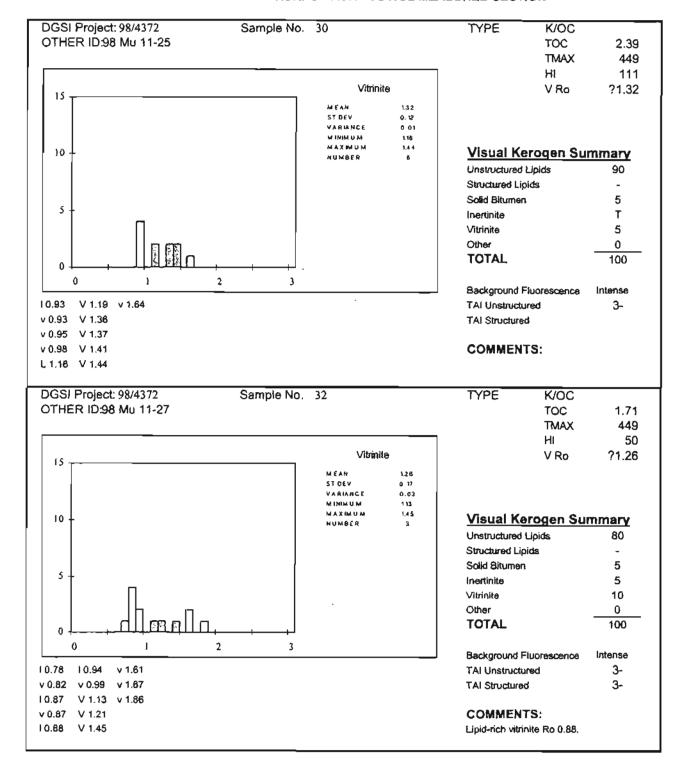


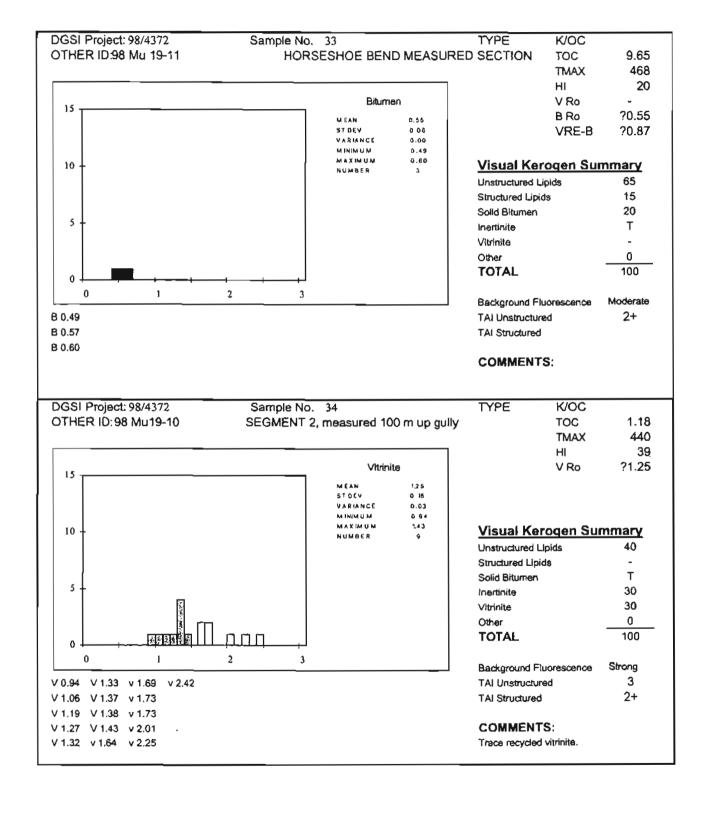


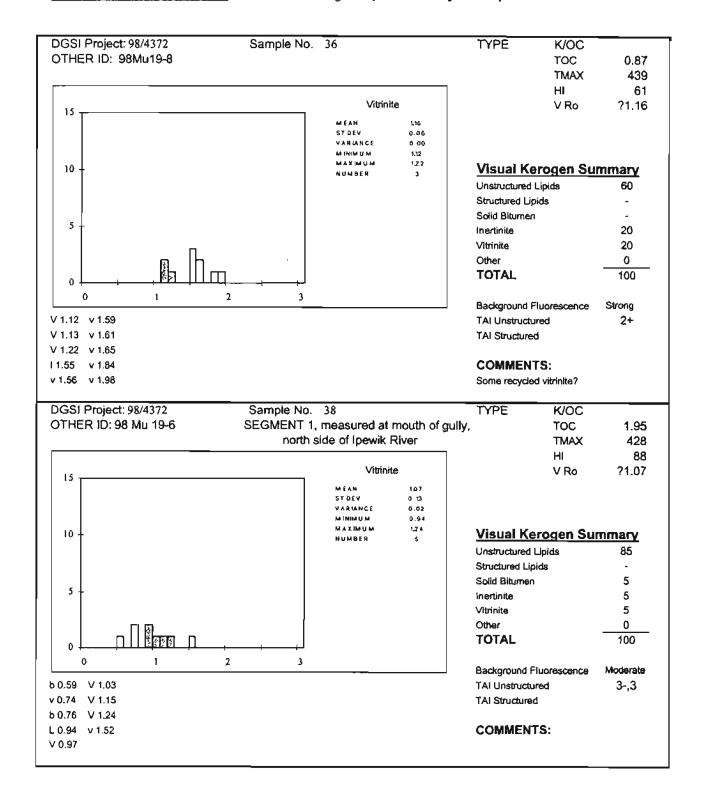


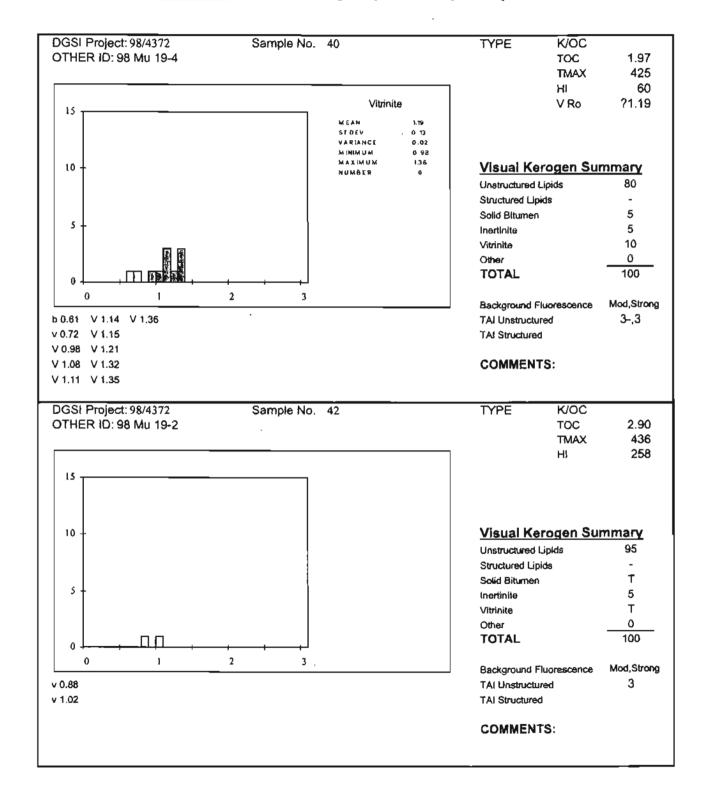


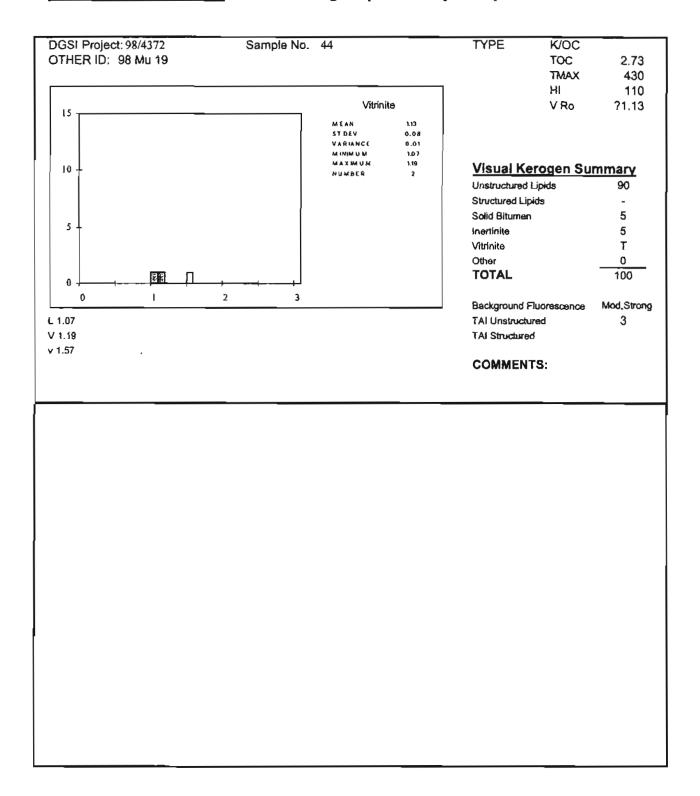


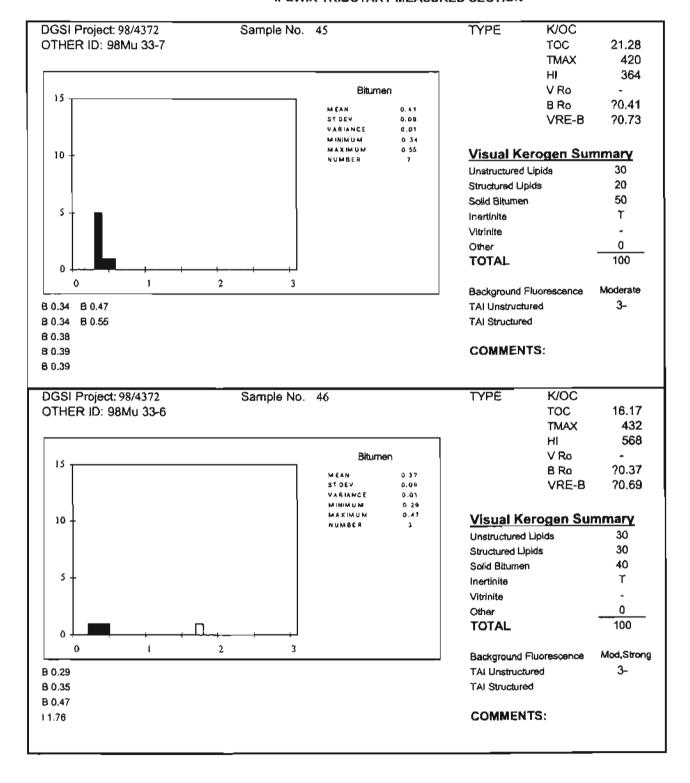


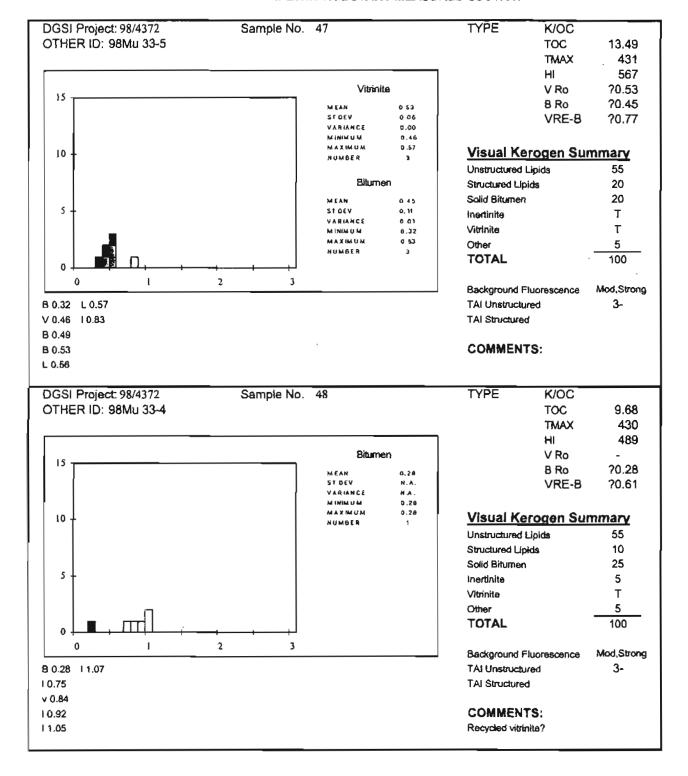


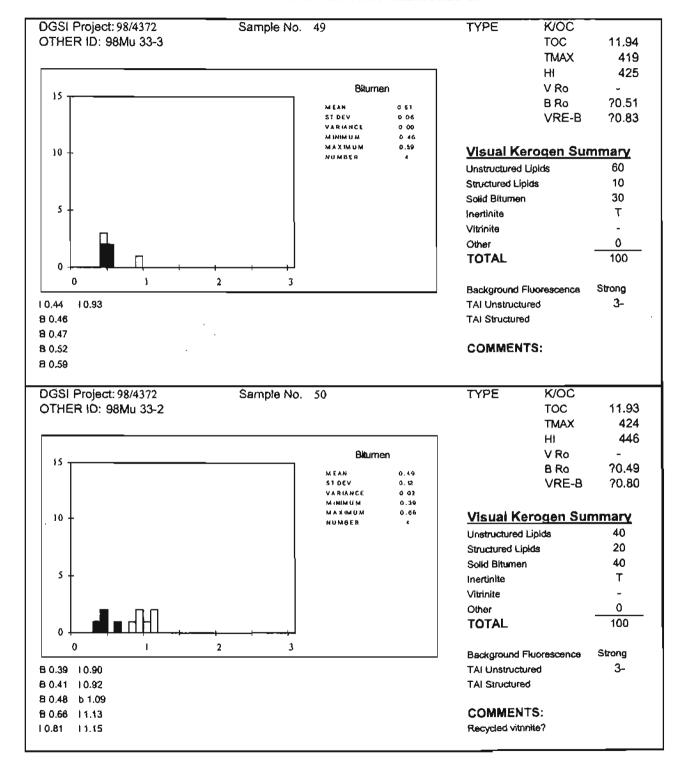


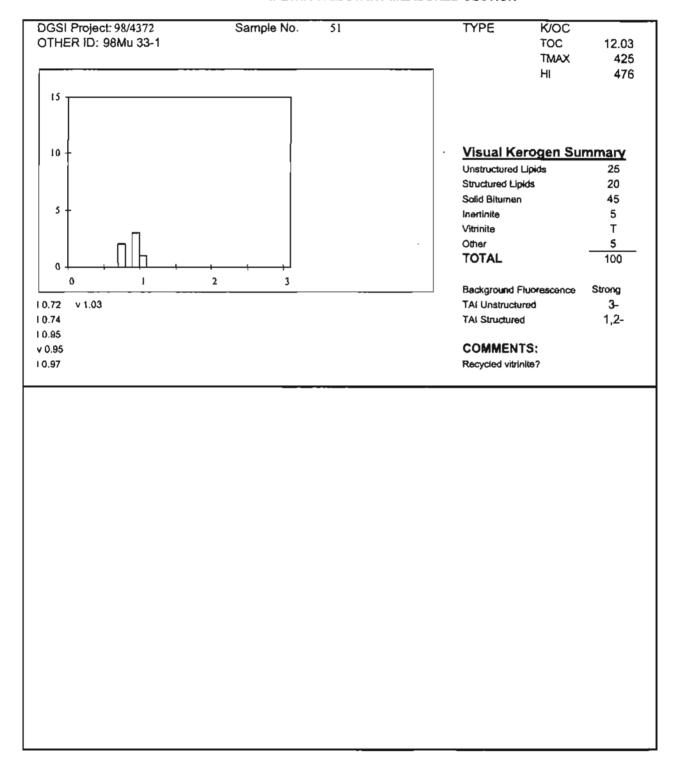


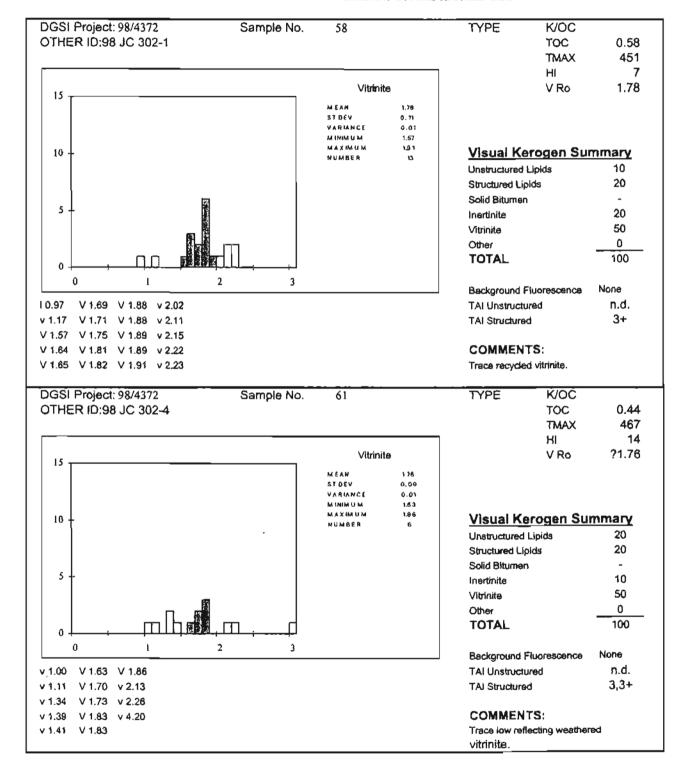


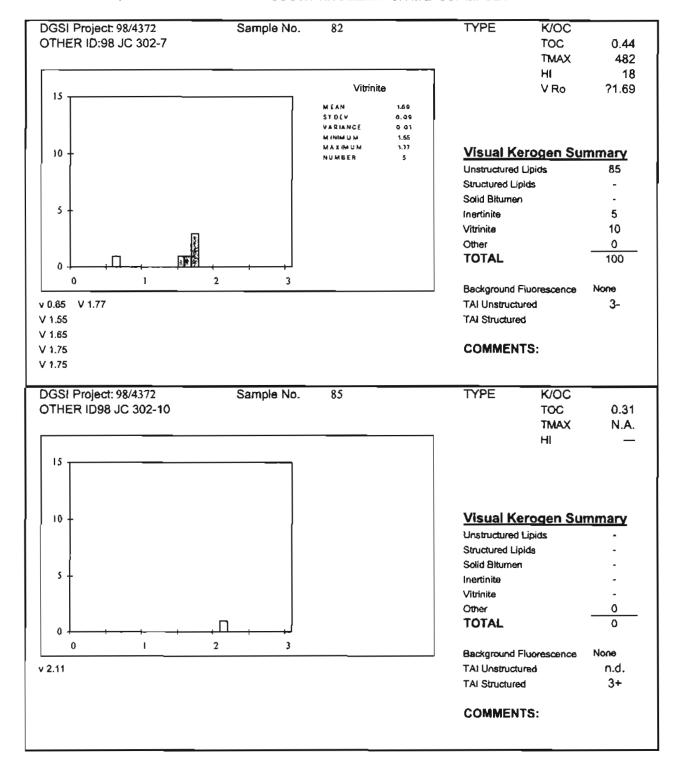


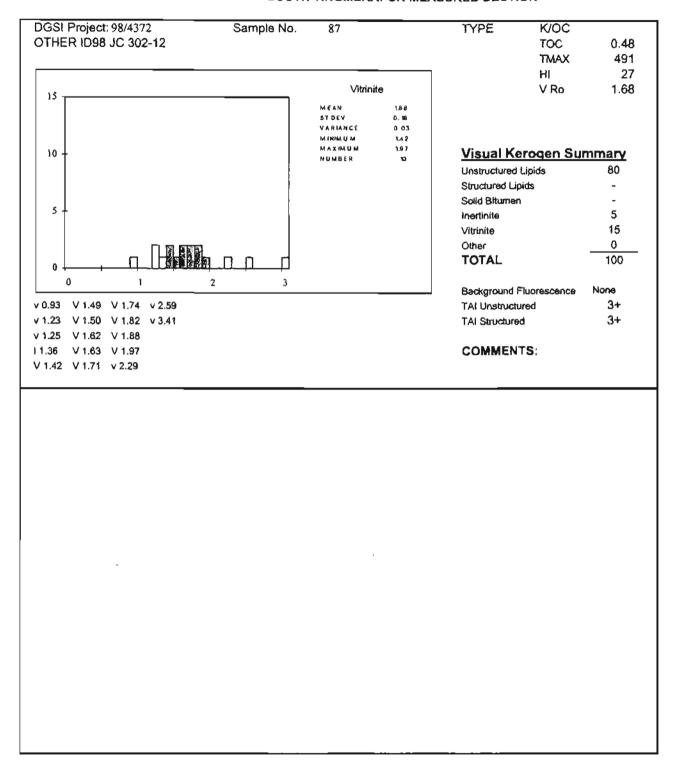


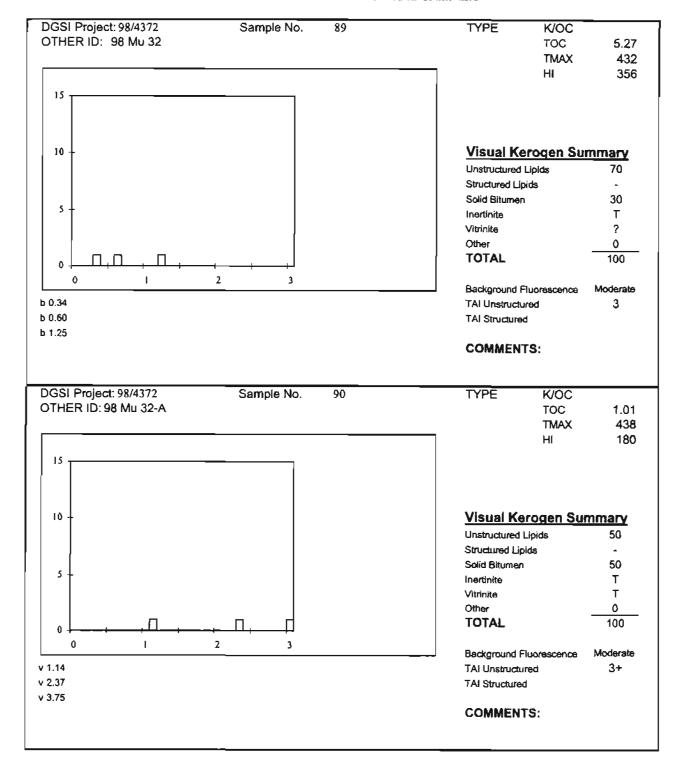

Tingmerkpuk 1998 Project Samples IPEWIK TRIBUTARY MEASURED SECTION

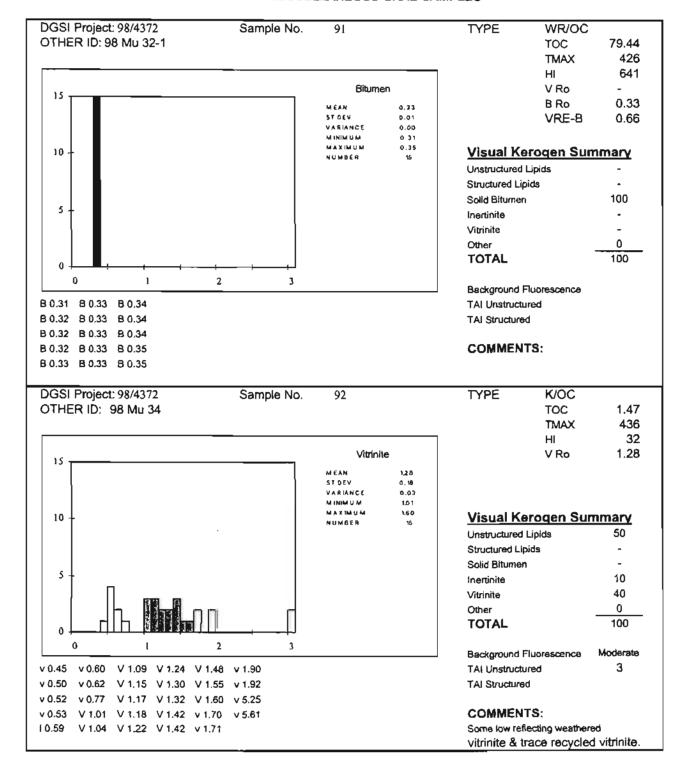

Tingmerkpuk 1998 Project Samples IPEWIK TRIBUTARY MEASURED SECTION

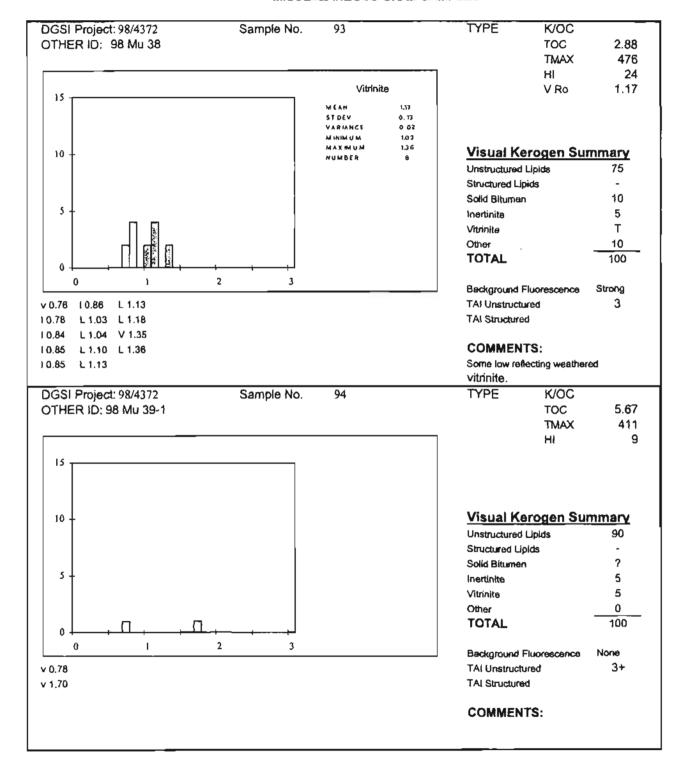

Tingmerkpuk 1998 Project Samples IPEWIK TRIBUTARY MEASURED SECTION

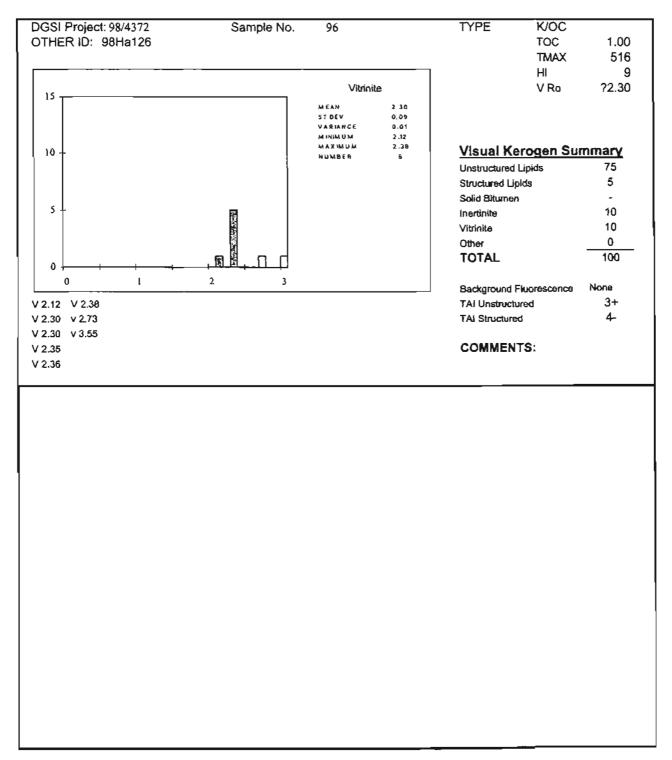

Tingmerkpuk 1998 Project Samples IPEWIK TRIBUTARY MEASURED SECTION


Tingmerkpuk 1998 Project Samples SOUTH TINGMERKPUK MEASURED SECTION


Tingmerkpuk 1998 Project Samples SOUTH TINGMERKPUK MEASURED SECTION


Tingmerkpuk 1998 Project Samples SOUTH TINGMERKPUK MEASURED SECTION


Tingmerkpuk 1998 Project Samples MISCELLANEOUS GRAB SAMPLES


Tingmerkpuk 1998 Project Samples MISCELLANEOUS GRAB SAMPLES

Tingmerkpuk 1998 Project Samples MISCELLANEOUS GRAB SAMPLES

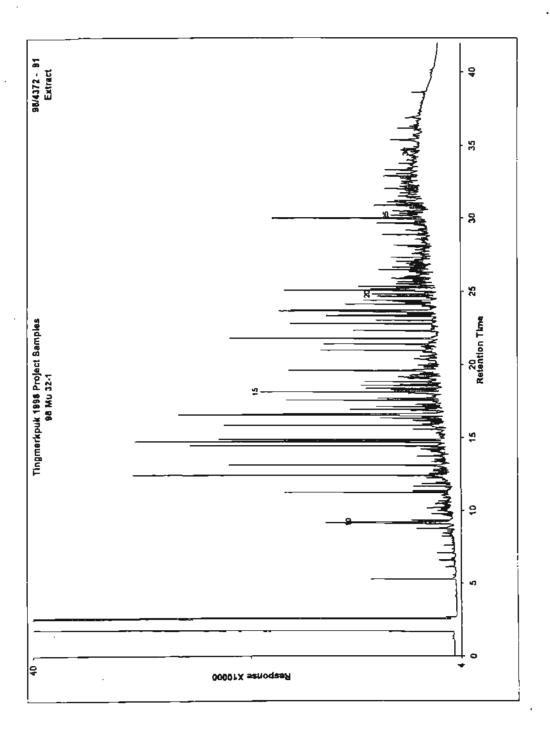
Tingmerkpuk 1998 Project Samples MiSCELLANEOUS GRAB SAMPLES

WHOLE EXTRACT GAS CHROMATOGRAPHY

About 50 grams of sample are crushed, passed through a 20 micron sieve, accurately weighed, and soxhlet extracted for 16 hours with dichloromethane. Other solvents can be substituted if desired. The solvent is evaporated and the residue weighed to obtain the weight percent of total organic extract. The advantage of whole extract chromatography over saturate chromatography is more of the lighter fraction (C₁₀ - C₁₅) is preserved. A minor disadvantage is the nonsaturate compounds are retained and complicate the chromatograms in relatively immature extracts.

A sample of whole extract is injected directly into a Varian model 3400 gas chromatograph fitted with a Quadrex 50 meter fused silica capillary column. The GC is programmed from 40°C to 340°C at 10°C/minute with a 2 minute hold at 40°C and a 20 minute hold at 340°C. Analytical data are processed with a Nelson Analytical model 3000 chromatographic data system and IBM computer hardware. This software system facilitates data processing and graphic display as well as electronic data transmittal. All standard calculations are made including pristane/phytane ratio, carbon preference index, and other key parameters.

Whole extract gas chromatography provides information on organic facies and thermal maturity of source rocks and migrated petroleum. It serves as a basis for oil-rock correlations. It is recommended primarily to evaluate know or suspected source beds, oil shows, samples with anomalous pyrolysis S_1 values and to identify possible contamination products.


WHOLE EXTRACT GAS CHROMATOGRAPHY

Tingmerkpuk 1998 Project Samples

DGSI Project 98/4372

Sarr	ple klentificatio	TOC	TY RATIOS						
DG\$I ID			Wt%	PPM	Ext/TOC	Pr/Ph	Pr/C17	Ph/C18	OEP
91 ;	98 Mu 32-1		79,44	23948	0.030	N.A.	N.A.	NA	0 54
DGSI ID	Sample Weight	Extract Weight	C17	Pr	C18	EA DATA Ph	C28	C29	C30
	1,2903	0.0309	190355	n.d.	167379	o.đ	109289	35028	20796

Sample Identification	NORMALIZED ISOPRENOID PERCENT							
ogsi id	iC13	IC14	1C15	IC15	IC18	1C19	IC20	
91 : 98 Mu 32-1	3.7	54.9	7.3	29,8	4,3	N.A.	N.A.	
Sample Identification DGSt (D	iC13	iG14	AF	EA DATA IC16	IC18	iC19	iC20	
91 : 98 Mu 32-1	32307	480242	63631	260947	37695	v.q.	n.d.	

